

Consulting Engineers and Scientists

Hydrogeological Investigation 40 Wilson Avenue

Belleville, Ontario

Submitted to:

RIC (Midland Land) Inc. 163 Cumberland Street, Unit 300 Toronto, Ontario, M5R 3N5

Submitted by:

GEI Consultants Ltd. 647 Welham Road, Unit 14 Barrie, Ontario, L4N 0B7 705-719-7994

May 19, 2022, Revision 1 Project No. 2102519

Table of Contents

1.	Intro	1	
	1.1	Purpose and Scope of Work	2
	1.2	Regulatory Requirements	2
2.	Site	4	
	2.1	Physiography, Surficial and Bedrock Geology	4
	2.2	Topography and Drainage	4
	2.3	MECP Water Well Records	4
	2.4	Visual Inspection of Site	5
3.	Proc	6	
	3.1	Groundwater Monitoring	7
	3.2	Borehole Permeability Testing	7
	3.3	Ground Water Sampling	7
4.	Subs	8	
	4.1	Stratigraphy	8
	4.2	Groundwater	10
	4.3	Infiltration	13
5.	Discussion and Analysis		14
	5.1	Temporary Construction Dewatering	14
	5.2	Permanent Building Drainage	14
	5.3	Preliminary Water Balance	15
	5.4	Recommended Mitigation Measures	18
6.	Limit	22	
	6.1	Limitations	22
	6.2	Conclusion	23

Table of Contents (cont'd)

Figures

- 1. Site Location Plan
- 2A. Borehole Location Plan (aerial)
- 2B. Borehole Location Plan (proposed site plan)
- 3. Wellhead Protection Areas
- 4. Intake Protection Zone
- 5. Highly Vulnerable Aquifers
- 6. Significant Groundwater Recharge Areas
- 7. MECP Well Record Locations
- 8. Geological Cross Section A-A'

Appendices

- A. MECP Water Well Records Summary Table
- B. Borehole Logs
- C. Geotechnical Laboratory Data
- D. Rising Head Test Results
- E. Groundwater Chemistry Certificates of Analysis
- F. Basement Drainage Typical Details
- G. Preliminary Water Balance

1. Introduction

GEI Consultants (GEI) was retained by RIC (Midland Land) Inc. to complete a hydrogeological investigation and report for the proposed residential subdivision to be located at 40 Wilson Avenue and along an extension of Wilson Avenue, in Belleville, Ontario. A site location plan is enclosed as Figure 1. Revision 1 of this report was prepared to reflect the newest site plan, which now only includes the western half of the original property. The new subject site boundary is shown on Figures 2A and 2B.

The existing site is generally rectangular in shape and consists of industrial lands that are bounded by Wilson Avenue and industrial lands to the south, Palmer Road and residential lands to the west, residential lands to the north, and industrial lands to the east. A large industrial building formerly existed at 40 Wilson Avenue just east of the subject site but was recently demolished, and a large stockpile of concrete rubble and construction debris (assumed to be from the demolition) is in the northern area of the site. The site mainly consists of vacant fields with intermittent trees, stockpiles of soil and rubble, and concrete debris. A cell tower is located in the northwestern corner of the property near Palmer Road. An aerial image of the site from 2018 is provided on Figure 2A.

GEI was provided with the following drawing for review in preparation of this report: "Draft Plan of Subdivision, Part of Lots 15, 16, 17, 2 & 27, Plan 135, Part of Lots 6 & 7, Plan 1819, Part of Wilson Avenue, Plan 6, In the City of Belleville, County of Hastings," dated November 6, 2020, by Innovative Planning Solutions.

The drawing shows that the subject site has an area of 7.78 ha. Proposed site conditions are shown on Figure 2B and the development will generally consist of the following:

- A variety of single detached residential lots and street townhouse units.
- A SWM facility in the southwestern corner.
- An extension to Wilson Avenue and new Streets B, C and D.

Final grading or site servicing plans were not available at the time of writing this report, but the subdivision will be municipally serviced.

GEI completed a geotechnical investigation and report under a separate cover. It is noted that a 12-month groundwater monitoring program is on-going, and the results will be reported under separate cover upon completion.

Hydrogeological Investigation 40 Wilson Avenue, Belleville, Ontario Project No. 2102519, May 19, 2022 (Revision 1)

1.1 Purpose and Scope of Work

The main objectives of the Hydrogeological Investigation were to:

- a) Establish the local hydrogeological settings of the site;
- b) Provide an assessment of anticipated construction dewatering flow rates for a generic construction scenario;
- c) Assess groundwater quality and compare the results to the applicable City of Belleville Storm Sewer Use By-Law parameters;
- d) Qualitatively assess the potential impact to the nearby structures, water bodies and water uses, if any, and comment on future regulatory agency involvement;
- e) Complete a water balance (pre- and post-construction) in general accordance with the Conservation Ontario requirements; and,
- f) Prepare a Hydrogeological Investigation Report.

To achieve the investigation objectives, GEI proposed and initiated the following scope of work:

- a) Conduct a background desktop review of pertinent geological and hydrogeological resources, Ministry of Environment, Conservation and Parks (MECP) Water Well Records, previous reports, and proposed site plan drawings.
- b) Visit the site and note existing site conditions, site setting, topography, drainage, water features, and potential water wells within 500 m of the site, if any.
- c) Utilization of the eight (8) boreholes and three (3) monitoring wells completed as part of the concurrent Geotechnical Investigation;
- d) Revisit the site and measure groundwater levels, perform borehole permeability testing at a selected monitoring wells, and retrieve two representative groundwater sample.
- e) Submit one (1) representative unfiltered and one (1) representative filtered groundwater sample for laboratory testing to compare against the City of Belleville Sewer Use By-Law.
- f) Evaluate the background information, and field and laboratory data to assess construction dewatering and permanent dewatering requirements.
- g) Complete a water balance (pre- and post-construction) for the proposed development.
- h) Prepare a Hydrogeological Investigation report.

1.2 Regulatory Requirements

1.2.1 Water Taking – Temporary

The volume of water entering the excavation will be based on both ground water infiltration and precipitation events. Based on O.Reg. 63/16, the following dewatering limits and requirements are as follows:

- <u>Construction Dewatering less than 50,000 L/day:</u> The takings of both groundwater and stormwater do not require a hydrogeological report and does not require a Permit to Take Water (PTTW) from the MECP.
- <u>Construction Dewatering greater than 50,000 L/day and less than 400,000 L/day:</u> The taking of groundwater and/or stormwater requires a hydrogeological report and registration on the Environmental Activity and Sector Registry (EASR) but does not require a PTTW from the MECP.
- <u>Construction Dewatering greater than 400,000 L/day:</u> The taking of groundwater and/or stormwater requires a hydrogeological report and a PTTW from the MECP.

1.2.2 Source Water Protection

The site is within the jurisdiction of Quinte Conservation Authority (QCA). The following documents should be used in determination of the regulatory requirements when it comes to maintaining hydrogeological function at this site:

- "Approved Quinte Region Source Protection Plan", dated September 19, 2019, by Quinte Region Source Protection Committee.
- "Integrated Watershed Management", dated October, 2019, by Conservation Ontario.

Based on Source Water Protection online mapping, the following is noted:

- Wellhead Protection Area (WHPA): The site <u>is not</u> located within a WHPA (Figure 3).
- Intake Protection Zone (IPZ): The site <u>is not</u> located within an IPZ 3 (Figure 4)
- Highly Vulnerable Aquifer (HVA): The site is located within an HVA (Figure 5).
- Significant Groundwater Recharge Area (SGRA): The site <u>is not</u> located within an SGRA (Figure 6).
- The site is not located within the Oak Ridges Moraine or Niagara Escarpment.

2. Site Setting

2.1 Physiography, Surficial and Bedrock Geology

The site is located within the physiographic region denoted as the Napanee Plain (Chapman and Putnam, 1984). Physiographic landform mapping shows the site lies within the limestone plains, with bevelled till plains to the north.

Surficial and bedrock geology mapping of the site by the Ontario Geological Survey indicate that the is mapped as having surficial paleozoic bedrock, and north of the site glaciolacustrine deposits comprising silt and clay are noted. These findings are consistent with the subsurface soil conditions encountered in the boreholes advanced on site, as discussed in Section 4.1.

The bedrock in the general area consists of Verulam limestone and shale, and is part of the Simcoe Group. Bedrock was encountered on-site at depths of 1.1 to 4.6 m below existing grade (Elev. 99.2 to 95.2).

2.2 Topography and Drainage

The existing site slopes from the north down to the south from a local elevation of approximately 100.63 metres at the northern site limit to local elevation 97.95 metres at the southern site limit (about 2.7 metres of topographic relief across the site). As such, the site will generally drain southward and the portion of the site closest to Palmer Road (western portion of the site) will generally drain towards the existing catch-basins along Palmer. Ultimately overland flow is anticipated to flow southward towards Lake Ontario.

No water bodies are located on the site. The closest surface water is a tributary of Potter Creek, located approximately 470 m west of the site. The site is in the Moira River Watershed which drains into the Bay of Quinte, in the jurisdiction of Quinte Conservation Authority.

2.3 MECP Water Well Records

MECP water well records were obtained within approximately 500 metres of the site area to assess the general nature of the groundwater resource in near vicinity of the site, and historical/current uses of wells in the area. Two Hundred and Twenty-Six (226) well records were found, the approximate MECP well locations are shown on Figure 7 and a well records summary table is included in Appendix A.

The wells were installed for the following uses:

• Twenty-six (26) of the records indicate domestic use.

- Two (2) of the records indicate industrial use.
- Fifty-Two (5) of the records indicate monitoring/test hole use.
- Two (2) of the records indicate "not in use"
- One Hundred and Ninety-One (191) of the records did not specify the use and are considered to be of unknown use.

The stratigraphic descriptions within the MECP monitoring well records are typically inaccurate due to the methodology in which they are determined (observations of cuttings and no consistency between descriptions of soil between different drillers). Though this is the case, an overall sense of the deep stratigraphy can be determined by looking at commonalities between most stratigraphic descriptions and where the wells were terminated in an aquifer. The well records typically indicate that silt and clay, and sands with variable gravel and silt over limestone bedrock were encountered.

Limestone bedrock was noted at depths of 0.9 to 11.0m, as such it is anticipated that domestic water supply wells are completed within the limestone unit as 'open' holes. It is typical of bedrock wells to be 'open' holes rather than screening a portion of the bedrock unit.

2.4 Visual Inspection of Site

A visual site inspection was carried out on September 31, 2021, by senior GEI staff to assess site drainage, topography and presence of surface water features.

The site is approximately 7.78 hectares in size and is bounded by Palmer Road and residential lands to the west, vacant former industrial lands to the south, residential lands to the north, and industrial and residential lands to the east. The site is vacant; however, a large industrial building formerly existed at 40 Wilson Avenue just east of the subject site but was recently demolished, and a large stockpile of concrete rubble and construction debris (assumed to be from the demolition) is in the northern area of the site. The rest of the site includes fields, intermittent trees, and stockpiles of soil, rubble and concrete debris. It is noted that there is some concrete cover near the northeastern portion of the site.

It is noted that monitoring wells from a previous investigation completed on-site were observed. The monitoring well marked as "Existing Well" on Figure 2A was accessible and functional, and GEI utilized this monitoring well as part of the hydrogeological investigation.

3. Procedures and Methodology

Prior to the commencement of drilling activities, the locations of underground utilities including natural gas, electrical, telephone, water, etc. were marked out by public and private utility locating companies. The fieldwork for the drilling program was carried out on August 4 to 6, 2021. A total of eight boreholes (Boreholes 6 to 13) were advanced on the subject site using a track-mounted drill rig. To advance the boreholes, continuous flight solid stem augers and standard soil sampling equipment was utilized. All samples were collected as per ASTM D1586 *Standard Test Method for Standard Penetration Test (SPT) and Split-Barrel Sampling of Soils* to assess the strength characteristics of the substrate.

It is noted that the original investigation also included the eastern part of the 40 Wilson Avenue property and an additional five boreholes (Boreholes 1 to 5) with three monitoring well installations were advanced in the eastern area. Boreholes 1 and 4 also recovered rock core. The logs and results from Boreholes 1 to 5 are not included within Revision 1 of this report as they were advanced beyond the subject site boundary.

The boreholes were advanced to auger refusal at depths of 1.5 to 4.6 metres below existing grade. The horizontal locations were laid out in the field by GEI prior to the drilling operations and the locations are shown on Figures 2A (2018 aerial image) and 2B (proposed site plan). Ground surface elevations of the boreholes were measured using survey equipment in reference to a local site benchmark (top nut of the fire hydrant located north of Wilson Avenue to the east of the subject site) with an assumed elevation of 100.0 metres. The GPS coordinates of the borehole locations were measured with a handheld GPS unit and were referenced to the NAD 83 geodetic datum.

The field staff examined and classified characteristics of the soils encountered in the boreholes, made groundwater observations during and upon completion of the drilling, recorded observations of borehole construction, and processed the recovered samples. Soil sampling was conducted at regular intervals for the full depth of the borehole. The boreholes were backfilled upon completion. All recovered soil samples were logged in the field, carefully packaged and transported to the laboratory for more detailed examination and classification. In the laboratory, the samples were classified as to their visual and textural characteristics and geotechnical laboratory testing was carried out with the results included in Appendix C. Three (3) monitoring wells were installed to facilitate long-term groundwater monitoring. Monitoring well construction is shown on the borehole logs in Appendix B.

3.1 Groundwater Monitoring

Groundwater levels are to be measured in the six monitoring wells installed by GEI, and the one monitoring well ("Existing Well") installed by others each month for one (1) year to determine the seasonally high groundwater levels. The levels to date have been measured from September to October 2021. The remaining groundwater level measurements will be provided in a supplemental letter.

3.2 Borehole Permeability Testing

A rising head test was completed in the one monitoring well installed by others ("Existing Well") on September 31, 2021. Water was manually purged from monitoring wells using LDPE piping and a foot valve. The static water level was measured prior to the start of testing, and the change in water level was monitored using an electronic level logger. The level logger was left in the monitoring well for several hours to allow for adequate recovery of the groundwater. The tests were completed to estimate the horizontal hydraulic conductivity (K) of the soils at the well screen depths.

The semi-log plot for drawdown versus time for the test is provided in Appendix D.

3.3 Ground Water Sampling

To establish baseline conditions and assess the suitability for discharge of pumped groundwater into City of Belleville sewer systems during potential dewatering activities, the following groundwater samples were collected from the "Existing Well" on September 31, 2021 and tested relative to the City of Belleville By-Law 2019-81 Sewer Use By-Law:

- One (1) sample was collected from "Existing Well" and analyzed against The City of Belleville By-Law 2019-81 Sewer Use By-Law.
- One (1) filtered sample was collected from "Existing Well" and analyzed against The City of Belleville By-Law 2019-81 Sewer Use By-Law for metals only.

The samples were collected and placed into pre-cleaned laboratory-supplied vials and/or bottles provided with analytical test group specific preservatives, as required. Dedicated nitrile gloves were used during sample handling. The field filtered samples were run through a 75 μ m filter. The samples were submitted to CALA- accredited Caduceon Environmental Laboratories for analysis. The results of the groundwater chemistry are presented in the laboratory Certificates of Analysis provided in Appendix E.

4. Subsurface Conditions

The borehole locations are shown on Figure 2A and 2B and detailed subsurface conditions are presented on the borehole logs in Appendix B. Geotechnical laboratory test results are included as Appendix C. It should be noted that the conditions indicated on the borehole logs are for specific locations only and can vary between and beyond the borehole locations. It should be noted that the soil boundaries indicated on the borehole logs are inferred from non-continuous sampling and observations during drilling. These boundaries are intended to reflect approximate transition zones and should not be interpreted as exact planes of geological change.

In addition, the descriptions provided in the borehole logs are inferred from a variety of factors, including: visual observations of the soil samples retrieved, laboratory testing, measurements prior to and after drilling, and the drilling process itself (speed of drilling, shaking/grinding of the augers, etc.). The passage of time also may result in changes in conditions interpreted to exist at locations where sampling was conducted.

4.1 Stratigraphy

The soil conditions encountered at the borehole locations are summarized below. A stratigraphic cross-section across the property as aligned on Figures 2A and 2B, is included as Figure 8.

4.1.1 Earth Fill

Earth fill was encountered at the ground surface in Boreholes 6 to 11, and 13. The earth fill extended to depths of 0.8 to 1.5 metres below grade (local Elev. 99.9 to 96.8 metres) in Boreholes 6 to 8, 10, 11 and 13. Borehole 9 encountered auger refusal in the earth fill at 2.1 metres below grade (local Elev. 97.4 metres) due to an obstruction (possibly a buried concrete slab). The earth fill consisted of silty sand, to sandy and silt, to sand and gravel, to sand and limestone fragments. Deleterious material including concrete, bricks, plastic, and fabric was encountered within the fill in Boreholes 9 to 11 and 13. The earth fill was typically brown and moist. Standard Penetration Test (SPT) results ("N" Values) measured in the earth fill ranged from 9 to greater than 100 blows per 300 mm of penetration, indicating a loose to very dense relative density.

