

PHASE TWO
ENVIRONMENTAL SITE ASSESSMENT
621 DUNDAS STREET EAST, BELLEVILLE, ONTARIO

Prepared for:

2255718 Ontario Inc.

P.O. Box 1598 Belleville, ON K8N 5J2

Prepared by:

BluMetric Environmental Inc.

The Tower, The Woolen Mill 4 Cataraqui Street Kingston, ON K7K 1Z7

Project Number: 220509

August 4, 2023

PHASE TWO ENVIRONMENTAL SITE ASSESSMENT 621 DUNDAS STREET EAST, BELLEVILLE, ONTARIO

Prepared for:

2255718 Ontario Inc. P.O. Box 1598 Belleville, ON K8N 5J2

Prepared by:

BluMetric Environmental Inc.
The Tower, The Woolen Mill
4 Cataraqui Street
Kingston, ON K7K 1Z7

Project Number: 220509

August 4, 2023

1 EXECUTIVE SUMMARY

BluMetric Environmental Inc. (subsequently referred to as "BluMetric®") has been retained by 2255718 Ontario Inc. since 2011 to complete Phase One and Phase Two Environmental Site Assessments for the Former Bakelite Property at 621 Dundas Street East, Belleville, Ontario, herein referred to as the Phase Two Property.

It is our understanding that this Phase Two ESA is required to support the filing of a Record of Site Condition (RSC) for municipal planning approvals. The activities described in this report have been undertaken in accordance with the requirements of Schedule E of Ontario Regulation 153/04 – Records of Site Condition, Part XV.1 of the Environmental Protection Act (EPA Part XV.1 of the Environmental Protection Act (EPA) (as amended) referred to herein as O. Reg. 153/04.

The Phase Two Property is bounded on the north by Dundas Street East and the railway track, on the east by portions of the former Bakelite property that are not part of the Phase Two Property, on the south by wetlands and the Bay of Quinte and on the west by a mix of commercial and residential land. The Phase Two Property is approximately 14.63 hectares (36.15 acres) in size and consists of vacant industrial lands of the former Bakelite property.

Between the late 1940s and 1989 the former Bakelite property was used as a chemical manufacturing and resin (Bakelite) production facility. Industrial operations shut down in 1989 and the property was largely inactive through the 1990s, with environmental clean-up and facilities decommissioning being carried out. The property was sold to Mr. Jim Sinclair under the name Thermoset Limited in 2006 (the previous owner); Mr. Sinclair intended to redevelop the property. Extensive earthwork and building demolition was conducted between 2006 and 2009. During this period, part of the Phase Two property was used as a waste transfer station for recyclable materials. On January 12, 2011, the Phase Two property was purchased by the current owner, 2255718 Ontario Inc.

The surrounding area on a 250 metre radius from the Phase Two Property consists of a mix of residential, and commercial uses.

The Phase Two ESA was conducted to address concerns identified by a Phase One ESA report entitled "Phase I Environmental Site Assessment, Former Bakelite property at 621 Dundas Street East, Belleville, Ontario" dated 9 January 2012 and by a draft Phase One ESA Update report entitled "Phase One Environmental Site Assessment Update, 621 Dundas Street East, Belleville, Ontario – West Portion of Former Bakelite Property," dated 4 August 2023, which identified nine (9) on-site and eight (8) off-site potentially contaminating activities (PCAs) that may have resulted in contamination to soil and/or groundwater media beneath the Phase Two Property. Areas of

Page i BluMetric

potential environmental concern (APEC) associated with each of the PCAs identified on the Phase Two Property, are summarized below:

APEC	Location of APEC on Property	PCA	Location of PCA	Contaminants of Potential Concern	Media Potentially Impacted
APEC 1a North Drum and Waste Disposal Area (NDWDA)	Northwest portion of the Phase Two Property, north of the west marsh	58. Waste Disposal and Waste Management, including thermal treatment, landfilling and transfer of waste, other than use of biosoils as soil conditioners	On-Site	PCBs, VOCs, Metals, As, Sb, Se, Hg, PAHs, PHCs, BTEX, CPs, ABNs	Soil Groundwater
APEC 1b NDWDA	Northwest portion of the Phase Two Property, north of the west marsh	30. Importation of fill material of unknown quality	On-Site	Metal (As, Sb, Se, Hg, Cr(VI)), PCBs, PAHs, PHCs, BTEX, pH, B-HWS (soil only)	Soil
APEC 2 Area C	Northwest portion of the Phase Two Property	58. Waste Disposal and Waste Management, including thermal treatment, landfilling and transfer of waste, other than use of biosoils as soil conditioners	On-Site	PCBs, VOCs, Metals (As, Sb, Se, Hg), PAHs, PHC, BTEX, CPs, ABNs	Soil Groundwater
APEC 3 Area D	Central portion of the Phase Two Property, north of the central marsh	58. Waste Disposal and Waste Management, including thermal treatment, landfilling and transfer of waste, other than use of biosoils as soil conditioners	On-Site	PCBs, VOCs, Metals (As, Sb, Se, Hg), PAHs, PHCs, BTEX, CPs, ABNs	Soil Groundwater
APEC 4 Area E	West of the former plant	58. Waste Disposal and Waste Management, including thermal treatment, landfilling and transfer of waste, other than use of biosoils as soil conditioners	On-Site	PCBs, VOCs, Metals (As, Sb, Se, Hg), PAHs, PHC, BTEX, CPs, ABNs	Soil Groundwater
APEC 5a North Parking Area	North of the former plant	30. Importation of fill material of unknown quality	On-Site	Metal (As, Sb, Se, Hg, CN, Cr(VI)), PCBs, PAHs, PHCs, BTEX, pH, B-HWS (soil only)	Soil Groundwater
APEC 5b North Parking Area	North of the former plant	Other – Application of Decing Agent for purpose of Pedestrian & Vehicular Safety under Conditions of Snow or Ice	On-Site	SAR, EC (soil only), Na, Cl (ground water only)	Soil Groundwater
APEC 6 North Fill Area	Northwest corner of the Phase Two Property	30. Importation of fill material of unknown quality	On-Site	PCBs, VOCs, Metals (As, Sb, Se, Hg), PAHs, PHC, BTEX, CPs, ABNs	Soil Groundwater
APEC 7 West Ditch	Extending south along west side of plant to the lagoons	Other: Surface water collection ditch	On-Site	VOCs, PAHs, ABNs, PHCs, BTEX, CPs	Soil Groundwater

Page ii BluMetric

APEC	Location of APEC on Property	PCA	Location of PCA	Contaminants of Potential Concern	Media Potentially Impacted
APEC 8a	North Tank Farm	Acid and Alkali Manufacturing, Processing, and Bulk Storage	On-Site	Metals (As, Sb, Se, Hg), VOCs, PHCs, BTEX, PAHs, ABNs, CPs, pH (soil only)	Soil Groundwater
APEC 8b	Adjacent to the northeast of the former main plant	8. Chemical Manufacturing, Processing, and Bulk Storage	On-Site	VOCs, PHCs, BTEX, PAHs, ABNs, CPs	Soil Groundwater
APEC 8c		28. Gasoline and Associated Products Storage in Fixed Tanks	On-Site	VOCs, PHCs, BTEX, PAHs	Soil Groundwater
APEC 8d		51. Solvent Manufacturing, Processing, and Bulk Storage	On-Site	BTEX, VOCs	Soil Groundwater
APEC 9a		Acid and Alkali Manufacturing, Processing, and Bulk Storage	On-Site	Metals (As, Sb, Se, Hg), VOCs, PHCs, BTEX, PAHs, ABNs, CPs, pH (soil only)	Soil Groundwater
APEC 9b	South Tank Farm Southeast corner of	8. Chemical Manufacturing, Processing and Bulk Storage	On-Site	VOCs, PHCs, BTEX, PAHs, ABNs, CPs	Soil Groundwater
APEC 9c	the former main plant building	51. Solvent Manufacturing, Processing, and Bulk Storage	On-Site	BTEX, VOCs	Soil Groundwater
APEC 9d		30. Importation of fill material of unknown quality	On-Site	Metal, As, Sb, Se, Hg, CN, Cr(VI), PAHs, PHCs, BTEX, pH, B-HWS (soil	Soil Groundwater
APEC 10 Incinerator	East of the North Tank Farm	58. Waste Disposal and Waste Management, including thermal treatment, landfilling and transfer of waste, other than use of biosoils as soil conditioners.	On-Site	only) PAH, ABNs, CPs	Soil Groundwater
APEC 11 Former East and West Lagoon	Central portion of the Phase Two Property to the east of the Central Marsh	58. Waste Disposal and Waste Management, including thermal treatment, landfilling and transfer of waste, other than use of biosoils as soil conditioners.	On-Site	Metals (As, Sb, Se, Hg), PAHs, PCBs, VOCs, PHC, BTEX, CPs, ABNs	Soil Groundwater
APEC 12 Area A & B waste disposal	South portion of the Phase Two Property	58. Waste Disposal and Waste Management, including thermal treatment, landfilling and transfer of waste, other than use of biosoils as soil conditioners.	On-Site	PCBs, VOCs, Metals (As, Sb, Se, Hg), PAHs, PHC, BTEX, CPs, ABNs	Soil Groundwater

Page iii BluMetric

APEC	Location of APEC on Property	PCA	Location of PCA	Contaminants of Potential Concern	Media Potentially Impacted
APEC 13 Former Methanol Tank	South portion of the Phase Two Property	8. Chemical Manufacturing, Processing, and Bulk Storage	On-Site	VOCs, Metals (As, Sb, Se, Hg), PCBs	Soil Groundwater
APEC 14 Pump House	South tip of the Phase Two Property	28. Gasoline and Associated Products Storage in Fixed Tanks	On-Site	Metals, PHC, PAH, BTEX	Soil Groundwater
APEC 15 Settling Basin	North of the Central Marsh	58. Waste Disposal and Waste Management, including thermal treatment, landfilling and transfer of waste, other than use of biosoils as soil conditioners	On-Site	Metals, As, Sb, Se, Hg, PAHs, PHC, BTEX, PCBs, VOCs, CPs, ABNs	Soil Groundwater
APEC 16 Tank 27	Northeast of settling basin	28. Gasoline and Associated Products Storage in Fixed Tanks	On-Site	PHCs, BTEX, PAHs	Soil Groundwater
APEC 17 Tank 40	South of boiler house	28. Gasoline and Associated Products Storage in Fixed Tanks	On-Site	PHCs, BTEX, PAHs	Soil Groundwater
APEC 18 Tank 22	East of boiler house	28. Gasoline and Associated Products Storage in Fixed Tanks	On-Site	PHCs, BTEX, PAHs	Soil Groundwater
APEC 19 Formaldehyde Plant tank farm	South of formaldehyde plant	8. Chemical Manufacturing, Processing and Bulk Storage	On-Site	VOCs, PHCs, BTEX PAH	Soil Groundwater
APEC 20 Area of drainage	Southwest of main plant building	58. Waste Disposal and Waste Management, including thermal treatment, landfilling and transfer of waste, other than use of biosoils as soil conditioners	On-Site	Metals (As, Sb, Se, Hg), PCBs, VOCs, PAHs, PHC, BTEX, CPs, ABNs	Soil Groundwater
APEC 21 Maintenance shop (including Tank 68)	Northwest part of former main plant building	28. Gasoline and Associated Products Storage in Fixed Tanks	On-Site	Metals (As, Sb, Se, Hg), PHCs, BTEX, PAHs, VOCs	Soil Groundwater
APEC 22 PCB Waste Storage Area	Southwest part of former main building	Other – Storage of PCB waste	On-Site	PCBs	Soil Groundwater
APEC 23 Indoor bulk chemical storage	Northeast part of former main building	Acid and Alkali Manufacturing, Processing, and Bulk Storage	On-Site	PHCs, BTEX, PAHs, VOCs, ABNs, CPs, pH (soil only)	Soil Groundwater
APEC 24 Indoor and outdoor bulk chemical storage	Southeast part of the former main building	8. Chemical Manufacturing, Processing and Bulk Storage	On-Site	PHCs, BTEX, PAHs, VOCs, ABNs, CPs, pH (soil only)	Soil Groundwater

Page iv BluMetric

APEC	Location of APEC on Property	PCA	Location of PCA	Contaminants of Potential Concern	Media Potentially Impacted
APEC 25 Caustic Lagoon and Pre-treatment Lagoon	West of main plant building	58. Waste Disposal and Waste Management, including thermal treatment, landfilling and transfer of waste, other than use of biosoils as soil conditioners	On-Site	PCBs, VOCs, Metals (As, Sb, Se, Hg), PAHs, PHC, BTEX, CPs, ABNs	Soil Groundwater
APEC 26 Former Rail Spur	Northwest area of the Phase Two Property	46. Rail Yards, Tracks and Spurs	On-Site	Metals, PAHs, PHCs	Soil Groundwater
APEC 27a East ditch	Northeast area of the Phase Two	Other: Surface water	On-Site	VOCs, PAHs,	Soil
APEC 27b East ditch	Property, near north tank farm	collection ditch	Off-Site	ABNs, PHCs, BTEX, CPs	Groundwater
APEC 28a Off-Site PCAs to the North		28. Gasoline and Associated Products Storage in Fixed Tanks	Off-Site	PHCs, BTEX	Groundwater
APEC 28b Off-Site PCAs to the North	boundary of the Phase Two Property	46. Rail Yards, Tracks, and Spurs	Off-Site	Metals (As, Sb, Se, Hg), PAHs, PHCs, BTEX	Groundwater
APEC 28c Off-Site PCAs to the North		52. Storage, Maintenance, Fueling, and Repair of Equipment, Vehicles, and Material Used to Maintain Transportation Systems	Off-Site	PHCs, BTEX	Groundwater
APEC 29a Off-Site PCAs to the east		Acid and Alkali Manufacturing, Processing, and Bulk Storage	Off-Site	Metals (As, Sb, Se, Hg), PHCs, BTEX, PAHs, VOCs, ABNs, CPs, pH (soil only)	Groundwater
APEC 29b Off-Site PCAs to the east		2. Adhesives and Resins Manufacturing, Processing and Bulk Storage	Off-Site	Metals (As, Sb, Se, Hg), PHCs, BTEX, PAHs, VOCs, ABNs, CPs, pH (soil only)	Groundwater
APEC 29c Off-Site PCAs to the east	Northeast edge of the Phase Two Property	8. Chemical Manufacturing, Processing and Bulk Storage	Off-Site	Metals (As, Sb, Se, Hg), PHCs, BTEX, PAHs, VOCs, ABNs, CPs, pH (soil only)	Groundwater
APEC 29d Off-Site PCAs to the east		28. Gasoline and Associated Products Storage in Fixed Tanks	Off-Site	Metals (As, Sb, Se, Hg), PHCs, BTEX, PAHs, pH (soil only)	Groundwater
APEC 29e Off-Site PCAs to the east		51. Solvent Manufacturing, Processing and Bulk Storage	Off-Site	VOCs, pH (soil only)	Groundwater

Page v BluMetric

APEC	Location of APEC on Property	PCA	Location of PCA	Contaminants of Potential Concern	Media Potentially Impacted
APEC 29f Off-Site PCAs to the east		58. Waste Disposal and Waste Management, including thermal treatment, landfilling and transfer of waste, other than use of biosoils as soil conditioners	Off-Site	Metals (As, Sb, Se, Hg), PHCs, BTEX, PAHs, VOCs, ABNs, CPs, pH (soil only)	Groundwater

Notes:

Acronyms are defined as follows:

- AST above ground storage tank
- PHCs petroleum hydrocarbons
- PAHs polycyclic aromatic hydrocarbons
- BTEX benzene, toluene, ethylbenzene and xylenes
- VOCs volatile organic compounds
- ABNs acid/base/neutrals
- CPs chlorophenols
- PCBs polychlorinated biphenyl

In order to investigate the APECs identified above, sampling and analyses were conducted during various fieldwork programs completed between July 2011 and January 2023.

The primary findings of the Phase Two ESA are as follows:

- In July 2011, twenty-four monitoring wells were installed and sampled for soil on the Phase Two Property. These wells were then subsequently sampled for groundwater. Details about these boreholes and results from the soil and groundwater samples can be found in the report titled "Phase II Environmental Site assessment, 621 Dundas Street East, Belleville, Ontario" prepared by WESA. Additionally, in November 2012, 34 test pits were dug and sampled, and the details and results from these samples can be found in the WESA Phase II report (WESA, 2012).
- Further sampling of twenty-two existing monitoring wells was completed between July 12 and July 14, 2022. Two existing monitoring wells could not be sampled during this event. MW121 could not be located in an area of dense brush, and MW128 was found in damaged condition. Key observations/results of the July 2022 groundwater sampling event were considered for development/updating of this Phase Two ESA scope of work (BluMetric 2022). In summary, contaminant concentrations exceeding the applicable SCS were reported in 5 of the 22 groundwater samples collected.
- In December 2022, BluMetric supervised the drilling of 29 additional boreholes and seven test pits. All 29 boreholes were completed as groundwater monitoring wells.

Page vi BluMetric

- In accordance with requirements of O.Reg.153/04, due to the presence of no potable water wells and the shallow soils conditions, the Phase Two Property was evaluated with respect to the Table 7 Generic Site Condition Standards for Use in a Non-Potable Groundwater Condition for residential/ parkland/ institutional land use, as provided in Soil, Ground Water and Sediment Standards for Use under Part XV.1 of the Environmental Protection Act (Table 7 SCS).
- The overburden at the Phase Two Property is generalized as consisting of surface topsoil extending to depths ranging from 0.0 to 1.6 m bgs. The surficial topsoil layer was generally followed by sand and sandy silt with gravel or clay and silty clay with gravel which extends to at least 3.4 m bgs. Followed by bedrock ranging from 0.0 to 4.27 m bgs.
- Grain size tests conducted on native soil samples shown a fine texture.
- The shallow bedrock is considered to be the main groundwater flow pathway at the Phase Two Property based on the distribution of where groundwater was found.
- Based on the groundwater elevations collected to date, local groundwater flow appears to be south-southwest.
- Selected soil and groundwater samples were submitted for chemical analyses of the Contaminants of Potential Environmental Concern (COPCs) identified in the Phase One ESA.
- In 2022, many parameters' concentrations of samples were above the Table 7 SCS. There were exceedances of benzene, toluene, ethylbenzene, and xylenes (BTEX), hydride forming metals (HFMs), Metals, other regulated parameters (ORPs), polycyclic aromatic hydrocarbons (PAHs), polychlorinated biphenyls (PCBs), acid/base/neutral compounds (ABNs), and petroleum hydrocarbons (PHCs) in the soil samples collected from the boreholes and test pits.
- In 2023, many parameters' concentrations of chemicals were above the Table 7 SCS. There were exceedances of BTEX, Metals, ORPs, PAHs, PCBs, volatile organic compounds (VOCs), and PHCs in the groundwater samples collected from the monitoring wells.

Further assessment or remedial actions are required at the Phase Two Property in preparation for the proposed residential redevelopment.

Page vii BluMetric

TABLE OF CONTENTS

1 2			DDUCTION	
	2.12.22.32.42.5	Proi Tern Curi	se Two Property Information perty Ownership ms of Reference rent and Proposed Future Uses licable Site Condition Standards	2 2 3
3			GROUND INFORMATION	
	3.1	PHYS	sical Setting	6
		1.1	Water Bodies and Areas of Natural Significance	
		1.2	Topography and Surface Water Drainage Features	
	3.2		Investigations	
4		SCOPE	OF THE INVESTIGATION1	6
	4.1		rview of Site Investigation	
	4.2	MED	dia Investigated	
		2.1	Rationale	
	4.3	2.2	Field Program Summary	
		3.1	Overview1	
		3.1 3.2	Potentially Contaminating Activities (PCAs)	
	4.	3.3	Areas of Potential Environmental Concern	
		3.4	Subsurface Structures and Utilities on Phase One Property	
		3.5 3.6	Geological and Hydrogeological Information	
	4.4		ATIONS FROM SAMPLING AND ANALYSIS PLAN	
	4.5		DIMENTS	
5		INVES	TIGATION METHOD2	7
	5.1	GEN	ERAL	7
	5.2		pling Existing Monitoring Wells and Boreholes	
	5.3		LING	
	5.4		SAMPLING	
	5.5 5.6		PITS	
	5.7		DUNDWATER: MONITORING WELL INSTALLATION	
		20		_

	5.8	GRO	DUNDWATER: FIELD MEASUREMENT OF WATER QUALITY PARAMETERS	38
	5.9	Gro	DUNDWATER: SAMPLING	42
	5.10	Surf	FACE WATER AND SEDIMENT: SAMPLING	47
	5.11	Ana	LYTICAL TESTING	47
	5.12	RESI	due Management Procedures	47
	5.13		ation Surveying	
	5.14	QUA	ality Assurance and Quality Control Measures	47
6	R	EVIE	W AND EVALUATION	49
	6.1	GEO	LOGY	49
	6.2	Gro	oundwater: Elevations and Flow Direction	49
	6.2.	1	Well Screen Intervals & Free-Flowing Product Measurements	
	6.2.	2	Groundwater Elevations, Flow Modelling & Temporal Variation	50
	6.3	Gro	DUNDWATER: HYDRAULIC GRADIENTS	52
	6.3.	1	Horizontal Gradient	52
	6.3.	2	Vertical Gradient	52
	6.4	FINE	-Medium Soil Texture	52
	6.5	SOIL	: FIELD SCREENING	53
	6.6	SOIL	QUALITY	53
	6.7	GRO	DUNDWATER QUALITY	54
	6.8	Surf	FACE WATER AND SEDIMENT QUALITY	55
	6.9	QUA	ality Assurance and Quality Control Results	55
	6.9.	1	Quality Control Sampling	55
	6.9.	_	Non-Compliance to Analytical Protocols	
	6.9.	_	Laboratory Certificates of Analyses	
	6.10	PHA:	SE TWO CONCEPTUAL MODEL	57
7	C	ONO	CLUSIONS	69
	7.1	Has	The Phase Two ESA Determined The Presence Of Contaminant Impacts On T	HE
	PHASE	Two	PROPERTY?	69
	7.2	Limi	ting Conditions, QP Statement, and QP Signature	69
8	R	EFER	ENCES	. 71

LIST OF TABLES

Table 1:	Phase Two Property Information	1
Table 2:	Property Ownership	2
Table 3:	Generic Site Condition Standards for Shallow Soils in a Non-Potable Gro	ound Water
	Condition	4
Table 4:	Areas of Potential Environmental Contamination	9
Table 5:	PCAs	13
Table 6:	Media Investigated	17
Table 7:	On-Site PCAs	21
Table 8:	Off-Site PCAs	22
Table 9:	Drilling Program Summary	28
Table 10:	Soil Chemical Analyses of Boreholes and Test Pits 2011-2022	30
Table 11:	Test Pit Summary 2022	36
Table 12:	Monitoring Well Installation Summary 2022	37
Table 13:	Summary of Monitoring Well Development 2023	37
Table 14:	Field Measurement of Water Quality Parameters 2023	
Table 15:	Groundwater Sampling Chemical Analyses Summary 2011-2023	44
Table 16:	Geology Summary	49
Table 17:	Groundwater Elevation Calculation	50
Table 18:	Summary of Groundwater Flow Data for Geologic Units	52
Table 19:	Soil Particle Size Analysis Summary	53
Table 20:	Guideline Limits for Various Analysis Groups	56
Table 21:	CSM Narrative Mandatory Requirements	58
Table 22:	CSM Figure Mandatory Requirements	65

LIST OF FIGURES

(end of text)

- Figure 1-01: Phase One Property and Study Area
- Figure 1-02: Topographic Map, Areas of Natural, Scientific Interest, and Water Bodies
- Figure 1-03: Applicable Site Condition Standard
- Figure 1-04: MECP Well Records
- Figure 1-05: Phase One Property Site Features
- Figure 1-07a: Conceptual Site Model: Potentially Contaminating Activities
- Figure 1-07b: Conceptual Site Model RSC Property
- Figure 1-08: Sampling Locations, Profile Locations with APECs

Figure 1-09: Groundwater Elevations & Inferred Flow Direction General Stratigraphy - Cross Section A-A' Figure 1-10a: General Stratigraphy - Cross Section B-B' Figure 1-10b: Figure 1-10c: General Stratigraphy - Cross Section C-C' Figure 1-10d: General Stratigraphy – Cross Section D-D' Figure 1-10e: General Stratigraphy – Cross Section E-E' Figure 1-10f: General Stratigraphy – Cross Section F-F' Figure 1-10g: General Stratigraphy - Cross Section G-G' Figure 1-10h: General Stratigraphy – Cross Section H-H' Figure 1-10i: General Stratigraphy - Cross Section I-I' Figure 1-10j: General Stratigraphy – Cross Section J-J' Figure 1-10k: General Stratigraphy - Cross Section K-K' Figure 1-101: General Stratigraphy – Cross Section L-L' Figure 1-10m: General Stratigraphy – Cross Section M-M' Figure 1-10n: General Stratigraphy – Cross Section N-N' Figure 1-10o: General Stratigraphy – Cross Section O-O' Figure 1-10p: General Stratigraphy – Cross Section P-P' Figure 1-10q: General Stratigraphy - Cross Section Q-Q' Figure 2-01a: Impacts to Soil – Metals Figure 2-01b: Impacts to Soil – Metals Cross Section B-B' Figure 2-01c: Impacts to Soil - Metals Cross Section C-C' Figure 2-01d: Impacts to Soil – Metals Cross Section D-D' Figure 2-01e: Impacts to Soil – Metals Cross Section E-E' Figure 2-01f: Impacts to Soil – Metals Cross Section F-F' Figure 2-01g: Impacts to Soil – Metals Cross Section J-J' Figure 2-01h: Impacts to Soil – Metals Cross Section K-K' Figure 2-01i: Impacts to Soil – Metals Cross Section L-L' Figure 2-01j: Impacts to Soil - Metals Cross Section N-N' Figure 2-01k: Impacts to Soil - Metals Cross Section O-O' Figure 2-02a: Impacts to Soil – HFMs Figure 2-02b: Impacts to Soil – HFMs Cross Section C-C' Figure 2-02c: Impacts to Soil – HFMs Cross Section E-E' Impacts to Soil – HFMs Cross Section J-J' Figure 2-0d: Figure 2-02e: Impacts to Soil – HFMs Cross Section K-K' Figure 2-02f: Impacts to Soil – HFMs Cross Section L-L' Figure 2-02g: Impacts to Soil – HFMs Cross Section M-M' Figure 2-02h: Impacts to Soil – HFMs Cross Section N-N' Figure 2-03a: Impacts to Soil – VOCs Figure 2-03b: Impacts to Soil – VOCs Cross Section A-A'