4.1.2 Native Soils

A native cohesionless deposit consisting of sand and limestone fragments, with trace to some silt, and trace to some gravel was predominantly encountered beneath the site above the bedrock surface. The deposit was encountered at the ground surface in Borehole 12 and underlying the earth fill in Boreholes 6 to 8, 11 and 13. The deposit extended from depths of 0 to 1.5 metres

below grade (local Elev. 99.9 to 96.8 metres) to the inferred bedrock surface at depths of 1.5 to 4.6 metres below grade (local Elev. 98.5 to 95.2 metres) in the boreholes. The sand with limestone fragments was typically damp to moist and brown, and the measured SPT "N" Values ranged from 9 to greater than 100 blows per 300 mm of penetration, indicating a loose to very dense (but typically dense to very dense) relative density.

In Borehole 10, clayey and silty sand with trace gravel and trace to some limestone fragments was encountered underlying the earth fill at 1.5 metres below grade (local Elev. 97.8 metres). The brown and wet clayey and silty sand extended to the inferred bedrock surface at 2.4 metres below grade (local Elev. 96.9 metres). The SPT "N" Values were greater than 100, indicating a hard consistency.

The augers were constantly grinding as they advanced through the overburden soils due to the amount of limestone fragments. Cobbles, boulders, and limestone slabs are expected to be encountered in the overburden across the site.

4.1.3 Inferred Weathered Bedrock

Inferred weathered bedrock was encountered in the boreholes underlying the soil overburden, at depths of 1.5 to 4.6 metres below grade (local Elev. 98.5 to 95.2). The bedrock was inferred by drilling observations, auger grinding, auger refusal, and samples recovered in the split spoon or by auger samples.

The depths of inferred bedrock and method of identification are summarized below. The bedrock surface undulates across the site but generally slopes down from north to south.

Borehole Location	Local Elev. (m) of Ground Surface	Depth / Local Elev. (m) of Inferred Weathered Bedrock Surface	Method of Bedrock Identification	
6	100.63	2.1 / 98.5		
7	99.91	4.6 / 95.3	Inferred by auger grinding, auger refusal, auger sample	
8	99.63	3.5 / 96.1		
9	99.51	Not encountered – refusal on obstruction in earth fill	Not encountered	
10	99.32	2.4 / 96.9		
11	98.35	3.2 / 95.2	Inferred by auger grinding, auger refusal, auger sample, split spoon sample	
12	96.69	1.5 / 95.2		
13	97.95	1.7 / 96.3		

It is noted that rock core was recovered from two boreholes advanced by GEI approximately 110 and 320 metres east of the current subject site as part of the original investigation. Weathered limestone bedrock of the Verulam Formation was encountered. The Total Core Recovery (TCR), Solid Core Recovery (SCR) and Rock Quality Designation (RQD) values were recorded in accordance with the conventions used by the International Society for Rock Mechanics (ISRM). TCR ranged from 33 to 67%, SCR ranged from 0 to 32%, and RQD was 0%. The TCR was low due to the amount of weathering, rubblized zones and fractures which resulted in core loss. RQD was 0% in all core runs due to the number of fractures and rubblized zones. Sound (unweathered) bedrock was not encountered in the cored holes, and the weathered zone may be thicker than 3 metres in some locations based on the recovered core.

4.2 Groundwater

4.2.1 Groundwater Levels

Unstabilized groundwater level measurements and cave measurements were taken upon completion of drilling of each borehole as shown on the borehole logs in Appendix B. These measurements provide a rough estimate of the possible excavation and temporary groundwater control constructability considerations that may arise. The boreholes remained open and dry upon completion.

Monitoring wells were installed in Boreholes 7, 12 and 13 to facilitate the measurements of long-term, stabilized groundwater levels. The 50 mm diameter PVC wells had 0.6 to 1.5-metre-long screens as required based on the depth of soil overburden. An existing monitoring well was encountered on site near Borehole 13, as shown on Figures 2A and 2B. The purpose of this well is unknown but was measured to be 8.5 metres deep and groundwater was measured in the well. The well is screened within the limestone bedrock based on the results of nearby Borehole 13.

Monitoring	Screened Location		Strata Scrooned	Depth / Local Elevation (m) of Groundwater Table		
Well	Depth (m)	Local Elev. (m)	Strata Screened	August 31, 2021	October 8, 2021	March 26, 2022
7	3.1 to 4.6	96.8 to 95.3		Dry		
12	0.9 to 1.5	95.8 to 95.2	Sand & Limestone Fragments			
13	1.1 to 1.7	96.9 to 96.3				
Existing Well Bottom of Well at 8.5 m / near BH 13 89.5 m		Limestone Bedrock	5.31 / 92.64	5.56 / 92.39	3.6 / 94.4	

A summary of the groundwater level measurements is presented below:

The highest groundwater level measured at the site to date is 3.6 metres below grade, within the limestone bedrock at the south end of the site. The site grades generally slope from a higher elevation in the north to a lower elevation in the south. Some perched water may be present at the overburn-bedrock interface following precipitation events or the spring freshet, however the other monitoring wells remained dry on site during each reading. The groundwater level will change based on seasonal fluctuations. The overburden soils are cohesionless and will allow for the free flow of water when wet. It is expected that the highly fractured bedrock will also allow for the free flow of water. GEI is measuring the water levels once per month for a year to determine the seasonally high groundwater elevation, with the results provided in a separate letter report.

It is anticipated that the regional groundwater flow within the limestone bedrock would be southward towards the Bay of Quinte.

4.2.2 In-Situ Permeability

A hydraulic conductivity value was calculated from the rising head data using Hvorslev's solution (1951). It is noted that the monitoring wells installed by GEI as part of the geotechnical investigation did not encountered groundwater, and only the "Existing Well" completed by others could be utilized for in-situ permeability testing. The semi-log plot for drawdown versus time for the test is provided in Appendix D and are summarized in the table below.

Table 3: Summary of Hydraulic Conductivity (K) Testing Results

Monitoring Well	Well Depth (m bgs)	Strata Screened	Hydraulic Conductivity (m/s)
Existing Well near BH13	8.5	Limestone Bedrock (inferred)	4.0 x 10 ⁻⁶

According to Freeze and Cherry (1979), the typical hydraulic conductivity of the strata encountered on site are:

- Silty Sand: 10⁻³ m/s to 10⁻⁷ m/s
- Sand: 10^{-2} m/s to 10^{-5} m/s
- Limestone 10^{-5} m/s to 10^{-9} m/s

The actual measured hydraulic conductivity of the limestone bedrock is within the expected range. For design purposes, the hydraulic conductivity of the limestone is 4.0×10^{-6} m/s.

4.2.3 Baseline Groundwater Chemistry Testing

To establish baseline conditions and assess the suitability for discharge of pumped groundwater into City of Belleville sewer systems during potential dewatering activities, the following groundwater samples were collected from the "Existing Well" monitoring well on September 31, 2021 and tested relative to the City of Belleville By-Law 2019-81 Sewer Use By-Law:

- One (1) sample was collected from "Existing Well" and analyzed against The City of Belleville By-Law 2019-81 Sewer Use By-Law.
- One (1) filtered sample was collected from "Existing Well" and analyzed against The City of Belleville By-Law 2019-81 Sewer Use By-Law for metals only.

The samples were collected and placed into pre-cleaned laboratory-supplied vials and/or bottles provided with analytical test group specific preservatives, as required. Dedicated nitrile gloves were used during sample handling. The field filtered samples were run through a 75 μ m filter. The samples were submitted to CALA- accredited Caduceon Environmental Laboratories for analysis. The results of the groundwater chemistry are presented in the laboratory Certificates of Analysis provided in Appendix E.

A summary of the results is presented in the table below for samples relative to The City of Belleville By-Law 2019-81 Sewer Use By-Law.

Sample Location	Parameters Tested	City of Belleville Storm Sewer Use By-Law Criteria Exceedances	City of Belleville Sanitary Sewer Use By-Law Criteria Exceedances	
Existing Well All Parameters Required per (Unfiltered) By-Law		TSS	TSS	
Existing Well (Filtered)	Metals	None	None	

The unfiltered groundwater sample collected from the "Existing Well" met The City of Belleville By-Law 2019-81 Sewer Use By-Law Discharge for both Storm and Sanitary criteria with the exception of TSS. The filtered groundwater sample tested for only metals showed a further reduction in metal concentrations (even though the unfiltered sample met the concentrations in the City By-law).

The above chemical results suggest treatment of the dewatering discharge water by filtration will reduce the concentration of suspended solids sufficiently to meet the applicable City of Belleville Storm and Sanitary Sewer Use By-Law Criteria.

It is understood that during construction dewatering, the pumped water is to be first discharged to a silt bag or sedimentation tank at a minimum before being discharged to surface and/or existing storm sewer infrastructure.

4.3 Infiltration

Determination of percolation rates are based on the "*Ministry of Municipal Affairs and Housing* (*MMAH*) Supplementary Guidelines SB-6, Percolation Time and Soil Descriptions, September 14, 2012". The boreholes indicate the sand, sandy silt, and/or silty and clayey sand soils were encountered near the ground surface. The Unified Soil Classification System classifications for the predominant soils encountered on-site are summarized below with the interpreted unfactored percolation rates (T-Time) and unfactored infiltration rates:

Unified Soil Classification System Classification	Unfactored Percolation Rate (T-Time) (mins/cm)	Unfactored Infiltration Rate (mm/hr)	
S.P. Poor graded sands with little fines	2 to 8	75 to 300	
S.M. Silty sands, sand-silt mixtures	8 to 20	30 to 75	
S.C. Clayey sands, sand-clay mixtures	12 to 50	12 to 50	

This infiltration rate is not applicable below the groundwater table and is not applicable to the existing zones of earth fill across the site. Appendix C of "*Low Impact Development Stormwater Management and Planning Design Guide*" (Version 1.0, 2010, by CVC and TRCA) suggests safety factors to be applied to infiltration rates. The safety factor applicable to the site is expected to be 2.5 but this must be confirmed once the final location and elevation of LID measures are known. If LID infiltration measures will be designed and constructed on site, GEI can further refine the infiltration rates by excavating test pits and conducting Guelph Permeameter tests in the exact footprints and elevations of the LID measures.

5. Discussion and Analysis

The conceptual site drawing shows that the subject site has an area of 7.78 ha. Proposed site conditions are shown on Figure 2B and the development will generally consist of the following:

- A variety of single detached residential lots and street townhouse units.
- A SWM facility in the southwestern corner.
- An extension to Wilson Avenue and new Streets B, C and D.

Preliminary utility plans and proposed residential building plans were not available to GEI, as such site servicing, and potential basement excavation depths have been assumed to extend to a depth of 3.0m below existing grade.

5.1 Temporary Construction Dewatering

It is expected that the groundwater table is located at a depth of 3.6 metres below grade across the site or deeper, within the limestone bedrock. Some perched water may be present at the overburden-bedrock interface following precipitation events or the spring freshet. The groundwater level will change based on seasonal fluctuations. The overburden soils are cohesionless and will allow for the free flow of water when wet. It is expected that the highly fractured bedrock will also allow for the free flow of water. GEI is measuring the water levels once per month for a year to determine the seasonally high groundwater elevation, with the results provided in a separate letter report.

On a preliminary basis, excavations are not expected to extend below the groundwater table. Any seepage from the overburden or runoff from precipitation events can be controlled using a conventional sump pump system.

It is not anticipated that dewatering volumes more than 50,000 L/day would take place. Therefore, neither an application to the Environmental Activity and Sector Registry nor a Permit to Take Water from the MECP are expected to be required. This assessment must be confirmed once final site grading and servicing plans are available.

5.2 Permanent Building Drainage

For new structures that will be slab-on-grade with no basement levels, perimeter and under-slab drainage at the foundation level is not required, provided that the underside of concrete slab is at least 200 mm above the prevailing grade of the site and the surrounding surfaces slope away from the building at a gradient of at least 2% to promote surface water run-off and to reduce

groundwater infiltration adjacent to foundations. To minimize infiltration of surface water, the upper 150 mm of backfill could consist of less permeable, compacted clayey soil.

Where basements are constructed, all basement foundation walls must be provided with dampproofing provisions in conformance to the Ontario Building Code. Backfill along the foundation wall must consist of Granular 'B' Type 1 (OPSS 1010) for a minimum lateral distance of 600 mm out from the foundation wall. Alternatively, if a filtered cellular drainage media is provided adjacent to the foundation wall, the backfill may consist of common earth fill.

A perimeter drainage system must be installed that will remove any water that infiltrates into the building backfill, to ensure that any water does not infiltrate into the basement. The perimeter drains must consist of minimum 100 mm diameter perforated pipes wrapped in filter socks, sufficiently covered on all sides by 19 mm clear stone. Perimeter drains should be directed to the sump underneath the basement floor in solid pipes so as not to surcharge the underfloor drainage layer with water. One run of subfloor drainage pipe trenched below the slab granular drainage layer is recommended for the single residential dwellings, and 6 metre on-centre spacing is recommended for the townhouses. All sump pumps should be on emergency power for redundancy in case of a power outage. A typical basement drainage detail is included in Appendix F.

It is common practice to set the basement level a minimum of 0.5 metres above the seasonally high groundwater level. If the basement level is set near or within the prevailing groundwater level, it is possible that perimeter drainage issues may occur in the future (e.g. sump pump failure, blockage of drainage pipes, etc.), which would lead to potential foundation cracking and basement flooding. Basements can be set below the groundwater table provided these risks are fully acknowledged and all obligations set by the governing bodies in the jurisdiction are met which stipulate minimum clearance distances between basement slab elevation and seasonal high groundwater table.

The water level is expected to be 3.6 metres or deeper below grade, and basements are not expected to extend below the groundwater table. GEI is measuring groundwater levels each month for a year to determine the seasonally high groundwater level, and the results will be included in a supplemental groundwater monitoring letter.

5.3 Preliminary Water Balance

5.3.1 Water Balance Components

A water balance is an accounting of the water resources within a given area. The water balance equates the precipitation (P) over a given area to the summation of the change in ground water storage (S), evapotranspiration/evaporation (ET), surface water runoff (R) and infiltration (I) using the following equation:

$$\mathbf{P} = S + I + ET + R$$

The components of the water balance vary in space and time and depend on climatic conditions as well as the soil and land cover conditions (i.e., rainfall intensity, land slope, soil hydraulic conductivity and vegetation). For example, runoff occurs at a higher percentage during periods of snowmelt when the ground is frozen or during intense rainfall events.

Precise measurement of the water balance components is difficult, and as such, approximations and simplifications are made to characterize the water balance of a property. Field observations of the drainage conditions, land cover and soil types, groundwater levels and local climatic records are important inputs to the water balance calculations.

- <u>Precipitation (P)</u>: For the purposes of approximating the annual precipitation at this site, the monthly rainfall between 1981 and 2010 was used based on Environment Canada historical weather data for the Belleville weather station (Climate ID 6150689, Latitude 44.09 N, Longitude -77.39 W, Elevation 76.2 metres), which is located about 8 km south of the site.
- <u>Storage (S)</u>: Although there are groundwater storage gains and losses on a short-term basis, the net change in groundwater storage on a long-term basis is assumed to be zero.
- <u>Evapotranspiration/Evaporation (PET)</u>: The evapotranspiration and evaporation components vary based on the characteristics of the land surface cover (i.e., type of vegetation, soil moisture conditions, perviousness of surfaces, etc.). Potential evapotranspiration refers to the water loss from a vegetated surface to the atmosphere under conditions of an unlimited water supply. Evaporation occurs from a hard surface (such as flat rooftops, asphalt, gravel parking areas, etc.).
- <u>Water Surplus (R + I)</u>: The difference between the mean precipitation and evapotranspiration is referred to as the water surplus. The water surplus is divided into two parts: as surface or overland runoff (R) and the infiltration into the surficial soil (I). The infiltration is comprised of two end member components: one component that moves vertically downward to underlying aquifers (referred to as percolation, deep infiltration or net recharge) and a second component that moves laterally through the near surface soil profile or shallow soils as interflow that reemerges locally to surface (i.e., as runoff) at some short distance and time following precipitation.

5.3.2 Approach and Methodology

The analytical approach to calculate the water balance involves monthly soil-moisture balance calculations to determine the pre-development infiltration volumes. The detailed water balance calculation is provided in Appendix G, which is summarized in this and subsequent sections of

the report. The following assumptions were used as part of the soil-moisture balance calculations:

- A soil moisture balance approach assumes that soils do not release water as potential recharge while a soil moisture deficit exists.
- During wetter periods, any excess of precipitation over evapotranspiration first goes to restore soil moisture. Considering the nature of the near surface soils (sand/sandy silts), a soil moisture storage capacity of 75 mm was used for the site which is vegetated with shrubs, grasses and some trees. It is assumed that post-construction permeable areas will be shallow urban vegetation and the same storage capacity was used post-development for the permeable areas.
- Once the soil moisture deficit is overcome, any further excess water can then pass through the soil as infiltration and either become interflow (indirect runoff) or recharge (deep infiltration).