Page iv BluMetric

Figure 2-03c: Impacts to Soil – VOCs Cross Section B-B' Figure 2-04a: Impacts to Soil – PHCs Figure 2-04b: Impacts to Soil - PHCs Cross Section A-A' Figure 2-04c: Impacts to Soil – PHCs Cross Section B-B' Figure 2-04d: Impacts to Soil – PHCs Cross Section C-C' Figure 2-04e: Impacts to Soil – PHCs Cross Section D-D' Figure 2-04f: Impacts to Soil – PHCs Cross Section E-E' Figure 2-04g: Impacts to Soil – PHCs Cross Section F-F' Figure 2-04h: Impacts to Soil – PHCs Cross Section G-G' Figure 2-04i: Impacts to Soil – PHCs Cross Section H-H' Figure 2-04j: Impacts to Soil – PHCs Cross Section K-K' Figure 2-04k: Impacts to Soil – PHCs Cross Section N-N' Figure 2-041: Impacts to Soil – PHCs Cross Section O-O' Figure 2-05a: Impacts to Soil – PAHs Figure 2-05b: Impacts to Soil – PAHs Cross Section A-A' Figure 2-05c: Impacts to Soil – PAHs Cross Section B-B' Figure 2-05d: Impacts to Soil – PAHs Cross Section D-D' Figure 2-05e: Impacts to Soil – PAHs Cross Section E-E' Figure 2-05f: Impacts to Soil – PAHs Cross Section F-F' Figure 2-05g: Impacts to Soil – PAHs Cross Section H-H' Figure 2-05h: Impacts to Soil – PAHs Cross Section J-J' Figure 2-05i: Impacts to Soil – PAHs Cross Section K-K' Figure 2-05j: Impacts to Soil – PAHs Cross Section L-L' Figure 2-05k: Impacts to Soil – PAHs Cross Section M-M' Figure 2-051: Impacts to Soil – PAHs Cross Section N-N' Figure 2-05m: Impacts to Soil – PAHs Cross Section O-O' Figure 2-06a: Impacts to Soil – BTEX Figure 2-06b: Impacts to Soil – BTEX Cross Section A-A' Figure 2-06c: Impacts to Soil – BTEX Cross Section B-B' Figure 2-06d: Impacts to Soil – BTEX Cross Section D-D' Figure 2-06e: Impacts to Soil – BTEX Cross Section E-E' Figure 2-06f: Impacts to Soil – BTEX Cross Section F-F' Figure 2-06g: Impacts to Soil – BTEX Cross Section J-J' Figure 2-06h: Impacts to Soil – BTEX Cross Section M-M' Figure 2-06i: Impacts to Soil – BTEX Cross Section N-N' Figure 2-06j: Impacts to Soil – BTEX Cross Section O-O' Figure 2-07a: Impacts to Soil – ABNs Figure 2-07b: Impacts to Soil – ABNs Cross Section D-D' Figure 2-07c: Impacts to Soil – ABNs Cross Section E-E'

Page v BluMetric

Figure 2-07d: Impacts to Soil – ABNs Cross Section F-F' Figure 2-07e: Impacts to Soil – ABNs Cross Section O-O' Figure 2-08a: Impacts to Soil – PCBs Figure 2-08b: Impacts to Soil – PCBs Cross Section C-C' Figure 2-08c: Impacts to Soil – PCBs Cross Section D-D' Figure 2-08d: Impacts to Soil – PCBs Cross Section E-E' Figure 2-08e: Impacts to Soil – PCBs Cross Section F-F' Figure 2-08f: Impacts to Soil – PCBs Cross Section H-H' Figure 2-08g: Impacts to Soil – PCBs Cross Section I-I' Figure 2-08h: Impacts to Soil – PCBs Cross Section J-J' Figure 2-08i: Impacts to Soil – PCBs Cross Section K-K' Figure 2-08i: Impacts to Soil – PCBs Cross Section L-L' Figure 2-08j: Impacts to Soil – PCBs Cross Section M-M' Figure 2-09a: Impacts to Soil – ORPs Figure 2-09b: Impacts to Soil – ORPs Cross Section A-A' Figure 2-09c: Impacts to Soil – ORPs Cross Section D-D' Figure 2-09d: Impacts to Soil – ORPs Cross Section I-I' Figure 2-09e: Impacts to Soil – ORPs Cross Section K-K' Figure 2-09f: Impacts to Soil – ORPs Cross Section N-N' Figure 2-09g: Impacts to Soil – ORPs Cross Section O-O' Figure 2-10a: Impacts to Soil – OCs Figure 2-11a: Impacts to Soil – CPs Figure 2-12a: Groundwater Metals Figure 2-12b: Impacts to Groundwater – Metals Cross Section L-L' Figure 2-12c: Impacts to Groundwater – Metals Cross Section N-N' Figure 2-13a: Groundwater ABNs Figure 2-14a: Groundwater VOCs Figure 2-14b: Impacts to Groundwater – VOCs Cross Section B-B' Figure 2-14c: Impacts to Groundwater – VOCs Cross Section H-H' Figure 2-14d: Impacts to Groundwater – VOCs Cross Section L-L' Figure 2-14e: Impacts to Groundwater – VOCs Cross Section N-N' Figure 2-14f: Impacts to Groundwater – VOCs Cross Section O-O' Figure 2-15a: Impacts to Groundwater – PHCs Figure 2-15b: Impacts to Groundwater – PHCs Cross Section A-A' Figure 2-15c: Impacts to Groundwater – PHCs Cross Section B-B' Figure 2-15d: Impacts to Groundwater – PHCs Cross Section E-E' Figure 2-15e: Impacts to Groundwater – PHCs Cross Section H-H' Impacts to Groundwater – PHCs Cross Section L-L' Figure 2-15f: Figure 2-15g: Impacts to Groundwater – PHCs Cross Section N-N'

Page vi BluMetric

Figure 2-15h: Impacts to Groundwater – PHCs Cross Section O-O' Impacts to Groundwater – PHCs Cross Section P-P' Figure 2-15i: Figure 2-16a: Impacts to Groundwater – PAHs Figure 2-16b: Impacts to Groundwater – PAHs Cross Section A-A' Figure 2-16c: Impacts to Groundwater – PAHs Cross Section B-B' Figure 2-16c: Impacts to Groundwater – PAHs Cross Section H-H' Figure 2-16e: Impacts to Groundwater – PAHs Cross Section N-N' Figure 2-16f: Impacts to Groundwater – PAHs Cross Section Q-Q' Figure 2-17a: Impacts to Groundwater – BTEX Figure 2-17b: Impacts to Groundwater – BTEX Cross Section K-K' Impacts to Groundwater – BTEX Cross Section L-L' Figure 2-17c: Figure 2-17d: Impacts to Groundwater – BTEX Cross Section N-N' Figure 2-17e: Impacts to Groundwater – BTEX Cross Section O-O' Figure 2-17f: Impacts to Groundwater – BTEX Cross Section P-P' Figure 2-18a: Impacts to Groundwater – ORPs Figure 2-18b: Impacts to Groundwater – ORPs Cross Section L-L' Figure 2-18c: Impacts to Groundwater – ORPs Cross Section P-P' Figure 2-19a: Impacts to Groundwater – PCBs Figure 2-19b: Impacts to Groundwater – PCBs Cross Section K-K' Figure 2-20a: Impacts to Groundwater - THMs Figure 2-21a: Impacts to Groundwater - CPs Figure 3-1a: Potentially Complete Exposure Routes for Human Receptors Prior to Remediation Potentially Complete Exposure Routes for Ecological Receptors Prior to Figure 3-1b: Remediation Figure 3-1c: Potentially Complete Exposure Routes for Human Receptors After Remediation Figure 3-1d: Potentially Complete Exposure Routes for Ecological Receptors After Remediation

LIST OF APPENDICES

(end of text)

Appendix A: Sampling Analysis Plan

Appendix B: Borehole Logs

Appendix C: Certificates of Analysis

Appendix D: Summary of Analytical Results

Page vii BluMetric

2 INTRODUCTION

BluMetric Environmental Inc. (subsequently referred to as "BluMetric®") has been retained by 2255718 Ontario Inc. since 2011 to complete Phase One and Phase Two Environmental Site Assessments for the Former Bakelite Property at 621 Dundas Street East, Belleville, Ontario, herein referred to as the Phase Two Property, as shown in Figure 1-01.

It is our understanding that this Phase Two ESA is required to support the filing of a Record of Site Condition (RSC) for municipal planning approvals. The activities described in this report have been undertaken in general accordance with the requirements of Schedule E of Ontario Regulation 153/04 – Records of Site Condition, Part XV.1 of the Environmental Protection Act (EPA Part XV.1 of the Environmental Protection Act (EPA) (as amended) referred to herein as O. Reg. 153/04.

2.1 Phase Two Property Information

The Phase Two Property is owned by 2255718 Ontario Inc, and is comprised of lands identified by the solid, bold, red line in Figure 1-01, as described on the legal survey submitted as part of this Phase Two ESA report, and has the following legal description and municipal address:

Table 1: Phase Two Property Information

Legal Description	PIN	Municipal Address
PT LT13, CON BROKEN FRONT THURLOW; PT RDAL BTN CON 1 &		621 Dundas Street
CON BROKEN FRONT THURLOW; PTS 1, 2, 3, 4, 5, 6, 7, & 8 21R25549;	PIN 40611-0009	East, Belleville,
S/T QR68198; Belleville; County of Hastings		Ontario

The Phase Two Property is 14.63 hectares (146,300 square metres (m²)) in size, irregularly shaped, and is currently vacant. The Phase Two Property is bounded on the north by Dundas Street East and the railway track, on the east by portions of the former Bakelite property that are not part of the Phase Two Property, on the south by wetlands and the Bay of Quinte, and on the west by a mix of commercial and residential land, as shown in *Figure 1-02*. The Phase Two Property generally slopes from the topographically high north property boundary along Dundas Street, down towards the Bay of Quinte and has an elevation of approximately 74 to 83 metres (m) above sea level (ASL).

The Phase One Study area consists of the entire Former Bakelite property at 621 Dundas Street East, Belleville, Ontario. The current Bakelite property owner has plans to redevelop the western portion of the Bakelite property (i.e., the Phase Two Property) to commercial and residential land.

Page 1 BluMetric

Historically the Phase Two Property was used as part of the former Bakelite property for industrial and commercial purposes. From 1947 to 1959, the property was owned and operated by the Bakelite Company of Canada. In 1959, the property and operations were purchased by Union Carbide Canada and then transferred to Bakelite Thermoset Limited in 1976.

Between the late 1940s and 1989 the former Bakelite property was used as a chemical manufacturing and resin (Bakelite) production facility. Industrial operations shut down in 1989 and the property was largely inactive through the 1990s, with environmental clean-up and facilities decommissioning being carried out. The property was sold to Mr. Jim Sinclair under the name Thermoset Limited in 2006 (the previous owner); Mr. Sinclair intended to redevelop the property. Extensive earthwork and building demolition were conducted between 2006 and 2009. During this period, part of the Phase Two property was used as a waste transfer station for recyclable materials. On January 12, 2011, the Phase Two property was purchased by the current owner, 2255718 Ontario Inc.

Features of interest on the Phase Two Property are highlighted on Figure 1-04.

2.2 PROPERTY OWNERSHIP

The Phase Two Property is owned by 2255718 Ontario Inc. The particulars for the property owner are summarized in the following table:

Table 2: Property Ownership

Registered Property Owner:	2255718 Ontario Inc.
	PO Box 1598
Owner Address:	610 Dundas Street East
	Belleville, ON K8N 5J2
	Mr. Bernie Ouellet
Authorized Cigning Officers	Mr. Jerry Di Rocco
Authorized Signing Officers:	Mr. lan Brady
	Mr. John Cheung

2.3 TERMS OF REFERENCE

BluMetric was retained by 2255718 Ontario Inc. to complete a Phase One and a Phase Two ESA for the Former Bakelite Property at 621 Dundas Street East, Belleville, Ontario.

The activities described in this report have been undertaken in general accordance with the requirements Ontario Regulation 153/04 (as amended) referred to herein as O. Reg. 153/04, in support of filing a Record of Site Condition (RSC).

Page 2 BluMetric

In general terms, the purpose of a Phase Two ESA is to address concerns identified by a Phase One ESA with regards to establishing whether contamination to soil or groundwater media within or beneath a property has occurred as a result of potentially contaminating activities (PCAs) within, or proximal to, the Phase Two Property.

In 2011, BluMetric (formerly WESA) conducted a Phase One ESA titled "Phase I Environmental Site Assessment, Former Bakelite property at 621 Dundas Street East, Belleville, Ontario". In 2023, BluMetric conducted an Updated Phase One ESA titled "Phase One Environmental Site Assessment Update, 621 Dundas Street East, Belleville, Ontario – West Portion of Former Bakelite Property". The Phase One ESA Update identified 44 areas of potential environmental concern (APECs) within the Phase Two Property that will mostly likely have been impacted, should the respective PCAs have resulted in contaminant releases to the environment. The sampling activities and chemical analysis undertaken during a Phase Two ESA generate information that can be used to identify those conditions that might be categorized as "contaminated", or that need to be remediated, improved, or otherwise managed.

This report has been prepared to meet the Schedule E of Ontario Regulation 153/04 – Records of Site Condition, Part XV.1 of the Environmental Protection Act (EPA Part XV.1 of the Environmental Protection Act (EPA), as amended ("O.Reg.153/04") and is intended to support the filing of an RSC.

2.4 CURRENT AND PROPOSED FUTURE USES

The Phase Two Property is currently vacant industrial land. The long industrial history of the Phase Two Property provided a variety of sources of contamination. Overall, the contamination in soil across the Phase Two Property is well understood. There are, however, a few areas where delineation of soil impacts were not achieved, and further investigation work is required to meet requirements of O.Reg 153/04 and to file a RSC.

It is currently understood that there were two potential plans for the South Portion of the Phase Two Property. Initially, the Southern Portion of the Phase Two Property was to be sold to the City of Belleville for parkland; however, currently the plan is to re-develop the Phase Two Property, including the Southern Portion for residential use. Either option would require an RSC.

Page 3 BluMetric

2.5 APPLICABLE SITE CONDITION STANDARDS

Since July 2011, the numerical site condition standards (SCS) used in Ontario have been those presented in the Ministry of Environment, Conservation and Park (MECP) document entitled "Soil, Ground Water and Sediment Standards for Use Under Part XV.1 of the *Environmental Protection Act*", dated April 15, 2011.

In the regulatory framework, there are numerous tables of SCS. For example, there are standards for "background" conditions, for "full depth" conditions, and for "stratified" conditions. The environmental setting of the Phase Two Property determines its applicable SCS, as summarized in the following table:

Table 3: Generic Site Condition Standards for Shallow Soils in a Non-Potable Ground Water Condition

Environmental	pH of soil less than 5? pH of soil greater than 9 (surface soil) or 11 (subsurface soil)?	No No (see discussion below)
Sensitivity:	Includes, or within 30 m of, an area of natural significance?	No
	Includes, or within 30 m of, a body of water?	No
	Is bedrock shallower than 2 m beneath the site?	Yes
	Does the site lend itself to the application of stratified SCS?	No
	Is the site located in an area designated in the municipal official plan as a well-head protection area or other designation identified by the municipality for the protection of groundwater?	No
Stratigraphy and	Are all properties wholly or partially within 250 m radius supplied by municipal water?	No
Hydrogeology:	Are there any domestic or agricultural water supply wells on properties wholly or partially within 250 m radius of the property?	Yes
	Has appropriate tier municipalities consented to the use of non-potable site condition standards?	No
	Is at least 1/3 of the volume of soil beneath the property coarse textured?	No
Proposed Land Use:	Agricultural or Other; Residential; Parkland; Institutional; Industrial; Commercial; Community use?	Residential

A total of 39 samples of soil (28 samples of surface soil, and 11 samples of subsurface soil), were collected from the Phase Two Property at various depths and analyzed for pH. The pH of the surface soil (<1.5 m depth) within the property ranges from 6.54 to 12.20 and the subsurface soils (>1.5 m depth) ranges between 7.26 and 8.54. The soil sample with a pH of 12.20 is located at BH/MW221 SS1, where gravels was present in the sample; the high value of pH is likely attributed to the presence of gravel and the likelihood of presence of carbonate. The pH of all the remaining samples were confirmed to be within acceptable limits. As such, soils on site are not deemed to be affected by pH.

Page 4 BluMetric

Sieve analyses of samples of the native soil collected at depths ranging from 0.0 to 1.1 m below ground surface (bgs) were completed for several samples from across the Phase Two Property. Soils were found to consist primarily of fine grained materials (50% by mass <75 μ m, as per PART VIII, Section 19 of O.Reg 153/04 as amended), and are thus considered fine grained. A review of the borehole logs drilled across the Phase Two Property determined that the main soil type on the properties as sandy silt, clayey silt and silt and fine sand. Therefore, SCS for fine to medium textured soil is considered appropriate. It should be noted that the effluent treatment lagoons, located on the Phase Two Property, are a man-made water feature and not considered a water body under definition in O.Reg. 153/04.

Figure 1-03 shows the application of the above criteria in a decision matrix in order to determine the applicable Site Condition Standard for the Phase Two Property. The chemical quality of soil and groundwater beneath the Phase Two Property was assessed using the "Table 7: Generic Site Condition Standards for Shallow Soils in a Non-Potable Ground Water Conditions" for residential/parkland/ institutional uses, with fine-textured soils (Table 7 SCS).

Page 5 BluMetric

3 BACKGROUND INFORMATION

3.1 PHYSICAL SETTING

3.1.1 Water Bodies and Areas of Natural Significance

There are no water bodies, permanent streams, rivers or similar watercourses, ponds, or areas of natural significance on the Phase Two Property. There is a former stormwater management pond on the southern part of the Phase Two Property but based on an ecological assessment by Michalski Neilsen Associates Ltd. in 2012, this pond is not considered a water body as defined in O. Reg. 153/04.

The southeastern corner of the Phase Two Property is on an area included in the Environmental Control Zone as per By-Law 10245.

The Phase Two property is over 30 metres from the provincially significant wetland (PSW) boundary to the south. The closest body of water is Lake Ontario, approximately 75 metres south of the Phase Two property.

3.1.2 Topography and Surface Water Drainage Features

The topography of the Phase Two Property is generally flat, with an average geodetic ground surface elevation of approximately 74 to 84 metres above sea level (asl). The grade of the Phase Two Property is similar to the adjacent properties. The Phase Two Property generally slopes from the topographically high north property boundary along Dundas Street, down towards the Bay of Quinte. A ponded water area is seasonally found on the Phase Two Property, but no permanent surface water features were observed. As discussed above, this ponding water is not considered a water body as defined in O. Reg. 153/04.

Published accounts describe overburden in the area as glaciolacustrine silt and clay grading upward to massive to laminated or bedded sand and silt (Leyland, 1982). There has been a considerable amount of disturbance of the overburden across much of the Phase Two Property as a result of the past development and operation of the Bakelite plant and the subsequent disturbances when the buildings and facilities were decommissioned. As a result of these disturbances, the overburden stratigraphy is relatively variable, with fill encountered across much of the northern portion of the Phase Two Property.

Page 6 BluMetric

Published accounts describe bedrock in the area as interbedded limestone and shale of the Middle Ordovician Verulam Formation. This formation is approximately 60 metres in thickness in the Belleville area and is underlain by limestone with calcarenite and shale partings of the Bobcaygeon Formation. The beds generally dip at approximately 2% to the south. The upper portion of the bedrock is relatively weathered and fractured to a depth of approximately 3 to 4 metres.

The shallow bedrock is considered to be the main groundwater flow pathway at the Phase Two Property based on the distribution of where groundwater was found. The average horizontal hydraulic gradient is estimated to be 0.004 m/m. The effective porosity of the shallow limestone bedrock is estimated to be 0.20 (Heath (1983)). Based on these values, the average linear groundwater velocity of the shallow bedrock is estimated to be approximately 126 m/year. It is anticipated that surface water run-off generally infiltrates on the Phase Two Property and that groundwater flows towards the Bay of Quinte.

A topographic map is provided in Figure 1-02.

3.2 PAST INVESTIGATIONS

The following environmental investigations have been conducted on the Phase Two Property:

- WESA. 2012a. Phase I Environmental Site Assessment Former Bakelite Property, 621 Dundas Street East, Belleville, Ontario. January 2012
- WESA. 2012b. Phase II Environmental Site Assessment Former Bakelite Property, 621 Dundas Street East, Belleville, Ontario. January 2012.
- BluMetric. 2023. Phase One Environmental Site Assessment Update, 621 Dundas Street East, Belleville, Ontario West Portion of Former Bakelite Property. August 2023.

The Phase One ESA was required to support the filing of a Record of Site Condition (RSC) and for municipal planning approvals. The report has been prepared according to the "Mandatory Requirements for Phase One Environmental Site Assessment Reports" in O. Reg. 153/04, to assess whether the Phase Two Property has been subject to any actual or potential contamination.

A Phase One ESA titled "Phase I Environmental Site Assessment, Former Bakelite property at 621 Dundas Street East, Belleville, Ontario" was prepared for 2255718 Ontario Inc. by BluMetric (formerly WESA) in January 2012 (WESA, 2012). In 2023, BluMetric conducted an Updated Phase One ESA titled "Phase One Environmental Site Assessment Update, 621 Dundas Street East, Belleville, Ontario – West Portion of Former Bakelite Property". The 2012 Phase One ESA was for the entire Bakelite property. The 2023 Phase One ESA Update only encompassed the western and southern portions of the Bakelite property. The current Bakelite property owner has plans to

Page 7 BluMetric

redevelop the western portion of the Bakelite property (i.e., the 2023 Phase One Property) to commercial and residential land. This report provides an updated Phase Two Conceptual Site Model (CSM) that is specific to the Phase Two Property. There have been no changes in land use of the Phase One Property since January 2012.

The provincially significant wetland (PSW) boundary on the former Bakelite property has changed since the 2012 Phase One ESA report. The 2012 Phase One ESA for the Bakelite property outlined a provincially significant wetland (PSWs) that extended onto the current Phase One Property. The boundary of the PSW was taken from online databases. BluMetric subsequently retained an ecologist from Michalski Nielsen Associates Ltd. to establish the wetland boundary in the field (Michalski Nielsen, 2012). A revised wetland boundary was agreed upon between Michalski Nielsen Associates Ltd. and Quinte Conservation.

An updated request for information was filed with Environmental Risk Information Service Ltd. (ERIS) in May 2023 to identify any new environmental records since the 2012 Phase One ESA that may be of potential concern to the Phase One Property. There were 14 records from the List of TSSA Expired Facilities (EXP) database, not included in the ERIS report from the 2012 Phase One ESA. Two records were for the Phase One Property. Twelve records were for 675 Dundas St. E located within the Phase One study area. These records relate to former propane tanks that pose low environmental concern to the Phase One Property. No other new records were identified for the Phase One Property. The 2018 ERIS report is provided in Attachment A.

Based on our site-specific knowledge and the recent ERIS report, no new PCAs or APECs have occurred on the Phase One Property or in the Phase One study area since our original Phase One ESA in 2012.

The Phase Two Property is 14.63 hectares (146,300 square metres (m²)) in size, irregularly shaped, and is currently vacant. The Phase Two Property is bounded on the north by Dundas Street East and the railway track, on the east by portions of the former Bakelite property that are not part of the Phase Two Property, on the south by wetlands and the Bay of Quinte and on the west by a mix of commercial and residential land. The Phase Two Property generally slopes from the topographically high north property boundary along Dundas Street, down towards the Bay of Quinte and has an elevation of approximately 74 to 83 metres mASL.

Based on reviewed historical records, the Phase Two Property was used as part of the former Bakelite property for industrial and commercial purposes before industrial operations shut down in the late 1980s.

Page 8 BluMetric

No potable water wells are located on the Phase Two Property. Residential properties adjacent to the east use individual drinking water supply wells, which means that an area of the Phase Two property extending 250 metres west from that property boundary must be considered as a potable groundwater condition. It is therefore assumed that the Phase Two Property and all other properties located, in whole or in part, within 250 metres of the boundaries of the property, are likely not supplied with the municipal drinking-water system as defined in the Safe Drinking Water Act, 2002.