Monthly potential evapotranspiration calculations accounting for latitude, climate and the actual evapotranspiration and water surplus components of the water balance based on the monthly precipitation and soil moisture conditions was calculated. The *MECP SWM Planning and Design Manual* (2003) methodology for calculating total infiltration based on topography, soil type and land cover was used, and a corresponding infiltration factor was calculated for pre and post-development conditions. The water surplus was multiplied by the infiltration factor to determine both the pre-existing and post-condition annual volumes for run-off and infiltration for the property.

The post-development water balance scenario was estimated based on the preliminary drawing "*Draft Plan of Subdivision, Part of Lots 15, 16, 17, 2 & 27, Plan 135, Part of Lots 6 & 7, Plan 1819, Part of Wilson Avenue, Plan 6, In the City of Belleville, County of Hastings*" dated November 6, 2020, by Innovative Planning Solutions. This preliminary plan shows general information about the potential locations of features such as roadways, parkland, residential areas, etc. The total site area is 7.78 hectares. It was assumed that about 80% of the residential areas will consist of impermeable components (e.g., houses, driveways, buildings), and 20% is considered to be permeable. The final site configuration may change and the water balance must be updated to reflect the final site plans.

It is noted that the infiltration and runoff values presented in Appendix G are estimates only. Single values are used for the water balance calculations, but it is important to understand that infiltration rates are dependent upon the hydraulic conductivity of the surficial soils which may vary over several orders of magnitude. As such, the margins of error for the calculated infiltration and runoff component values are potentially quite large. These margins of error are recognized, but for the purposes of this assessment, the numbers used in the water balance calculations are considered reasonable estimates based on the site-specific conditions and useful for comparison of pre- to post-development conditions.

5.3.3 Pre and Post Development Water Balance

The detailed water balance calculations are included in Appendix G. The pre and post development calculations are summarized in this section are preliminary only and must be updated once site plans are finalized.

The table below summarizes the pre and post construction water balance for the 7.78 hectares of the site being developed.

Condition	Permeable Areas	Impermeable Areas	Average Annual Runoff Volume (m³/year)	Average Annual Infiltration Volume (m³/year)
Pre-Development Land Use	90% (vegetated area)	10% (Paved areas, access routes, concrete cover)	11,304.3	21,095.6
Post-Development Land Use (Preliminary Plan)	20% (Green space, parks, lawns)	80% (Buildings, paved areas, SWM facilities)	49,415.1	4,687.9

These calculations suggest that, without mitigation such as low impact development (LID) measures, the proposed development will decrease average infiltration by about 16,407.7 m³/year (78% decrease). The proposed development will increase runoff by about 38,110.8 m³/year (337% increase). This means about 16,408 m³/year of infiltration is required to maintain the water balance. The potential impacts of these changes and recommended mitigation measures are discussed below.

5.4 Recommended Mitigation Measures

The three broad categories which typically need to be mitigated and accounted for are:

- Reducing the volume and speed in which additional surface water runoff occurs;
- Increasing the amount of infiltration to match pre-development conditions; and
- Ensuring that the quality of existing surface water features and groundwater will not be adversely impacted.

5.4.1 Runoff Quantity

Urban development of an area affects the natural water balance. The most significant difference is the addition of impervious surfaces as a type of surface cover (e.g. roads, parking lots, driveways, rooftops). Impervious surfaces prevent infiltration of water into the underlying soils and the removal of the vegetation reduces the evapotranspiration component of the natural water balance. The evaporation component from impervious surfaces is relatively minor (estimated to

be 15% of precipitation) compared to the evapotranspiration component that occurs with vegetation in this area (up to two thirds of precipitation). So, the net effect of the urbanization of the site is that most of the precipitation that falls onto impervious surfaces increases the surplus water resulting in more direct runoff from developed areas and reduced natural infiltration.

In conjunction with increased runoff, there is a reduction in infiltration to the shallow groundwater system. A reduction in infiltration can potentially lead to a lowering of the local water table and reduce the potential for this seasonal water table intersection and discharge.

Methods which do not necessarily increase infiltration rate, but decrease the volume and concentration of surface water runoff can be considered at this site include (but are not limited to):

- Increasing the topsoil thickness by about two times the normal thickness (up to 30 cm) to retain more water in storage; and
- Implementation of rainwater harvesting which intercepts, diverts and stores roof runoff (i.e. cisterns) for future use.

5.4.2 Mitigation Measures for Maintaining Infiltration

The increases in surface water runoff that will occur with urban development and mitigation of the potential impacts to the local water table due to reduction of infiltration may be minimized by using appropriate stormwater management and using LID measures to promote infiltration. These measures can be implemented on-site.

The basic premise for low impact development is to try to minimize changes to runoff and infiltration. As outlined in the *MECP SWMP Design Manual* (2003) and *Low Impact Development Stormwater Management Planning and Design Guide* published by the Credit Valley Conservation (CVC) and TRCA (2010), there are a suite of techniques that may be considered to promote infiltration and reduce runoff.

In order to maintain ground water function at the site the following typical LID measures can be considered as part of typical site developments (can depend on land use):

- Collection of runoff from the building rooftops and redirection to grass areas and overland flow. If feasible, it is recommended that there be a minimum 5 metre flow path over pervious areas to allow this mitigation method to be fully effective;
- Provision of gentle slopes in open areas or along grass swales in order to allow time for water infiltration;
- Construction of engineered infiltration measures such as soakaway pits, infiltration galleries or bioswales. Subsurface infiltration methods can only be considered in

areas where there is sufficient soil permeability and depth to water table to accommodate the systems within the unsaturated zone (typically the infiltration elevation must be kept 1 metre or more above the seasonal high groundwater level).

• Construction of grass channels or filter strips which allow infiltration, discharge at a lower rate and direct roof runoff to overland flow.

Implementation of LID measures will not only allow for infiltration of the surface water into the near-surface groundwater regime but will also allow for increase in natural filtration of surficial runoff, prevent sedimentation transport and potential erosion, and help reduce flooding by increasing the transit time for water on the site. These types of LID techniques promote natural infiltration by providing additional water volumes in the pervious areas. This is particularly effective in the summer months when natural infiltration would not generally occur because the additional water overcomes the natural soil moisture deficit.

Details and designs for LID measures will be provided in a stormwater management report for the site (by others). This includes demonstrating through plans and sections (including all dimensions, materials used and including the seasonal high groundwater level) how this infiltration deficit will be mitigated.

As it is typically a requirement of maintaining the same levels of infiltration post construction, no appreciable change in the groundwater table elevation should occur over the long-term condition.

If the water balance cannot be fully maintained due to low soil permeability or higher groundwater levels, minimal impacts are expected for the following reasons:

- The site is not within a Significant Groundwater Recharge Area.
- Future development of the land surrounding the site is expected to be serviced by City water supply instead of domestic wells.
- Groundwater recharge and baseflow to creeks is anticipated to be low due to the existing City of Belleville stormwater management systems in the area.

5.4.3 Groundwater Quality

Depending on land use, runoff from urban developments may contain a variety of dilute contaminants such as suspended solids, chloride from road salt, oil and grease, metals, pesticide residues, phosphorous, bacteria and viruses. For groundwater, generally except for the dissolved constituents such as nitrogen and salt, most contaminants are attenuated by filtration during groundwater flow through the soils.

LID measures or end treatments such as oil/grit separators or wet ponds also help to remove suspended solids and other contaminants in runoff prior to infiltration or conveying the flows

Hydrogeological Investigation 40 Wilson Avenue, Belleville, Ontario Project No. 2102519, May 19, 2022 (Revision 1)

off the site, especially when a treatment train approach is taken for stormwater management. The stormwater management facilities (to be designed by others) must be designed such that the water quality is maintained or improved prior to discharging water from the site or infiltrating water into the ground.

Runoff from residential developments (e.g. rooftops, landscaped areas) are typically considered "clean" and can be collected an infiltrated where possible. Further, infiltration-based practices would likely be permitted for impervious areas such as roads and driveways for the low-density residential development.

Since only clean or pre-treated runoff will be infiltrated, the groundwater quality will not be degraded and will not impact nearby domestic wells, watercourses or other nearby environmental features. The surficial aquitard present across the site also limits the amount of water infiltrating deeper below grade as recharge.

6. Limitations and Conclusions

6.1 Limitations

The recommendations and comments provided are necessarily on-going as new information of underground conditions becomes available. More specific information with respect to the conditions between samples, or the lateral and vertical extent of materials may become apparent during excavation operations. The interpretation of the borehole information must, therefore, be validated during excavation operations. Consequently, conditions not observed during this investigation may become apparent. Should this occur, GEI should be contacted to assess the situation and additional testing and reporting may be required.

GEI should be retained for a general review of the final design drawings and specifications to verify that this report has been properly interpreted and implemented. If not accorded the privilege of making this review, GEI will assume no responsibility for interpretation of the recommendations in the report.

The comments given in this report are intended only for the guidance of the design engineers. The number of boreholes required to determine the localized underground conditions between boreholes affecting construction costs, techniques, sequencing, equipment, scheduling, etc. could be greater than has been carried out for design purposes. Contractors bidding on or undertaking the works should, in this light, decide on their own investigations, as well as their own interpretations of the factual borehole results, so that they may draw their own conclusions as to how the subsurface conditions may affect them.

This report was prepared by GEI for the account of RIC (Midland Land) Inc. Any use which a third party makes of this report, or any reliance on or decisions to be made based on it, are the responsibility of such third parties. GEI accepts no responsibility for damages, if any, suffered by any third party as a result of decisions made or actions based on this project.

Hydrogeological Investigation 40 Wilson Avenue, Belleville, Ontario Project No. 2102519, May 19, 2022 (Revision 1)

6.2 Conclusion

It is recognized that municipal/regional governing bodies, in their capacity as the planning and building authority under Provincial statues, will make use of and rely upon this report, cognizant of the limitations thereof, both as are expressed and implied.

We trust this report is complete within our terms of reference, and the information presented is sufficient for your present purposes. If you have any questions, or when we may be of further assistance, please do not hesitate to contact our office.

Yours Truly,

GEI Consultants

Alicia Kimberley, MSc., P.Geo. Geoenvironmental and Hydrogeological Practice Lead

Nonter

Russell Wiginton, P.Eng. Senior Geotechnical Engineer

Figures

Site Location Plan Borehole Location Plan (Aerial) Borehole Location Plan (Proposed Site Plan) Wellhead Protection Areas Intake Protection Zone Highly Vulnerable Aquifers Significant Groundwater Recharge Areas MECP Well Record Locations Geological Cross Section A-A'

Appendix A

MECP Well Record Summary Table

TOWNSHIP CON LOT	UTM	DATE CNTR	CASING DIA	WATER	PUMP TEST	WELL USE	SCREEN	WELL	FORMATION
	18								
	307930								
BELLEVILLE	4893221	1974/1							BRWN CLAY GRVL 0028 GREY GRVL 0030 BRWN LMSN
CITY	W	2 4922	6 6	UK 0029	//5/:	IN		2906680 ()	SHLE 0031 BRWN LMSN 0038
	18								
	307930								
BELLEVILLE	4893221	1974/1							BRWN CLAY GRVL 0027 GREY GRVL 0029 BRWN LMSN
CITY	W	2 4922	6 6	UK 0028	//5/:	IN		2906679 ()	SHLE 0031 BRWN LMSN 0038
	18								
	307214							2919198	
BELLEVILLE	4893103	2001/0						(126592)	
CITY	W	9 6362						А	
	18								
	307806							7139984	LOAM 0001 BRWN SAND GRVL SILT 0003 BRWN SILT
BELLEVILLE	4892842	2008/0						(Z105705)	CLYY GRVL 0010 BRWN SILT CLYY GRVL 0011 BRWN
CITY	W	4 1 1 2 9	6.30 4.01			MO		A067450	SAND GRVL SILT 0013 BRWN SILT CLYY GRVL 0015
	18								
	307800							7139985	
BELLEVILLE	4892846	2008/0						(Z105704)	LOAM 0001 BRWN SAND GRVL SILT 0004 BRWN SILT
CITY	W	4 1 1 2 9	6.30 4.01			MO		A067449	CLYY SAND 0015
	18								
	307799							7139986	LOAM 0000 BRWN SAND GRVL SILT 0004 BRWN CLAY
BELLEVILLE	4892843	2008/0						(Z105701)	SLTY GRVL 0009 BRWN SAND GRVL SILT 0010 BRWN
CITY	W	4 1 1 2 9	6.30 4.01			MO		A067448	CLAY SLTY SILT 0029
	18								
	307795							7139987	LOAM 0001 BRWN SAND GRVL SILT 0004 BRWN CLAY
BELLEVILLE	4892837	2008/0						(Z105700)	SLTY SAND 0011 BRWN SAND GRVL SILT 0013 BRWN
CITY	W	4 1 1 2 9	6.30 4.01			MO		A067447	CLAY SLTY SILT 0024 GREY SAND SILT 0030
	18								LOAM 0001 BRWN SAND SILT 0005 0009 BRWN SILT
	307798							7139988	CLYY SAND 0010 BRWN SAND GRVL SILT 0012 BRWN
BELLEVILLE	4892829	2008/0						(Z105699)	CLAY SLTY SAND 0021 GREY SAND SILT CLAY 0028
CITY	W	4 1 1 2 9	6.30 4.01	1		MO		A067445	GREY SILT CLYY GRVL 0029

TOWNSHIP CON LOT	UTM	DATE CNTR	CASING DIA	WATER	PUMP TEST	WELL USE	SCREEN	WELL	FORMATION
	18								
	307816							7139989	LOAM 0002 BRWN SAND SILT 0004 BRWN SILT CLAY
BELLEVILLE	4892832	2008/0						(Z105703)	GRVL 0015 GREY SAND GRVL 0015 0025 BRWN SAND
CITY	W	4 1129	6.30 4.01			MO		A067430	SLTY GRVL 0027
	18								
	307813							7139990	
BELLEVILLE	4892825	2008/0						(Z105702)	LOAM 0002 BRWN SAND GRVL SILT 0006 BRWN SILT
CITY	W	4 1 1 2 9	6.30 4.01			MO		A060937	CLYY GRVL 0010 BRWN SAND SILT GRVL 0021
									LOAM 0000 BRWN SAND SILT 0007 BRWN SILT CLYY
	18								CLAY 0014 BRWN SAND GRVL SILT 0015 BRWN CLAY
	307740							7139981	SLTY GRVL 0019 BRWN SAND GRVL SILT 0019 GREY
BELLEVILLE	4892838	2008/0						(Z105643)	CLAY SLTY GRVL 0029 GREY SAND CLAY SILT 0031
CITY	W	4 1 1 2 9	6.30 4.01			MO		A067458	ROCK LMSN 0031
	18								
	307729							7139983	
BELLEVILLE	4892850	2008/0						(Z105698)	LOAM 0002 BRWN SILT CLYY CLAY 0004 BRWN SILT
CITY	W	4 1 1 2 9	6.30 4.13			MO		A067456	SNDY SAND 0012 LMSN ROCK 0015
	18								
	307724							7139982	LOAM 0001 BRWN SAND SLTY 0002 BRWN CLAY SLTY
BELLEVILLE	4892835	2008/0						(Z105696)	SAND 0004 BRWN SAND SILT CLAY 0009 BRWN CLAY
CITY	W	4 1 1 2 9	6.30 4.01			MO		A067457	SLTY SAND 0025 GREY SAND SLTY GRVL 0031
	18								
	307751							7136312	
BELLEVILLE	4892865	2009/1						(Z095915)	
CITY	W	0 6032				MO	0018 5	A083944	BRWN SAND GRVL PCKD 0005 GREY LMSN DNSE 0026
	18								LOAM 0001 BRWN SAND GRVL SILT 0005 BRWN SILT
	307810							7139979	CLYY GRVL 0008 BRWN SAND GRVL SILT 0009 BRWN
BELLEVILLE	4892843	2008/0						(Z105642)	CLAY SLTY SAND 0014 GREY SILT SNDY CLAY 0024
CITY	W	4 1 1 2 9	6.30 4.01			MO		A072175	ROCK 0027
	18								
	307726							7139980	LOAM 0001 BRWN SAND SILT 0002 BRWN SILT CLYY
BELLEVILLE	4892842	2008/0						(Z105697)	SAND 0004 BRWN SAND SLTY GRVL 0010 BRWN SILT
CITY	W	4 1129	6.30 4.01			MO		A072169	CLYY CLAY 0019 GREY SAND SLTY SILT 0032

TOWNSHIP CON LOT	UTM	DATE CNTR	C. D	ASING IA	WATER	PUMP TEST	WELL USE	SCREEN	WELL	FORMATION
	18 308020								2921357	
BELLEVILLE	4893702	2006/0						0007 10	(Z42337)	BLCK SAND CLAY GRVL 0007 BRWN SAND CLAY GRVL
CITY	W	7 7085	2	2				0010 5	A028238	0015 GREY SILT GRVL SAND 0017
	18									
	307724	2000/1							7134497	
BELLEVILLE	4892870	2009/1		()5			TH		(M00303)	BRWN LOAM 0001 GREY CLAY 0003 GREY LMSN FCRD
	W 10	0 3651		6.25			IH		A086550	0008 GREY LMSN 0030
	18								2020042	
BELLEVILLE	1803110	2005/0							(732314)	BLCK 0000 BRWN GRVI SAND FILL 0000 BRWN SAND
CITY	W	8 6607		1 25	15			0018 10	A026560	GRVL 0004 GREV LMSN 0027
	18	0.0001		1.25	15			001010	11020500	
	307690									
BELLEVILLE	4893421	1967/1				20/42/2			2900114 ()	
CITY	W	0 1805		6	SU 0040	/0:30	NU		A	CLAY BLDR 0019 GREY LMSN 0042
	18									
	307688									
BELLEVILLE	4893645	1960/0				18/40/1				
CITY	W	9 1813	6	6	FR 0040	/1:0	DO		2900088 ()	CLAY 0016 LMSN 0040
	18									
	307480	10(7/1							2000112 ()	
BELLEVILLE	4892440	190//1	6	6					2900113 ()	CDVL 0012 LMSN 0052
	W 18	0 1800	0	0					A	OKVE 0013 EMISIN 0033
	307488									
BELLEVILLE	4893824	1960/1				4/30/3/				
CITY	W	0 1813	6	6	FR 0030	1:0	DO		2900090 ()	CLAY 0018 LMSN 0030
	18									
	307480									
BELLEVILLE	4892461	1967/0							2900111 ()	
CITY	W	9 1806	6	6					A	GRVL 0008 LMSN 0090

TOWNSHIP CON LOT	UTM	DATE CNTR	CASING DIA	WATER	PUMP TEST	WELL USE	SCREEN	WELL	FORMATION
	18								
	307690								
BELLEVILLE	4893441	1967/1			25/45/2				
CITY	W	0 1805	6 6	FR 0040	/2:0	DO		2900115 ()	CLAY BLDR 0015 GREY LMSN 0045
	18							7349527	
	308163							(Z312773)	
BELLEVILLE	4892739	2019/1						A138101	
CITY	W	2 7329						А	
	18							7270521	
	308083							(C29112)	
BELLEVILLE	4892988	2016/0						A202524	
CITY	W	6 6032						Р	
	18								
	308214							7335921	
BELLEVILLE	4892770	2019/0						(Z312617)	
CITY	W	6 7329						A	
	18								
	307946							7260374	
BELLEVILLE	4893853	2016/0						(Z222316)	BRWN GRVL SAND LOOS 0002 BRWN SAND SILT SOFT
CITY	W	3 7241	2.04			MT	0010 10	A168713	0013 GREY TILL HARD 0020
	18								
	308221							7335922	
BELLEVILLE	4892758	2019/0						(Z312618)	
CITY	W	6 7329						A	
	18								
	308181							7335915	
BELLEVILLE	4892708	2019/0						(Z312611)	
CITY	W	6 7329						A	
	18								
	307771							7351638	
BELLEVILLE	4892841	2019/1						(Z333277)	
CITY	W	2 7329						A	

TOWNSHIP CON LOT	UTM	DATE CNTR	CASING DIA	WATER	PUMP TEST	WELL USE	SCREEN	WELL	FORMATION
BELLEVILLE CITY	18 307925 4892863 W	2016/0 5 6032						7270518 (C29109) A202522 P	
BELLEVILLE CITY	18 308096 4892774 W	2019/1 2 7329						7351377 (Z333257) A	
BELLEVILLE CITY	18 308214 4892771 W	2019/0 6 7329						7335916 (Z312612) A	
BELLEVILLE CITY	18 308053 4892987 W	2019/1 1 7329						7349843 (Z312775) A	
BELLEVILLE CITY	18 308284 4892731 W	2019/0 6 7329						7335380 (Z304389) A	
BELLEVILLE CITY	18 307773 4892870 W	2019/1 2 7329						7351334 (Z333287) A	
BELLEVILLE CITY	18 307790 4892878 W	2019/1 2 7329						7351326 (Z333295) A	
BELLEVILLE CITY	18 307765 4892858 W	2019/1 2 7329						7351327 (Z333294) A	

TOWNSHIP CON LOT	UTM	DATE CNTR	CASING DIA	WATER	PUMP TEST	WELL USE	SCREEN	WELL	FORMATION
BELLEVILLE CITY	18 307735 4892864 W	2019/1 2 7329						7351328 (Z333293) A	
BELLEVILLE CITY	18 307720 4892865 W	2019/1 2 7329						7351329 (Z333292) A	
BELLEVILLE CITY	18 307751 4892860 W	2019/1 2 7329						7351330 (Z333291) A	
BELLEVILLE CITY	18 307751 4892866 W	2019/1 2 7329						7351331 (Z333290) A083944 A	
BELLEVILLE CITY	18 307749 4892885 W	2019/1 2 7329						7351333 (Z333288) A	
BELLEVILLE CITY	18 307816 4892830 W	2019/1 2 7329						7351335 (Z333282) A	
BELLEVILLE CITY	18 307733 4892887 W	2019/1 2 7329						7351336 (Z333281) A	
BELLEVILLE CITY	18 307775 4892870 W	2019/1 2 7329						7351337 (Z333280) A	

TOWNSHIP CON LOT	UTM	DATE CNTR	CASING DIA	WATER	PUMP TEST	WELL USE	SCREEN	WELL	FORMATION
BELLEVILLE CITY	18 307744 4892839 W	2019/1 2 7329						7351635 (Z333274) A	
BELLEVILLE CITY	18 307783 4892842 W	2019/1 2 7329						7351637 (Z333276) A	
BELLEVILLE CITY	18 307756 4892889 W	2019/1 2 7329						7351332 (Z333289) A	
BELLEVILLE CITY	18 307740 4892840 W	2019/1 1 7329						7351196 (Z333299) A	
BELLEVILLE CITY	18 308228 4892735 W	2019/0 6 7329						7335923 (Z312619) A	
BELLEVILLE CITY	18 308229 4892733 W	2019/0 6 7329						7335926 (Z312624) A	
BELLEVILLE CITY	18 308214 4892769 W	2019/0 6 7329						7335925 (Z312621) A	
BELLEVILLE CITY	18 307768 4892903 W	2019/1 2 7329						7351325 (Z333296) A	

TOWNSHIP CON LOT	UTM	DATE CNTR	CASING DIA	WATER	PUMP TEST	WELL USE	SCREEN	WELL	FORMATION
	18								
	307723							7351195	
BELLEVILLE	4892835	2019/1						(Z333298)	
CITY	W	1 7329						А	
	18								
	307810							7351200	
BELLEVILLE	4892847	2019/1						(Z333304)	
CITY	W	1 7329						A	
	18							7351201	
	307799							(Z333305)	
BELLEVILLE	4892843	2019/1						A067449	
CITY	W	1 7329						А	
	18							7351202	
	307805							(Z333306)	
BELLEVILLE	4892846	2019/1						A067450	
CITY	W	1 7329						А	
	18							7351203	
	307727							(Z333300)	
BELLEVILLE	4892843	2019/1						A072169	
CITY	W	1 7329						А	
	18								
	307795							7351204	
BELLEVILLE	4892840	2019/1						(Z333301)	
CITY	W	1 7329						À	
	18							7351205	
	307795							(Z333302)	
BELLEVILLE	4892850	2019/1						A067448	
CITY	W	1 7329						А	
	18							7351206	
	307815							(Z333303)	
BELLEVILLE	4892833	2019/1						A067430	
CITY	W	1 7329						А	

TOWNSHIP CON LOT	UTM	DATE CNTR	CASING DIA	WATER	PUMP TEST	WELL USE	SCREEN	WELL	FORMATION
	18								
	307845							7350436	
BELLEVILLE	4892823	2019/1						(Z312796)	
CITY	W	1 7329						А	
	18								
	307738							7351194	
BELLEVILLE	4892845	2019/1						(Z333297)	
CITY	W	1 7329						А	
	18								
	307664							7339157	
BELLEVILLE	4893052	2019/0						(Z251234)	
CITY	W	7 6571	2			DO	0024 12	A169550	BRWN GRVL SAND LOOS 0008 GREY LMSN WTHD 0036
	18								
	307674							7339154	
BELLEVILLE	4893093	2019/0						(Z251237)	
CITY	W	7 6571	2			MO	0019 10	A169556	BRWN GRVL SAND LOOS 0006 GREY LMSN WTHD 0029
	18								
	307687							7339155	
BELLEVILLE	4893066	2019/0						(Z251236)	
CITY	W	7 6571	2			МО	0022 10	A169555	BRWN GRVL SAND LOOS 0008 GREY LMSN WTHD 0032
	18								
	307677							7339156	
BELLEVILLE	4893058	2019/0						(Z251235)	
CITY	W	7 6571	2			МО	0019 10	A169554	GREY GRVL PGVL LOOS 0029
	18								
	307966							7260384	
BELLEVILLE	4893891	2016/0						(Z222319)	BLCK GRVL LOOS 0002 BRWN CLAY SILT SOFT 0010
CITY	W	3 7241	2.04			MT	0010 10	A168710	GREY TILL HARD 0020
	18				1				
	308260							7335919	
BELLEVILLE	4892745	2019/0						(Z312615)	
CITY	W	6 7329						A	

TOWNSHIP	UTM	DATE	CASING	WATED	PUMP	WELL	SCDEEN	WELL	FORMATION
CON LOT	UIM	CNTR	DIA	WAIEK	TEST	USE	SCREEN	WELL	FORMATION
	18								
	308254							7335920	
BELLEVILLE	4892765	2016/0						(Z312616)	
CITY	W	6 7329						А	
	18							7270523	
	308229							(C29111)	
BELLEVILLE	4892743	2016/0						A202523	
CITY	W	6 6032						Р	
	18							7270522	
	308232							(C29117)	
BELLEVILLE	4892700	2016/0						A202525	
CITY	W	6 6032						Р	
	18								
	308213							7335223	
BELLEVILLE	4892763	2019/0						(Z219666)	BRWN LOAM SOFT 0001 BRWN SILT CLAY DNSE 0004
CITY	W	2 7241	2			MT	0015 10	A192115	GREY LMSN ROCK 0025
	18								
	308221							7335222	
BELLEVILLE	4892740	2019/0						(Z219665)	BRWN LOAM SOFT 0001 BRWN SILT CLAY DNSE 0004
CITY	W	2 7241	2			MT	0015 10	A192116	GREY LMSN ROCK 0025
	18								
	308245							7335214	
BELLEVILLE	4892729	2019/0						(Z302799)	GREY GRVL SAND 0000 GREY CLAY SILT SOFT 0003
CITY	W	2 7241	1.37			MT	0009 10	A261129	GREY LMSN SHLE HARD 0019
	18							7253238	
	308158							(C29063)	
BELLEVILLE	4892739	2015/0						A138101	
CITY	W	8 6032						Р	
	18								
	308243							7335213	BRWN GRVL HARD 0001 BRWN FSND SOFT LOOS
BELLEVILLE	4892742	2019/0						(Z302885)	0002 BRWN CLAY SILT SOFT 0004 GREY LMSN SHLE
CITY	W	2 7241	1.37			MT	0010 10	A261262	HARD 0020

TOWNSHIP CON LOT	UTM	DATE CNTR	CASING DIA	WATER	PUMP TEST	WELL USE	SCREEN	WELL	FORMATION
BELLEVILLE CITY	18 308242 4892753 W	2019/0 2 7241	1.37			MT	0009 10	7335212 (Z302786) A261263	GREY GRVL HARD 0001 BRWN FSND SOFT LOOS 0002 BRWN CLAY SILT GRVL 0003 BRWN LMSN SHLE HARD 0019
BELLEVILLE CITY	18 307726 4892834 W	2019/1 2 7329						7351636 (Z333275) A	
BELLEVILLE CITY	18 308220 4892759 W	2019/0 6 7329						7335917 (Z312613) A	
BELLEVILLE CITY	18 308227 4892734 W	2019/0 6 7329						7335918 (Z312614) A	
BELLEVILLE CITY	18 307727 4893098 W	2012/0 1 7241	1.59			MT	0020 10	7176102 (Z134450) A087217	GREY GRVL LOOS 0001 GREY MSND STNS SOFT 0007 GREY LMSN FCRD 0017 BRWN LMSN FCRD 0023 GREY LMSN FCRD 0030
BELLEVILLE CITY	18 307675 4893088 W	2019/0 2 7323	1.5					7331243 (Z300177) A236186	BRWN CLAY FILL 0005 GREY TILL HARD 0011 GREY LMSN LOOS 0022
BELLEVILLE CITY	18 308017 4893757 W	2019/0 7 7085						7344103 (C45373) A268546 P	
BELLEVILLE CITY	18 308185 4892728 W	2019/1 2 7329						7349523 (Z312751) A	

TOWNSHIP CON LOT	UTM	DATE CNTR	CASING DIA	WATER	PUMP TEST	WELL USE	SCREEN	WELL	FORMATION
BELLEVILLE CITY	18 307773 4892838 W	2019/1 2 7329						7351639 (Z333278) A	
BELLEVILLE CITY	18 307695 4892882 W	2019/1 2 7329						7351634 (Z333273) A	
BELLEVILLE CITY	18 308172 4892709 W	2019/1 2 7329						7349526 (Z312760) A	
BELLEVILLE CITY	18 308171 4892710 W	2019/1 2 7329						7349525 (Z312754) A	
BELLEVILLE CITY	18 308184 4892728 W	2019/1 2 7329						7349524 (Z312753) A	
BELLEVILLE CITY	18 308161 4892744 W	2019/1 2 7329						7349522 (Z312750) A	
BELLEVILLE CITY	18 308200 4892684 W	2017/0 9 7610						7297006 (Z254447) A	
BELLEVILLE CITY	18 308162 4892744 W	2019/1 2 7329						7349521 (Z312749) A	

TOWNSHIP CON LOT	UTM	DATE CNTR	CASING DIA	WATER	PUMP TEST	WELL USE	SCREEN	WELL	FORMATION
	18 308299							7335381	
BELLEVILLE	4892745	2018/0						(Z304388)	
CITY	W	6 7329						А	
	18 308255							7335924	
BELLEVILLE	4892765	2019/0						(Z312620)	
CITY	W	6 7329						А	
BELLEVILLE CITY	18 308168 4892992 W	2017/0 2 6607	2.04	UT 0014		МО	0015 5	7309368 (Z248154) A217887	BRWN SAND LOOS 0001 BRWN CLAY SILT 0007 BLCK SHLE LMSN 0020
BELLEVILLE CITY	18 308274 4892762 W	2019/0 6 7329						7335379 (Z304387) A	
BELLEVILLE CITY	18 308087 4892812 W	2019/1 1 7329						7349854 (Z312762) A	
BELLEVILLE CITY	18 307703 4892786 W	2019/1 1 7329						7350430 (Z312803) A	
BELLEVILLE CITY	18 307741 4892842 W	2019/1 1 7329						7350429 (Z312804) A	
BELLEVILLE CITY	18 307780 4892845 W	2019/1 1 7329						7350428 (Z312805) A	

TOWNSHIP CON LOT	UTM	DATE CNTR	CASING DIA	WATER	PUMP TEST	WELL USE	SCREEN	WELL	FORMATION
BELLEVILLE CITY	18 307802 4892838 W	2019/1 1 7329						7350427 (Z312806) A	
BELLEVILLE CITY	18 307700 4892828 W	2019/1 1 7329						7350426 (Z312807) A	
BELLEVILLE CITY	18 307772 4892843 W	2019/1 1 7329						7350425 (Z312808) A	
BELLEVILLE CITY	18 307736 4892844 W	2019/1 1 7329						7350424 (Z312809) A	
BELLEVILLE CITY	18 307772 4892849 W	2019/1 1 7329						7350423 (Z312810) A	
BELLEVILLE CITY	18 307978 4892708 W	2019/1 1 7329						7349855 (Z312761) A	
BELLEVILLE CITY	18 307714 4892798 W	2019/1 1 7329						7350433 (Z312799) A	
BELLEVILLE CITY	18 307934 4892700 W	2019/1 1 7329						7349853 (Z312763) A	