Based on the findings of the Phase One ESA, the QP determined the following potentially contaminating activities (PCAs) have the potential to result in areas of potential environmental concern (APECs) on the Phase Two Property:

Table 4: Areas of Potential Environmental Contamination

APEC	Location of APEC on Property	PCA	Location of PCA	Contaminants of Potential Concern	Media Potentially Impacted
APEC 1a North Drum and Waste Disposal Area (NDWDA)	Northwest portion of the Phase Two Property, north of the west marsh	58. Waste Disposal and Waste Management, including thermal treatment, landfilling and transfer of waste, other than use of biosoils as soil conditioners	On-Site	PCBs, VOCs, Metals, As, Sb, Se, Hg, PAHs, PHCs, BTEX, CPs, ABNs	Soil Groundwater
APEC 1b	Northwest portion of the Phase Two Property, north of the west marsh	30. Importation of fill material of unknown quality	On-Site	Metal (As, Sb, Se, Hg, Cr(VI)), PCBs, PAHs, PHCs, BTEX, pH, B-HWS (soil only)	Soil
APEC 2 Area C	Northwest portion of the Phase Two Property	58. Waste Disposal and Waste Management, including thermal treatment, landfilling and transfer of waste, other than use of biosoils as soil conditioners	On-Site	PCBs, VOCs, Metals (As, Sb, Se, Hg), PAHs, PHC, BTEX, CPs, ABNs	Soil Groundwater
APEC 3 Area D	Central portion of the Phase Two Property, north of the central marsh	58. Waste Disposal and Waste Management, including thermal treatment, landfilling and transfer of waste, other than use of biosoils as soil conditioners	On-Site	PCBs, VOCs, Metals (As, Sb, Se, Hg), PAHs, PHCs, BTEX, CPs, ABNs	Soil Groundwater
APEC 4 Area E	West of the former plant	58. Waste Disposal and Waste Management, including thermal treatment, landfilling and transfer of waste, other than use of biosoils as soil conditioners	On-Site	PCBs, VOCs, Metals (As, Sb, Se, Hg), PAHs, PHC, BTEX, CPs, ABNs	Soil Groundwater
APEC 5a North Parking Area	North of the former plant	30. Importation of fill material of unknown quality	On-Site	Metal (As, Sb, Se, Hg, CN, Cr(VI)), PCBs, PAHs, PHCs, BTEX, pH, B-HWS (soil only)	Soil Groundwater

Page 9 BluMetric

APEC	Location of APEC on Property	PCA	Location of PCA	Contaminants of Potential Concern	Media Potentially Impacted
APEC 5b North Parking Area	North of the former plant	Other – Application of Decing Agent for purpose of Pedestrian & Vehicular Safety under Conditions of Snow or Ice	On-Site	SAR, EC (soil only), Na, Cl (ground water only)	Soil Groundwater
APEC 6 North Fill Area	Northwest corner of the Phase Two Property	30. Importation of fill material of unknown quality	On-Site	PCBs, VOCs, Metals (As, Sb, Se, Hg), PAHs, PHC, BTEX, CPs, ABNs	Soil Groundwater
APEC 7 West Ditch	Extending south along west side of plant to the lagoons	Other: Surface water collection ditch	On-Site	VOCs, PAHs, ABNs, PHCs, BTEX, CPs	Soil Groundwater
APEC 8a	North Tank Farm Adjacent to the northeast of the former main plant	Acid and Alkali Manufacturing, Processing, and Bulk Storage	On-Site	Metals (As, Sb, Se, Hg), VOCs, PHCs, BTEX, PAHs, ABNs, CPs, pH (soil only)	Soil Groundwater
APEC 8b		8. Chemical Manufacturing, Processing, and Bulk Storage	On-Site	VOCs, PHCs, BTEX, PAHs, ABNs, CPs	Soil Groundwater
APEC 8c		28. Gasoline and Associated Products Storage in Fixed Tanks	On-Site	VOCs, PHCs, BTEX, PAHs	Soil Groundwater
APEC 8d		51. Solvent Manufacturing, Processing, and Bulk Storage	On-Site	BTEX, VOCs	Soil Groundwater
APEC 9a	South Tank Farm Southeast corner of the former main plant building	Acid and Alkali Manufacturing, Processing, and Bulk Storage	On-Site	Metals (As, Sb, Se, Hg), VOCs, PHCs, BTEX, PAHs, ABNs, CPs, pH (soil only)	Soil Groundwater
APEC 9b		8. Chemical Manufacturing, Processing and Bulk Storage	On-Site	VOCs, PHCs, BTEX, PAHs, ABNs, CPs	Soil Groundwater
APEC 9c		51. Solvent Manufacturing, Processing, and Bulk Storage	On-Site	BTEX, VOCs	Soil Groundwater
APEC 9d		30. Importation of fill material of unknown quality	On-Site	Metal, As, Sb, Se, Hg, CN, Cr(VI), PAHs, PHCs, BTEX, pH, B-HWS (soil only)	Soil Groundwater
APEC 10 Incinerator	East of the North Tank Farm	58. Waste Disposal and Waste Management, including thermal treatment, landfilling and transfer of waste, other than use of biosoils as soil conditioners.	On-Site	PAH, ABNs, CPs	Soil Groundwater

Page 10 BluMetric

APEC	Location of APEC on Property	PCA	Location of PCA	Contaminants of Potential Concern	Media Potentially Impacted
APEC 11 Former East and West Lagoon	Central portion of the Phase Two Property to the east of the Central Marsh	58. Waste Disposal and Waste Management, including thermal treatment, landfilling and transfer of waste, other than use of biosoils as soil conditioners.	On-Site	Metals (As, Sb, Se, Hg), PAHs, PCBs, VOCs, PHC, BTEX, CPs, ABNs	Soil Groundwater
APEC 12 Area A & B waste disposal	South portion of the Phase Two Property	58. Waste Disposal and Waste Management, including thermal treatment, landfilling and transfer of waste, other than use of biosoils as soil conditioners.	On-Site	PCBs, VOCs, Metals (As, Sb, Se, Hg), PAHs, PHC, BTEX, CPs, ABNs	Soil Groundwater
APEC 13 Former Methanol Tank	South portion of the Phase Two Property	8. Chemical Manufacturing, Processing, and Bulk Storage	On-Site	VOCs, Metals (As, Sb, Se, Hg), PCBs	Soil Groundwater
APEC 14 Pump House	South tip of the Phase Two Property	28. Gasoline and Associated Products Storage in Fixed Tanks	On-Site	Metals, PHC, PAH, BTEX	Soil Groundwater
APEC 15 Settling Basin	North of the Central Marsh	58. Waste Disposal and Waste Management, including thermal treatment, landfilling and transfer of waste, other than use of biosoils as soil conditioners	On-Site	Metals, As, Sb, Se, Hg, PAHs, PHC, BTEX, PCBs, VOCs, CPs, ABNs	Soil Groundwater
APEC 16 Tank 27	Northeast of settling basin	28. Gasoline and Associated Products Storage in Fixed Tanks	On-Site	PHCs, BTEX, PAHs	Soil Groundwater
APEC 17 Tank 40	South of boiler house	28. Gasoline and Associated Products Storage in Fixed Tanks	On-Site	PHCs, BTEX, PAHs	Soil Groundwater
APEC 18 Tank 22	East of boiler house	28. Gasoline and Associated Products Storage in Fixed Tanks	On-Site	PHCs, BTEX, PAHs	Soil Groundwater
APEC 19 Formaldehyde Plant tank farm	South of formaldehyde plant	8. Chemical Manufacturing, Processing and Bulk Storage	On-Site	VOCs, PHCs, BTEX PAH	Soil Groundwater
APEC 20 Area of drainage	Southwest of main plant building	58. Waste Disposal and Waste Management, including thermal treatment, landfilling and transfer of waste, other than use of biosoils as soil conditioners	On-Site	Metals (As, Sb, Se, Hg), PCBs, VOCs, PAHs, PHC, BTEX, CPs, ABNs	Soil Groundwater
APEC 21 Maintenance shop (including Tank 68)	Northwest part of former main plant building	28. Gasoline and Associated Products Storage in Fixed Tanks	On-Site	Metals (As, Sb, Se, Hg), PHCs, BTEX, PAHs, VOCs	Soil Groundwater
APEC 22 PCB Waste Storage Area	Southwest part of former main building	Other – Storage of PCB waste	On-Site	PCBs	Soil Groundwater

Page 11 BluMetric

APEC	Location of APEC on Property	PCA	Location of PCA	Contaminants of Potential Concern	Media Potentially Impacted
APEC 23 Indoor bulk chemical storage	Northeast part of former main building	Acid and Alkali Manufacturing, Processing, and Bulk Storage	On-Site	PHCs, BTEX, PAHs, VOCs, ABNs, CPs, pH (soil only)	Soil Groundwater
APEC 24 Indoor and outdoor bulk chemical storage	Southeast part of the former main building	8. Chemical Manufacturing, Processing and Bulk Storage	On-Site	PHCs, BTEX, PAHs, VOCs, ABNs, CPs, pH (soil only)	Soil Groundwater
APEC 25 Caustic Lagoon and Pre-treatment Lagoon	West of main plant building	58. Waste Disposal and Waste Management, including thermal treatment, landfilling and transfer of waste, other than use of biosoils as soil conditioners	On-Site	PCBs, VOCs, Metals (As, Sb, Se, Hg), PAHs, PHC, BTEX, CPs, ABNs	Soil Groundwater
APEC 26 Former Rail Spur	Northwest area of the Phase Two Property	46. Rail Yards, Tracks and Spurs	On-Site	Metals, PAHs, PHCs	Soil Groundwater
APEC 27a East ditch	Northeast area of the Phase Two	Other: Surface water	On-Site	VOCs, PAHs,	Soil Groundwater
APEC 27b East ditch	Property, near north tank farm	collection ditch	Off-Site	ABNs, PHCs, BTEX, CPs	
APEC 28a Off-Site PCAs to the North		28. Gasoline and Associated Products Storage in Fixed Tanks	Off-Site	PHCs, BTEX	Groundwater
APEC 28b Off-Site PCAs to the North	Entire northern boundary of the Phase Two Property	46. Rail Yards, Tracks, and Spurs	Off-Site	Metals (As, Sb, Se, Hg), PAHs, PHCs, BTEX	Groundwater
APEC 28c Off-Site PCAs to the North		52. Storage, Maintenance, Fueling, and Repair of Equipment, Vehicles, and Material Used to Maintain Transportation Systems	Off-Site	PHCs, BTEX	Groundwater
APEC 29a Off-Site PCAs to the east		Acid and Alkali Manufacturing, Processing, and Bulk Storage	Off-Site	Metals (As, Sb, Se, Hg), PHCs, BTEX, PAHs, VOCs, ABNs, CPs, pH (soil only)	Groundwater
APEC 29b Off-Site PCAs to the east	Northeast edge of the Phase Two Property	2. Adhesives and Resins Manufacturing, Processing and Bulk Storage	Off-Site	Metals (As, Sb, Se, Hg), PHCs, BTEX, PAHs, VOCs, ABNs, CPs, pH (soil only)	Groundwater
APEC 29c Off-Site PCAs to the east		8. Chemical Manufacturing, Processing and Bulk Storage	Off-Site	Metals (As, Sb, Se, Hg), PHCs, BTEX, PAHs, VOCs, ABNs, CPs, pH (soil only)	Groundwater

Page 12 BluMetric

APEC	Location of APEC on Property	PCA	Location of PCA	Contaminants of Potential Concern	Media Potentially Impacted
APEC 29d Off-Site PCAs to the east		28. Gasoline and Associated Products Storage in Fixed Tanks	Off-Site	Metals (As, Sb, Se, Hg), PHCs, BTEX, PAHs, pH (soil only)	Groundwater
APEC 29e Off-Site PCAs to the east		51. Solvent Manufacturing, Processing and Bulk Storage	Off-Site	VOCs, pH (soil only)	Groundwater
APEC 29f Off-Site PCAs to the east		58. Waste Disposal and Waste Management, including thermal treatment, landfilling and transfer of waste, other than use of biosoils as soil conditioners	Off-Site	Metals (As, Sb, Se, Hg), PHCs, BTEX, PAHs, VOCs, ABNs, CPs, pH (soil only)	Groundwater

Notes:

Acronyms are defined as follows:

- AST above ground storage tank
- PHCs petroleum hydrocarbons
- PAHs polycyclic aromatic hydrocarbons
- BTEX benzene, toluene, ethylbenzene and xylenes
- VOCs volatile organic compounds
- ABNs acid/base/neutrals
- CPs chlorophenols
- PCBs polychlorinated biphenyls

BluMetric's 2023 Phase One ESA update also identified PCAs outside the Phase One Property within the Phase One Study Area. The PCAs noted in the Phase One Study Area are shown on Figure 1-7a and 1-7b and include:

Table 5: PCAs

Off-Site Potentially Contaminating Activities (O. Reg. 153/04 Schedule D, Table 2)	Description and Location
1. Acid and Alkali Manufacturing, Processing and Bulk Storage	The east adjacent property (formerly part of the Phase Two Property) was utilized from the late 1940s through 1989 to manufacture and store plastics and resins. The use and storage of acids was required for the manufacturing process, and reportedly occurred at locations within the South Tank Farm on the Phase One Property.
2. Adhesives and Resins Manufacturing, Processing and Bulk Storage	The east adjacent property (formerly part of the Phase Two Property) was utilized from the late 1940s through 1989 to manufacture and store plastics and resins. The use and storage of adhesives and resins was required for the manufacturing process, and reportedly occurred at locations within Northeast Tank Farm on the east adjacent property.
8. Chemical Manufacturing, Processing and Bulk Storage	The east adjacent property (formerly part of the Phase Two Property) was utilized from the late 1940s through 1989 to manufacture and store plastics and resins. The use and storage of chemicals was required for the manufacturing process, and reportedly occurred at locations within the Northeast Tank Farm (east adjacent property), the South Tank Farm (Phase One Property), and the Hexa Plant (Phase One Property).

Page 13 BluMetric

Off-Site Potentially Contaminating Activities (O. Reg. 153/04 Schedule D, Table 2)	Description and Location
18. Electricity Generation, Transformation and Power Stations ¹	An electrical substation was historically present along the eastern property boundary. The footprint of this area is referred to as the Northeast Substation.
28. Gasoline and Associated Products in Fixed Tanks ²	The east adjacent property (formerly part of the Phase Two Property) was utilized from the late 1940s through 1989 to manufacture and store plastics and resins. Diesel and other petroleum products were reportedly stored in tanks at the Northeast Tank Farm.
30. Importation of Fill Material of Unknown Quality	Fill and debris have reportedly been placed in numerous areas on the east adjacent property. The North Parking Area is reported to have large amounts of fill.
51. Solvent Manufacturing, Processing, and Bulk Storage ³	The east adjacent property (formerly part of the Phase Two Property) was utilized from the late 1940s through 1989 to manufacture and store plastics and resins. The use and storage of solvents was required for the manufacturing process, and reportedly occurred at locations within the South Tank Farm (located on the Phase One Property).
52. Storage, Maintenance, Fueling, and Repair of Equipment, Vehicles, and Material Used to Maintain Transportation Systems ⁴	A taxi company and automobile dealership is located northwest of the Phase Two Property. Their operations would have included vehicle maintenance which would have required the storage of lubricating oil, waste oil, and solvents in tanks.
58. Waste Disposal and Waste Management, including thermal treatment, landfilling and transfer of waste, other than use of biosoils as conditioners	The east adjacent property (formerly part of the Phase Two Property) was utilized from the late 1940s through 1989 to manufacture and store plastics and resins. Some waste and drums were landfilled/buried on the Phase Two Property. These activities reportedly occurred within Area F and Area P on the east adjacent property. An incinerator was utilized to dispose of some waste. From 2006 through 2009, the vicinity of Area P and the southeast parking lot was utilized as a waste transfer station for recyclable materials ⁵ on the east adjacent property.

⁵ The 2012 phase I ESA associated 'PCA 49 – salvage yard, including automotive wrecking' with the former waste transfer station. Based on our current review, PCA 58 better represents the historic activities.

¹ This activity was recognized at the time of the 2012 Phase One ESA, but it was not listed as a historical PCA in the 2012 report; however, the APECs and COPCs associated with this PCAs were captured in the 2012 Phase One ESA report and subsequent Phase Two ESA.

² This activity was recognized at the time of the 2012 Phase One ESA, but it was not listed as a <u>historical PCA</u> in the 2012 report; however, the APECs and COPCs associated with this PCAs were captured in the 2012 Phase One ESA report and subsequent Phase Two ESA.

³ This activity was recognized at the time of the 2012 Phase One ESA, but it was not listed as a <u>historical PCA</u> in the 2012 report; however, the APECs and COPCs associated with this PCAs were captured in the 2012 Phase One ESA report and subsequent Phase Two ESA.

⁴ The 2012 Phase I ESA considered this as PCA 10.

Due to their proximity to the Phase Two Property and the inferred groundwater flow direction to the south, the north parking area, Northeast Tank Farm and South Tank Farm have a potential to pose an environmental concern to the Phase Two Property. The north parking area, the Northeast Tank Farm and South Tank Farmare cross-gradient to and adjacent to the Phase Two Property.

Due to their distance to the Phase Two Property and the inferred groundwater flow direction, the taxi company and automobile dealership and Area F have low potential of posing an environmental concern to the Phase One Property. These areas are cross-gradient to the Phase Two Property.

Road salt-related impacts may be a concern from run-off from Dundas Street to the Phase Two Property. Additionally, road salt may have been used on the Phase Two Property in parking areas and on access roadways. Although road salt use does not constitute any specific PCA, as per O. Reg. 153/04, these activities are considered likely to pose environmental concern for the Phase Two Property.

The 2023 records searches did not identify new PCAs relative to the 2012 Phase I ESA; however, some PCAs identified in 2012 have been renumbered in this report to better reflect the regulation.

Page 15 BluMetric

4 SCOPE OF THE INVESTIGATION

Environmental soil and groundwater sampling and analyses were conducted from 2011 to 2023 by WESA and BluMetric.

4.1 Overview of Site Investigation

Phase Two ESA investigations on the property by BluMetric happened in several stages between 2011 and 2023. The soil and groundwater sampling conducted on the Phase Two Property in 2022 and 2023, was to address all APECs identified by the Phase One ESA. A summary of the Phase Two ESA investigations conducted are provided below.

- Review of the Phase One ESA and development of an appropriate Sampling & Analyses Plan;
- Prior to any subsurface activities, all buried utilities were located at the Phase Two Property by local utility providers and by a private utility locator;
- A site-specific health and safety plan (HASP) was prepared;
- In June and July 2011, 87 boreholes were advanced on the Phase Two Property, as shown in *Figure 1-8*. Soil samples were collected from each borehole and were submitted for laboratory analysis of COPCs.
- During this time, BH/MW22, BH/MW23, BH/MW24, BH/MW25, BH/MW26, BH/MW50, BH/MW78, BH/MW79, BH/MW80, BH/MW81, BH/MW82, BH/MW84, BH/MW121, BH/MW130, BH/MW146, BH/MW148, BH/MW149, BH/MW151, BH/MW152, and BH/MW156 were completed as monitoring wells and developed.
 - Soil samples collected from BH23, BH24, BH25, BH90, BH91, BH92, BH93, BH94, BH96, BH113, BH116, BH126, BH133, BH134 and BH145 exceeded the applicable SCS for metals and hydride forming metals including arsenic, barium, cadmium, copper, lead, molybdenum, nickel, selenium, thallium, vanadium, zinc at depths ranging from 0.6 1.9 mbgs.
 - Soil samples collected from BH49, BH53, BH92, BH126, BH133, BH144 and BH145, exceeded the applicable SCS for PHC F1-F4 at depths of 0.6 2.2 m bgs.
 - As shown in Figure 2-05a, concentrations of PAH in soil were found to exceed the applicable SCS in BH25, BH79, BH16, BH52, BH53, BH88, BH89, BH92, BH101, BH108. BH109, BH111, BH113, BH133, BH134, BH144 and BH145 at depths of 0.3 2.2 m bgs.
 - o Soil samples collected from BH52, BH133 and BH134, exceeded the applicable SCS for ABN at depths of 0.6 to 1.5 m bgs (*Figure 2-07a*).
 - o Soil samples collect from BH52, BH89, BH133, BH134, BH144 and BH145 exceeded the applicable SCS for BTEX at depths of 0.6 to 2.2 m bgs (*Figure 2-0*6a).

Page 16 BluMetric

- o Soil samples collected from BH25, BH26, BH71, BH75, BH83, BH89, BH109, BH126, BH133 and BH134 exceeded the applicable SCS for PCBs at depths of 0.3 to 1.5 m bgs (*Figure 2-08a*).
- Measured concentrations of VOCs and chlorophenols in soil samples were below the applicable SCS.
- o Groundwater samples were collected from each monitoring well and submitted for laboratory analysis of COPCs. The result reported by the laboratory indicated that the concentration of all COPCs in groundwater were below the applicable SCS.
- No free product was observed in any monitoring wells inspected across the Site.

4.2 MEDIA INVESTIGATED

4.2.1 Rationale

The media investigated on the Phase Two Property are as follows:

Table 6: Media Investigated

Media Investigated	Rationale
	APECs identified by the Phase One ESA considered to be potentially impacted and some areas
Soil	previously investigated were known to have impacts, although no environmental reports were
	provided for review.
Groundwater	APECs identified by the Phase One ESA considered to be potentially impacted.

As the Phase Two Property does not include any surface waterbodies necessary for the presence of surface water or sediment, these medias were not investigated during the Phase Two ESA.

The Phase One ESA identified nine (9) on-site PCAs that may have resulted in contaminant impacts to soil and groundwater beneath the Phase Two Property and defined the associated forty-four (44) APECs within which the Phase Two ESA should be focused. Table 4 describes each APEC and potential COCs associated with each individual APECs.

4.2.2 Field Program Summary

The Phase Two ESA field investigation programs were conducted as summarized as follows:

- Installation and Sampling of Historical Wells July 2011 to 2012
- Sampling of Historical Wells July 2022
- Test Pit excavation December 2022
- Installation and Sampling of New Wells—December 2022 to January 2023

Page 17 BluMetric

The investigation was conducted in compliance with the Sampling and Analyses Plan (Appendix A), with the exception listed in Section 4.4, and comprised a total of twenty-nine (29) new boreholes that were advanced within the Phase Two Property, all of which were completed as groundwater monitoring wells.

Representative samples of soil and groundwater media were collected during the field investigation programs. The subsurface geological and hydrogeological conditions were established from visual observations and measurements of collected soil samples, and subsequent groundwater measurements. Soil and groundwater quality data was obtained from visual and olfactory observations, vapour screening measurements, and laboratory analytical data.

4.3 Phase One Conceptual Site Model

4.3.1 Overview

The Phase One Property is located in Belleville, Ontario. The Phase One Property is bounded on the north by Dundas Street East and the CP Rail tracks, on the east by portions of the former Bakelite property that are not part of the Phase Two Property, on the south by wetlands and the Bay of Quinte and on the west by a mix of commercial and residential land. Northwest of the former Bakelite property is a taxi and car dealership. A warehouse that historically stored PCBs is located 117 m east of the Phase One Property. The general location of the Phase One Property is shown on Figure 1-01. The Phase One study area and its features are presented on Figure 1-05.

The Phase One Property and its features are presented on Figure 1-05. The Phase One Property:

- consists of a large irregularly shaped vacant lot which covers an area of approximately 11.83 hectares (ha).
- is the western portion of the former Bakelite property, and
- is over 30 metres (m) from the provincially significant wetland (PSW) boundary (there are no areas of natural significance on the Phase One Property).

The former Bakelite property had been used for industrial and commercial purposes since the late 1940s. From 1947 to 1959, the property was owned and operated by the Bakelite Company of Canada. In 1959, the property and operations were purchased by Union Carbide Canada and then transferred to Bakelite Thermoset Limited in 1976. Between the late 1940s and 1989 the former Bakelite property was used as a chemical manufacturing and resin (Bakelite) production facility. Industrial operations shut down in 1989 and the property was largely inactive through the 1990s, with environmental clean-up and facilities decommissioning being carried out. The property was sold to Mr. Jim Sinclair under the name Thermoset Limited in 2006 who intended to redevelop

Page 18 BluMetric

the property. Extensive earthwork and building demolition was conducted between 2006 and 2009. During this period, the property was used as a waste transfer station for recyclable materials. The Bakelite property is currently vacant and non-operational.

Several areas were discussed by WESA (2012) in the original Phase One ESA within the west portion of the former Bakelite property that constitutes the current Phase One Property. These areas are shown on Figure 1-05 and include:

- The plant where the manufacturing of resins took place referred to as the Main Plant. Above ground storage tanks containing liquid resin and sulphuric acid. A rail spur historically lead to the southwest corner of the Main Plant. A ditch historically ran between the Main Plant footprint and the lagoons in Area E (referred to as the West Ditch). A great deal of the infrastructure associated with this area has now been demolished. The ditch, which ran in a north-south orientation, no longer exists. The only remaining building within this area was used as an equipment storage area by J. Sinclair during his ownership. Historical studies in this area identified polycyclic aromatic hydrocarbons (PAHs), acid/base/neutral compounds (ABNs), benzene, toluene, ethylbenzene, and xylenes (BTEX), and metals as contaminants of concern.
- A bulk chemical storage area referred to as the North Tank Farm. Aboveground storage tanks (ASTs) containing liquid resin, distillate, caustic, and toluol were historically present in this area. Several spills were reported to provincial regulators during plant operations. A dowtherm heat exchanger was also present in this area. Historical studies within this area have indicated the presence of solvent and caustic odours, black staining, BTEX, phenolics, tetraline, and metals.
- A smaller chemical manufacturing plant referred to as the Formaldehyde Plant. The Formaldehyde Plant housed chemical manufacturing operations for utilization in the Bakelite process carried out in the Main Plant. ASTs containing formaldehyde, methanol, and sulfuric acid were historically found in this area.
- A Boiler House that created steam used both for plant heating and as a catalyst for chemical reactions. ASTs containing bunker oil and light fuel oil were historically present in this area.
- An area of buried contaminated sediment referred to as Area E. This area was used to dispose of PCB impacted sediment from the embayment on the Bakelite property from 2006 to 2009.
- An area of buried industrial waste referred to as Area D.
- An area containing a large amount of uncharacterized fill material referred to as the North Fill Area.
- Several lagoons utilized as holding areas for liquid waste during plant operation referred to as the Caustic Lagoon, the Pre-Treatment Lagoon, and the Former East and West Lagoon. Initially, plant effluent flowed primarily to the East and West Lagoons, prior to discharge directly to the Bay of Quinte. In 1971 a pre-treatment lagoon was installed in Area E.

Page 19 BluMetric

Effluent from this lagoon was discharged to the municipal sanitary sewer and the East and West Lagoons became inactive. These areas were decommissioned and excavated in the 1990s and impacted sludge was disposed of off-site.

- A Settling Basin used as a clarification step before effluent flowed into the East and West Lagoons. The Settling Basin was decommissioned in 1996, decommissioning included the removal and off-site disposal of all the sludge in the basin and the confirmation sampling and analysis of the concrete walls of the basin. The area was then backfilled with granular material and re-vegetated.
- A wastewater treatment reservoir referred to as the South Containment Reservoir. Industrial sludge may have been deposited at the location during plant operations.
- An incinerator used for disposal of industrial liquid waste, including high strength phenolic liquids.

Several areas were identified by WESA (2012) that were within the rest of the former Bakelite property that constitute the current Phase One study area. These areas are shown on Figure 1-05 and include:

- An area containing a large amount of fill material referred to as The North Parking Area.
 The previous owner, J. Sinclair, reportedly imported an unconfirmed volume of
 uncharacterized fill material and deposited it along the western edge of the North Parking
 Area. Mr. Sinclair maintained a living trailer, office, and several storage trailers in this area
 during his ownership. These trailers have since been removed.
- A bulk chemical storage area referred to as the Northeast Tank Farm, Ditch and Vault. This area was historically used for the storage of liquid resins. ASTs containing nonyl-phynol and diesel fuel were present in this area. In 1999, a metal lined ditch was identified running south from the area of the tank farm. The ditch terminated at a concrete vault on the south side of the tank farm. It is assumed that the ditch and vault were utilized for the conveyance and storage of liquids spilled in the vicinity of the northeast tank farm. Historical studies within this area have indicated the presence of phenolics, polychlorinated biphenyls (PCBs), and metals, as well as a non-ignitable or leachable industrial waste contained within the vault. Resin debris within surface soil have also been identified in this area.
- Another bulk chemical storage area referred to as the South Tank Farm. Several raw and finished products were stored in this area in ASTs, including toluol, caustic, phenol, formaldehyde, methanol, and anhydrous ammonia. Historical studies within this area have indicated the presence of phenolics, metals, and slag.
- An electrical substation for the plant referred to as the Northeast Substation.
- A smaller chemical manufacturing plant referred to as the Hexa Plant. The Hexa Plant housed chemical manufacturing operations for utilization in the Bakelite process carried out in the Main Plant.

Page 20 BluMetric

- An area of buried industrial waste referred to as Area P. During the earlier operation of the plant, some of the facility's solid and liquid industrial wastes were buried in this area. The liquid waste was generally stored in drums and then buried. The solid waste, such as out of specification products, were generally deposited directly in the dump area. Several hundred drums and other industrial waste have been removed from this area. More recently, the previous property owner used the vicinity around Area P and the southeast parking lot as a waste transfer station. Recyclable materials, including scrap metal, were stored in open bins in this area. This activity was not approved by Ministry of Environment, Conservation and Parks (MECP).
- An area used for drum storage referred to as Area F. This area was historically used for the storage and processing of drums containing liquid and solid waste during the plant operations. Historical studies indicated that the area was impacted with phenols and toluene. Pieces of resins and a faint solvent odour were noted within this area during test-pitting. Subsequently, the upper 0.3 m of soil within this area was removed for off-site disposal.

4.3.2 Potentially Contaminating Activities (PCAs)

The 2023 records searches did not identify any new PCAs relative to the 2012 Phase One ESA. The PCAs identified below are based on the results of the 2012 Phase One ESA.

Nine PCAs were identified on the Phase One Property based on the 2012 Phase One ESA report and are shown on Figure 1-7a. These concerns are associated with PCAs as defined in O. Reg. 153/04. The PCAs noted on the Phase One Property include:

Table 7: On-Site PCAs

Potentially Contaminating Activities (O. Reg. 153/04 Schedule D, Table 2)	Description and Location
Acid and Alkali Manufacturing, Processing and Bulk Storage	The Phase One Property was utilized from the late 1940s through 1989 to manufacture and store plastics and resins. The use and storage of acids was required for the manufacturing process, and reportedly occurred at locations within the Main Plant, the North Tank Farm and Dowtherm Heat Exchanger and the Formaldehyde Plant.
Adhesives and Resins Manufacturing, Processing and Bulk Storage	The Phase One Property was utilized from the late 1940s through 1989 to manufacture and store plastics and resins. The use and storage of adhesives and resins was required for the manufacturing process, and reportedly occurred at locations within the Main Plant, and the North Tank Farm and Dowtherm Heat Exchanger.
8. Chemical Manufacturing, Processing and Bulk Storage	The Phase One Property was utilized from the late 1940s through 1989 to manufacture and store plastics and resins. The use and storage of chemicals was required for the manufacturing process, and reportedly occurred at locations within the Main Plant, the North Tank Farm and Dowtherm Heat Exchanger, the South Tank Farm, and the Formaldehyde and Hexa Plant.

Page 21 BluMetric

Potentially Contaminating Activities (O. Reg. 153/04 Schedule D, Table 2)	Description and Location
28. Gasoline and Associated Products in Fixed Tanks	The phase One Property was utilized from the late 1940s through 1989 to manufacture and store plastics and resins. Diesel and other petroleum products were reportedly stored in tanks at the Boiler House. Petroleum based sludge was present in the South Containment Reservoir by the Boiler House.
30. Importation of Fill Material Of Unknown Quality	Fill and debris have reportedly been placed in numerous areas on the Phase One Property. The North Fill Area was noted to have a large amount of fill.
43. Plastics (including Fibreglass) Manufacturing and Processing	The Phase One study area was utilized from the late 1940s through 1989 to manufacture and store plastics and resins. The manufacturing of plastics occurred within the Main Plant.
46. Rail Yards Tracks and Spurs	A former rail spur extended from the CP rail line to the Main Plant. The CP rail line runs along the northern boundary of the Phase One Property.
51. Solvent Manufacturing, Processing, and Bulk Storage ⁶	The Phase One study area was utilized from the late 1940s through 1989 to manufacture and store plastics and resins. The use and storage of solvents was required for the manufacturing process, and reportedly occurred at locations within the North Tank Farm and Dowtherm Heat Exchanger, and the Formaldehyde Plant.
58. Waste Disposal and Waste Management, including thermal treatment, landfilling and transfer of waste, other than use of biosoils as conditioners	The Phase One Property was utilized from the late 1940s through 1989 to manufacture and store plastics and resins. Some waste and drums were landfilled/buried on the Phase One Property These activities reportedly occurred within Area E, the Caustic and Pretreatment Lagoons, Area D, the Setting Basin, and the Former East and West Lagoon. An incinerator located east of the main plant building between north and northeast tank farms was also utilized to dispose of some waste within the Phase One Property.

Nine PCAs were identified in the phase One study area based on the 2012 Phase One ESA report and are shown on Figure 1-07a. These concerns are associated with PCAs as defined in O. Reg. 153/04. The PCAs noted in the Phase One study area include:

Table 8: Off-Site PCAs

Potentially Contaminating Activities (O. Reg. 153/04 Schedule D, Table 2)	Description and Location
Acid and Alkali Manufacturing, Processing and Bulk Storage	The east adjacent property (formerly part of the Phase One Property) was utilized from the late 1940s through 1989 to manufacture and store plastics and resins. The use and storage of acids was required for the manufacturing process, and reportedly occurred at locations within the South Tank Farm on the Phase One Property.

⁶ This activity was recognized at the time of the 2012 Phase One ESA, but it was not listed as a <u>historical PCA</u> in the 2012 report; however, the APECs and COPCs associated with this PCA was captured in the 2012 Phase One ESA report and subsequent Phase Two ESA.

Page 22 BluMetric

Potentially Contaminating Activities (O. Reg. 153/04 Schedule D, Table 2)	Description and Location
2. Adhesives and Resins Manufacturing, Processing and Bulk Storage	The east adjacent property (formerly part of the Phase One Property) was utilized from the late 1940s through 1989 to manufacture and store plastics and resins. The use and storage of adhesives and resins was required for the manufacturing process, and reportedly occurred at locations within Northeast Tank Farm on the east adjacent property.
8. Chemical Manufacturing, Processing and Bulk Storage	The east adjacent property (formerly part of the Phase One Property) was utilized from the late 1940s through 1989 to manufacture and store plastics and resins. The use and storage of chemicals was required for the manufacturing process, and reportedly occurred at locations within the Northeast Tank Farm (east adjacent property), the South Tank Farm (Phase One Property), and the Hexa Plant (Phase One Property).
18. Electricity Generation, Transformation and Power Stations ⁷	An electrical substation was historically present along the eastern property boundary. The footprint of this area is referred to as the Northeast Substation.
28. Gasoline and Associated Products in Fixed Tanks ⁸	The east adjacent property (formerly part of the Phase One Property) was utilized from the late 1940s through 1989 to manufacture and store plastics and resins. Diesel and other petroleum products were reportedly stored in tanks at the Northeast Tank Farm.
30. Importation Of Fill Material Of Unknown Quality	Fill and debris have reportedly been placed in numerous areas on the east adjacent property. The North Parking Area is reported to have large amounts of fill.
51. Solvent Manufacturing, Processing, and Bulk Storage ⁹	The east adjacent property (formerly part of the Phase One Property) was utilized from the late 1940s through 1989 to manufacture and store plastics and resins. The use and storage of solvents was required for the manufacturing process, and reportedly occurred at locations within the South Tank Farm (located on the Phase One Property).
52. Storage, Maintenance, Fueling, and Repair of Equipment, Vehicles, and Material Used to Maintain Transportation Systems ¹⁰	A taxi company and automobile dealership is located northwest of the Phase One Property. Their operations would have included vehicle maintenance which would have required the storage of lubricating oil, waste oil, and solvents in tanks.

¹⁰ The 2012 Phase One ESA considered this as PCA 10.

Page 23 BluMetric

⁷ This activity was recognized at the time of the 2012 Phase One ESA, but it was not listed as a historical PCA in the 2012 report; however, the APECs and COPCs associated with this PCAs were captured in the 2012 Phase One ESA report and subsequent Phase Two ESA.

⁸ This activity was recognized at the time of the 2012 Phase One ESA, but it was not listed as a <u>historical PCA</u> in the 2012 report; however, the APECs and COPCs associated with this PCAs were captured in the 2012 Phase One ESA report and subsequent Phase Two ESA.

⁹ This activity was recognized at the time of the 2012 Phase One ESA, but it was not listed as a <u>historical PCA</u> in the 2012 report; however, the APECs and COPCs associated with this PCAs were captured in the 2012 Phase One ESA report and subsequent Phase Two ESA.

Potentially Contaminating Activities (O. Reg. 153/04 Schedule D, Table 2)	Description and Location
58. Waste Disposal and Waste Management, including thermal treatment, landfilling and transfer of waste, other than use of biosoils as conditioners	The east adjacent property (formerly part of the Phase One Property) was utilized from the late 1940s through 1989 to manufacture and store plastics and resins. Some waste and drums were landfilled/buried on the Phase One Property. These activities reportedly occurred within Area F and Area P on the east adjacent property. An incinerator was utilized to dispose of some waste. From 2006 through 2009, the vicinity of Area P and the southeast parking lot was utilized as a waste transfer station for recyclable materials ¹¹ on the east adjacent property.

Due to their proximity to the Phase One Property and the inferred groundwater flow direction to the south, the north parking area, Northeast Tank Farm and South Tank Farm have a potential to pose an environmental concern to the Phase One Property. The north parking area, the Northeast Tank Farm and South Tank Farmare cross-gradient to and adjacent to the Phase One Property.

Due to their distance to the Phase One Property and the inferred groundwater flow direction, the taxi company and automobile dealership and Area F have low potential of posing an environmental concern to the Phase One Property. These areas are cross-gradient to the Phase One Property.

Road salt-related impacts may be a concern from run-off from Dundas Street to the Phase One Property. Additionally, road salt may have been used on the Phase One Property in parking areas and on access roadways. Although road salt use does not constitute any specific PCA, as per O. Reg. 153/04, these activities are considered likely to pose environmental concern for the Phase One Property.

The 2023 records searches did not identify new PCAs relative to the 2012 Phase One ESA; however, some PCAs identified in 2012 have been renumbered in this CSM to better reflect the regulation.

4.3.3 Areas of Potential Environmental Concern

Information for the PCAs was combined with information about location (including distance and direction from the property in the case of PCAs outside the property), local geology, hydrogeology, and other information assembled during the Phase One ESA (WESA, 2012) to determine which PCAs are APECs. The APECs for the Phase One ESA are listed in above in Table 4. These are the same APECs identified in the 2012 Phase One ESA report for the former Bakelite property; however, only APECs specific to the western portion of the former Bakelite property are listed and

¹¹ The 2012 phase one ESA associated 'PCA 49 – salvage yard, including automotive wrecking' with the former waste transfer station. Based on our current review, PCA 58 better represents the historic activities.

Page 24 BluMetric

have been updated accordingly to current MECP Standards. The locations of the APECs are shown in Figure 1-07b.

4.3.4 Subsurface Structures and Utilities on Phase One Property

A sanitary sewer and other regional utilities run in an east-west direction along the north edge of the Phase One Property. Several old, buried pipes run along the east side of the central pond and extend from the former factory building to the pump house located at the edge of the Bay of Quinte. A disconnected sanitary pipe remains visible near the cement pad. The presence of these underground utilities may affect groundwater flow, depending on the depth of the groundwater table.

4.3.5 Geological and Hydrogeological Information

The Phase One Property is located on a small peninsula that extends into the Bay of Quinte. A ponded water area is seasonally found on the Phase One Property. There are no areas of natural significance on the Phase One Property. It is over 30 metres (m) from the provincially significant wetland (PSW) boundary. The phase one property generally slopes from the topographically high north property boundary along Dundas Street, down towards the Bay of Quinte.

The southeastern corner of the Phase One Property is located within an Environmental Control Zone (By-Law 10245).

Published accounts describe overburden in the area as glaciolacustrine silt and clay grading upward to massive to laminated or bedded sand and silt (Leyland, 1982). There has been a considerable amount of disturbance of the overburden across much of the Phase One Property as a result of the past development and operation of the Bakelite plant and the subsequent disturbances when the buildings and facilities were decommissioned. As a result of these disturbances, the overburden stratigraphy is relatively variable, with fill encountered across much of the northern portion of the Phase One Property.

Published accounts describe bedrock in the area as interbedded limestone and shale of the Middle Ordovician Verulam Formation. This formation is approximately 60 metres in thickness in the Belleville area and is underlain by limestone with calcarenite and shale partings of the Bobcaygeon Formation. The beds generally dip at approximately 2% to the south. The upper portion of the bedrock is relatively weathered and fractured to a depth of approximately 3 to 4 metres.

It is anticipated that surface water run-off generally infiltrates on the Phase One Property and that groundwater flows towards the Bay of Quinte.

Page 25 BluMetric

4.3.6 Absence of Information Obtained within the Phase One ESA

Access to the Phase One Property was given where possible. No information gaps were identified during the Phase One ESA which may affect the validity of the CSM.

4.4 DEVIATIONS FROM SAMPLING AND ANALYSIS PLAN

As described in Appendix A, originally 40 boreholes and/or test pits were proposed to be advanced on the Phase Two Property. Based on site access, only 36 boreholes and/or test pits were advanced during the Phase Two ESA activities.

There were no further deviations from the Sampling and Analysis Plan (SAP)

4.5 IMPEDIMENTS

There were no impediments to drilling activities.

Page 26 BluMetric

5 INVESTIGATION METHOD

5.1 GENERAL

BluMetric completed a Phase One ESA for the Phase Two Property, which culminated in the preparation of a CSM that identified all PCAs within, and proximal to the Phase Two Property, and described associated APECs within the Phase Two Property.

The Phase Two ESA field investigation employed appropriate methods by which samples of potentially impacted soil and groundwater media within the identified APECs could be collected and submitted for laboratory analyses. The methods used during the Phase Two ESA comprised: sampling existing monitoring wells; drilling boreholes; digging test pits; collecting soil samples from boreholes and test pits; field screening of all soil samples (for selection of samples for laboratory analysis); installing monitoring wells in boreholes; developing monitoring wells (by purging); and collecting groundwater samples for laboratory analysis of water quality parameters.

Standard sampling procedures described in Section 5.4 were followed throughout the investigation. Groundwater sampling methods are described in Section 5.8.

5.2 SAMPLING EXISTING MONITORING WELLS AND BOREHOLES

In July 2011, twenty-four monitoring wells were installed and sampled for soil on the Phase Two Property. These wells were then subsequently sampled for groundwater. Details about these boreholes and results from the soil and groundwater samples can be found in the report titled "Phase II Environmental Site assessment, 621 Dundas Street East, Belleville, Ontario" prepared by WESA. Additionally, in November 2012, 34 test pits were dug and sampled, and the details and results from these samples can be found in the WESA Phase II report (WESA, 2012).

Further sampling of twenty-two existing monitoring wells was completed between July 12 and July 14, 2022. Two existing monitoring wells could not be sampled during this event. MW121 could not be located in an area of dense brush, and MW128 was found in damaged condition. Key observations/results of the July 2022 groundwater sampling event were considered for development/updating of the Phase Two ESA scope of work (BluMetric, 2022). In summary, contaminant concentrations exceeding the applicable SCS were reported in 5 of the 22 groundwater samples collected.

Page 27 BluMetric

5.3 DRILLING

In December 2022, BluMetric supervised the drilling of 29 additional boreholes and seven test pits, summarized as follows:

Table 9: Drilling Program Summary

Drilling Program	Preliminary Soil Sampling – 2022
Date(s)	December 13 – 23, 2022
	BH/MW128R, BH/MW201, BH/MW202, BH/MW203, BH/MW204,
	BH/MW205, BH/MW206, BH/MW207, BH/MW208, BH/MW209, BH/MW210,
Boreholes	BH/MW211, BH/MW212, BH/MW213, BH/MW214, BH/MW 215, BH/MW216,
	BH/MW217, BH/MW218, BH/MW219, BH/MW220, BH/MW221, BH/MW222,
	BH/MW223, BH/MW224, BH/MW228, BH/MW 232, BH/MW234, BH/MW235
Test Pits	BH/TP225, BH/TP227, BH/TP229, BH/TP230, BH/TP231, BH/TP233, BH/TP236
Contractor	Canadian Environmental Drilling
Equipment Used	CME55 Drill Rig with HS Auger and Solid Air Hammer
Decontamination Method	All sampling equipment washed down with Alconox Detergent prior to re-use.
Decontamination Method	All wash water collected by the driller and taken off-site.
Primary Sample Frequency	Interval Sampling until bedrock.
Sub-Sample Frequency	Discrete sub-samples collected from split-spoon soil cores for laboratory analyses.

Canadian Environmental Drilling is licensed under Ontario Regulation 903 as amended by Ontario Regulation 128/04 (Wells).

Borehole, monitoring well, and test pit locations are shown in Figure 1-08. Borehole logs are provided in Appendix B.

5.4 SOIL SAMPLING

In accordance with the Sampling and Analyses Plan (Appendix A), the analytical program was designed to target APECs identified at the Phase Two Property as discussed in Section 4.3. Soil samples were selected and submitted for chemical analyses according to their location and depth on the Phase Two Property. Soil samples submitted for chemical analysis were collected from the boreholes located within the APECs, as well as from boreholes located outside the APECs, for delineation purposes.

Primary (split spoon) soil cores were initially subjected to vapour screening to determine the potential presence of hydrocarbon vapours. The soil cores were subsequently examined in the field for lithology as well as for aesthetic evidence of impact (i.e., debris, staining and odours).

Discrete sub-samples were then collected from the split-spoon soil cores for laboratory analyses. A gloved hand was used to collect sub-samples of the primary soil core samplers.

Page 28 BluMetric

A summary of the chemical analyses conducted on soil samples collected from the site from boreholes and test pits are provided in the Table 10.

Table 10: Soil Chemical Analyses of Boreholes and Test Pits 2011-2022

Interval Name	Sample Date	Sample Depth	ABN	BTEX	CPs	HF M	Metals	ос	ORP	PAH	PCB	PHC	тнм	voc
BH/MW 50-SS7	2011-Jul-05	3.7 - 4.3	Z	N	Z	NT	NT	NT	NT	Z	Ν	Ν	NT	NT
BH/MW 78-SS2	2011-Jul-08	0.6 - 0.9	Ν	N	Ν	NT	NT	NT	NT	Ν	N	Ν	NT	N
BH/MW 79-SS1	2011-Jul-08	0.3 - 1.1	Ν	NT	Ν	NT	NT	NT	NT	Υ	N	NT	NT	NT
BH/MW 79-SS2	2011-Jul-11	1.1 - 1.4	Ν	N	Ν	NT	NT	NT	NT	Υ	NT	Ν	NT	N
BH/MW 80-SS1	2011-Jul-11	0.6 - 1.2	Ν	N	Ν	Ν	N	NT	N	Ν	N	Ν	NT	N
BH/MW 81-SS1	2011-Jul-11	0.0 - 0.9	Ν	N	Ν	NT	NT	NT	NT	Ν	N	Ν	NT	N
BH/MW 81-SS1	2011-Jul-18		Ν	NT	NT	NT	NT	NT	NT	Ν	NT	NT	NT	NT
BH/MW 84-SS4	2011-Jul-13	1.8 - 2.2	N	N	Ν	NT	NT	NT	NT	Ν	N	N	NT	N
BH/MW 121-SS4	2011-Jul-22	1.9 - 2.5	Ν	N	Ν	Ν	N	NT	N	Ν	N	Ν	NT	NT
BH/MW 130-SS3	2011-Jul-25	1.2 - 1.8	Ν	N	Ν	N	N	NT	N	Ν	N	N	NT	NT
BH/MW 146-SS4	2011-Jul-28	1.9 - 2.5	N	N	N	N	N	NT	N	N	N	N	N	N
BH/MW 148-SS3	2011-Jul-28	1.2 - 1.8	N	N	N	N	N	NT	N	N	N	N	N	N
BH/MW 149-SS2	2011-Jul-28	0.9 - 1.5	N	N	N	N	N	NT	N	N	N	N	N	N
BH/MW 151-SS3	2011-Jul-29	1.2 - 1.5	N	N	N	N	N	NT	N	N	N	N	N	N
BH/MW 152-SS4	2011-Jul-29	1.8 - 2.2	N	N	N	N	N	NT	N	N	N	N	N	N
BH49-SS2	2011-Jul-05	0.6 - 1.2	N	N	N	NT	NT	NT	NT	N	N	Υ	NT	NT
BH51-SS6	2011-Jul-05	3.2 - 3.8	N	N	N	NT	NT	NT	NT	N	N	N	NT	NT
BH52-SS3	2011-Jul-05	1.2 - 1.5	Y	Y	N	NT	NT	NT	NT	Y	N	N	N	N
BH53-SS2	2011-Jul-05	0.6 - 1.3	N	N	N	NT	NT	NT	NT	Y	N	Υ	N	N
BH59-SS2	2011-Jul-07	0.9 - 1.3	N	N	N	NT	NT	NT	NT	N	N	N	NT	N
BH71-SS1	2011-Jul-08	0.0 - 0.4	N	N	N	NT	NT	NT	NT	N	Y	N	NT	N
BH72-SS1	2011-Jul-08	0.0 - 0.3	N	N	N	NT	NT	NT	NT	N	N	N	N	N
BH73-SS1	2011-Jul-08	0.0 - 0.3	N	N	N	N	N	NT	N	N	N	N	NT	N
BH74-SS1	2011-Jul-08	0.0 - 0.2	N	N	N	N	N	NT	N	N	N	N	NT	N
BH75-SS1	2011-Jul-08	0.0 - 0.3	Ν	N	Z	Ν	N	NT	N	Ν	Υ	Ν	NT	N
BH76-SS2	2011-Jul-08	0.6 - 0.9	N	N	Z	NT	NT	NT	NT	Ν	N	Ν	N	N
BH77-SS4	2011-Jul-08	2.0 - 2.6	N	N	Ν	Ν	N	NT	N	Ν	N	N	NT	N
BH85-SS3	2011-Jul-13	1.2 - 1.9	N	N	N	N	N	NT	N	N	N	N	NT	N
BH86-SS5	2011-Jul-13	2.5 - 3.0	N	N	N	N	N	NT	N	N	N	N	NT	N
BH87-SS3	2011-Jul-13	1.2 - 1.9	N	N	N	N	N	NT	N	N	N	N	NT	N
BH88-SS3	2011-Jul-13	1.1 - 1.6	N	N	N	NT	NT	NT	NT	Υ	N	N	NT	N
BH89-SS2	2011-Jul-13	1.0 - 1.5	N	N	N	N	N	NT	N	Υ	Υ	N	NT	N
BH90-SS1	2011-Jul-13	0.0 - 0.6	N	N	N	Υ	N	NT	N	N	NT	N	NT	N
BH91-SS2	2011-Jul-14	0.6 - 1.2	N	N	N	N	Υ	NT	N	N	NT	N	NT	N
BH92-SS1	2011-Jul-14	0.0 - 0.6	N	N	N	Y	Y	NT	N	N	NT	Υ	NT	N
BH93-SS2	2011-Jul-14	0.6 - 1.1	N	N	N	N	Y	NT	N	N	N	N	NT	N
BH94-SS2	2011-Jul-14	0.6 - 1.3	Ν	N	Ν	Y	N	NT	N	N	NT	N	NT	N
BH95-SS1	2011-Jul-15	0.0 - 0.6	N	N	N	N	N	NT	N	N	NT	N	NT	NT