TOWNSHIP CON LOT	UTM	DATE CNTR	CASING DIA	WATER	PUMP TEST	WELL USE	SCREEN	WELL	FORMATION
	18 307957	0.1.0/1						7349852	
CITY	4892758 W	2019/1						(Z312764) A	
BELLEVILLE CITY	18 308069 4892939 W	2019/1 1 7329						7349919 (Z312778) A	
BELLEVILLE CITY	18 308053 4893003 W	2020/0 1 7329						7351673 (Z333248) A	
BELLEVILLE CITY	18 307786 4892816 W	2019/1 2 7329						7351640 (Z333279) A	
BELLEVILLE CITY	18 307782 4892818 W	2019/1 2 7329						7351641 (Z333283) A	
BELLEVILLE CITY	18 307840 4893037 W	2020/0 1 7329						7351665 (Z333256) A	
BELLEVILLE CITY	18 307985 4892988 W	2020/0 1 7329						7351668 (Z333253) A	
BELLEVILLE CITY	18 307851 4892999 W	2020/0 1 7329						7351666 (Z333255) A	

TOWNSHIP CON LOT	UTM	DATE CNTR	CASING DIA	WATER	PUMP TEST	WELL USE	SCREEN	WELL	FORMATION
BELLEVILLE CITY	18 307999 4893032 W	2020/0 1 7329						7351667 (Z333254) A	
BELLEVILLE CITY	18 308037 4893014 W	2020/0 1 7329						7351669 (Z333252) A	
BELLEVILLE CITY	18 308028 4893089 W	2020/0 1 7329						7351670 (Z333251) A	
BELLEVILLE CITY	18 307853 4892828 W	2019/1 1 7329						7350431 (Z312802) A	
BELLEVILLE CITY	18 308053 4893001 W	2020/0 1 7329						7351672 (Z333249) A	
BELLEVILLE CITY	18 307844 4892853 W	2019/1 1 7329						7350432 (Z312801) A	
BELLEVILLE CITY	18 308038 4893025 W	2020/0 1 7329						7351674 (Z333247) A	
BELLEVILLE CITY	18 308039 4893024 W	2020/0 1 7329						7351675 (Z333246) A	

TOWNSHIP CON LOT	UTM	DATE CNTR	CASING DIA	WATER	PUMP TEST	WELL USE	SCREEN	WELL	FORMATION
BELLEVILLE CITY	18 307991 4893008 W	2020/0 1 7329						7351676 (Z333245) A	
BELLEVILLE CITY	18 307990 4893009 W	2020/0 1 7329						7351677 (Z333244) A	
BELLEVILLE CITY	18 307972 4892978 W	2020/0 1 7329						7351678 (Z333243) A	
BELLEVILLE CITY	18 307971 4892981 W	2020/0 1 7329						7351679 (Z333242) A	
BELLEVILLE CITY	18 307792 4892919 W	2019/1 1 7329						7350435 (Z312798) A	
BELLEVILLE CITY	18 307763 4892803 W	2019/1 1 7329						7350434 (Z312800) A	
BELLEVILLE CITY	18 308053 4893000 W	2020/0 1 7329						7351671 (Z333250) A	
BELLEVILLE CITY	18 308100 4892746 W	2019/1 1 7329						7349851 (Z312765) A	

TOWNSHIP CON LOT	UTM	DATE CNTR	CASING DIA	WATER	PUMP TEST	WELL USE	SCREEN	WELL	FORMATION
BELLEVILLE	18 307323 4893242 W	2016/1	6.25	UT 0040	6/10/15	MO		7279386 (Z235935) A 208023	BRWN SAND LOOS 0002 BRWN CLAY PCKD 0006 BRWN CLAY TILL PCKD 0009 GREY CLAY TILL PCKD 0018 GREY I MSN HARD 0063
BELLEVILLE CITY	18 307344 4893180 W	2016/1 2 1507	6.25	UT 0038	9/18/12 /1:	MO		7279385 (Z235934) A208022	BRWN CLAY PCKD 0006 BRWN CLAY TILL PCKD 0009 GREY LMSN FCRD 0022 GREY LMSN HARD 0051
BELLEVILLE CITY	18 308033 4892980 W	2019/1 1 7329						7349842 (Z312776) A	
BELLEVILLE CITY	18 307990 4892753 W	2019/1 1 7329						7349845 (Z312771) A	
BELLEVILLE CITY	18 308087 4892806 W	2019/1 1 7329						7349848 (Z312768) A	
BELLEVILLE CITY	18 307476 4893296 W	2016/1 2 1507	6.25	UT 0041	11/23/2 /1:	DO MO		7279387 (Z235936) A208025	BRWN CLAY TILL PCKD 0014 GREY LMSN HARD 0064
BELLEVILLE CITY	18 308032 4892982 W	2019/1 1 7329						7349844 (Z312777) A	
BELLEVILLE CITY	18 308078 4892882 W	2019/1 1 7329						7349846 (Z312770) A	

TOWNSHIP	UTM	DATE	CA	ASING	WATED	PUMP	WELL	SCREEN	WELL	FORMATION
CON LOT	UIM	CNTR	DI	A	WAILK	TEST	USE	SCREEN	WELL	FORMATION
	18									
	308114								7349847	
BELLEVILLE	4892778	2019/1							(Z312769)	
CITY	W	1 7329							А	
	18									
	308097								7349849	
BELLEVILLE	4892783	2019/1							(Z312767)	
CITY	W	1 7329							А	
	18									
	308054								7349850	
BELLEVILLE	4892718	2019/1							(Z312766)	
CITY	W	1 7329							А	
	18									
BELLEVILLE	307480									
CITY (SID	4892501	1959/0				4/40/15				
CON 01 036	W	4 1813	6	6	FR 0050	/1:0	DO		2902119 ()	CLAY 0010 SHLE LMSN 0015 LMSN 0050
	18									
BELLEVILLE	307311									
CITY (SID	4892619	1957/0				15/18/1				
CON 01 036	W	6 1507		6	FR 0024	7/5:0	DO		2902117 ()	MSND GRVL 0023 GRVL 0024
	18									
BELLEVILLE	307662									
CITY (SID	4892455	1954/1				8/20/2/				
CON 01 037	W	1 3550	5	5	FR 0039	0:30	DO		2902125 ()	CLAY BLDR 0018 LMSN 0041
	18									
BELLEVILLE	307607									
CITY (SID	4893387	1956/0				15/45/1				
CON 01 037	W	8 3516	6	6	FR 0042	/:	DO		2902126 ()	CLAY GRVL 0023 LMSN 0045
	18									
BELLEVILLE	307406									
CITY (SID	4893370	1958/0				6/23/5/				
CON 01 037	W	9 3516	6	6	FR 0015	0:30	DO		2902127 ()	CLAY GRVL 0003 GREY LMSN 0023

TOWNSHIP CON LOT	UTM	DATE CNTR	CASING DIA	WATER	PUMP TEST	WELL USE	SCREEN	WELL	FORMATION
	18								
	307415							7201117	
SIDNEY	4893101	2013/0						(Z169644)	BRWN GRVL SAND FILL 0001 BRWN SAND SILT TILL
TOWNSHIP	W	4 7085	6 2	UT 0017		TH	0013 10	A146349	0016 BRWN SAND GRVL 0023
	18								
	308135							7226556	
SIDNEY	4892748	2014/0						(Z195045)	BLCK 0000 BRWN SAND GRVL 0004 BRWN SAND GRVL
TOWNSHIP	W	7 2662	2				0010 6	A159035	ROCK 0006 GREY LMSN 0016
	18								
	308133							7226555	
SIDNEY	4892752	2014/0						(Z195044)	BLCK 0000 BRWN SAND GRVL 0004 BRWN SAND GRVL
TOWNSHIP	W	7 2662	2			MO	0036 5	A159034	ROCK 0006 GREY LMSN 0040
	18								
	308131							7226554	
SIDNEY	4892700	2014/0						(Z195040)	
TOWNSHIP	W	7 2662	2			MO	0035 5	A159030	BLCK 0000 BRWN SAND GRVL 0006 GREY LMSN 0040
	18								
	308131							7226557	
SIDNEY	4892758	2014/0						(Z195042)	BLCK 0000 BRWN SAND GRVL 0000 GREY 0002 BRWN
TOWNSHIP	W	7 2662	2			MO	0036 5	A159032	SAND GRVL 0006 GREY LMSN 0040
	18								
	308131							7226558	
SIDNEY	4892759	2014/0						(Z195043)	BLCK 0000 BRWN SAND GRVL 0000 GREY 0002 BRWN
TOWNSHIP	W	7 2662	2			MO	0011 5	A159033	SAND GRVL 0006 GREY LMSN 0016
	18							7287501	
	308046							(C29126)	
SIDNEY	4892986	2016/0						A202547	
TOWNSHIP	W	7 6032						Р	
	18								
	308133							7226553	
SIDNEY	4892760	2014/0						(Z195041)	
TOWNSHIP	W	7 2662	2			MO	0011 5	A159031	BLCK 0000 BRWN SAND GRVL 0006 GREY LMSN 0016

TOWNSHIP CON LOT	UTM	DATE CNTR	CASING DIA	WATER	PUMP TEST	WELL USE	SCREEN	WELL	FORMATION
	18							7231738	
	308148							(C24637)	
SIDNEY	4892737	2014/1						A138146	
TOWNSHIP	W	1 6032						Р	
	18								
	307984							7363074	
SIDNEY	4893123	2019/1						(Z322220)	
TOWNSHIP	W	0 7323	1.5			TH MO	0030 10	A236166	BRWN CLAY 0003 GREY LMSN SOFT LYRD 0040
	18							7287500	
	307879							(C29125)	
SIDNEY	4892842	2016/0						A202504	
TOWNSHIP	W	7 6032						Р	
	18								
	307355							7178564	
SIDNEY	4893153	2012/0						(Z141051)	
TOWNSHIP	W	2 1507	6		12///:	DO		А	
	18								
	307551							7351376	
SIDNEY	4892757	2019/1						(Z333265)	
TOWNSHIP	W	2 7329						А	WHIT
	18								
	307461							7351380	
SIDNEY	4892800	2019/1						(Z333261)	
TOWNSHIP	W	2 7329						А	
	18								
	307527							7351379	
SIDNEY	4892843	2019/1						(Z333260)	
TOWNSHIP	W	2 7329						A	
	18								
	307468							7351371	
SIDNEY	4892808	2019/1						(Z333268)	
TOWNSHIP	W	2 7329						A	

TOWNSHIP CON LOT	UTM	DATE CNTR	CASING DIA	WATER	PUMP TEST	WELL USE	SCREEN	WELL	FORMATION
SIDNEY TOWNSHIP	18 307483 4892733 W	2019/1 2 7329						7351372 (Z333269) A	
SIDNEY TOWNSHIP	18 307536 4892844 W	2019/1 2 7329						7351378 (Z333284) A	
SIDNEY TOWNSHIP	18 307474 4892732 W	2019/1 2 7329						7351374 (Z333263) A	
SIDNEY TOWNSHIP	18 307551 4892757 W	2019/1 2 7329						7351369 (Z333266) A	
SIDNEY TOWNSHIP	18 307546 4892762 W	2019/1 2 7329						7351375 (Z333264) A	
SIDNEY TOWNSHIP	18 308094 4892766 W	2017/0 3 7148						7285127 (Z248072) A	
SIDNEY TOWNSHIP	18 307460 4892808 W	2019/1 2 7329						7351373 (Z333262) A	
SIDNEY TOWNSHIP	18 307319 4893196 W	2016/1 1 3750						7275541 (Z239320) A	

TOWNSHIP CON LOT	UTM	DATE CNTR	CASING DIA	WATER	PUMP TEST	WELL USE	SCREEN	WELL	FORMATION
SIDNEY TOWNSHIP	18 308095 4892755 W	2017/0 3 7148						7285126 (Z248075) A	
SIDNEY TOWNSHIP	18 308106 4892752 W	2017/0 3 7148						7285083 (Z248074) A	
SIDNEY TOWNSHIP	18 307619 4892765 W	2019/1 2 7329						7351364 (Z333270) A	
SIDNEY TOWNSHIP	18 307995 4892854 W	2019/1 2 7329						7351365 (Z333272) A	
SIDNEY TOWNSHIP	18 307990 4892880 W	2019/1 2 7329						7351366 (Z333271) A	
SIDNEY TOWNSHIP	18 307662 4892783 W	2019/1 2 7329						7351367 (Z333258) A	
SIDNEY TOWNSHIP	18 307645 4892806 W	2019/1 2 7329						7351368 (Z333259) A	
SIDNEY TOWNSHIP CON 01 035	18 307229 4892520 W	1981/0 7 1507	6 6			NU		2910015 () A	BRWN LOAM LOOS 0001 BRWN CLAY HARD PCKD 0007 BRWN HPAN STNS HARD 0018 GREY HPAN STNS PCKD 0033 GREY LMSN HARD 0063

TOWNSHIP CON LOT	UTM	DATE CNTR	CASIN DIA	G WATER	PUMP TEST	WELL USE	SCREEN	WELL	FORMATION
	18								BRWN LOAM LOOS 0001 BRWN CLAY PCKD 0007 BRWN
SIDNEY	307229								HPAN HARD PCKD 0018 GREY HPAN STNS HARD 0029
TOWNSHIP	4892520	1981/0			12/39/1				GRVL LOOS 0031 GREY SHLE LOOS 0038 GREY LMSN
CON 01 035	W	7 1507	6 6	FR 0039	2/3:0	DO		2910016 ()	HARD 0042
	18								
SIDNEY	306879								
TOWNSHIP	4892747	1962/1			10/28/3				
CON 01 035	W	1 1813		6 FR 0024	/1:0	DO		2902102 ()	SHLE LMSN 0015 GRVL 0028
	18								
SIDNEY	307113								
TOWNSHIP	4892572	1956/0			5/10/6/				
CON 01 035	W	8 3516	66	FR 0024	0:30	DO		2902092 ()	CLAY LOAM 0020 LMSN 0026
	18								
SIDNEY	306862								
TOWNSHIP	4893215	1957/0						2902093 ()	
CON 01 035	W	3 1821	6 6					А	CLAY GRVL 0012 LMSN 0150
	18								
SIDNEY	307270								
TOWNSHIP	4893091	1968/0			12/25/5				
CON 01 036	W	9 1806		6 FR 0030	/1:0	DO		2904109 ()	GRVL 0033
	18								
SIDNEY	307290								
TOWNSHIP	4893201	1962/1			35/49/3				
CON 01 036	W	1 1813	6 6	FR 0043	/1:0	DO		2902121 ()	GRVL 0040 LMSN 0049
	18								
SIDNEY	307464								
TOWNSHIP	4892538	1955/1			6/35/17				
CON 01 036	W	1 3516	6 6	FR 0034	/:	DO		2902111 ()	CLAY GRVL 0015 LMSN 0035
	18								
SIDNEY	307205								
TOWNSHIP	4893246	1958/0			20/40/1				
CON 01 036	W	7 1821		6 FR 0035	/1:0	DO		2902118 ()	GRVL 0040

TOWNSHIP CON LOT	UTM	DATE CNTR	CASIN DIA	G WATER	PUMP TEST	WELL USE	SCREEN	WELL	FORMATION
	18								
SIDNEY	307130								
TOWNSHIP	4893136	1957/0			12/14/1				
CON 01 036	W	3 1821		6 FR 0018	7/1:0	DO		2902116 ()	GRVL 0030
	18								
SIDNEY	307168								
TOWNSHIP	4893339	1955/1			10/35/2				
CON 01 036	W	1 3516	6 6	FR 0025	/:	DO		2902112 ()	CLAY MSND BLDR 0033 LMSN 0035
	18								
SIDNEY	307109								
TOWNSHIP	4893245	1956/0			18/20/5				
CON 01 036	W	5 1821		6 FR 0026	/0:30	DO		2902113 ()	GRVL 0026
	18								
SIDNEY	307280								
TOWNSHIP	4893271	1956/0			16/26/4				CLAY 0003 CLAY STNS 0011 HPAN BLDR 0028 GRVL 0036
CON 01 036	W	7 3010	6 6	FR 0036	/2:0	DO		2902114 ()	LMSN 0038
	18								
SIDNEY	307035								
TOWNSHIP	4893271	1962/1			2/55/2/				
CON 01 036	W	0 1813	6 6	FR 0011	1:0	DO		2902120 ()	CLAY 0011 LMSN 0055
	18								
SIDNEY	307190								
TOWNSHIP	4893041	1967/0			22/32/5				
CON 01 036	W	7 1813		6 FR 0030	/1:0	DO		2902123 ()	GRVL 0012 CLAY GRVL 0028 GRVL 0032
	18								
SIDNEY	307180								
TOWNSHIP	4893061	1963/0			16/16/1				
CON 01 036	W	7 1805		6 FR 0015	5/1:0	DO		2902122 ()	CLAY STNS 0015 GRVL 0025
	18								
SIDNEY	307369								
TOWNSHIP	4892547	1956/0			8/9/6/0:				
CON 01 036	W	8 3516	6 6	FR 0035	30	DO		2902115 ()	CLAY LOAM 0033 LMSN 0042