Page 30 BluMetric

Interval Name	Sample Date	Sample Depth	ABN	BTEX	CPs	HF M	Metals	ОС	ORP	PAH	PCB	PHC	тнм	voc
BH96-SS1	2011-Jul-15	0.0 - 0.6	N	N	N	N	Y	NT	N	N	N	N	NT	NT
BH97-SS1	2011-Jul-15	0.0 - 0.6	N	N	Ν	N	Y	NT	N	N	N	N	NT	NT
BH98-SS1	2011-Jul-15	0.0 - 0.6	Ν	N	N	Ν	Y	NT	N	N	N	N	NT	NT
BH100-SS1	2011-Jul-15	0.0 - 0.6	N	N	N	N	N	NT	N	N	NT	N	NT	NT
BH101-SS3	2011-Jul-18	1.5 - 2.2	N	N	N	N	N	NT	N	Υ	N	N	NT	NT
BH101-SS4	2011-Jul-18	2.2 - 2.3	N	NT	Ν	NT	NT	NT	NT	N	NT	NT	NT	NT
BH102-SS2	2011-Jul-18	0.9 - 1.5	N	N	Ν	N	N	NT	N	N	N	Ν	NT	NT
BH103-SS2	2011-Jul-18	0.9 - 1.1	N	N	Ν	N	N	NT	N	N	N	Ν	NT	NT
BH104-SS2	2011-Jul-18	0.8 - 1.4	N	N	N	N	N	NT	N	N	N	N	NT	NT
BH105-SS2	2011-Jul-18	0.8 - 1.4	N	N	N	N	N	NT	N	N	N	N	NT	NT
BH106-SS2	2011-Jul-18	0.9 - 1.4	N	N	N	N	N	NT	N	N	N	N	NT	NT
BH107-SS1	2011-Jul-18	0.0 - 0.6	N	N	N	N	N	NT	N	N	N	N	NT	NT
BH108-SS2	2011-Jul-18	0.6 - 1.2	N	N	N	N	N	NT	N	Υ	N	N	NT	NT
BH109-SS1	2011-Jul-18	0.0 - 0.6	N	N	N	N	N	NT	N	Υ	Υ	N	NT	NT
BH111-SS1	2011-Jul-19	0.0 - 0.6	N	N	N	N	N	NT	N	Υ	N	N	NT	NT
BH112-SS1	2011-Jul-19	0.0 - 0.6	N	N	N	N	N	NT	N	N	N	N	NT	NT
BH113-SS1	2011-Jul-20	0.0 - 0.6	N	N	N	Υ	Y	NT	Υ	Υ	NT	N	NT	NT
BH114-SS2	2011-Jul-20	0.6 - 1.1	N	N	N	N	N	NT	N	N	N	N	NT	NT
BH116-SS1	2011-Jul-20	0.0 - 0.8	N	N	N	N	Y	NT	N	N	N	N	NT	NT
BH117-SS1	2011-Jul-20	0.0 - 0.6	N	N	N	N	N	NT	N	N	N	N	NT	NT
BH118-SS2	2011-Jul-21	0.6 - 1.1	N	N	N	N	N	NT	N	N	N	N	NT	NT
BH119-SS4	2011-Jul-21	1.8 - 2.5	N	N	N	N	N	NT	N	N	N	N	NT	NT
BH120-SS3	2011-Jul-22	1.3 - 1.9	N	N	N	N	N	NT	N	N	N	N	NT	NT
BH122-SS2	2011-Jul-22	1.3 - 1.9	N	N	N	N	N	NT	N	N	N	N	NT	NT
BH123-SS2	2011-Jul-22	0.6 - 1.3	N	N	N	N	N	NT	N	N	N	N	NT	NT
BH124-SS3	2011-Jul-22	1.2 - 1.9	N	N	N	N	N	NT	N	N	N	N	NT	NT
BH125-SS5	2011-Jul-22	2.5 - 3.0	N	N	N	N	N	NT	N	N	N	N	NT	NT
BH126-SS3	2011-Jul-25	1.2 - 1.9	N	N	N	N	Y	NT	N	N	Υ	N	NT	NT
BH127-SS3	2011-Jul-25	1.3 - 1.9	N	N	N	N	N	NT	N	N	N	N	NT	NT
BH128-SS1	2011-Jul-25	0.0 - 0.6	N	N	N	N	N	NT	N	N	N	N	NT	NT
BH128R-SS2	2022-Dec-22	1.5 - 3.0	N	N	N	N	N	NT	N	N	N	N	N	Ν
BH129-SS3	2011-Jul-25	1.2 - 1.9	N	N	N	N	N	NT	N	N	N	N	NT	NT
BH131-SS2	2011-Jul-26	0.6 - 1.2	N	N	N	N	N	NT	N	N	N	N	NT	NT
BH133-SS2	2011-Jul-26	0.6 - 1.2	Y	Y	Ν	N	Y	NT	N	Y	Y	Υ	NT	NT
BH133-SS4	2011-Jul-26	1.9 - 2.1	N	N	N	N	N	NT	N	N	N	N	NT	NT
BH134-SS1	2011-Jul-26	0.0 - 0.6	Υ	Y	Ν	N	Y	NT	N	N	Υ	N	NT	NT
BH134-SS2	2011-Jul-26	0.6 - 1.2	Y	Y	N	N	Y	NT	N	Υ	Y	N	NT	NT
BH140-SS2	2011-Jul-27	0.6 - 1.2	N	N	N	N	N	NT	N	N	N	N	NT	NT
BH140-SS5	2011-Jul-27	2.5 - 2.7	N	N	N	NT	NT	NT	NT	N	N	N	N	N

Page 31 BluMetric

Interval Name	Sample Date	Sample Depth	ABN	BTEX	CPs	HF M	Metals	ос	ORP	PAH	PCB	PHC	ТНМ	voc
BH141-SS2	2011-Jul-27	0.6 - 1.2	N	N	Ν	N	N	NT	N	N	N	N	NT	NT
BH142-SS3	2011-Jul-27	1.2 - 1.9	N	N	Ν	N	N	NT	N	N	N	N	NT	NT
BH143-SS3	2011-Jul-27	1.2 - 1.8	N	Z	Z	Ν	N	NT	N	Ν	N	Ν	NT	NT
BH144-SS2	2011-Jul-27	0.6 - 1.2	N	N	Ν	NT	NT	NT	NT	N	NT	N	NT	NT
BH144-SS3	2011-Jul-27	1.2 - 1.8	N	Υ	N	N	N	NT	N	Υ	N	Υ	N	N
BH145-SS3	2011-Jul-28	1.2 - 1.9	N	Υ	N	N	Υ	NT	N	Υ	N	Υ	N	N
BH145-SS4	2011-Jul-28	1.9 - 2.2	N	Υ	N	NT	NT	NT	NT	N	NT	Υ	NT	NT
BH147-SS3	2011-Jul-28	1.4 - 1.9	Ν	Ν	Z	N	N	NT	N	N	N	Ν	N	N
BH150-SS3	2011-Jul-28	1.2 - 1.8	N	N	N	N	N	NT	N	N	N	N	N	N
BH155-SS3	2001-Aug-02	1.2 - 1.7	N	N	N	N	N	NT	N	N	N	N	NT	NT
BH202-SS2	2022-Dec-22	0.8 - 1.4	N	N	Ν	N	N	NT	N	N	N	N	N	N
BH202-SS4	2022-Dec-22	2.3 - 2.9	N	N	N	N	N	NT	N	N	N	N	N	N
BH203-SS3	2022-Dec-22	1.5 - 2.1	N	N	N	N	N	NT	N	N	N	N	N	N
BH204-SS1	2022-Dec-22	0.0 - 0.6	N	N	Ν	N	N	NT	N	N	N	N	N	N
BH205-SS1	2022-Dec-22	0.0 - 0.6	N	N	Ν	N	N	NT	N	N	N	N	N	N
BH207-SS1	2022-Dec-22	0.0 - 0.6	N	N	N	N	Υ	NT	N	N	Υ	N	N	N
BH208-SS2	2022-Dec-19	0.8 - 1.4	N	N	N	N	Y	NT	N	N	Υ	N	N	N
BH209-SS1	2022-Dec-19	0.0 - 0.6	N	N	N	Y	Y	NT	N	N	NT	N	N	N
BH209-SS2	2022-Dec-19	0.8 - 1.4	N	Y	N	Y	Y	NT	Υ	Υ	N	Υ	N	N
BH210-SS2	2022-Dec-19	0.8 - 1.4	N	N	N	N	Y	NT	Υ	Υ	N	N	N	N
BH211-SS1	2022-Dec-15	0.0 - 0.6	N	Y	N	N	N	NT	N	Υ	N	N	N	N
BH211-SS3	2022-Dec-15	1.5 - 2.1	N	N	N	N	N	NT	N	N	N	N	N	N
BH212-SS1	2022-Dec-15	0.0 - 0.6	N	N	N	N	N	NT	N	N	N	N	N	N
BH212-SS4	2022-Dec-15	2.3 - 2.9	N	N	N	N	N	NT	N	N	N	N	N	N
BH213-SS2	2022-Dec-19	0.8 - 1.4	N	N	N	N	N	NT	N	N	N	N	N	N
BH214-SS2	2022-Dec-22	0.8 - 1.4	N	N	N	NT	NT	NT	NT	N	NT	N	N	N
BH214-SS3	2022-Dec-22	1.5 - 2.1	N	N	Ν	NT	NT	NT	NT	Υ	NT	N	N	N
BH215-SS1	2022-Dec-22	0.0 - 0.6	N	N	Ν	N	N	NT	N	N	N	N	N	N
BH217-SS1	2022-Dec-22	0.0 - 1.4	N	N	N	N	N	NT	Υ	N	N	N	N	N
BH218-SS1	2022-Dec-22	0.0 - 1.5	N	N	N	N	N	NT	N	Υ	NT	N	N	N
BH219-SS2	2022-Dec-15	0.8 - 1.4	N	N	Ν	N	N	NT	N	N	NT	N	N	N
BH220-SS1	2022-Dec-22	0.0 - 1.2	Ν	N	Ν	N	N	NT	N	Υ	N	N	N	N
BH221-SS1	2022-Dec-22	0.0 - 1.5	Ν	N	Ν	NT	NT	NT	N	Υ	NT	N	N	N
BH223-SS1	2022-Dec-22	0.0 - 0.6	N	Ν	Ν	NT	NT	NT	NT	Υ	N	Υ	N	N
BH228-SS1	2022-Dec-22	0.0 - 0.6	N	Ν	Ν	N	Y	NT	Υ	N	N	N	N	N
TP225a	2022-Dec-13	0.1 - 1.0	N	Ν	Ν	N	N	NT	N	N	N	N	N	N
TP227a	2022-Dec-14	0.0 - 0.9	Ν	N	Ν	N	N	NT	N	N	N	N	N	N
TP229b	2022-Dec-14	1.0 - 2.0	N	N	Ν	N	Y	NT	Υ	N	N	N	N	N
TP230b	2022-Dec-14	1.1 - 2.2	N	N	Ν	N	N	NT	N	N	N	N	N	N

Page 32 BluMetric

Interval Name	Sample Date	Sample Depth	ABN	BTEX	CPs	HF M	Metals	ОС	ORP	PAH	PCB	PHC	тнм	voc
TP231b	2022-Dec-13	1.2 - 2.2	N	N	N	Ν	N	NT	N	Ν	Y	Ν	N	N
TP233a	2022-Dec-14	0.0 - 1.1	Z	N	N	Ν	N	NT	N	Ν	N	Ν	N	N
TP236a	2022-Dec-13	0.1 - 1.1	Z	N	N	Ν	N	NT	Y	Ν	Y	Ν	N	N
BH/MW 22-SS2	2011-Jun-23	0.6 - 0.9	N	N	N	NT	NT	N	NT	N	N	N	N	N
BH/MW 23-SS1	2011-Jun-24	0.0 - 0.6	Ν	NT	Ν	Ν	Y	N	N	Ν	N	N	NT	NT
BH/MW 24-SS2	2011-Jun-24	0.6 - 1.2	Ν	N	Ν	Υ	Y	N	N	Ν	N	N	N	N
BH/MW 25-SS1	2011-Jun-24	0.0 - 0.6	N	NT	N	N	Y	N	N	Υ	Υ	N	NT	NT
BH/MW 26-SS1	2011-Jun-24	0.0 - 0.6	Ν	NT	Ν	Ν	N	N	N	Ν	Υ	N	NT	NT
BH16-SS2	2011-Jun-22	0.6 - 1.2	N	N	N	N	N	N	N	Υ	N	N	N	N
BH16-SS3	2011-Jun-22	1.2 - 1.6	N	N	N	NT	NT	N	NT	N	NT	NT	NT	N
BH17-SS3	2011-Jun-22	1.2 - 1.9	N	N	N	N	N	N	N	N	N	N	N	N
TP10-2	2012-Nov-28	1.3 - 1.5	N	N	N	N	N	N	N	N	N	N	N	N
TP22-1	2012-Nov-28	0.0 - 1.0	N	NT	N	NT	NT	N	NT	N	NT	N	NT	NT
TP23-1	2012-Nov-28	0.0 - 1.8	N	NT	N	NT	NT	N	NT	Υ	NT	N	NT	NT
BH/MW 24-SS1	2011-Jun-24	0.0 - 0.6	NT	N	NT	N	Υ	NT	N	NT	NT	NT	N	N
BH3-SS1	2011-Jun-20	0.0 - 0.1	NT	N	NT	N	N	NT	N	NT	NT	N	NT	N
BH5-SS2	2011-Jun-20	0.6 - 0.9	NT	N	NT	N	N	NT	N	NT	NT	N	NT	N
BH13-SS4	2011-Jun-22	1.9 - 2.4	NT	N	NT	N	N	NT	N	NT	NT	N	N	N
BH18-SS4	2011-Jun-22	1.9 - 2.5	NT	N	NT	N	N	NT	N	NT	NT	N	N	N
BH31-SS4	2011-Jun-27	1.8 - 2.3	NT	N	NT	N	N	NT	N	NT	NT	N	N	N
BH52-SS2	2011-Jul-05	0.6 - 1.2	NT	Y	NT	NT	NT	NT	NT	Υ	NT	N	NT	NT
BH53-SS1	2011-Jul-05	0.0 - 0.6	NT	N	NT	NT	NT	NT	NT	Υ	NT	Υ	NT	NT
BH83-SS1	2011-Jul-08	0.0 - 0.6	NT	N	NT	NT	NT	NT	NT	NT	Υ	N	NT	N
BH88-SS2	2011-Jul-13	0.6 - 0.8	NT	N	NT	N	N	NT	N	Υ	NT	N	N	N
BH89-SS1	2011-Jul-13	0.4 - 1.0	NT	Y	NT	N	N	NT	N	Υ	NT	N	N	N
BH100-SS2	2011-Jul-15	0.6 - 1.2	NT	N	NT	NT	NT	NT	NT	NT	NT	NT	N	N
BH156-SS4	2012-Nov-26	1.8 - 2.4	NT	N	NT	NT	NT	NT	NT	NT	NT	NT	N	N
BH201-SS3	2022-Dec-23	1.5 - 2.1	NT	N	NT	Ν	N	NT	N	Ν	NT	N	N	N
BH222-SS1	2022-Dec-22	0.0 - 1.2	NT	N	NT	Ν	N	NT	N	Ν	N	N	N	N
BH224-SS2	2022-Dec-15	0.8 - 1.4	NT	N	NT	Ν	N	NT	N	Ν	N	N	NT	NT
BH208-SS1	2022-Dec-19	0.0 - 0.6	NT	NT	NT	N	Y	NT	N	NT	N	NT	NT	NT
BH228-SS3	2022-Dec-22	1.5 - 2.1	NT	NT	NT	N	N	NT	N	NT	NT	NT	NT	NT
BH/MW 80-SS2	2011-Jul-11	1.2 - 1.8	NT	NT	NT	N	N	NT	N	NT	NT	NT	NT	NT
BH91-SS1	2011-Jul-14	0.0 - 0.6	NT	NT	NT	N	Υ	NT	N	NT	NT	NT	NT	NT
BH91-SS3	2011-Jul-14	1.2 - 1.9	NT	NT	NT	N	Y	NT	N	NT	NT	NT	NT	NT
BH92-SS2	2011-Jul-14	0.6 - 1.1	NT	NT	NT	Υ	Y	NT	N	Υ	NT	N	NT	NT
BH93-SS1	2011-Jul-14	0.0 - 0.6	NT	NT	NT	N	Y	NT	N	NT	NT	N	NT	NT
BH94-SS1	2011-Jul-14	0.0 - 0.6	NT	NT	NT	Y	Y	NT	N	NT	NT	N	NT	NT
BH94-SS3	2011-Jul-14	1.3 - 1.9	NT	NT	NT	Υ	N	NT	N	NT	NT	N	NT	NT

Page 33 BluMetric

Interval Name	Sample Date	Sample Depth	ABN	BTEX	CPs	HF M	Metals	ос	ORP	PAH	PCB	PHC	тнм	voc
BH96-SS2	2011-Jul-15	0.6 - 0.9	NT	NT	NT	Ν	Y	NT	N	NT	NT	NT	NT	NT
BH97-SS2	2011-Jul-15	0.6 - 1.2	NT	NT	NT	Ν	Y	NT	Ν	NT	NT	NT	NT	NT
BH98-SS2	2011-Jul-15	0.6 - 0.8	NT	NT	NT	Ν	Y	NT	Ν	NT	NT	NT	NT	NT
BH113-SS2	2011-Jul-20	0.6 - 0.8	NT	NT	NT	Ν	Y	NT	Ν	NT	NT	NT	NT	NT
BH120-SS2	2011-Jul-22	0.6 - 1.3	NT	NT	NT	Ν	N	NT	Ν	NT	NT	NT	NT	NT
BH120-SS4	2011-Jul-22	1.9 - 2.5	NT	NT	NT	Ν	N	NT	Ν	NT	NT	NT	NT	NT
BH126-SS2	2011-Jul-25	0.6 - 1.2	NT	NT	NT	Ν	N	NT	Ν	NT	Ν	Υ	NT	NT
BH126-SS4	2011-Jul-25	1.9 - 2.5	NT	NT	NT	Ν	N	NT	Ν	NT	Ν	Ν	NT	NT
TP8-3	2012-Nov-27	1.5 - 2.8	NT	NT	NT	Ν	N	NT	N	Ν	NT	Υ	N	Υ
TP9-2	2012-Nov-27	0.4 - 2.8	NT	NT	NT	Z	N	NT	N	N	NT	N	Ν	N
TP10-3	2012-Nov-28	1.5 - 2.5	NT	NT	NT	Z	N	NT	N	N	NT	N	Ν	N
TP11-2	2012-Nov-28	1.4 - 1.9	NT	NT	NT	N	N	NT	N	N	NT	N	N	N
TP24-1	2012-Nov-29	0.0 - 3.3	NT	NT	NT	Y	Y	NT	N	NT	Υ	N	NT	NT
TP25-2	2012-Nov-29	2.3 - 3.5	NT	NT	NT	N	N	NT	N	NT	N	N	NT	NT
TP26-1	2012-Nov-29	0.0 - 2.7	NT	NT	NT	N	N	NT	N	NT	N	N	NT	NT
TP27-1	2012-Nov-29	0.0 - 2.4	NT	NT	NT	N	N	NT	N	NT	N	N	NT	NT
TP28-1	2012-Nov-29	0.0 - 1.9	NT	NT	NT	N	N	NT	N	NT	N	N	NT	NT
TP29-1	2012-Nov-29	0.0 - 1.6	NT	NT	NT	N	N	NT	N	NT	N	N	NT	NT
TP8-1	2012-Nov-27	0.0 - 0.6	NT	NT	NT	NT	NT	NT	NT	NT	NT	N	N	N
TP25-1	2012-Nov-29	0.0 - 2.3	NT	NT	NT	NT	NT	NT	NT	NT	Υ	N	NT	NT
TP30-2	2012-Nov-29	1.3 - 2.0	NT	NT	NT	NT	NT	NT	NT	Υ	NT	N	NT	NT
TP30-1	2012-Nov-29	0.8 - 1.3	NT	NT	NT	NT	NT	NT	NT	Υ	NT	N	NT	NT
BH216-SS1	2022-Dec-22	0.0 - 0.6	NT	NT	NT	NT	NT	NT	NT	Υ	N	NT	NT	NT
TP12-1	2012-Nov-28	0.0 - 0.5	NT	NT	NT	NT	NT	NT	NT	Υ	N	NT	NT	NT
TP13-1	2012-Nov-28	0.0 - 1.0	NT	NT	NT	NT	NT	NT	NT	Υ	N	NT	NT	NT
TP14-1	2012-Nov-28	0.0 - 1.1	NT	NT	NT	NT	NT	NT	NT	Υ	Υ	NT	NT	NT
TP14-2	2012-Nov-28	1.1 - 2.3	NT	NT	NT	NT	NT	NT	NT	Υ	Υ	NT	NT	NT
TP15-1	2012-Nov-28	0.0 - 2.5	NT	NT	NT	NT	NT	NT	NT	Υ	Υ	NT	NT	NT
TP16-2	2012-Nov-28	0.5 - 1.1	NT	NT	NT	NT	NT	NT	NT	Υ	Υ	NT	NT	NT
TP16-3	2012-Nov-28	1.1 - 2.1	NT	NT	NT	NT	NT	NT	NT	Υ	N	NT	NT	NT
TP17-1	2012-Nov-28	0.0 - 1.1	NT	NT	NT	NT	NT	NT	NT	Υ	N	NT	NT	NT
TP18-1	2012-Nov-28	0.0 - 0.7	NT	NT	NT	NT	NT	NT	NT	Y	Y	NT	NT	NT
TP18-2	2012-Nov-28	0.7 - 1.2	NT	NT	NT	NT	NT	NT	NT	Y	N	NT	NT	NT
TP19-1	2012-Nov-28	0.0 - 0.5	NT	NT	NT	NT	NT	NT	NT	Y	Y	NT	NT	NT
TP19-2	2012-Nov-28	0.5 - 0.9	NT	NT	NT	NT	NT	NT	NT	N	N	NT	NT	NT
TP21-2	2012-Nov-28	0.8 - 1.1	NT	NT	NT	NT	NT	NT	NT	Ν	N	NT	NT	NT

Legend: N=No exceedances

Y= at least 1 result exceeds

NT=not tested

Page 34 BluMetric Samples for chemical analyses were placed into laboratory-supplied containers, (including glass vials pre-charged with methanol preservative where appropriate) and stored at approximately 4°C until they were submitted to the laboratory. Soil samples collected for potential chemical analysis of VOCs, PHCs (F1), and BTEX were collected using a plastic syringe supplied by the laboratory. New syringes were used for each sample collected. Complete chain of custody protocols were followed throughout the soil sampling program.

Surplus soils were collected into zip-lock bags for subsequent detailed inspection and headspace vapour screening measurements.

5.5 SOIL FIELD SCREENING MEASUREMENTS

All soil core samples were initially screened for combustible vapour measurements using an RKI Eagle 2 Gas Monitor (with the methane elimination switch turned "on"). The RKI Eagle 2 Gas Monitor measures multiple parameters including combustible volatile organic compounds in the range of BTEX and non-combustible volatile organic compounds such as chlorinated solvents. The accuracy of the RKI Eagle 2 is described as +/- 5% when in the LEL range, and +/- 10% in the parts per million (ppm) range. Before using the meter in the field, calibration was checked using hexane gas and isobutylene gas.

The RKI Eagle 2 Gas Monitor was subsequently used to measure headspace combustible vapour (excluding methane) in samples of the excess soil collected into plastic bags, as a preliminary screening for hydrocarbons or other volatile organic compounds. In accordance with MECP sampling protocols, the samples were kept out of direct sunlight during field storage and the headspace measurements were made after at least two hours had elapsed since the sample was collected.

All soil samples were examined in the field for lithology as well as for aesthetic evidence of impacts (i.e., debris, staining and odors).

Headspace readings can be found on the borehole logs included in Appendix B.

5.6 TEST PITS

Seven test pits were excavated December 13-14, 2022. All test pits were backfilled post sample collection. Table 11 summarizes the samples collected from the test pits.

Page 35 BluMetric

Table 11: Test Pit Summary 2022

		mindly 2022
Test Pit I.D.	Interval Depth (mbgs)	Soils Description and Comments
	0-1.2	Sand (Light brown, medium, damp, no odour)
BH/TP231	1.2-2.2	Sand (Brown, medium, trace brick, damp)
	2.2-3.2	Grey clay with gravel
	0-1.1	Sand and Fill (Brown, medium, some wood, misc garbage, dry)
BH/TP236	1.1-2.1	Sand and Fill (Medium dark brown, dry, no odour)
	2.1-3.3	Grey, brown medium clay, damp
	0-1.0	Sand (brown medium with gravel and cobble, no odour, dry)
BH/TP225	1.0-2.0	Sand (dark brown, fine to medium, compacted, moist, no odour)
	2.0-2.85	Clay (Grey brown to gray, limestone shards)
	0-0.9	Sand (Medium Brown, moist, no odour)
BH/TP227	0.9-1.7	Sand with some clay at bottom (Medium brown, sticky, limestone shards and gravel, wet, no odour)
	0-1.0	Fill (Brown medium coarse, railroad tie, no odour)
BH/TP229	1.0-2.0	Fill (Brown, medium mixed, damp, no odour)
	2.0-3.05	Sand (Brown, fine to medium, moist)
	0-1.1	Mixed Fill (Light brown, medium coarse, trace brick, damp, no odour)
BH/TP230	1.1-2.2	Sand with some clay and cobbles (Grey/brown, medium coarse, damp, no odour)
	2.2-3.3	Clay with gravel and limestone shards (Grey, wet)
BH/TP233	0-1.1	Sand (Brown, medium to coarse, moist, no odour)
5/1/11233	1.1-2.2	Clay (Grey brown, saturated in bottom, no odour)

5.7 GROUNDWATER: MONITORING WELL INSTALLATION

The majority of the boreholes that were drilled across the Phase Two Property did not encounter groundwater until the bedrock was reached. A total of twenty-nine (29) groundwater monitoring wells were installed on the Phase Two Property by Canadian Environmental Drilling under the supervision of BluMetric from December 15 to 19, 2022. The monitoring wells were constructed with 50 mm diameter Schedule 40 polyvinyl chloride (PVC) solid riser pipe and well screen with a factory machined slot width of 50 mm. The wells were constructed with variable screen depths to intercept reported groundwater strikes. All pipe and screen sections were wrapped in plastic that was removed just prior to installation to minimize potential for contamination.

Clean silica sand supplied in bags was placed in the annular space between the well screen and the sides of the borehole. A bentonite seal was added to the annular space from the top of the sand pack to 0.15 m bgs. Sand pack and cement was placed above the bentonite layer to the ground surface. All monitoring wells were constructed in compliance with Ontario Regulation 903. All 29 monitoring wells were installed as monument wells. Table 12 provides a summary of the monitoring wells.

Page 36 BluMetric

Table 12: Monitoring Well Installation Summary 2022

Monitoring	Bottom Depth	Screen Interval	Sand Pack	Bentonite Seal	Cement/Sand
Well ID	(m bgs)	(m bgs)	(m bgs)	(m bgs)	(m bgs)
BH/MW128R	3.7	1.6-3.7	1.2-3.7	0.15-1.2	0-0.15
BH/MW201	8.4	5.35-8.4	4.9-8.4	0.15-4.9	0-0.15
BH/MW202	5.3	2.25-5.3	1.85-5.3	0.15-1.85	0-0.15
BH/MW203	6.3	3.3-6.3	2.85-6.3	0.15-2.85	0-0.15
BH/MW204	4.7	1.7-4.7	1.25-4.7	0.15-1.25	0-0.15
BH/MW205	7.8	4.6-7.8	4.25-7.8	0.15-4.25	0-0.15
BH/MW206	8.2	5.25-8.2	4.9-8.2	0.15-4.9	0-0.15
BH/MW207	11.3	8.25-11.3	7.9-11.3	0.15-7.9	0-0.15
BH/MW208	7.9	4.9-7.9	3.3-7.9	1.5-3.3	0-1.5
BH/MW209	3.6	0.6-3.6	0.3-3.6	0.15-0.3	0-0.15
BH/MW210	3.3	0.3-3.3	0.3-3.3	0.15-0.3	0-0.15
BH/MW211	4.0	0.65-4.0	0.6-4.0	0.15-0.6	0-0.15
BH/MW212	2.7	1.25-2.7	0.9-2.7	0.15-0.9	0-0.15
BH/MW213	3.7	0.7-3.7	0.5-3.7	0.15-0.5	0-0.15
BH/MW214	3.7	1.25-3.7	0.95-3.7	0.15-0.95	0-0.15
BH/MW 215	4.6	1.6-4.6	1.3-4.6	0.15-1.3	0-0.15
BH/MW216	3.1	1.55-3.1	1.2-3.1	0.15-1.2	0-0.15
BH/MW217	4.7	1.75-4.7	1.4-4.7	0.15-1.4	0-0.15
BH/MW218	2.5	1-2.5	0.6-2.5	0.15-0.6	0-0.15
BH/MW219	4.0	0.95-4.0	0.6-4.0	0.15-0.6	0-0.15
BH/MW220	2.5	1-2.5	0.6-2.5	0.15-0.6	0015
BH/MW221	2.5	1-2.5	0.6-2.5	0.15-0.6	0-0.15
BH/MW222	2.6	1.1-2.6	0.7-2.6	0.15-0.7	0-0.15
BH/MW223	3.1	1.55-3.1	1.2-3.1	0.15-1.2	0-0.15
BH/MW224	4.3	1.3-4.3	0.9-4.3	0.15-0.9	0-0.15
BH/MW228	4.3	1.2-4.3	0.9-4.3	0.15-0.9	0-0.15
BH/MW 232	2.4	0.95-2.4	0.75-2.4	0.15-0.75	0-0.15
BH/MW234	4.3	1.2-4.3	0.9-4.3	0.15-0.9	0-0.15
BH/MW235	3.7	1.25-3.7	0.9-3.7	0.15-3.7	0-0.15

All groundwater monitoring wells installed at the Phase Two Property were instrumented with dedicated low-density polyethylene (LDPE) tubing to facilitate well development and purging requirements. Following installation, water levels were measured, and the ideal development purge volume calculated, based on 10 well volumes. Where wells exhibit very slow recharge, it is acceptable to purge less than ten well volumes, provided the well is dried out at least three times.

The wells were initially developed on January 18, 2023. Table 13 provides a summary of well development.

Table 13: Summary of Monitoring Well Development 2023

Monitoring Well ID	Purge Date	Water Level (m bgs)	Well Depth (m bgs)	Water Column Height (m)	1 Volume (L)	Volume Purged (L)
BH/MW121	January 18, 2023	2.60	4.36	1.76	2.0	8
BH/MW128R	January 18, 2023	2.08	4.57	2.49	2.8	28
BH/MW201	January 18, 2023	4.25	9.25	5	5.7	48.45
BH/MW202	January 18, 2023	3.15	6.15	3	3.4	34
BH/MW203	January 18, 2023	3.05	6.66	3.61	4.1	41

Page 37 BluMetric

Monitoring Well ID	Purge Date	Water Level (m bgs)	Well Depth (m bgs)	Water Column Height (m)	1 Volume (L)	Volume Purged (L)
BH/MW204	January 18, 2023	2.05	5.48	3.43	3.9	39
BH/MW205	January 18, 2023	1.85	8.54	6.69	7.5	63.75
BH/MW206	January 18, 2023	Frozen at 0.95	N/A	N/A	N/A	N/A
BH/MW207	January 18, 2023	6.67	12.33	5.66	6.4	38.4
BH/MW208	January 18, 2023	2.08	7.9	6.71	7.6	57
BH/MW209	January 18, 2023	1.88	4.38	2.5	2.5	25
BH/MW210	January 18, 2023	2.08	4.42	2.34	2.6	26
BH/MW211	January 18, 2023	1.7	4.61	2.91	3.3	33
BH/MW212	January 18, 2023	2.05	3.25	1.2	1.1	11
BH/MW213	January 18, 2023	2.36	4.46	2.1	2.4	24
BH/MW214	January 18, 2023	2.45	4.65	2.2	2.5	25
BH/MW 215	January 18, 2023	2.4	5.48	3.08	3.5	35
BH/MW216	January 18, 2023	1.2	4.0	2.8	3.2	32
BH/MW217	January 18, 2023	3.76	5.58	1.82	2.1	21
BH/MW218	January 18, 2023	1.19	3.43	2.24	2.5	12.5
BH/MW219	January 18, 2023	2.98	5.01	2.03	2.3	23
BH/MW220	January 18, 2023	1.15	3.36	2.21	2.5	22.5
BH/MW221	January 18, 2023	1.49	3.36	1.87	2.1	21
BH/MW222	January 18, 2023	1.56	3.62	2.06	2.3	23
BH/MW223	January 18, 2023	1.45	3.7	2.25	2.6	26
BH/MW224	January 18, 2023	1.83	5.18	3.35	3.8	38
BH/MW228	January 18, 2023	1.30	3.08	1.78	2	20
BH/MW 232	January 18, 2023	1.45	3.1	1.65	1.8	18
BH/MW234	January 18, 2023	1.65	5.27	3.62	4.1	36.9
BH/MW235	January 18, 2023	1.46	4.61	3.15	3.5	35

Monitoring well locations are shown in Figure 1-8 and complete borehole logs are included in Appendix B.

5.8 GROUNDWATER: FIELD MEASUREMENT OF WATER QUALITY PARAMETERS

Prior and subsequent to well development, and groundwater sampling, groundwater levels were measured using an oil/water interface probe (Solinst model 122), to verify the presence or absence of any floating free product.

At no point during any groundwater monitoring, purging, or sampling activities conducted at the site, was free product, oily water, or iridescent sheen detected on the water in any of the wells.

Prior to drawing groundwater samples in January 2023, the water quality parameters for each well were measured using a *YSI 556* multi-probe system, until stabilized parameters were observed. Measured water quality parameters are summarized in the following table:

Page 38 BluMetric

Table 14: Field Measurement of Water Quality Parameters 2023

N. 4				Specific	-	Dissolved	Oxygen	N 1 - 1
Monitoring	Date	Time	pH	Conductivity	Temperature	Oxygen	Reduction	Volume
Well ID			(volume)	(mS/cm)	(℃)	(mg/L)	Potential (mV)	(L)
		7:45	6.54	1305	8.3	5.51	210.3	0.5
		7:50	6.61	1264	8.1	5.77	202	0.5
		7:55	6.63	1260	8.0	5.52	197.7	0.5
		8:00	6.65	1255	7.8	5.40	190.4	0.5
D11/MW1101	January	8:05	6.67	1248	7.5	5.12	189.1	0.5
BH/MW121	19, 2023	8:10	6.68	1230	7.3	4.99	188.6	0.5
		8:15	6.70	1221	7.0	4.70	187.3	0.5
		8:20	6.72	1210	7.0	4.65	183.1	0.5
		8:25	6.72	1207	6.9	4.63	180.2	0.5
		8:30	6.73	1206	6.9	4.62	179.1	0.5
		9:10	7.04	1254	7.1	3.96	179.1	0.5
		9:15	7.08	1268	6.8	4.17	177.6	0.5
DII /A AVIIOOD	January	9:20	7.05	1297	6.1	4.21	175.1	0.5
BH/MW128R	19, 2023	9:25	7.05	1307	6.1	4.29	174.6	0.5
		9:30	7.05	1309	6.2	4.37	174.2	0.5
		9:35	7.05	1310	6.2	4.38	173.9	0.5
		10:25	6.92	1839	9.3	0.50	-159.0	1
		10:30	6.90	1972	9.4	0.41	-139.9	1
	1	10:35	6.87	2153	9.6	0.33	-126.3	1
		10:40	6.89	2166	9.7	0.32	-164.3	1
BH/MW201	January	10:45	6.89	2164	9.7	0.33	-168.1	1
	19, 2023	10:50	6.90	2179	9.7	0.33	-183.6	1
		10:55	6.90	2180	9.7	0.34	-182.3	1
		11:00	6.91	2181	9.8	0.33	-186.7	1
		11:05	6.90	2182	9.8	0.33	-187.1	1
		12:05	6.83	842	8.5	0.53	-28.4	1
		12:10	6.79	843	8.6	0.47	-57.5	1
DLI/MANAOO	January	12:15	6.77	836	8.3	0.75	-55.2	1
BH/MW202	19, 2023	12:20	6.76	825	8.3	0.79	-55.1	1
		12:25	6.74	809	8.2	0.81	-53.4	1
		12:30	6.73	808	8.1	0.82	-53.0	1
		14:35	7.07	797	8.2	0.68	43.8	1
		14:40	7.03	820	8.1	0.43	36.7	1
	January	14:45	7.04	862	8.2	0.37	24.0	1
BH/MW203	19, 2023	14:50	7.04	891	8.3	0.31	15.2	1
	19, 2023	14:55	7.05	934	8.4	0.26	9.8	1
		15:00	7.06	937	8.3	0.24	8.7	1
		15:05	7.05	938	8.3	0.26	7.9	1
		16:05	7.22	518.8	5.5	0.98	-36.2	0.5
		16:10	7.21	518.3	5.6	0.47	-49.3	0.5
	lanuami	16:15	7.19	519.6	5.5	0.40	-58.6	0.5
BH/MW204	January 19, 2023	16:20	7.17	521.3	5.6	0.35	-69.5	0.5
	19, 2023	16:25	7.17	521.5	5.6	0.34	-71.9	0.5
		16:30	7.18	521.7	5.6	0.33	-74.1	0.5
		16:35	7.18	521.8	5.6	0.32	-75.2	0.5
		10:35	7.52	1536	8.5	1.38	23.4	1
	lan:	10:40	7.46	1539	9.1	0.43	-10.8	1
BH/MW205	January	10:45	7.24	1468	9.0	0.40	-27.9	1
	20, 2023	10:50	7.25	1474	9.0	0.39	-30.8	1
		10:55	7.22	1467	9.1	0.36	-48.3	1

Page 39 BluMetric

				Specific	_	Dissolved	Oxygen	
Monitoring	Date	Time	pН	Conductivity	Temperature	Oxygen	Reduction	Volume
Well ID			(volume)	(mS/cm)	(℃)	(mg/L)	Potential (mV)	(L)
		11:00	7.20	1460	9.2	0.35	-56.1	1
		11:05	7.17	1459	9.2	0.33	-57.9	1
		11:10	7.15	1458	9.2	0.34	-58.5	1
		16:05	6.74	13340	7.7	2.61	99.1	1
		16:10	6.74	14499	8.9	0.36	58.2	1
	January	16:15	6.79	14501	9.0	0.29	44.7	1
BH/MW206	23, 2023	16:20	6.82	14613	9.1	0.21	35.3	1
	23, 2023	16:25	6.85	14666	9.1	0.17	23.1	1
		16:30	6.86	14659	9.0	0.16	22.6	 1
		9:00	7.17	3833	8.6	0.81	25.3	 1
		9:05	7.18	3886	8.7	0.69	17.7	1
	January	9:10	7.19	3892	9.1	0.60	5.1	1
BH/MW207	20, 2023	9:15	7.20	3908	9.3	0.49	-15.3	1
	20, 2025	9:20	7.21	3927	9.6	0.36	-32.9	1
		9:25	7.22	3924	9.5	0.35	-33.0	1
		13:25	6.74	13340	7.7	2.61	99.1	1
		13:30	7.69	5623	9.0	1.01	8.3	0.5
		13:35	7.69	5617	8.9	0.82	-6.1	0.5
BH/MW208	January	13:40	7.75	5814	9.0	0.75	-38.2	0.5
D11/11110200	23, 2023	13:45	7.73	6226	8.9	0.68	-69.3	0.5
		13:50	7.85	6687	9.0	0.59	-85.8	0.5
		13:55	7.88	6690	9.1	0.57	-87.0	0.5
		12:10	7.00	779.3	6.1	0.91	-32.9	1
		12:15	6.99	800	6.5	0.53	-44.2	1
	January 23, 2023	12:13	7.00	807	6.5	0.33	-52.9	1
BH/MW209		12:25	7.00	814	6.5	0.42	-58.7	<u> </u>
DI 1/101W209		12:30	7.02	822	6.6	0.41	-66.9	<u> </u>
		12:35	7.02	820	6.7	0.42	-70.1	<u>.</u> 1
		12:40	7.02	819	6.7	0.42	-71.1	<u> </u>
		15:10	7.02	835	5.9	1.07	7.6	1 1
		15:15	7.44	829	5.8	0.99	1.2	1 1
BH/MW210	January	15:20	7.41	827	5.6	0.84	-5.3	1
BH/MW210	23, 2023	15:25	7.41	809	5.5	0.80	-6.2	1 1
		15:30	7.39	808	5.5	0.79	-6.4	1
		10:45	7.23	809	7.2	1.08	28.3	1
		10:50	7.23	806	7.1	0.87	23.5	<u>.</u> 1
		10:55	7.21	703	6.8	0.88	46.2	1
BH/MW211	January	11:00	7.21	691.7	6.7	0.89	48.9	<u>'</u> 1
DI 1/14(WZII	23, 2023	11:05	7.21	664.9	6.5	0.87	50.3	1
		11:10	7.21	651.1	6.3	0.86	51.0	1 1
		11:15	7.21	650.2	6.2	0.86	51.8	1 1
		9:25	6.94	990	5.8	0.69	-22.8	0.5
		9:30	6.96	992	5.9	0.52	-25.9	0.5
	January	9:35	6.96	1004	6.0	0.49	-33.2	0.5
BH/MW212	23, 2023	9:40	6.95	990	5.9	0.49	-37.8	0.5
	25, 2025	9:45	6.95	972	5.9	0.46	-57.6 -41.1	0.5
		9:43	6.95	972	5.9	0.45	-42.3	0.5
		7:35	7.05	884	5.9	1.02	-70.1	0.5
		7:33	7.05	882	5.1	0.98	-74.1	0.5
BH/MW213	January	7:40	7.06	882 872	5.1	0.98	-74.1 -78.5	0.5
וטוואוועבוט אווערוט	23, 2023	7:43	7.03	831	5.2	0.82	-78.5 -84.6	0.5
		7:55	7.02	834	5.0	0.79	-91.9	0.5

Page 40 BluMetric

Monitoring				Specific	Tomporoturo	Dissolved	Oxygen	Volume
Monitoring Well ID	Date	Time	pH (volume)	Conductivity	Temperature	Oxygen	Reduction	Volume
Well ID			(volume)	(mS/cm)	(℃)	(mg/L)	Potential (mV)	(L)
		8:00	7.01	833	5.1	0.77	-92.1	0.5
		7:30	7.32	828	5.4	1.09	56.2	1
		7:35	7.30	827	5.3	1.05	53.8	1
DLI / M N V / 21 /	January	7:40	7.28	815	5.1	0.98	52.9	1
BH/MW214	24, 2023	7:45	7.20	810	5.2	0.91	41.2	1
		7:50	7.19	808	5.2	0.78	30.0	1
		7:55	7.17	807	5.3	0.77	28.1	1
		7:10	6.68	868	6.4	0.98	-27.1	1
		7:15	6.70	852	6.3	0.83	-42.1	1
	1.	7:20	6.74	833	6.4	0.49	-65.2	1
BH/MW 215	January	7:25	6.82	823	6.5	0.34	-92.7	1
	20, 2023	7:30	6.84	823	6.5	0.32	-97.1	1
		7:35	6.85	821	6.5	0.33	-97.9	1
		7:40	6.85	820	6.5	0.34	-98.1	1
		8:35	7.20	1336	5.6	1.07	-41.2	1
		8:40	7.22	1339	5.8	0.88	-57.4	1
BH/MW216	January	8:45	7.24	1341	5.7	0.41	-61.8	1
,	24, 2023	8:50	7.25	1344	5.8	0.30	-66.0	1
		8:55	7.25	1345	5.8	0.29	-65.1	1
		12:45	7.36	831	8.5	3.17	71.3	0.5
		12:50	7.37	828	8.4	2.03	80.1	0.5
		12:55	7.35	828	8.4	1.92	82.4	0.5
BH/MW217	January	13:00	7.30	837	8.3	1.36	82.9	0.5
	24, 2023	13:05	7.27	839	8.4	1.46	83.1	0.5
		13:10	7.25	843	8.4	1.43	83.0	0.5
		13:15	7.24	844	8.5	1.41	82.9	0.5
		14:20	7.35	1127	4.6	1.62	77.8	0.5
		14:25	7.29	1136	4.5	1.27	68.2	0.5
	January	14:30	7.26	1145	4.5	0.85	56.7	0.5
BH/MW218	24, 2023	14:35	7.28	1144	3.9	0.79	46.4	0.5
	,	14:40	7.27	1141	4.3	0.78	43.2	0.5
		14:45	7.26	1139	4.4	0.79	42.1	0.5
BH/MW219	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
BH/MW220	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
511,71111220	7,7,7	11:30	7.38	1316	5.3	4.7	111	0.5
		11:35	7.17	1321	6.4	3.37	70.1	0.5
		11:40	7.17	1338	6.7	2.54	11.7	0.5
BH/MW221	January	11:45	7.12	1337	6.6	1.27	6.9	0.5
DI 1/14144 ZZI	24, 2023	11:50	7.12	1344	6.4	0.87	-45.1	0.5
		11:55	7.09	1341	6.2	0.41	-50.1	0.5
		12:00	7.08	1342	6.1	0.39	-52	0.5
		10:25	7.61	1201	4.5	5.01	98.7	1
		10:30	7.60	1190	4.4	4.92	105.2	1
	lanuary	10:35	7.58	1182	4.3	4.79	111.8	1
BH/MW222	January 24, 2023	10:40	7.54	1173	4.3	4.68	118.4	1
	27, 2023	10:45	7.53	1173	4.2	4.48	118.7	1 1
		10:43	7.52	1158	4.3	4.46	118.8	1
		9:15	7.52	1232	5.8	0.68	1	0.5
		9:15	6.99	1232	5.8		66.3 69.1	0.5
DIT /VV/VIOUS	January	9:20		1219		0.62		
BH/MW223	24, 2023		6.97		5.7	0.41	73.2	0.5
		9:30	6.94	1205	5.7	0.30	75.9	0.5
		9:35	6.93	1202	5.7	0.27	76.5	0.5

Page 41 BluMetric

Monitoring Well ID	Date	Time	pH (volume)	Specific Conductivity (mS/cm)	Temperature (°C)	Dissolved Oxygen (mg/L)	Oxygen Reduction Potential (mV)	Volume (L)
		9:40	6.93	1199	5.7	0.26	77.1	0.5
BH/MW224	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
		15:15	6.94	1998	4.9	0.69	86.0	0.5
		15:20	6.93	1998	5.0	0.61	84.2	0.5
	1	15:25	6.92	1995	4.9	0.50	76.1	0.5
BH/MW228	January 20, 2023	15:30	6.92	1989	4.9	0.39	71.2	0.5
	20, 2023	15:35	6.91	1988	4.8	0.32	66.8	0.5
		15:40	6.90	1982	4.8	0.29	56.2	0.5
		15:45	6.90	1980	4.9	0.28	56.0	0.5
		13:15	7.06	952	5.6	0.80	-34.1	0.5
		13:20	7.08	942	5.4	0.56	-64.5	0.5
	lamam.	13:25	7.08	957	5.5	0.49	-72.4	0.5
BH/MW 232	January 19, 2023	13:30	7.08	969	5.5	0.45	-89.7	0.5
		13:35	7.08	970	5.4	0.49	-91.9	0.5
		13:40	7.08	971	5.4	0.50	-93.0	0.5
		13:45	7.08	972	5.4	0.51	-93.2	0.5
		13:47	7.04	1508	9.2	0.73	41.0	0.5
		13:52	7.00	1505	9.4	0.57	32.1	0.5
		13:57	6.95	1501	9.5	0.23	28.2	0.5
BH/MW234	January	14:02	6.95	1502	9.4	0.22	26.8	0.5
BH/MW234	20, 2023	14:07	6.94	1504	9.4	0.21	24.3	0.5
		14:12	6.94	1504	9.4	0.21	23.9	0.5
		14:17	6.94	1503	9.4	0.21	23.6	0.5
		14:22	6.93	1506	9.4	0.21	23.2	0.5
		12:20	6.96	2830	8.2	0.35	-61.2	0.5
		12:25	6.97	2838	8.3	0.33	-70.9	0.5
		12:30	6.98	2834	8.4	0.26	-75.5	0.5
BH/MW235	January	12:35	6.99	2818	8.5	0.24	-80.2	0.5
DIT/101W233	20, 2023	12:40	7.01	2820	8.4	0.22	-86.4	0.5
		12:45	7.01	2816	8.4	0.22	-87.8	0.5
		12:50	7.02	2835	8.5	0.22	-87.9	0.5
		12:55	7.03	2837	8.5	0.22	-90.1	0.5

5.9 GROUNDWATER: SAMPLING

In accordance with the Sampling and Analyses Plan (Appendix A), the analytical program was designed to target the APECs at the Phase Two Property as discussed in Section 4.3. Groundwater samples were collected from the monitoring wells located within the APECs and submitted for chemical analysis according to their location and depth on the Phase Two Property.

The monitoring wells installed at the Phase Two Property in 2022, as well as the monitoring wells that had previously been installed dating back to 2011 were sampled on various occasions. Table 15 summarizes the chemical analyses results from 2011 to 2023.

Page 42 BluMetric

A low-flow peristaltic pump with 0.64 cm LDPE tubing dedicated to each well was used to collect groundwater samples. Samples collected for metals analyses were field-filtered using a Waterra 0.45-micron FHT-Ground Water Filter. Samples were drawn directly from the tubing to laboratory supplied containers, placed in the appropriate containers provided by Maxxam Laboratories in 2011 and 2012, and AGAT Laboratories in 2022 and 2023, and stored at approximately 4 °C until they were submitted for chemical analysis.

During sampling, the groundwater was observed in each well for indicators of environmental impairment, including the presence of liquid petroleum hydrocarbons, sheen or iridescence, odour, and colour. None of the groundwater collected from the site during well development and sampling activities exhibited evidence of such impairment.