TOWNSHIP CON LOT	UTM	DATE CNTR	CASING DIA	WATER	PUMP TEST	WELL USE	SCREEN	WELL	FORMATION
CONLOI	18	CIVIK			TEST	USE			
SIDNEY	307889							7176103	BLCK LOAM SOFT 0001 BRWN MSND STNS SOFT 0004
TOWNSHIP	4892965	2012/0						(Z134449)	GREY LMSN FCRD 0012 BRWN LMSN FCRD 0016 GREY
CON 01 038	W	1 7241	1.59			MT	0020 10	A087219	LMSN FCRD 0030
	18								
	308070							7226773	BLCK LOAM LOOS 0000 BRWN SILT CLAY LOOS 0005
THURLOW	4893675	2014/0						(Z182184)	GREY SILT SAND HARD 0018 GREY SAND SILT HARD
TOWNSHIP	W	4 7230	1.97	UT 0009		MT	0040 10	A163737	0022 ROCK 0050
	18							7226774	
	308021							(Z121165)	
THURLOW	4893480	2014/0						A139265	LOAM 0000 BRWN SILT SAND 0008 GREY SAND SILT
TOWNSHIP	W	4 7230	1.97	34		MO		А	0025 ROCK DNSE 0039
	18							7226540	
	308223							(C22747)	
THURLOW	4893564	2014/0						A133418	
TOWNSHIP	W	3 7239						A P	
	18								
	308250							7297003	
THURLOW	4892632	2017/0						(Z254444)	
TOWNSHIP	W	9 7610						А	
	18								
	308223							7222221	
THURLOW	4893551							(Z172427)	
TOWNSHIP	W	7239						А	
	18							7287491	
	308270							(C29052)	
THURLOW	4892762	2016/0						A202505	
TOWNSHIP	W	7 6032						P	
	18							7287490	
	308160	2016/0						(C29106)	
TOWNSUP	4892958	2016/0						A202503	
TOWNSHIP	W	/ 6032						Р	

TOWNSHIP CON LOT	UTM	DATE CNTR	CASING DIA	WATER	PUMP TEST	WELL USE	SCREEN	WELL	FORMATION
	18							7242343	
	308222							(C29156)	
THURLOW	4893563	2015/0						A133418	
TOWNSHIP	W	5 7239						A P	
	18								
	308216							7260381	
THURLOW	4892679	2016/0						(Z222355)	GREY GRVL DNSE 0001 BRWN SAND CLAY SOFT 0005
TOWNSHIP	W	3 7241	2.06			MT	0004 6	A170460	GREY LMSN WTHD 0010
	18								
	308180							7260380	
THURLOW	4892667	2016/0						(Z222357)	BRWN LOAM SOFT 0001 BRWN CLAY SILT SOFT 0004
TOWNSHIP	W	3 7241	2.04			MT	0004 6	A170461	GREY LMSN WTHD 0010
	18								
	308177							7260379	
THURLOW	4892691	2016/0						(Z222356)	GREY GRVL 0001 BRWN SAND CLAY GRVL 0005 GREY
TOWNSHIP	W	3 7241	2.04			MT	0004 6	A170462	LMSN 0010
	18								
	307979							7260385	
THURLOW	4893810	2016/0						(Z222318)	BRWN GRVL LOOS 0002 BRWN SILT SAND SOFT 0013
TOWNSHIP	W	3 7241	2.04			MT	0010 10	A168711	GREY TILL HARD 0020
	18								
	307910							7260378	
THURLOW	4893737	2016/0						(Z222300)	GREY GRVL LOOS 0001 BRWN SAND SILT SOFT 0006
TOWNSHIP	W	3 7241	2.04			MT	0010 5	A168717	GREY TILL HARD 0015
	18								
	308008							7260377	
THURLOW	4893832	2016/0						(Z222306)	BLCK LOAM SOFT 0001 BRWN SAND SILT SOFT 0010
TOWNSHIP	W	3 7241	2.04			MT	0014 10	A168716	BRWN TILL HARD 0024
	18								
	307908							7260376	
THURLOW	4893885	2016/0						(Z222314)	GREY GRVL LOOS 0002 BRWN SILT SOFT 0008 BRWN
TOWNSHIP	W	3 7241	2.04			MT	0005 10	A168715	TILL SILT HARD 0015

TOWNSHIP CON LOT	UTM	DATE CNTR	CASING DIA	WATER	PUMP TEST	WELL USE	SCREEN	WELL	FORMATION
	18								
	308249							7297004	
THURLOW	4892632	2017/0						(Z254445)	
TOWNSHIP	W	9 7610						А	
	18								
	308248							7297005	
THURLOW	4892632	2017/0						(Z254446)	
TOWNSHIP	W	9 7610						A	
	18								
	308199							7297007	
THURLOW	4892684	2017/0						(Z254448)	
TOWNSHIP	W	9 7610						A	
	18								
	308257							7260382	
THURLOW	4892711	2016/0						(Z222358)	GREY GRVL 0001 BRWN SAND CLAY GRVL 0005 GREY
TOWNSHIP	W	3 7241	2.04			MT	0004 6	A170463	LMSN 0010
	18								
	307941							7260386	
THURLOW	4893837	2016/0						(Z222317)	
TOWNSHIP	W	3 7241	2.04			MT	0005 10	A168712	
	18								
	308198							7297008	
THURLOW	4892684	2017/0						(Z254449)	
TOWNSHIP	W	9 7610						A	
	18								
	307929							7260375	
THURLOW	4893857	2016/0						(Z222315)	GREY GRVL LOOS 0003 BRWN SAND SILT SOFT 0010
TOWNSHIP	W	3 7241	2.04			МТ	0010 10	A168714	GREY TILL SILT HARD 0020
	18								
	308248							7264139	
THURLOW	4892623	2016/0						(Z218592)	
TOWNSHIP	W	4 7148						A	

TOWNSHIP CON LOT	UTM	DATE CNTR	CASING DIA	WATER	PUMP TEST	WELL USE	SCREEN	WELL	FORMATION
	18								
THURLOW	308238							7335330	
TOWNSHIP	4892761	2019/0						(Z219664)	BRWN FILL SAND GRVL 0001 BRWN SILT CLAY DNSE
CON 01 001	W	2 7241	2			MT	0015 10	A192122	0004 GREY LMSN ROCK 0025

Hydrogeological Investigation 40 Wilson Avenue, Belleville, Ontario Project No. 2102519, May 19, 2022 (Revision 1)

Appendix B

Borehole Logs

2102519
RIC (Midland Land) Inc.
40 Wilson Avenue
Belleville, Ontario
See Figure 2

Drilling Method:	Solid Stem Aug	gers	Drilling Machine:	Track Mount	
Logged By:	МН	Northing:	4893168	Date Started:	Aug. 4, 2021
Reviewed By:	AW	Easting:	307551	Date Completed:	Aug. 4, 2021

	LITHOLOGY PROFILE	SOI	L SA	MPL	ING				FIEL	D TES	TING	;		LAB	B TES	TING			COMMENTS
_ithology Plot	DESCRIPTION	Sample Type	Sample Number	Recovery (%)	SPT "N" Value	DEPTH (m)	ELEVATION (m)	× + ▲ △ ○	Shear Str Other Te: Pocket P Field Van Field Van 40 4 Pene SPT	ength Test enetromet le (Intact) le (Remol 80 12 etration Te • DC	ter ded) 20 1 sting PT	e) 60		Combusti Combusti Total Org 00 2 Atte	ible Orga ible Orga anic Vap 00 3 erberg Lin	nic Vapou nic Vapou our (ppm) 00 4 nits	ur (ppm) ur (%LEL)) 00 	nstrumentation installation	& GRAIN SIZE DISTRIBUTION (%) GR SA SI CL
	FILL: Sand & Gravel, Trace Limestone Fragments, Very Dense, Brown, Damp	ss	1	25	100+	0	- 100		10	20 3	0 2	100+ ○►	3	10 2	20	30 4	10		Auger Grinding
	SAND & LIMESTONE FRAGMENTS, Some Silt, Very Dense, Brown, Damp	SS	2	100	100+	1 —	-				01	00+ →	1						
	2.1 98.5	SS	3	100	100+	2-	- 99				<u></u>	00+ →	3 0						Auger Grinding
	Auger Refusal on Inferred Bedrock at 2.1m																		
GE 647	EI CONSULTANTS Welham Road, Unit 14	water	depth	n enco	ounter	ed on o	complet	ion o	f drilling	: Dry		·	C	Cave	depth	after au	uger re	moval:	Open
T : ww	(705) 719-7994 w.geiconsultants.com Borehole detail a qualified geot commissioned	s prese echnica and the	nted do al engin accom	o not co leer. Als lpanyin	onstitute so, bore g 'Expla	a thorou hole info nation of	igh unders rmation s f Boring L	standiı hould og'.	ng of all p be read in	otential c conjunc	ondition tion with	is presen i the geof	t and re technica	quire int al report	erpretati for whic	ve assist h it was	tance fro	m	Scale: 1 :50 Page: 1 of 1

Project Number:	2102519
Project Client:	RIC (Midland Land) Inc.
Project Name:	40 Wilson Avenue
Project Location:	Belleville, Ontario
Drilling Location:	See Figure 2

Drilling Method:	Solid Stem Au	gers	Drilling Machine:	Track Mount	
Logged By:	MH	Northing:	4893106	_ Date Started:	Aug. 5, 2021
Reviewed By:	AW	Easting:	307399	_ Date Completed:	Aug. 5, 2021

	LITHOLOGY PROFILE	SOI	L SA	MPL	ING				FIEL	D TES	STING	ì		LA	B TES	STING	ì			COMN	FNTS	\$
ithology Plot		ample Type	ample Number	tecovery (%)	PT "N" Value	JEPTH (m)	:LEVATION (m)		Shear St × Other Te + Pocket P ▲ Field Var 40 Pene ○ SPT	rength Te st enetrome ne (Intact) ne (Remo 80 1 etration Te • DC	sting (kPa ter ded) 20 1 esting PT	a) 60	△ ▲ * PL	Combu Combu Total O 100 At	stible Org stible Org rganic Va 200 tterberg L	anic Vapo anic Vapo pour (ppr 300 imits nt (%)	our (ppm) our (%LEL) n) 4 <u>00</u> LL	ıstrumentation ıstallation	(DI GR	8 GRAIN STRIE (%	SIZE	CL
	FILL: Silty Sand, Some Gravel, Some Limestone Fragments, Dense to Compact, Brown, Moist	SS	1	100	<u>5</u> 35	<u> </u>	<u>ш</u> -	T	10	20	35 0	0		10	20	30	40					
		SS	2	100	22	1 —	— 99	_) ())			7	,								
	1.5 98.4 SAND & LIMESTONE FRAGMENTS, Some Silt, Trace Clay, Compact to Dense, Brown, Moist	SS	3	100	27	2-	- 98	_		1 27 q	<u> </u>		4 0						43	35	14	8
<u> </u>		SS	4	100	39	-	-				`∖ 39`⊂		7	,				••	Auge	r Grind	ing	
	Very Dense	SS	5	100	100+	3-	- 97				01	00+-							Auge Spoo	r Grind n Bour	ing and icing	d
						4 —	— 96 -	_					5									
	Auger Refusal on Inferred Bedrock at 4.6m	AS	6	100														• • •••				
GE 647	I CONSULTANTS Welham Road, Unit 14	water water	depti depti	h enco h obse	ountei erved	red on o on Au	complet g. 31/2	etior 21 a	n of drilling at a depth	: Dry of: D i	У		Ţ	Cave	e depth erved c	n after a	auger re 8/21	moval: at a de	Oper pth of:	Dry		
Barrie, Ontario L4N 0B8 T : (705) 719-7994 www.geiconsultants.com a qualified geotechnical engineer. Also, borehole information should be read in conjunction with the geotechnical report for which it was commissioned and the accompanying 'Explanation of Boring Log'.								Scale: 1 :50 Page: 1 of 1														

Project Number:	2102519
Project Client:	RIC (Midland Land) Inc.
Project Name:	40 Wilson Avenue
Project Location:	Belleville, Ontario
Drilling Location:	See Figure 2

Drilling Method:	Solid Stem Au	igers	Drilling Machine:	Track Mount					
Logged By:	МН	Northing:	4893066	Date Started:	Aug. 4, 2021				
Reviewed By:	AW	Easting:	307487	Date Completed:	Aug. 4, 2021				

	LITHOLOGY PROFILE	SOI					FIE		STIN	G	LAB TESTING						с	омм	ENTS	3	
ithology Plot	DESCRIPTION Local 99.63m	Sample Type	Sample Number	Recovery (%)	SPT "N" Value	JEPTH (m)	ELEVATION (m)	Shear : X Other [−] + Pocket ▲ Field V △ Field V 40 Pe ○ SPT	Strength Penetro ane (Inta ane (Rer 80 netration	neter ct) nolded) 120 Testing CPT	4a) 160		Combusti Combusti Total Org 100 2 Atte	ible Organ ible Organ anic Vapo 00 3 erberg Lim	nic Vapou nic Vapou our (ppm 00 4 hits (%)	ur (ppm) ur (%LEL) 00 	nstrumentation nstallation		& RAIN STRIB (%	SIZE UTIC 5)	I N CL
	FILL: Sand & Limestone Fragments, Silty, Very Dense, Grey, Damp	ss	1	100	67	0	- 99	10		30	67 0-	1 •>	10 2	20 3	30 4	10					
	0.8 98.9 SAND, Some Silt, Some Limestone Fragments, Some Gravel, Compact, Brown, Moist	SS	2	100	15	1-	-	15 0 			-		12								
		ss	3	100	14	2-	- 98 - 98	14 0 /				~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~						Auger	Grindi	ng	
	Loose	ss	4	100	9	-	- 97	90					10 O								
	With Limestone Fragments, Very Dense 3.5 96.1	SS	5	100	100+	3-	-			0	100+ →	8)								
	3.5m																				
GE	I CONSULTANTS	water	depti	l h enco	ounter	red on o	complet	ion of drillir	ng: Dr		<u>:</u>		Cave	i depth a	i after a	i uger re	moval:	Open			
Bar T:(v.geiconsultants.com	s prese technic and the	nted de al engir e accon	o not co neer. Als npanyin	onstitute so, bore g 'Expla	e a thorou shole info anation o	ugh unders ormation s f Boring L	standing of all hould be read og'.	potentia in conju	I conditio	ns preser h the geo	nt and re technic	equire int al report	erpretati for whicl	ve assis h it was	tance froi	n		Scale: Page:	1 :50 1 of	1

Project Number:	2102519
Project Client:	RIC (Midland Land) Inc.
Project Name:	40 Wilson Avenue
Project Location:	Belleville, Ontario
Drilling Location:	See Figure 2

Drilling Method:	Solid Stem Au	gers	Drilling Machine:	Track Mount					
Logged By:	МН	Northing:	4892980	Date Started:	Aug. 5, 2021				
Reviewed By:	AW	Easting:	307404	Date Completed:	Aug. 5, 2021				

	LITHOLOGY PROFILE	SOI	L SA	MPL	ING				FIEL	D TES	TING			LA	B TES	TING			c	ОММ	ENTS	3
ithology Plot	DESCRIPTION	Sample Type	Sample Number	Recovery (%)	SPT "N" Value	JEPTH (m)	ELEVATION (m)	X Other Test + Pocket Penetrometer Field Vane (Intact) G Field Vane (Remolded) 40 80 120 160 Penetration Testing O SPT ● DCPT 0 20 20 40						Combus Combus Total Or 00 Att	tible Orga tible Orga ganic Vap 200 3 erberg Lir er Content	nic Vapo nic Vapo our (ppm 00 4 nits	ur (ppm) ur (%LEL))) 00 	nstrumentation nstallation	GR	& RAIN STRIB (%	SIZE SUTIC	CL
	FILL: Sand & Gravel, Some Concrete Fragments, Trace Silt, Loose, Brown, Moist	ss	1	100	9	0		, c		20 3	0 4	0		10 13 0	20	30 4	40					
	Trace Brick Fragments & Fabric, Very Dense	SS	2	100	100+	1-	- 99				0100+ →		1	0					Auger Obstr	Grindi uction a	ng on at 0.6n	n
				400	100.	-	- 98				-		6						Auger	Grindi	ng	
	2.1 97.4	55	3	100	100+	2 —	-				01	00+-	0									
	Auger Refusal on Burried Obstruction (Possible Concrete Slab) at 2.1m																					
GE	EI CONSULTANTS	water	depth	n enco	ounter	ed on c	complet	ion of	drilling	: Dry				Cave	depth	after a	uger re	moval:	Open			
647 Welham Road, Unit 14 Barrie, Ontario L4N 0B8 T : (705) 719-7994 Borehole details presented do not constitute a thorough understanding of all potential conditions present and require interpretative assistance from Sc									Scale:	1 :50	1											
ww		a qualified geotechnical engineer. Also, borehole information should be read in conjunction with the geotechnical report for which it was commissioned and the accompanying 'Explanation of Boring Log'.											Page:	1 of	1							

Project Number:	2102519
Project Client:	RIC (Midland Land) Inc.
Project Name:	40 Wilson Avenue
Project Location:	Belleville, Ontario
Drilling Location:	See Figure 2

Drilling Method:	Solid Stem Au	gers	Drilling Machine:	Track Mount					
Logged By:	МН	Northing:	4893037	Date Started:	Aug. 5, 2021				
Reviewed By:	AW	Easting:	307611	Date Completed:	Aug. 5, 2021				

LITHOLOGY PROFILE SOIL SAMPLIN			ING			FIELD TESTING Shear Strength Testing (kPa)				LAB TESTING						COMMENTS				
Lithology Plot	DESCRIPTION	Sample Type	Sample Number	Recovery (%)	SPT "N" Value	DEPTH (m)	ELEVATION (m)	× Other Test ∠ + Pocket Penetrometer ▲ ▲ Field Vane (Intact) ▲ △ Field Vane (Remolded) ↓ 40 80 120 160 Penetration Testing PL ↓ ○ SPT ● DCPT 10 20 30 40					Combustit Combustit Total Orga 20 20 Atter Water	ble Orgar ble Orgar anic Vapo 00 30 berg Lim Content	nic Vapou nic Vapou our (ppm 00 4 hits (%)	ur (ppm) ur (%LEL)) 00 	Instrumentation Installation	GRAIN SIZE DISTRIBUTION (%) GR SA SI CL		
	FILL: Sand & Gravel, Some Limestone Fragments, Compact, Brown, Moist	ss	1	100	29	0	- 99		2	9 2		1	0	0 3	<u> </u>	+0				
	^{0.8}	SS	2	100	14	1—	-	14 0	/	/ /				25 				Auger Grinding		
	1.5 97.8 CLAYEY & SILTY SAND, Trace Gravel, Trace Limestone Fragments, Hard, Brown, Wet	SS	3	100	100+	-	- 98			010	0+ →					42 O				
	2.4 Some Limestone Fragments _{96.9} Auger Refusal on Inferred Bedrock at	SS	4	100	100+	2-	- 97			010	0+ →	5 0						Auger Gridning & Spoon Bouncing		
	2.711																			
GE 647	EI CONSULTANTS Welham Road, Unit 14	water	depti	n enco	ountei	red on c	complet	ion of drilling	Dry	<u></u>		<u> </u>	Cave o	depth a	after a	: uger re	moval:	Open		
Bar T: ww	7 Welham Road, Unit 14 rrie, Ontario L4N 0B8 (705) 719-7994 W.geiconsultants.com Borehole details presented do not constitute a thorough understanding of all potential conditions present and require interpretative assistance from a qualified geotechnical engineer. Also, borehole information should be read in conjunction with the geotechnical report for which it was commissioned and the accompanying 'Explanation of Boring Log'. Scale: 1:50												0							
RECORD OF BOREHOLE No. 11

Project Number:	2102519
Project Client:	RIC (Midland Land) Inc.
Project Name:	40 Wilson Avenue
Project Location:	Belleville, Ontario
Drilling Location:	See Figure 2

					Consultants
Drilling Method:	olid Stem A	ugers	Drilling Machine:	Track Mount	
Logged By:	МН	Northing:	4892958	Date Started:	Aug. 5, 2021
Reviewed By:	AW	Easting:	307520	Date Completed:	Aug. 5, 2021

	LITHOLOGY PROFILE	SOI	L SA	MPL	ING	FIELD TESTING LAB TESTING		FIELD TESTING LAB TESTING				COMMENTS										
hology Plot	DESCRIPTION	ample Type	ample Number	scovery (%)	oT "N" Value	EPTH (m)	_EVATION (m)		Shear Str Cother Tes Pocket Pe Field Van Field Van 40 8 Pene SPT	ength Tes t enetrome e (Intact) e (Remol 0 12 tration Te	sting (kPa) ter 20 160 sting PT			combusti combusti otal Orga 00 2 Atte Water	ble Organ ble Organ anic Vap 00 3 rberg Lin	nic Vapou nic Vapou our (ppm) 00 44 nits	ur (ppm) ur (%LEL) 00 	strumentation stallation	GR GR	8 RAIN STRIE (%	I SIZE BUTIC 6)	E DN
	Local 98.35m FILL: Silty Sand, Some Gravel, Some Concrete Fragments, Compact, Brown, Moist	ss	<u>ຮັ</u>	<u>₩</u> 100	ਤੱ 29	<u> </u>	H - 98		10 2	0 3 29	0 <u>40</u>		6 0	0 2	20 3	30 <u>4</u>	10		on	0,1		
	Gravelly	SS	2	100	14	1—	-		-14 0	/			8									
	1.5 96.8 SAND & LIMESTONE FRAGMENTS, Trace Silt, Very Dense, Brown, Moist	SS	3	100	100+	- 2-	— 97 -				0100)+ →	4 0						Auger 54	Grind 39	ing (7)	
₩¥₩₩₩₩₩		SS	4	100	100+	-	- 96				0100)+ →	1	0								
	3.2 95.2 Auger Refusal in Inferred Bedrock at 3.2m	SS	5	100	100+	3-	-				0100)+ →	5						Auger Spoor	Grind Boun	ing & cing	
GE	:I CONSULTANTS 목 Ground	JLTANTS Image: Completion of drilling: Dry Image: Completion of drilling: Dry Image: Completion of drilling: Dry Image: Completion of drilling: Dry																				
647 Bar T: ww	Welham Road, Unit 14 rie, Ontario L4N 0B8 (705) 719-7994 w.geiconsultants.com Borehole detail a qualified geot commissioned	Borehole details presented do not constitute a thorough understanding of all potential conditions present and require interpretative assistance from a qualified geotechnical engineer. Also, borehole information should be read in conjunction with the geotechnical report for which it was commissioned and the accompanying 'Explanation of Boring Log'.																				

RECORD OF BOREHOLE No. 12

Project Number:	2102519
Project Client:	RIC (Midland Land) Inc.
Project Name:	40 Wilson Avenue
Project Location:	Belleville, Ontario
Drilling Location:	See Figure 2

Drilling Method:	Solid Stem Au	gers	Drilling Machine:	Track Mount	
Logged By:	МН	Northing:	4892850	Date Started:	Aug. 5, 2021
Reviewed By:	AW	Easting:	307477	Date Completed:	Aug. 5, 2021

	LITHOLOGY PROFILE	SOI	L SA	MPL	ING				FIEL	DTES	TING			LAB	B TES	TING			со	MMENT	s
Lithology Plot	DESCRIPTION	Sample Type	Sample Number	Recovery (%)	SPT "N" Value	DEPTH (m)	ELEVATION (m)	× 0 + F △ F 4 0 \$	Dither Tes Pocket Pe Field Vand Field Vand Field Vand Penel Penel SPT	ength Tes enetromete e (Intact) e (Remolo 0 12 tration Tes 0 20	er ded) 20 16 sting 2T	30 0		Combusti Combusti Total Org 00 2 Atte	ible Orga ible Orga anic Vap 00 3 erberg Lin	nic Vapor nic Vapor our (ppm 00 4 nits (%)	ur (ppm) ur (%LEL)) 00 	Instrumentation Installation	GR S	& AIN SIZ RIBUTI (%)	E ON
	SAND & LIMESTONE FRAGMENTS, Trace Silt Very Dense Brown Moist	SS	1	100	100+	0	-		2		- 4	100+ ○►		0					Auger G	rinding	1
₩ <u>₹₩₽</u> Ţ₩₽Ţ₩ ₩₽₽₽₽₹₩₽	Grey, Damp	SS	2	100	100+	-	- 96				01	00+ →	6 0	16							
						1-	-														
	1.5 95.2	AS	3	100	100+						01	00+ →	4 0						Auger G	rinding	
	Auger Refusal on Inferred Bedrock at 1.5m																				
		water	denth) enco	unter	ed on c	completi	on of	drilling	Drv			<u> </u>	Cave	denth	i after a	i uder re	moval.	Open		
647 Bar	Welham Road, Unit 14	water	depth	n obse	erved	on Au	g. 31/2	lata	depth	of: Dr	y		Ţ	Obser	ved or	n Oct.	8/21	at a dep	oth of: D	ry	
T : ww	(705) 719-7994 Borehole detail w.geiconsultants.com a qualified geo commissioned	s presentechnica and the	nted do al engin accom	o not co leer. Als panyin	onstitute so, bore g 'Expla	a thorou hole info mation of	gh unders rmation sl Boring Lo	standing hould be og'.	of all po e read in	otential co conjunct	ondition ion with	s presen the geot	t and rec echnical	uire int I report	erpretati for whic	ve assis h it was	tance fro	m	Sca Pag	ale: 1:5 ge: 10	50 f 1

RECORD OF BOREHOLE No. 13

Project Number:	2102519
Project Client:	RIC (Midland Land) Inc.
Project Name:	40 Wilson Avenue
Project Location:	Belleville, Ontario
Drilling Location:	See Figure 2

Drilling Method:	Solid Stem Au	gers	Drilling Machine:	Track Mount	
Logged By:	МН	Northing:	4892905	Date Started:	Aug. 5, 2021
Reviewed By:	AW	Easting:	307645	Date Completed:	Aug. 5, 2021

	LITHOLOGY PROFILE	SOI	L SA	MPL	ING			FII	ELD	TESTING	,		LAB	TES	TING			c	омм	ENTS	5
Lithology Plot	DESCRIPTION	Sample Type	Sample Number	Recovery (%)	SPT "N" Value	DEPTH (m)	ELEVATION (m)	× Othe + Pock ▲ Field △ Field 40 Field 40 Field 10	r Test et Per Vane Vane 80 Penetr	ngth Testing (KPa netrometer (Intact) (Remolded) 120 16 ation Testing DCPT 30 4/	50		Combustil Combustil Total Orga 20 20 Atter Water	ble Orgar ble Orgar anic Vapo 00 30 rberg Lim Content	nic Vapou nic Vapou pur (ppm) 00 4 hits (%)	ur (ppm) ur (%LEL) 00 	Instrumentation Installation	G Di GR	& BRAIN STRIB (%	SIZE SUTIO	CL
	FILL: Sand & Gravel, Some Concrete & Limestone Fragments, Compact, Brownn, Moist	SS	1	100	18	0	_	U	18 	/ 30 4	<u>.</u>	5 O	<u>0 2</u>	<u>u 3</u>	<u>U 4</u>	+0		Auger	Grindi	ng	
	0.8 97.2 SAND & LIMESTONE FRAGMENTS, Trace Silt, Compact, Brown, Moist	SS	2	100	19	1 —	- 97	1	ا ل 9 0		/	7						37	55	(8)	
	1.7 Very Dense 06.2	SS	3	100	100+	-	-			01)0+ →	5						Auger	Grindi	ng & cina	
	Auger Refusal on Inferred Bedrock at 1.7m																			<u> </u>	
		watar	dont			ind on a	omplet	ion of drill	ling	Dry			Covo	donth -	ofter a		moveli	0			
647	UCUNSULIANIS Welham Road, Unit 14 ₩ Ground	water water	depth depth	i enco i obse	erved	on Au	omplet g. 31/2'	ion of drill 1 at a dep	ung: oth c	ory f: Dry		Ē	Obser	ved on	oct. 8	uger re 8/21	moval: at a dej	oth of:	Dry		
T: www	705) 719-7994 Borehole detail a qualified geol commissioned	s prese technica and the	nted do al engin accom	o not co leer. Als lpanyin	Provide Contraction Call of Call							t and rec technica	quire inte I report f	erpretativ for which	ve assist n it was	tance fro	m		1		

Appendix C

Geotechnical Laboratory Results

Appendix D

Rising Head Test Results

Recovery Testing - Hvorslev Method (1951)

Existing Well on Site											
Time	Elapsed	Elapsed Time	Water Level	H-h	(H-h)/(H-Ho						
		(360)	6.080								
8:21:24 AM	0.00	0	8.228	2.148	1.000						
8:21:31 AM	0.12	7	7.7	1.620	0.754						
8:21:38 AM	0.23	14	7.403	1.323	0.616						
8:21:45 AM	0.35	21	7.272	1.192	0.555						
8:21:52 AM	0.47	28	7.158	1.078	0.502						
8:21:59 AM	0.58	35	7.055	0.975	0.454						
8:22:06 AM	0.70	42	6.965	0.885	0.412						
8:22:13 AM	0.82	49	6.879	0.799	0.372						
8:22:20 AM	0.93	56	6.8	0.720	0.335						
8:22:27 AM	1.05	63	6.726	0.646	0.301						
8:22:34 AM	1.17	70	6.663	0.583	0.271						
8:22:41 AM	1.28	77	6.603	0.523	0.243						
8:22:48 AM	1.40	84	6.545	0.465	0.216						
8:22:55 AM	1.52	91	6.494	0.414	0.193						
8:23:02 AM	1.63	98	6.447	0.367	0.171						
8:23:09 AM	1.75	105	6.405	0.325	0.151						
8:23:16 AM	1.87	112	6.365	0.285	0.133						
8:23:23 AM	1.98	119	6.332	0.252	0.117						
8:23:30 AM	2.10	126	6.303	0.223	0.104						
8:23:37 AM	2.22	133	6.275	0.195	0.091						
8:23:44 AM	2.33	140	6.249	0.169	0.079						
8:23:51 AM	2.45	147	6.227	0.147	0.068						

K = Hydraulic Conductivity

- **r** = radius of well casing
- **R** = Radius of well screen or filter pack
- L = Length of the well screen (in Slug Test) or the length of submerged portion of the well screen (in Rising Head)
- T_0 = time for water level to rise or fall to 37% of the initial change

	r (m) =	0.016		
Notes:	L (m) =	3		
1 - All water levels are in metres from ground surface	R (m) =	0.025		
2 - R is radius of sand pack	T _o (sec) =	48		
3 - T_o is determined from plots where (H-h)/(H-Ho) = 0.37				
4 - Analysis based off of Horslev (1951)	K (m/s) =	4E-06		
			APPENDIX:	D
	7	RISING HEAD TEST - Existing Well on Site	REF. No.:	2102519
Consultants			DATE:	May 2022

Appendix E

Groundwater Chemistry Certificates of Analysis

CERTIFICATE OF ANALYSIS

ENVIRONMENTAL LABORATORIES Client committed. Quality assured.

Final Report

REPORT No. B21-28203

C.O.C.: ---

Report To:

GEI Consultants

647 Welham Rd, Unit 14, Barrie ON L4N 0B7 Canada <u>Attention:</u> Alex Winkelmann

DATE RECEIVED: 02-Sep-21

DATE REPORTED: 10-Sep-21

SAMPLE MATRIX: Groundwater

Caduceon Environmental Laboratories

112 Commerce Park Drive Barrie ON L4N 8W8 Tel: 705-252-5743 Fax: 705-252-5746

JOB/PROJECT NO .: Wilson Ave. Extension

P.O. NUMBER: 2102519 WATERWORKS NO.

Parameter	Qty	Site Analyzed	Analyst Initials	Date Analyzed	Lab Method	Reference Method
Cyanide	1	Kingston	US	07-Sep-21	A-CN-001 (k)	SM 4500CN
Anions	1	Holly Lane	pcu	03-Sep-21	A-IC-01 (o)	SM4110C
рН	1	Holly Lane	SYL	03-Sep-21	A-PH-01 (o)	SM 4500H
A - Wet Chem	1	Kingston	aro	03-Sep-21	A-TPTKN-001 (N)(k)	E3199A.1
A - Wet Chem	1	Kingston	aro	03-Sep-21	A-TPTKN-001 (P)(k)	E3199A.1
Total Suspended Solids	1	Kingston	bbr	07-Sep-21	A-TSS-001 (k)	SM2540D
BOD	1	Kingston	JWF	03-Sep-21	C-BOD-001 (k)	SM 5210B
Oil & Grease	1	Kingston	TMM	08-Sep-21	C-O&G-001 (k)	SM 5520
Phenolics (4-aap)	1	Kingston	kwe	08-Sep-21	C-PHEN-01 (k)	MOEE 3179
VOC's	1	Richmond Hill	JE	03-Sep-21	C-VOC-02 (rh)	EPA 8260
Mercury	2	Holly Lane	PBK	08-Sep-21	D-HG-02 (o)	SM 3112 B
Metals - ICP-OES	2	Holly Lane	hmc	08-Sep-21	D-ICP-01 (o)	SM 3120
Metals - ICP-MS	2	Holly Lane	TPR	07-Sep-21	D-ICPMS-01 (o)	EPA 200.8

Belleville - Sani/Storm - Belleville Sanitary/Combined Sewer Belleville - Sanitary - Belleville - Sanitary/Com/Storm Sewer Belleville - Storm - Belleville Storm Sewer Use

R.L. = Reporting Limit

Test methods may be modified from specified reference method unless indicated by an * Site Analyzed=K-Kingston,W-Windsor,O-Ottawa,R-Richmond Hill,B-Barrie AVX

Steve Garrett Director of Laboratory Services

Client committed. Quality assured.