Page 43 BluMetric

Table 15: Groundwater Sampling Chemical Analyses Summary 2011-2023

Sample Name	Sample Date	Sample Depth	ABN	BTEX	СР	CaMg	HFM	Metals	ORP	PAH	PCB	PHC	ТНМ	voc
MW22	2022-Jul-12	1.7 - 4.7	N	Υ	N	NT	NT	N	N	N	N	N	N	N
MW22	2011-Aug-18	1.7 - 4.7	NT	Υ	NT	NT	NT	N	N	N	NT	N	N	N
MW22	2012-Apr-30		NT	N	NT	NT	NT	N	N	N	N	N	N	N
MW22	2012-May-01	1.7 - 4.7	NT	Υ	NT	NT	NT	N	N	NT	N	N	N	N
MW23	2022-Jul-14	1.2 - 3.4	N	N	Ν	NT	NT	N	N	N	N	N	N	N
MW23	2011-Aug-18	1.2 - 3.4	NT	N	NT	NT	NT	N	N	NT	NT	N	N	N
MW23	2012-May-01	1.2 - 3.4	NT	N	NT	NT	NT	N	N	NT	N	N	NT	NT
MW24	2022-Jul-12	1.5 - 4.5	N	Y	N	NT	NT	Y	N	N	N	N	N	N
MW24	2011-Aug-18	1.5 - 4.5	NT	N	NT	NT	NT	N	N	N	NT	N	N	Υ
MW24	2012-Apr-30		NT	N	NT	NT	NT	N	N	N	N	N	N	N
MW24	2012-May-01	1.5 - 4.5	NT	N	NT	NT	NT	N	N	N	N	N	N	N
MW25	2022-Jul-12	4.7 - 7.7	N	Υ	N	NT	NT	N	N	N	N	N	N	N
MW25	2011-Aug-17	4.7 - 7.7	NT	Υ	NT	NT	NT	Ν	N	NT	N	Ν	Ν	N
MW25	2012-May-01	4.7 - 7.7	NT	Υ	NT	NT	NT	Ν	N	N	Υ	N	Ν	N
MW26	2022-Jul-14	1.5 - 4.5	Ν	N	N	NT	NT	Ν	N	N	Ν	N	Ν	N
MW26	2011-Aug-17	1.5 - 4.5	NT	N	NT	NT	NT	Ν	N	NT	Ν	Ν	Ν	N
MW26	2012-May-01	1.5 - 4.5	NT	N	NT	NT	NT	Ν	N	NT	Ν	Ν	NT	NT
MW50	2022-Jul-13	2.4 - 5.4	Ν	N	N	NT	NT	Ν	Ν	Ν	Ν	Ν	Ν	N
MW50	2011-Aug-17	2.4 - 5.4	NT	N	NT	NT	NT	Ν	N	NT	NT	Ν	Z	N
MW50	2012-May-01	2.4 - 5.4	NT	N	NT	NT	NT	N	N	NT	N	N	NT	NT
MW78	2022-Jul-12	2.7 - 5.6	N	N	N	NT	NT	N	N	N	Ν	N	N	N
MW78	2011-Aug-17	2.7 - 5.6	NT	N	NT	NT	NT	N	N	NT	NT	N	N	N
MW78	2012-May-01	2.7 - 5.6	NT	N	NT	NT	NT	N	N	NT	N	Y	N	Υ
MW79	2022-Jul-14	1.9 - 4.9	N	N	N	NT	NT	N	N	N	N	N	N	N
MW79	2011-Aug-17	1.9 - 4.9	NT	N	NT	NT	NT	N	N	NT	NT	N	N	N
MW79	2012-May-01	1.9 - 4.9	NT	N	NT	NT	NT	N	N	N	N	N	NT	NT
MW80	2022-Jul-12	2.4 - 3.8	N	N	Ν	NT	NT	N	N	N	N	N	N	N
MW80	2011-Aug-17	2.4 - 3.8	NT	N	NT	NT	NT	N	N	NT	NT	N	N	N
MW80	2012-May-01	2.4 - 3.8	NT	N	NT	NT	NT	N	N	NT	N	N	NT	NT
MW81	2022-Jul-14	1.7 - 4.7	N	N	Ν	NT	NT	N	N	N	N	N	N	N
MW81	2011-Aug-17	1.7 - 4.7	NT	N	NT	NT	NT	N	N	NT	N	N	N	N
MW81	2012-May-01	1.7 - 4.7	NT	N	NT	NT	NT	N	N	NT	N	N	NT	NT
MW82	2022-Jul-12	0.9 - 2.4	N	N	Ν	NT	NT	N	N	N	N	N	N	N
MW82	2011-Aug-17	0.9 - 2.4	NT	N	NT	NT	NT	N	N	N	N	N	N	N
MW82	2012-May-01	0.9 - 2.4	NT	N	NT	NT	NT	N	N	N	N	N	NT	NT
MW84	2022-Jul-13	3.7 - 6.6	N	N	Ν	NT	NT	N	N	N	Ν	N	N	N
MW84	2011-Aug-17	3.7 - 6.6	NT	N	NT	NT	NT	N	N	NT	NT	N	Ν	N
MW84	2012-May-01	3.7 - 6.6	NT	N	NT	NT	NT	N	N	NT	N	N	NT	NT

Page 44 BluMetric

Sample Name	Sample Date	Sample Depth	ABN	BTEX	СР	CaMg	HFM	Metals	ORP	PAH	PCB	PHC	тнм	voc
MW121	2023-Jan-19	1.5 - 3.6	N	N	N	NT	NT	N	N	N	N	N	N	N
MW121	2011-Aug-17	1.5 - 3.6	NT	N	NT	NT	NT	N	N	NT	N	N	N	N
MW121	2012-May-01	1.5 - 3.6	NT	N	NT	NT	NT	N	N	NT	N	N	NT	NT
MW128R	2023-Jan-19	1.6 - 3.7	N	N	N	NT	NT	N	N	N	N	N	N	N
MW130	2022-Jul-13	2.1 - 5.1	N	N	N	NT	NT	N	N	N	N	N	N	N
MW130	2011-Aug-17	2.1 - 5.1	NT	N	NT	NT	NT	N	N	NT	N	N	N	N
MW130	2012-May-01	2.1 - 5.1	NT	N	NT	NT	NT	N	N	NT	N	N	NT	NT
MW146	2022-Jul-12	1.2 - 3.0	N	N	N	NT	NT	N	N	N	N	N	N	N
MW146	2011-Aug-18	1.2 - 3.0	NT	N	NT	NT	NT	N	N	NT	N	Υ	N	N
MW146	2012-May-01	1.2 - 3.0	NT	N	NT	NT	NT	N	N	N	N	N	NT	NT
MW148	2022-Jul-13	1.2 - 3.0	N	Υ	N	NT	NT	N	N	Y	N	Y	N	N
MW148	2011-Aug-18	1.2 - 3.0	NT	Υ	NT	NT	NT	N	N	Y	N	N	N	N
MW148	2012-May-01	1.2 - 3.0	NT	Υ	NT	NT	NT	N	N	Y	N	Y	N	N
MW149	2022-Jul-13	1.1 - 2.2	Ν	N	N	NT	NT	Ν	N	Ν	N	N	Ν	N
MW149	2011-Aug-18	1.1 - 2.2	NT	N	NT	NT	NT	Ν	Υ	NT	N	N	Ν	N
MW149	2012-May-01	1.1 - 2.2	NT	N	NT	NT	NT	Ν	N	NT	N	N	Ν	N
MW151	2022-Jul-13	1.6 - 4.5	Ν	N	N	NT	NT	Ν	N	N	N	N	Ν	N
MW151	2011-Aug-18	1.6 - 4.5	NT	N	NT	NT	NT	Ν	N	NT	N	Υ	N	N
MW151	2012-May-01	1.6 - 4.5	NT	N	NT	NT	NT	Ν	N	NT	N	Ν	NT	NT
MW152	2022-Jul-12	2.1 - 5.1	N	N	N	NT	NT	N	N	N	N	N	N	N
MW152	2011-Aug-17	2.1 - 5.1	NT	N	NT	NT	NT	Ν	N	NT	N	N	Ν	Υ
MW152	2012-May-01	2.1 - 5.1	NT	N	NT	NT	NT	Ν	N	NT	N	N	Ν	Υ
MW156	2022-Jul-13	2.0 - 5.0	N	N	N	NT	NT	Ν	N	N	N	N	N	N
MW156	2012-Dec-10	2.0 - 5.0	NT	N	NT	NT	NT	NT	NT	NT	NT	NT	Ν	N
MW202	2023-Jan-19	2.3 - 5.2	N	N	N	NT	NT	Ν	N	Υ	N	Υ	Ν	N
MW203	2023-Jan-19	3.3 - 6.0	N	N	N	NT	NT	N	N	N	N	N	N	N
MW204	2023-Jan-19	1.7 - 4.7	N	N	N	NT	NT	N	N	N	N	N	N	N
MW205	2023-Jan-23	4.6 - 7.6	N	Υ	N	NT	NT	N	N	N	N	N	N	N
MW206	2023-Jan-23	5.2 - 8.2	N	N	Ν	NT	NT	Y	Υ	N	NT	N	N	N
MW207	2023-Jan-23	8.3 - 11.3	N	Υ	N	NT	NT	N	N	N	N	N	N	N
MW208	2023-Jan-23	4.9 - 7.9	N	Y	N	NT	NT	N	Υ	N	N	Y	N	N
MW209	2023-Jan-23	0.6 - 3.6	N	N	Ν	NT	NΤ	Ν	N	Ν	Ν	Ν	Ν	N
MW210	2023-Jan-23	0.3 - 3.3	N	Y	Ν	NT	NT	N	N	N	N	N	N	N
MW211	2023-Jan-23	0.6 - 3.6	N	N	Ν	NT	NT	N	N	N	N	N	N	N
MW212	2023-Jan-23	1.2 - 2.7	N	N	Ν	NT	NT	N	N	N	N	N	N	N
MW213	2023-Jan-23	0.7 - 3.7	N	N	Ν	NT	NT	N	N	N	N	N	N	N
MW214	2023-Jan-24	1.2 - 3.6	N	N	Ν	NT	NT	N	N	N	N	N	Ν	N
MW215	2023-Jan-23	1.6 - 4.5	N	N	N	NT	NT	N	N	Y	N	N	N	N
MW217	2023-Jan-24	1.7 - 4.7	N	N	Ν	NT	ΝŢ	Ν	N	Ν	Ν	N	Z	N

Page 45 BluMetric

Sample Name	Sample Date	Sample Depth	ABN	BTEX	СР	CaMg	НҒМ	Metals	ORP	PAH	PCB	PHC	тнм	voc
MW218	2023-Jan-24	1.0 - 2.4	N	N	N	NT	NT	N	N	N	NT	Υ	N	N
MW219	2023-Jan-25	1.0 - 3.9	N	N	N	NT	NT	N	N	N	NT	Υ	N	N
MW220	2023-Jan-25	1.0 - 2.5	N	N	N	NT	NT	N	N	Υ	NT	N	N	N
MW221	2023-Jan-24	1.0 - 2.5	N	N	N	NT	NT	NT	NT	N	NT	Υ	N	Υ
MW223	2023-Jan-24	1.5 - 3.0	N	N	N	NT	NT	NT	NT	N	NT	N	N	N
MW228	2023-Jan-23	1.2 - 4.2	N	N	N	NT	NT	N	N	N	N	N	N	N
MW201	2023-Jan-19	5.4 - 8.4	NT	N	NT	NT	NT	N	N	N	NT	N	N	N
MW222	2023-Jan-24	1.1 - 2.6	NT	N	NT	NT	NT	N	N	N	NT	N	N	N
MW224	2023-Jan-25	1.3 - 4.3	NT	N	NT	NT	NT	N	N	N	N	N	NT	NT
OW2	2011-Aug-18	-	NT	N	NT	NT	NT	N	N	NT	N	N	N	N
MW4	2011-Aug-18	-	NT	NT	NT	N	N	N	N	NT	NT	N	NT	NT
MW216	2023-Jan-24	1.5 - 3.0	NT	NT	NT	NT	NT	NT	NT	NT	N	NT	NT	NT

Legend: N=No exceedances
Y= at least 1 result exceeds

NT=not tested

Page 46 BluMetric

5.10 SURFACE WATER AND SEDIMENT: SAMPLING

No surface water features exist at the Phase Two Property and as such no surface water or sediment sampling was performed as part of this Phase Two ESA.

5.11 ANALYTICAL TESTING

All analytical testing for this Phase Two ESA was performed by AGAT Laboratories at 5835 Coopers Avenue in Mississauga, Ontario. AGAT Laboratories is accredited by the Canadian Association for Laboratory Accreditation Inc. (CALA) for all of the types of analysis conducted.

5.12 RESIDUE MANAGEMENT PROCEDURES

All excess soil cuttings from the field investigation and purged ground water from sampling of monitoring wells were placed in sealed and labelled barrels and stored on site for future disposal.

5.13 ELEVATION SURVEYING

Local elevations for the top of well pipes of the 2022 monitoring wells were determined on 17 January 2023. The results of this survey are summarised in Section 6.2.2.1.

5.14 QUALITY ASSURANCE AND QUALITY CONTROL MEASURES

The following Quality Assurance and Quality Control procedures were observed during this assessment:

- Strict sample collection procedures specified in Standard Work Instructions are employed by all field staff.
- Staff attend seminars on the collection of samples, laboratory procedures, preservation, handling, and transportation techniques.
- Samples are collected in containers provided and prepared by the laboratory.
- Samples are protected from sunlight and stored at appropriate temperatures until delivered to the laboratory as promptly as practical.
- Samples are named to avoid confusion with locations and samples from other projects.

During sampling operations, tools are cleaned with laboratory grade detergent between uses to avoid cross-contamination.

Page 47 BluMetric

Field duplicate soil and groundwater samples were collected for every 10 samples analyzed for each specific parameter group. Field duplicate samples were obscurely labelled to ensure the laboratory remained unaware of the source sample. In addition, trip and field blank samples were collected whenever groundwater was sampled for VOC analyses.

The analytical laboratory also followed QA/QC procedures as required by its accreditation and includes collecting and analyzing laboratory duplicate samples. These include analyzing selected samples twice (often marked as "Lab-Dup"), analyzing surrogate chemicals or "spiked blanks" (to show that the analytical equipment is operating within the desired tolerances of accuracy, analyzing method blanks (to show that analytical equipment is not contaminated). The reports received from laboratories thoroughly document these procedures as well as describe the methodology and instrumentation used for the analysis. None of the laboratory reports for this Phase Two ESA raised concerns about the validity of the data quality or included annotations about data quality. During this Phase Two ESA, there were no deviations from the sample holding times, preservation methods, storage requirements, or sample container types stipulated by the laboratory.

BluMetric received a certificate of analysis for all samples submitted to the laboratory. Copies of the certificates are included in Appendix C.

Page 48 BluMetric

6 REVIEW AND EVALUATION

6.1 GEOLOGY

As discussed in Section 5.3, a total of twenty-nine (29) boreholes were completed on the Phase Two Property into a maximum depth of 11.3 m bgs.

The soil and groundwater investigation program identified four main hydrostratigraphic unit at the Phase Two Property, summarized in Table 16:

Table 16: Geology Summary

Hydrostratigraphic Unit	Description	Depth Range (m bgs)	Hydrogeological Condition
TOPSOIL	Brown topsoil, medium sand, and gravel with organics.	0.0 to 1.6	Moist
Fill	Topsoil, gravel, brick debris	0.0 to 2.0	Dry
SAND AND SANDY SILT WITH GRAVEL	Brown to grey medium to fine sand to sandy silt with gravel.	0.0 to 2.1	Moist
CLAY AND SILTY CLAY WITH GRAVEL	Grey to brown clay with sand and gravel to dark brown silty clay and gravel. Trace of red brick in places.	0.9 to 3.4	Moist to wet
BEDROCK	Weathered Limestone.	0.0 to 4.27	Moist to wet

Cross sections A-A' to O-O' that illustrate the general stratigraphy beneath the site are presented in Figures 02-1b to 02-19b.

6.2 GROUNDWATER: ELEVATIONS AND FLOW DIRECTION

6.2.1 Well Screen Intervals & Free-Flowing Product Measurements

6.2.1.1 Well Screen Intervals

The majority of the boreholes that were drilled across the Phase Two Property did not encounter groundwater until the bedrock was reached. This is likely due to the relatively thin nature of the overburden which cannot support a shallow aquifer. The upper four to five metres of the bedrock is generally weathered and fractured. Hydraulic conductivity values for the overburden (silty clay with gravel) ranged between 3.17 x 10⁻⁴ m/s and 4.44 x 10⁻⁸ m/s with a geometric mean of 1 x 10⁻⁵ m/s, and for the upper bedrock ranged between 1.15 x 10⁻³ m/s and 1.7 x 10⁻⁶ m/s with a geometric mean of 3 x 10⁻⁵ m/s (based on measurements across the Bakelite property as reported in WESA (2012b)). It is our interpretation that the upper bedrock hydraulic characteristics are such that the overburden and shallow bedrock (upper 4 to 5 metres) essentially behave as a single hydrostratigraphic unit.

Page 49 BluMetric

Groundwater monitoring wells installed were constructed with 3 metre screens, installed at variable depths spanning approximately 0.7 to 3.7 m bgs and 8.3 to 11.3 m bgs, designed to intersect shallow groundwater contained within sandy silt with some clay and some gravel layers encountered these depths.

6.2.1.2 Interface Probe Measurements & Free-Flowing Product

Prior and subsequent to well development and groundwater sampling, groundwater levels were measured using an oil/water interface probe (Solinst model 122), to verify the presence or absence of any floating free product.

Any non-aqueous phase liquids floating on groundwater above the screen section of the monitoring well will have been drawn into the well and detected during standard well development procedures (where wells were emptied at least 3 times and allowed to recharge). The wells have been monitored using an oil/water interface meter. No visual or other indications of the presence of any non-aqueous phase liquids were detected during any purging, monitoring, or sampling events.

6.2.2 Groundwater Elevations, Flow Modelling & Temporal Variation

6.2.2.1 Methodology of Groundwater Elevation Calculation

The tops of well pipe elevations were established by survey conducted on 17 January 2023, and referenced a geodetic benchmark. Water levels were measured using a Solinst Interface Probe (model 122) on multiple occasions. Water levels measured on 17 January 2023 are considered most representative of stabilized groundwater conditions. The measured water levels are shown in the table below.

Table 17: Groundwater Elevation Calculation

	Ground Surface		December 2	22, 2022	January 1	8, 2023
Monitoring Well ID	(GS) Elevation (m asl)	Top of Pipe (TOP) Elevation (m asl)	Water Level (m bgs)	Water Elevation (m asl)	Water Level (m bgs)	Water Elevation (m asl)
BH/MW121	78.210	79.015	-	-	2.60	76.415
BH/MW128R	79.817	80.629	3.60	76.217	-	-
BH/MW201	80.34	80.994	2.70	77.640	4.25	76.744
BH/MW202	78.925	79.792	3.12	75.805	3.15	76.642
BH/MW203	77.722	78.504	2.22	75.502	3.05	75.454
BH/MW204	76.855	77.648	1.50	75.355	2.05	75.598
BH/MW205	76.695	77.524	0.82	75.875	1.85	75.674
BH/MW206	75.906	76.795	Dry	-	1.21	75.585
BH/MW207	76.794	77.576	7.44	69.354	6.67	70.906
BH/MW208	76.677	77.49	0.85	75.827	2.08	75.410

Page 50 BluMetric

	Ground Surface (GS) Elevation (m asl)	Top of Pipe (TOP) Elevation (m asl)	December 22, 2022		January 18, 2023	
Monitoring Well ID			Water Level (m bgs)	Water Elevation (m asl)	Water Level (m bgs)	Water Elevation (m asl)
BH/MW209	77.129	77.875	1.64	75.489	1.88	75.995
BH/MW210	77.126	77.881	1.25	75.876	2.08	75.801
BH/MW211	77.340	77.968	1.17	76.170	1.70	76.268
BH/MW212	77.377	78.219	1.08	76.297	2.05	76.169
BH/MW213	77.682	78.514	2.01	75.672	2.36	76.154
BH/MW214	78.852	79.7	2.08	76.772	2.45	77.250
BH/MW 215	77.884	78.755	1.58	76.304	2.40	76.355
BH/MW216	78.967	79.816	0.53	78.437	1.20	78.616
BH/MW217	79.025	79.887	4.50	74.525	3.76	76.127
BH/MW218	78.941	79.745	1.19	77.751	1.19	78.555
BH/MW219	82.603	83.405	3.11	79.493	2.98	80.425
BH/MW220	79.316	79.986	2.26	77.056	1.15	78.836
BH/MW221	79.260	80.092	0.96	78.30	1.49	78.602
BH/MW222	79.093	79.951	2.37	76.890	1.56	78.391
BH/MW223	79.244	80.228	0.70	78.544	1.45	78.778
BH/MW224	82.837	83.718	3.82	79.017	1.83	81.888
BH/MW228	76.362	77.216	Dry	-	1.30	75.916
BH/MW 232	-	-	1.09	-	-	-
BH/MW234	=	-	1.67	-	=	-
BH/MW235	-	-	1.08	-	-	-

Note: Groundwater elevations will fluctuate according to prevailing meteorological conditions.

6.2.2.2 Direction of Groundwater Flow Modelling

Based on stabilized groundwater elevations recorded in the monitoring wells that intercepted the top of the water table, the local groundwater flow was determined to be towards the southwest, towards the Bay of Quinte, beneath the Phase Two Property (see Figure 1-6a), consistent with the groundwater flow direction determined by the Phase One ESA.

6.2.2.4 Potential Interaction of Groundwater with Buried Utilities

The only underground utilities on, in, and under the Phase Two Property is the concrete sanitary sewer line that crosses the north end of the property in an east-west direction. This sewer is shallower than the water table and there is no evidence to suggest that it is acting as a preferential pathway for contaminant migration in groundwater.

There are no other subsurface utility conduits of structures on the Phase Two Property.

Page 51 BluMetric

6.3 GROUNDWATER: HYDRAULIC GRADIENTS

6.3.1 Horizontal Gradient

Table 18 provides a summary of groundwater flow data for the major geologic units within the Phase Two property (based on measurements across the Bakelite property as reported in WESA (2012b)).

Table 18: Summary of Groundwater Flow Data for Geologic Units

Unit	Hydraulic Conductivity (m/sec)	Gradient	Effective Porosity	Average Linear Groundwater Velocity (m/year)	Comments
Fill	NA	NA	NA	NA	Dry
Silty Clay with Gravel	1x10 ⁻⁵	0.019	0.3	20	Dry
Shallow Bedrock	3x10 ⁻⁵	0.019	0.14	126	Main Groundwater Pathway

The average hydraulic gradient is estimated to be 0.019. The effective porosity of the silty clay with gravel unit is estimated to be 0.3 and the effective porosity of the shallow bedrock is estimated to be 0.14. The average linear groundwater velocity of the silty clay with gravel unit is estimated to be 20 m/year and the average linear groundwater velocity of the shallow bedrock is estimated to be 126 m/year. The shallow bedrock is considered to be the main groundwater flow pathway at the site based on the distribution of where groundwater was found, the hydraulic conductivity of the units, and the resultant groundwater velocity.

6.3.2 Vertical Gradient

Chemical impacts were not identified within the shallow hydro stratigraphic unit, or the groundwater contained within, and as such, calculation of the vertical gradient is not required.

6.4 FINE-MEDIUM SOIL TEXTURE

Fine – medium soil texture is defined within the Regulation as soil that contains more than 50 percent by mass of particles that are 0.075 mm or smaller in mean diameter. Particle size analyses were completed on nine discrete samples collected from the phase two property. The results from the particle size analysis are included in Table 19.

Page 52 BluMetric

Table 19: Soil Particle Size Analysis Summary

Sample ID	Percent of Particles with Mean Diameter < 0.075 mm
BH10-SS2	46%
BH27-SS3	49%
BH29-SS4	78%
BH30-SS2	61%
BH49/55 Comp*	78.5%
BH137/139 Comp**	62.2%

Notes:

The soils on the phase two property are classified as fine to medium texture based on the average of the results from the soil particle size analyses. The fine-medium soil texture criteria have been applied where applicable for comparison to soil chemistry results.

6.5 SOIL: FIELD SCREENING

As discussed in Section 5.4, all soil samples collected on December 15 to 19, 2023, were examined in the field for lithology as well as for aesthetic evidence of impacts (i.e., debris, staining and odors). Headspace combustible vapour measurements (excluding methane) using a RKI *Eagle* 2 Gas Monitor calibrated to hexane.

Some of the soil samples collected during the field investigation programs exhibited detectible visual, olfactory, or headspace combustible vapours. The field screening measurements are included on the borehole logs provided in Appendix B.

6.6 SOIL QUALITY

Soil samples collected from twenty-nine (29) boreholes advanced at the northwest portion of the Phase Two Property were tested to investigate the APECs identified in Section 4.3, described in (Section 4), and shown on Figure 1-8. Furthermore, soil samples collected from boreholes advanced across the Phase Two Property were tested for excess soil management purposes. Five quality control samples were also collected and submitted for chemical analysis, BH202 SS2-Dup (field duplicate of BH202 SS2), BH213 SS2-Dup (field duplicate of BH213 SS2), BH220 SS1-DUP (field duplicate of BH223 SS1), and TP231b-dup (field duplicate of TP231b).

Page 53 BluMetric

^{*} Composite includes soil from BH49-SS3, BH49-SS4 and BH55-SS4

^{**} Composite includes soil from BH137-SS1 and BH139-SS1

Analytical results are compared to Table 7 SCS for Generic Site Condition Standards for Shallow Soils in a Non-Potable Ground Water Condition for fine to medium textured soils, as summarized in Tables 1 to 5 (Appendix D) and shown on Figures 2-1a to 2-11a. Maximum soil contaminant concentrations, together with their respective locations and sample depths, are summarized in these tables.

In 2022, many parameters' concentrations were above the Table 7 SCS. There were exceedances of BTEX, HFMs, Metals, ORPs, PAHs, PCBs, and PHCs in the soil samples collected from the boreholes and test pits.

The original laboratory Certificates of Analyses are provided in Appendix C.

6.7 GROUNDWATER QUALITY

Groundwater samples from monitoring wells BH/MW121, BH/MW128R, BH/MW201, BH/MW202, BH/MW203, BH/MW204, BH/MW205, BH/MW206, BH/MW207, BH/MW208, BH/MW209, BH/MW210, BH/MW211, BH/MW212, BH/MW213, BH/MW214, BH/MW215, BH/MW216, BH/MW217, BH/MW218, BH/MW219, BH/MW220, BH/MW221, BH/MW222, BH/MW223, BH/MW224, BH/MW228, BH/MW 232, BH/MW234, and BH/MW235, located around the Phase Two Property were collected in January 2023 to investigate the APECs identified in Section 4.3, described in Table 2 (end of text), and shown on Figure 7 (Section 9.2). Three quality control sample was collected, GW-Dup1 (collected from monitoring well BH/MW201), GW-Dup2 (collected from monitoring well BH/MW213).

Analytical results are compared to Table 7 SCS for Generic Site Condition Standards for Shallow Soils in a Non-Potable Ground Water Condition for fine to medium textured soils, as summarized in Tables 6 to 10 (Appendix D). Maximum groundwater contaminant concentrations, together with their respective locations and screen intervals, are summarized in these tables.

In 2023, many parameters' concentrations were above the Table 7 SCS. There were exceedances of BTEX, Metals, ORPs, PAHs, PCBs, VOCs, and PHCs in the groundwater samples from the monitoring wells.

The original laboratory Certificates of Analyses are provided in Appendix C.

Page 54 BluMetric

6.8 SURFACE WATER AND SEDIMENT QUALITY

There are no water features and consequently no surface water or sediment on the Phase Two Property. Therefore, no surface water or sediment samples were collected or submitted for chemical analysis during this Phase Two ESA.

6.9 QUALITY ASSURANCE AND QUALITY CONTROL RESULTS

All of the samples were handled in accordance with the Analytical Protocol with respect to the holding time, preservation method, storage requirements, and container type.

BluMetric received a certificate of analysis for each sample submitted to the laboratory. Copies of the certificates are included in Appendix C.

6.9.1 Quality Control Sampling

6.9.1.1 Duplicate Samples

Precision is a measure of the reproducibility of analytical results and can be expressed quantitatively by the relative percent difference (RPD) between the original sample and the blind duplicate sample.

The RPD is defined by the following equation:

$$RPD = 2 \times \frac{|(S-D)|}{(S+D)} \times 100$$

Where: S =concentration of in the original sample

D = concentration in the duplicate

RPDs were only calculated where both the sample result "S" and the duplicate result "D" were above the analytical reportable detection limits (RDL). The Phase Two ESA duplicate sample RPD acceptance criterion was set at 40% or less for groundwater samples, and 60% or less for soil samples. Where the reported concentrations were less than ten times the laboratory reportable detection limit (RDL), lower precision is expected.