CERTIFICATE OF ANALYSIS

Final Report

C.O.C.: ---

Report To:

GEI Consultants 647 Welham Rd, Unit 14, Barrie ON L4N 0B7 Canada <u>Attention:</u> Alex Winkelmann

DATE RECEIVED: 02-Sep-21 DATE REPORTED: 10-Sep-21

SAMPLE MATRIX: Groundwater

REPORT No. B21-28203

Caduceon Environmental Laboratories 112 Commerce Park Drive Barrie ON L4N 8W8 Tel: 705-252-5743 Fax: 705-252-5746 JOB/PROJECT NO.: Wilson Ave. Extension P.O. NUMBER: 2102519 WATERWORKS NO.

	Client I.D.		Other	Other (F)	Belleville -	Sani/Storm
	Sample I.	D.	B21-28203-1	B21-28203-2	Belleville -	Belleville -
	Date Colle	ected	01-Sep-21	01-Sep-21	Sanitary	Storm
		1		-		
Parameter	Units	R.L.				
pH @25°C	pH Units		7.41			9
BOD(5 day)	mg/L	3	< 3		300	15
Chloride	mg/L	0.5	103		1500	
Cyanide (Total)	mg/L	0.005	< 0.005		2	
Fluoride	mg/L	0.1	0.2		10	
Oil and Grease-Mineral	mg/L	1.0	3.6		15	
Oil and Grease-Anim/Veg.	mg/L	1.0	2.3		150	
Phenolics	mg/L	0.002	< 0.002		1	
Phosphorus-Total	mg/L	0.01	0.50		10	
Sulphate	mg/L	1	10		1500	
Total Kjeldahl Nitrogen	mg/L	0.1	0.6		100	
Total Suspended Solids	mg/L	3	378		350	15
Aluminum	mg/L	0.01	3.14	0.05	50	
Antimony	mg/L	0.01	< 0.01	< 0.01	5	
Arsenic	mg/L	0.02	< 0.02	< 0.02	1	
Bismuth	mg/L	0.02	< 0.02	< 0.02	5	
Cadmium	mg/L	0.005	< 0.005	< 0.005	0.7	
Chromium	mg/L	0.002	0.004	< 0.002	5	
Cobalt	mg/L	0.005	0.009	< 0.005	5	
Copper	mg/L	0.002	< 0.002	< 0.002	3	
Iron	mg/L	0.005	4.82	1.71	50	
Lead	mg/L	0.02	< 0.02	< 0.02	2	
Manganese	mg/L	0.001	0.867	0.709	5	
Mercury	mg/L	0.00002	0.00002	1 < 0.00002		
Molybdenum	mg/L	0.01	0.07	0.01	5	
Nickel	mg/L	0.01	< 0.01	< 0.01	3	
Selenium	mg/L	0.001	< 0.001	² < 0.001 ²	5	

Belleville - Sani/Storm - Belleville Sanitary/Combined Sewer

Belleville - Sanitary - Belleville - Sanitary/Com/Storm Sewer

Belleville - Storm - Belleville Storm Sewer Use

R.L. = Reporting Limit

Test methods may be modified from specified reference method unless indicated by an * Site Analyzed=K-Kingston,W-Windsor,O-Ottawa,R-Richmond Hill,B-Barrie

Steve Garrett

Director of Laboratory Services

Client committed. Quality assured.

CERTIFICATE OF ANALYSIS

Final Report

C.O.C.: ---

Report To:

GEI Consultants 647 Welham Rd, Unit 14, Barrie ON L4N 0B7 Canada Attention: Alex Winkelmann

DATE RECEIVED: 02-Sep-21 DATE REPORTED: 10-Sep-21

SAMPLE MATRIX: Groundwater

REPORT No. B21-28203

Caduceon Environmental Laboratories 112 Commerce Park Drive Barrie ON L4N 8W8 Tel: 705-252-5743 Fax: 705-252-5746 JOB/PROJECT NO.: Wilson Ave. Extension P.O. NUMBER: 2102519

WATERWORKS NO.

	Client I.D.		Other	Other (F)		Belleville -	Sani/Storm
	Sample I.I	D.	B21-28203-1	B21-28203-2		Belleville -	Belleville -
	Date Colle	ected	01-Sep-21	01-Sep-21		Sanitary	Storm
Parameter	Units	R.L.					
Silver	mg/L	0.005	< 0.005	< 0.005		5	
Tin	mg/L	0.05	< 0.05	< 0.05		5	
Titanium	mg/L	0.005	0.100	< 0.005		5	
Vanadium	mg/L	0.005	< 0.005	< 0.005		5	
Zinc	mg/L	0.005	0.021	< 0.005		3	
Benzene	mg/L	0.0005	< 0.0005			0.01	
Ethylbenzene	mg/L	0.0005	< 0.0005			0.16	
Chloroform	mg/L	0.001	< 0.001			0.04	
Dichlorobenzene,1,4-	mg/L	0.0005	< 0.0005			0.47	
Dichloromethane (Methylene Chloride)	mg/L	0.005	< 0.005			0.21	
Tetrachloroethylene	mg/L	0.0005	< 0.0005			0.05	
Trichloroethylene	mg/L	0.0005	< 0.0005			0.07	
Tetrachloroethane,1,1,2,2	mg/L	0.0005	< 0.0005			0.04	
-							
Toluene	mg/L	0.0005	< 0.0005			0.27	
Xylene, o-	mg/L	0.0005	< 0.0005			0.52	

1 solids present in Hg bottle

2 Subcontracted to Paracel Labs

Belleville - Sani/Storm - Belleville Sanitary/Combined Sewer Belleville - Sanitary - Belleville - Sanitary/Com/Storm Sewer

Belleville - Sanitary - Belleville - Sanitary/Com/Storm Se Belleville - Storm - Belleville Storm Sewer Use

R.L. = Reporting Limit

Test methods may be modified from specified reference method unless indicated by an * Site Analyzed=K-Kingston,W-Windsor,O-Ottawa,R-Richmond Hill,B-Barrie Steve Garrett Director of Laboratory Services

Client committed. Quality assured.

CERTIFICATE OF ANALYSIS

Final Report

REPORT No. B21-28203

C.O.C.: ---

Report To:

GEI Consultants 647 Welham Rd, Unit 14, Barrie ON L4N 0B7 Canada <u>Attention:</u> Alex Winkelmann

DATE RECEIVED: 02-Sep-21 DATE REPORTED: 10-Sep-21

SAMPLE MATRIX: Groundwater

Caduceon Environmental Laboratories

112 Commerce Park Drive Barrie ON L4N 8W8 Tel: 705-252-5743 Fax: 705-252-5746 JOB/PROJECT NO.: Wilson Ave. Extension P.O. NUMBER: 2102519 WATERWORKS NO.

Summary of Exceedances

Belleville - Sanitary/Com/Storm Sewer			Belleville Storm Sewer Use		
Other	Found Value	Limit	Other	Found Value	Limit
Total Suspended Solids (mg/L)	378	350	Total Suspended Solids (mg/L)	378	15

Belleville - Sani/Storm - Belleville Sanitary/Combined Sewer Belleville - Sanitary - Belleville - Sanitary/Com/Storm Sewer Belleville - Storm - Belleville Storm Sewer Use

R.L. = Reporting Limit

Test methods may be modified from specified reference method unless indicated by an * Site Analyzed=K-Kingston,W-Windsor,O-Ottawa,R-Richmond Hill,B-Barrie Steve Garrett Director of Laboratory Services

L							TE	STING	REQ	UIREN	ENT	S							REF	ORTNUM	BER (Lab	Use)
C	ADUC	E	N	O.Reg	153	Table	Me I	edium/	Fine (C (153)	oarse		MISA G	uideline 58 Leac	s hate An	alvsis						~
	ENV RONMENTAL L	ABORATORES		Yes	No	Record of Site 0	onditio	n	(O.Re	g 153)		D	lisposa	al Site: _		laijoio		_	021	-70	20	3
	Cli	ent committed. Quality i	Isured.	Provin	ncial Water Quality	Objectives							andfill	Monitor	ing				Da	00	100	2
				X Sewer	Use By-Law: Cit	v of Belleville	e. On	tario			-	0	Other: _				_	_				
Ar	e any samples to be submitted in	ntended for Human C	onsumptio	n under any l	Drinking Water R	Regulations?		Yes	X	No	(If ye	es, subm	nit all [Drinking	Wate	r Samp	les on	a Dri	nking Wate	r Chain of	Custody)	
	Indicate Lat	poratory Samples a	are submit	ted to:	C King	ston	Ottav	wa		Rich	mon	d Hill		Win	dsor	X	Bar	rie	Lo	ndon		
Organi	ization:	Address and Invoic	ing Address	s (if different))				AN	ALYS	ES R	EQUEST	TED (P	rint Tes	st in Be	oxes)			T	JRNAROU	ND SERV	CE
GELO	Consultants	647 Welham Ro	oad, Unit	14						I I								ted	REC	UESTED (see back	page)
Alex	n: Winkelmann	Barrie, Ontario								ar								mina	D Plati	num	200% Sur	harda
Tel:							2			tary								onta	Gold	i	100% Sur	charge
(705)	229-4298						# 0			ani								ly c	Silve	er	50% Surc	harge
Fax:		Quote No.:		Project Nan	ne:		Suit	i		e o								Higi	Bron	ize	25% Surc	harge
-		2020_EPD		Wilson A	ve. Extension		0			evill								cted	X Stan	dard	5-7 days	
Email:	almann@soioongultanta	P.O. No.:		Additional	Info:		leta			elle								edsn	C See	ific Data:		
awin	sa	nple Matrix Legend: W	W=Waste Wa	ter. SW=Surfa	ace Water GW=Gr	oundwater IS=I	iquid S	Judge	SS=S	olid Sh	anhu	S=Soil S	Sed=S	ediment	PC=P	aint Chi	ns F=F	ilter.		mc Date.	-	
Lab	Contraction of the Contraction o			Sample	Date Collected	Time		in a goi		In	dicate	Test For	Each	Sample	-				F	eld	# Bottles/	Field
No:	Sample Identifica	ition	S.P.L.	Matrix *	(yy-mm-dd)	Collected			By	Using	A Ch	eck Mark	In The	Box Pro	vided	_		V	pН	Temp.	Sample	Filtered(Y/N)
1	Other		-	GW	21-09-01	AM				1											14	Ν
2	Other (F)			GW	21-09-01	AM	V														4	Y
																			1			
													1		1							
-	Metals + hg-	» O «								_												
#1	Gen chem, NU	F, FOG, CN	J. Pher	01-	K										1							
	#1 VOC-R	.Н	11																			
	#I Gen Cher	1-70																				
																			1.00			
	SAMPLE SUBMISSION	INFORMATION		SH	IPPING INFORM	ATION	REP	ORTI	NG/II	VOIC	ING	1953	S	AMPLE	RECE	IVING	INFOR	MATIO	ON (LABOR	ATORY U	SE ONLY)	
	Sampled by:	Submitted I	by:	Client's Cou	urier	Invoice	Repo	rt by F	Fax			Receive	ed By	(print):	m	ad	130	n	Signature	m	33	
Print:	Bo Hwang	Bo Hwa	ng	Caduceon's	Courier		Repo	rt by E	Email		X	Date Re	eceive	d (yy-n	m-dd)	:21	-09	-02	Time Rec	eived:	3:27	!
Sign:	Ka Jo	RS	40	Drop Off	X	# of Pieces	Invoid	ce by	Email		X	Laborat	tory P	repared	Bottl	es:	LV	Yes		No	11	1
	21-09-01 Date (vy-mm-dd)/Time:	21-09-0 Date (vv-mm-dd	1 VTime:	Caduceon (Pick-up) 🔲	8	Invoid	ce by	Mail			Sample	Tem	peratur	°C:	13	6		Labeled b	W:	1	
Comme	nts:						1000									1.1	0			1		1
																			Page		01	·
				1. 1. 2012 5 5 5															9			

Appendix F

Basement Drainage Typical Details

Appendix G

Preliminary Water Balance

Water Balance - 40 Wilson Avenue

	MONTHLY AND YEARLY WATER BALANCE COMPONENTS													
		JAN	FEB	MAR	APR	ΜΑΥ	JUN	JUL	AUG	SEP	ОСТ	NOV	DEC	YEAR
c	Average Temperature: T (°C)	-6.7	-5.1	-0.1	7.0	13.7	19.0	21.8	20.8	16.3	9.5	3.6	-2.6	8.1
al iratio ion	Heat Index: i=(T/5) ^{1.514}	0.00	0.00	0.00	1.66	4.60	7.55	9.29	8.66	5.98	2.64	0.61	0.00	41.0
otenti ransp culati	Unadjusted Daily Potential Evapotranspiration: U (mm)	0.0	0.0	0.0	29.5	63.6	92.5	108.2	102.6	77.6	41.8	13.8	0.0	529.6
Pc vapot Cal	Adjusting Factor for U (Latitude 44°)	0.81	0.81	1.02	1.13	1.27	1.28	1.30	1.20	1.04	0.94	0.80	0.76	-
Ē	Adjusted Potential Evapotranspiration - PET (mm)	0.0	0.0	0.0	33.3	80.8	118.4	140.7	123.1	80.7	39.3	11.0	0.0	627.3
	Precipitation: P (mm)	67.3	58.1	62.4	75.8	81.3	74.5	65.1	75.5	91.9	85.2	95.7	79.1	911.9
	Adjusted Potential Evapotranspiration: PET (mm)	0.0	0.0	0.0	33.3	80.8	118.4	140.7	123.1	80.7	39.3	11.0	0.0	627.3
nents	P - PET	67.3	58.1	62.4	42.5	0.5	-43.9	-75.6	-47.6	11.2	45.9	84.7	79.1	284.6
odwo	Change in Soil Moisture Storage (mm)	0.0	0.0	0.0	0.0	0.0	-43.9	-75.6	-47.6	11.2	45.9	0.0	0.0	-
ous Co	Water Holding Capacity (max. 75 mm)	75.0	75.0	75.0	75.0	75.0	31.1	0.0	0.0	11.2	57.1	75.0	75.0	-
Pervic	Water Surplus Available for Infiltration or Runoff	67.3	58.1	62.4	42.5	0.5	0.0	0.0	0.0	0.0	0.0	66.7	79.1	376.6
	Potential Infiltration based on MOECC Infiltration Factor (mm)	53.8	46.5	49.9	34.0	0.4	0.0	0.0	0.0	0.0	0.0	53.4	63.3	301.3
	Potential Surface Water Runoff (mm)	13.5	11.6	12.5	8.5	0.1	0.0	0.0	0.0	0.0	0.0	13.3	15.8	75.3
s ts	Precipitation: P (mm)							-						911.9
irviou	Potential Evaporation: PE (mm), Assume 15%							-						136.8
Impe Comp	Potential Surface Water Runoff: P - PE (mm)							-						775.1

	PRE- AND POST-DEVELOPMENT WATER BALANCE (NO LOW IMPACT DEVELOPMENT MEASURES IN PLACE)										
		Total Land Area (m ²)	Est. Fraction of Land	Est. Land Area (m ²)	Runoff (m ³ /annum)	Infiltration (m ³ /annum)	Runoff Increase Pre to Post				
	Pervious Area	77000 0	90%	70020.0	5273.9	21095.6	337%				
Existing Land Use (Pre-Development)	Impervious Area	77800.0	10%	7780.0	6030.4	0.0	Infiltration Decrease Pre to Post				
	TOTAL	-	100%	77800.0	11304.3	21095.6	-78%				
	Pervious Area	77800 0	20%	15560.0	1172.0	4687.9	Infiltration Required to Meet Pre-				
Proposed Land Use (Post-Development)	Impervious Area (Estimated from "Concept Plan")	77800.0	80%	62240.0	48243.2	0.0	Development Conditions (m ³)				
	TOTAL	-	100%	77800.0	49415.1	4687.9	16408				

5

1. Both potential infiltration and surface water runoff are independent of temperature

2. Assumption is in January maximum soil moisture storage value is present (75mm)

3. Water Holding Capacity & Infiltration Factors taken from Table 3.1 of MOE SWMPDM, 2003

4. Average Temp. and Precip. taken from Environment Canada station "Belleville" between 1981 and 2010

5. Adjusting Factor for U based on Lorente, 1961

Infiltration Criteria	Site Description	Infiltration Factor
Topography	Flat Land - Average Slope Less Than 0.6 m/km	0.3
Soils	Open Sandy Loam	0.4
Cover	Cultivated Land	0.1
	Sum of Infiltration Factors	0.8