The acceptable guideline limits for various analysis groups are noted below:

Table 20: Guideline Limits for Various Analysis Groups

Parameter Category	Recommended RPD at concentrations exceeding 5 times the Method Detection Limit		
Organics in soil			
 VOCs 	50%		
 PAHs 	40%		
 PHCs 	30%		
Organics in water	30%		
Metals in soil	30%		
Metals in water	20%		
General inorganics in solids	30%		
General inorganics in water	20%		

Source: Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act, March 9, 2004, amended as of July 1, 2011

In December 2022, five duplicate soil samples were collected from BH202-SS2, BH213-SS2, BH220-SS1, BH223-SS1, and TP231b (BH202-SS2-DUP, BH213-SS2-DUP, BH220-SS1-DUP, BH223-SS1-DUP, and TP231b-DUP respectively). Duplicate samples were submitted for analyses of PHCs, BTEX, Metals, VOC and ORP parameters.

In January 2023, three duplicate groundwater samples (GWDUP1, GWDUP2, and GWDUP3) were collected from monitoring wells MW201, MW215, and MW213 respectively. The duplicates were submitted for analyses of PHCs, BTEX, Metals, VOC and ORP parameters.

The calculated RPDs for applicable parameters between the original sample and its laboratory duplicate are summarized in Table 11 for soil, and Table 12 for groundwater in Appendix D. The tables include only parameters that had measurable RPDs. Where either the sample or its duplicate return non-detect concentrations for any single parameter, an RPD cannot be calculated and therefore is not shown in the following table.

For metals, BTEX, PAH, and ORPs, RPDs for soil and groundwater are generally within the acceptable RPD range. BH220-SS1-DUP exhibited an exceedance for lead. For PAHs, the RPDs for soil and groundwater were non-detect.

6.9.1.2 Procedures Used in the Laboratory

Laboratories implement additional QA/QC procedures. These include analyzing selected samples twice (as described above), but also include analyzing surrogate chemicals or "spiked blanks" (to show that the analytical equipment is operating within the desired tolerances of accuracy and analyzing method blanks (to show that analytical equipment is not contaminated). The reports

Page 56 BluMetric

received from laboratories thoroughly document these procedures as well as describe the methodology and instrumentation used for the analysis.

None of the lab reports for this Phase Two ESA raised concerns about the validity of the data quality or included annotations about data quality. During this Phase Two ESA, there were no deviations from the sample holding times, preservation methods, storage requirements, or sample container types stipulated by the laboratory.

Overall, the quality of the data produced by the soil and ground water quality investigations is adequate and there are no aspects of the data that have restricted decision-making or characterizing soil and ground water quality on the Phase Two Property.

6.9.1.3 Trip and Field Blanks

One groundwater trip blank was used during this Phase Two ESA and submitted for PHCs, BTEX, Metals, ABN, Chlorophenols, VOC and ORP parameters. Concentrations were below detection limits.

One groundwater field blank was used during this Phase Two ESA and submitted for PHCs, BTEX, Metals, VOC and ORP parameters. Concentrations were below detection limits.

6.9.2 Non-Compliance to Analytical Protocols

There are no reported incidents relating to non-compliant analytical protocols.

6.9.3 Laboratory Certificates of Analyses

All certificates of analysis or analytical reports received pursuant to clause 47 (2) (b) of the regulation comply with subsection 47 (3) of O. Reg. 153/04.

A certificate of analysis or analytical report has been received for each sample submitted for analysis. All certificates of analysis or analytical reports received have been included in full and are reproduced in Appendix C.

6.10 Phase Two Conceptual Model

The Phase Two Conceptual Site Model (CSM) has been prepared based on information and data collected to date through Phase One and Two ESAs conducted at 621 Dundas Street East, Belleville, Ontario, by BluMetric Environmental Inc.

Page 57 BluMetric

The Phase Two CSM consists of the following text and the referenced drawings:

Table 21: CSM Narrative Mandatory Requirements

Required Content	Comment
Section i. A description and assessment of, i. areas where potentially contaminating activity (PCA) has occurred,	There are 9 on-site PCAs on the property and eight off-site that are considered to have the potential to affect the property. The locations of the PCAs area described in Figure 1-07A.
ii. areas of potential environmental concern (APECs), and	There are 45 APECs where PCAs may have affected the soil and/or groundwater at the subject site (please refer to <i>Figure 1-07B</i>). The table summarizing the APECs on the Phase One Property can be found in Section 3.2.1 above. Figure 1-08 shows the soil and groundwater sampling locations superimposed with the APECs described above.
iii. any subsurface structures and utilities on, in or under the Phase Two Property that may affect contaminant distribution and transport,	A sanitary sewer in an east-west direction along the north edge of the Phase Two Property. Several old, buried pipes run along the east side of the central pond and extend from the former factory building to the pump house located at the edge of the Bay of Quinte. A disconnected sanitary pipe remains visible near the cement pad. The presence of these underground utilities may affect groundwater flow, depending on the depth of the groundwater table.
Section ii. a description of and, as appropriate, figures illustrating, the physical setting of the Phase Two Property and any areas under it including,	The Phase Two Property is 14.63 hectares in size, irregularly shaped, and is currently vacant. The Phase Two Property is bounded on the north by Dundas Street East and the CP Rail tracks, on the east by portions of the former Bakelite property that are not part of the Phase Two Property, on the south by wetlands and the Bay of Quinte and on the west by a mix of commercial and residential land. Northwest of the former Bakelite property is a taxi and car dealership. A warehouse that historically stored PCBs is located 117 meters east of the Phase Two Property. The general location of the Phase Two Property is shown on Figure 1-01. The Phase One study area and its features are presented on Figure 1-05.
	The Property generally slopes from the topographically high north property boundary along Dundas Street East, down towards the Bay of Quinte and has an elevation of approximately 83 to 74 metres above sea level (ASL), as shown in <i>Figure 1-02</i> . There are no water bodies, permanent streams, rivers or similar watercourses, ponds, or areas of natural significance on the Property. The Property is over 30 metres from the provincially significant wetland (PSW) boundary to the south.
	The Phase One Study Area ("surrounding area") covers land uses within a 250 metres radius of the Property, as shown in <i>Figure 1-01</i> . The Bay of Quinte is located approximately 30 metres south of the property within the Phase One Study Area. A PSW is also within the Phase One Study Area over 30 metres from the property, as shown in <i>Figure 1-01</i> .

Page 58 BluMetric

	Required Content	Comment
	stratigraphy from ground surface to the deepest aquifer or aquitard investigated, hydrogeological characteristics, including aquifers, aquitards and, in each hydrostratigraphic unit where one or more contaminants is present at concentrations above the applicable site condition standards, lateral and vertical gradients.	Regional overburden consists generally of glaciolacustrine silt and clay grading upward to massive to laminated or bedded sand and silt. There has been a considerable amount of disturbance of the overburden across much of the Phase Two Property as a result of the past development and operation of the Bakelite plant, and the subsequent dredging, infilling and building demolitions activities carried out on the site. The overburden stratigraphy is relatively variable as a result of these disturbances. The thickness of the overburden ranges from 0.7 to 4.3 metres. The overburden is generally thickest in the northern part of the property, but much of this "overburden" is imported fill. Fill was encountered near surface in most of the boreholes drilled on the Phase Two Property. This fill consists of silty sand and gravel with bricks, and other debris. The fill, where present, has a maximum thickness of approximately 2 metres. The fill unit was generally dry where encountered. Besides fill, silty clay with gravel was encountered in the majority of the boreholes at the Phase Two Property. The bedrock beneath the Phase Two Property consists of interbedded limestone and shale of the Middle Ordovician Verulam Formation. The upper portion of the bedrock (approximately 3 to 4 metres) is relatively weathered and fractured. Please refer to Cross-Sections presented as Figures 1-10A-B. The locations of the Cross-Sections are shown on Figure 1-08. The majority of the boreholes that were drilled across the Phase Two property did not encounter groundwater until the bedrock was reached. This is likely due to the relatively thin nature of the overburden which cannot support a shallow aquifer. The main water bearing zone was found to be the shallow bedrock, and this zone is considered to be the primary pathway for groundwater flow at the site. Hydraulic conductivity values for the overburden (silty clay with gravel) ranged between 3.17 x 10-4 m/s and 4.44 x 10-8 m/s with a geometric mean of 1 x 10-5 m/s, and for the upper bedrock
В.	approximate depth to bedrock,	Bedrock was encountered at various depths ranging approximately 0.0 m bgs to 4.27 m bgs during the Phase Two ESA investigation. Depth to bedrock is identified in the cross-sections shown on Figures 1-10A to 1-10B.
С.	approximate depth to water table,	Measured depths to groundwater ranges from 0.0.53 to 6.67 m bgs. Groundwater elevations and flow direction are illustrated in <i>Figure 1-09</i> .

Page 59 BluMetric

	Required Content	Comment
D.	any respect in which section 35, 41 or 43.1 of the regulation applies to	In respect of Section 35 pertaining to the use of non-potable site condition standards:
	the property,	Agricultural or other is NOT a land use intended for the Phase Two Property.
		The property is NOT located in an area designated in the municipal official plan as a well-head protection area or other designation identified by the municipality for the protection of groundwater.
		Properties adjacent to the east are currently on well water. These residences have agreed in writing to switch to municipal supply when water mains are installed as part of the development of the Phase Two Property.
		No Areas of Natural Significance or surface water bodies were identified on the Phase Two Property. Soil pH was found to be within the acceptable range. Therefore, Section 41 does not apply to the Phase Two Property.
		The site is considered to be a shallow soil property based on the average depth to bedrock (approximately 2 metres). Therefore Section 43.1 of the regulation applies to the Phase Two Property. No water bodies were identified on the Phase Two Property, nor within 30 metres of the Phase Two Property. The nearest water body
		is the Bay of Quinte, located approximately 30 metres south of the Phase Two Property.
E.	areas where soil has been brought from another property and placed on, in or under the Phase Two Property, and	Uncharacterized fill material was placed throughout the majority of the northern, central and southern portions of the Phase Two property. Fill material at the site was found at a maximum thickness of 2 metres. Fill was found to contain construction debris, metal, and pieces of solid resin.
	Troperty, and	Based on previous investigations, fill material on-site is impacted with various metals, PCBs, PHCs, and VOCs. No soil was brought from another property and placed on, in or under the Phase Two Property as backfill materials for the excavation or final grading purposes following remediation.
F.	1.1	There are currently no buildings on the Phase Two Property.
	known, of any proposed buildings and other structures.	The Phase Two Property is proposed to be developed for mixed commercial and residential use. The design and placement of proposed building is unknown at this time.
	tion iii. Where a contaminant is present, in or under the Phase Two Property at a concentration greater than the applicable site condition standard, identification of,	The evaluation of impacts in soil and groundwater is based upon analytical data obtained during this Phase Two ESA. While substantial environmental assessment work was completed in the 1990s and early 2000s, these reports have several limitations. Site condition standards have been revised and laboratory method detection limits of the 1990s were not sensitive enough for certain parameters which now have much lower criteria. Some parameters tested do not have SCS and are not listed in method groups in the current regulation. Several parameters were not extensively or uniformly tested across the Phase Two Property and good delineation is not available. Extensive earthworks that were carried out between 2005 and 2010, by the previous property owner, have significantly disturbed many areas of the property, and rendered much of the previous environmental data irrelevant.
		Please refer to <i>Figures 2-01</i> through <i>2-21</i> depicting plans and cross-sections of inferred locations and depth ranges of soil and groundwater impacts, based on analytical results compared with the applicable SCS.

Page 60 BluMetric

	Required Content	Comment
A.	each area where a	Figure 1-08 illustrates sampling locations with respect to the APECs. Figures 2-01
	contaminant is present on,	through 2-19 depict the locations of contaminant exceedances on the Property by
	in or under the Phase Two	analytical method group and delineate the areas of impact.
	Property at a concentration	
	greater than the applicable	Contaminant Impacts to Soils
	site condition standard,	Soil in the central, western, and eastern portions of the property was found to be impacted with a variety of metals, hydride forming metals, PHCs, PAHs, BTEX, ABNs, PCBs, and ORP, as shown in <i>Figures 2-01A</i> , <i>2-02A</i> , <i>2-04A</i> , <i>2-05A</i> , <i>2-06A</i> , <i>2-07A</i> , <i>2-08A</i> and <i>2-09A</i> .
		Soil in the western portion of the property was found to be impacted with VOCs (carbon tetrachloride and dichloroethane, trans-1,2-), as shown in Figure 2-03A.
		Other parameters including Organochlorine Pesticides (OC), Chlorophenol, pH, and SAR, were not found to exceed the applicable SCS in soil at the site.
		Contaminant Impacts to Groundwater
		Groundwater in the central portion of the property was found to be impacted with sodium and PCBs, as shown in <i>Figures 2-12A and 2-19A</i> .
		Groundwater in the central, eastern and western portions of the property was found to be impacted with VOCs, PHCs, PAHs, BTEX, and ORP, as shown in <i>Figures 2-14A</i> , <i>2-15A</i> , <i>2-16A</i> , <i>2-17A</i> and <i>2-18A</i> .
		Other parameters including ABNs, THMs, Chlorophenol were not found to exceed the applicable SCS in soil at the site.
В.	the contaminants	Contaminant Impacts to Soils
	associated with each of the areas referred to in	Metals: Barium, Molybdenum, Vanadium, Lead, Cadmium, Copper, Zinc, Nickel, Thallium
	subparagraph A,	Hydride Forming Metals: Arsenic, Selenium
	Jasparagraph 7 t,	VOCs: Carbon Tetrachloride, Dichloroethene, trans-1,2-
		Other Regulated Parameters (ORPs) in soil: Mercury, Boron (hot water soluble), electrical conductivity
		PHCs: F1, F2, F3, and F4 fractions
		PAHs: Acenaphthylene, Anthracene, Benzo(a)anthracene, Benzo(a)pyrene,
		Benzo(b)fluoranthene, Benzo(g,h,i)perylene, Benzo(k)fluoranthene, Chrysene,
		Dibenzo(a,h)anthracene, Fluoranthene, Indeno(1,2,3-cd)pyrene, Methylnaphthalene, 1+2-, Methylnaphthalene, 1-, Methylnaphthalene, 2-,
		Naphthalene, Phenanthrene, Pyrene
		ABNs: Bis(2-chloroethyl)ether, Bis(2-chloroisopropyl)ether, Phenol
		BTEX: Benzene, Toluene, Xylenes
		• PCBs
		Contaminant Impacts to Groundwater
		Metals: Sodium
		• VOCs: Bromomethane, Dichlorobenzene, 1,4-,, Dichloroethene, 1,1-, Tetrachloroethene
		Other Regulated Parameters (ORPs) in soil: Mercury, Chloride
		• PHCs: F1, F2, F3, and F4 fractions
		PAHs: Anthracene, Benzo(a) anthracene, Benzo(a) pyrene, Panzo(b) fluoranthone, Benzo(g h i) perulana, Benzo(l) fluoranthone, Chrysene
		Benzo(b)fluoranthene, Benzo(g,h,i)perylene, Benzo(k)fluoranthene, Chrysene, Dibenzo(a,h)anthracene, Indeno(1,2,3-cd)pyrene, Naphthalene, Pyrene
		BTEX: Benzene, Toluene, XylenesPCBs

Page 61 BluMetric

	Required Content	Comment
C.	each medium in which a	• Soil
	contaminant associated with an area referred to in	Groundwater
	subparagraph A is present,	
D.	a description and	Contaminant Impacts to Soils and Groundwater
	assessment of what is	The soil impacts identified relate to waste storage and management practices during
	known about each of the	industrial operations at the Property and the importation of fill of unknown quality
	areas referred to in	within the Property. During the earlier operation of the Bakelite plant, some of the
	subparagraph A,	facility's solid and liquid industrial wastes were buried on the Phase Two Property. The liquid products were generally stored in drums and then buried. The solid
		waste, such as out of specification products, were generally deposited directly in the
		dumps at the site. Fill was also distributed throughout this area, redistributed and
		regraded during demolition and earthworks undertaken by a previous owner from
		2005 to 2011. The soil impacts identified in this present Phase Two ESA constitutes
Ļ		residual contamination.
E.	the distribution, in each of the areas referred to in	Contaminant Impacts to Soils
	subparagraph A, of each	Figures 2-01 through 2-09 show the distribution of soil impacts across the property.
	contaminant present in the	- <i>G</i>
	area at a concentration	The contaminant impacts listed above are considered to be residual contamination
	greater than the applicable	from previous waste disposal and management practices at the property and the
	site condition standard, for	distribution of fill.
	each medium in which the contaminant is present,	Contaminant impacts were identified in discontinuous locations scattered
	together with figures	throughout northern, eastern, and western portions of the Phase Two Property.
	showing the distribution,	These impacts were found throughout the overburden profile, from surface to
		bedrock.
		Contaminant Impacts to Groundwater
		Contaminant impacts to Groundwater
		Figures 2-12 through 2-21 show the distribution of groundwater impacts across the
		property.
		The contaminant impacts listed above are considered to be residual contamination
		from previous waste disposal and management practices at the property.
		Contaminant impacts were identified in discontinuous locations scattered
		throughout northern, eastern, and western portions of the Phase Two Property.
F	Anything known about the	These impacts were found throughout the shallow bedrock aquifer. Contaminant Impacts to Soils and Groundwater
•	reason for the discharge of	The contaminants identified relate to waste storage and management practices
	the contaminants present	during industrial operations at the property and the importation of fill of unknown
	on, in or under the Phase	quality on the property.
	Two Property at a	
	concentration greater than the applicable site	
	condition standard into the	
	natural environment,	

Page 62 BluMetric

	Required Content	Comment
	Anything known about migration of the contaminants present on, in or under the Phase Two Property at a concentration greater than the applicable site condition standard away from any area of potential environmental concern, including the identification of any preferential pathways,	Contaminant Impacts to Soils The Phase Two Property meets the conditions of a shallow soils site. Impacts to shallow soils were identified. Impacts to groundwater were also identified under the Phase Two Property. Contaminants identified in soil and groundwater are not expected to have migrated significantly away for the identified APECs and no preferential migration pathways were identified. Any dispersion of contaminants is likely associated with earthworks and grading activities undertaken on site.
H.	Climatic or meteorological conditions that may have influenced distribution and migration of the contaminants, such as temporal fluctuations in groundwater levels, and	Climatic or meteorological conditions could influence the distribution and migration of any identified contaminants by raising or lowering the groundwater table. Fluctuations in groundwater level due to climatic or meteorological conditions are likely to have occurred over time, but these fluctuations are unlikely to have significantly affected the distribution or migration of contaminants, based on geology. Impacts to groundwater were identified and the majority of impacts found in soil were relatively insoluble parameters (metals, antimony PAH, F2 & F3 PHC and ABN). More soluble contaminants such as mercury, VOCs, BTEX.) were dispersed throughout the site with no clear trend of migration. This suggests that their presence is associated with placement and or grading of poor-quality fill throughout the central, eastern, and western portion of the Phase Two Property.
7.	If applicable, information concerning soil vapour intrusion of the contaminants into building including, (1) relevant construction features of a building, such as a basement or crawl space, (2) building heating, ventilation and air conditioning design and operation, (3) subsurface utilities.	There are no buildings on the Phase Two Property, and therefore vapour intrusion into buildings on the Phase Two Property is not relevant. The majority of impacts found in surficial soil across the Phase Two property were from contaminants with minimal volatility (metals, antimony, low-level PAHs, ABN, EC, B(HWS)). Other potentially more volatile contaminants such as benzene, toluene, CN-, mercury and PHCs were detected intermittently in discrete pockets across the site, which were delineated during the Phase Two ESA. These contaminants do not appear to be migrating and were detected in groundwater samples from the property. There is future risk of vapour intrusion into new buildings proposed for the site.

Page 63 BluMetric

Required Content	Comment
Section iv. Where contaminants on, in or under the Phase Two Property are present at concentrations greater than the applicable site condition standard, one or more cross-sections showing the lateral and vertical distribution, approximate depth to water table, stratigraphy from ground surface to the deepest aquifer/aquitard investigated, and any subsurface structures.	Impacts to Soil Cross-sections describing the vertical and lateral distribution of impacts to soil are shown in the following Figures: Figure 2-01B and 2-01K: Metal Impacts Figure 2-02B and 2-02H: Hydride Forming Metals Impacts Figure 2-03B and 2-03C: VOC Impacts Figure 2-04B and 2-04L: PHC Impacts Figures 2-04B and 2-05L: PAH Impacts Figures 2-06B and 2-05L: PAH Impacts Figures 2-06B and 2-06J: BTEX Impacts Figures 2-07B and 2-07E: ABN Impacts Figures 2-08B and 2-09J: PCB Impacts Figures 2-09B and 2-09G: ORP Impacts Figures 2-09B and 2-09G: ORP Impacts Impacts to Groundwater Cross-sections describing the vertical and lateral distribution of impacts to groundwater are shown in the following Figures: Figure 2-12B and 2-12C: Metal Impacts Figure 2-14B and 2-14F: VOC Impacts Figure 2-15B and 2-15I: PHC Impacts Figures 2-16B and 2-16F: PAH Impacts Figures 2-17B and 2-17F: BTEX Impacts Figures 2-18B and 2-18C: ORP Impacts Figures 2-19B: PCB Impacts
Section v. For each area where a contaminant is present on, in or under the property at a concentration greater than the applicable site condition standard for the contaminant, a diagram identifying the release mechanisms, contaminant transport pathway, the human and ecological receptors located on, in, or under the Phase Two Property, receptor exposure points, and routes of exposure.	The exposure routes for humans and ecological receptors pertaining to the impacts in fill material in the southern portion of the Property are presented in Figures 3-1A to 3-1D. There are no surface waterbodies or areas of sediment present on the property, and as such these media do not represent contaminant sources. Contaminants on the Phase Two property include metals, hydride forming metals, PHCs, PAHs, BTEX, ABNs, PCBs, and ORP in soil as a result of waste storage and management practices during industrial operations and the importation of fill of unknown quality within central, eastern, and western portion of the property. Groundwater contaminants on the Phase Two Property include sodium, PCBs, VOCs, PHCs, PAHs, BTEX, and ORP. Current human receptors at the site include Trespasser, MUC Workers, Occasional Contract Workers, and Off-site Receptors. These receptors may be exposed to COCs in soil through ingestion or dermal contact as result of direct contact with soil as well as through the inhalation of soil particles that become airborne in outdoor air. Trespassers, MUC Workers, and Occasional Contract Workers may also be exposed by inhalation to compounds in soil and groundwater that volatilize into outdoor air. Off-site Receptors may be exposed to COCs in soil through the inhalation of soil particles that become airborne and migrate through outdoor air or migrate to inside a building. Exposure through inhalation of volatile compounds is not considered operable for Off-Site Receptors.

Page 64 BluMetric

Required Content	Comment
Section v. (continued) For each	Future human receptors at the site include Residents, Indoor Workers, MUC
area where a contaminant is	Workers and Off-site Receptors. The Resident and Indoor Worker receptors may be
present on, in or under the	exposed to COCs in soil through the inhalation of soil particles that become
property at a concentration	airborne and migrate through outdoor air or through soil particles that become
greater than the applicable	airborne and migrate to inside a building, or through inhalation of volatile
site condition standard for	compounds in soil and groundwater to in indoor air or outdoor air. These receptors
the contaminant, a diagram	may also be exposed to COCs in soil through ingestion or dermal contact as result
identifying the release	of direct contact with soil. The MUC Worker may be exposed to COCs in soil
mechanisms, contaminant	through the inhalation of soil particles that become airborne in outdoor air or
transport pathway, the	through ingestion and dermal contact as a result of direct contact with soils, or
human and ecological receptors located on, in, or	through the inhalation of volatile compounds. Off-site Receptors may be exposed to COCs in soil through the inhalation of soil particles that become airborne and
under the Phase Two	migrate through outdoor air or migrate to inside a building. Exposure through
Property, receptor exposure	inhalation of volatile compounds is not considered operable for Off-site Receptors.
points, and routes of	initial attorn of volatile compounds is not considered operable for On-site Receptors.
exposure.	The Phase Two property does not have a garden, and no ingestible biota are grown
exposure.	on the Phase Two Property. Therefore, ingestion of local food items is not a
	complete exposure route for human receptors.
	There are no surface water or sediment, and as such there are no completed
	exposure routes for these media.
Section v. (continued) For each	Ecological receptors at the site include Plants, Soil Organisms and Mammals and
area where a contaminant is	Birds. Plants may be exposed to COCs in soil through uptake from foliar deposition
present on, in or under the	as a result of soil particles that have become airborne. Plants may also be exposed to
property at a concentration	COCs in soil and groundwater through root uptake from direct contact with soils.
greater than the applicable	Soil organisms, Mammals and Birds may be exposed to COCs in soil through dermal
site condition standard for	contact as a result of soil particles that have become airborne. These receptors may
the contaminant, a diagram	also be exposed to COCs in soil and groundwater through dermal contact and
identifying the release	ingestion as a result of direct contact with soils or groundwater, and through
mechanisms, contaminant	inhalation of volatile compounds in outdoor air. Soil organisms, Mammals and Birds
transport pathway, the	may also ingest food web items that have been exposed to COCs in soil and
human and ecological receptors located on, in, or	groundwater.
under the Phase Two	
Property, receptor exposure	
points, and routes of	
exposure.	
chposuic.	

The Conceptual Site Model (CSM) makes reference to the following figures:

Table 22: CSM Figure Mandatory Requirements

Figure #	Description
Figure 1-01: Phase One Property and	Presents the location of the Phase Two Property and the extent of the
Study Area	Phase One Study Area.
Figure 1-02: Topographical Map,	Shows the location of any Areas of Natural Significance and/or water
Areas of Natural Significance and	bodies that are on, or within 30 m of, the Phase Two Property
Water Bodies	
Figure 1-03: Decision Matrix	Shows the decision matrix to determine the applicable Site Condition
	Standards (SCS) for the Phase Two Property.
Figure 1-04: MECP Well Records Map	Shows the locations of all reported wells on the Phase Two Property and
	within the Phase One Study Area.
Figure 1-05: Phase One Property Site	Shows the locations of the historical and existing site features on the Phase
Features	Two Property.

Page 65 BluMetric

Figure #	Description
Figure 1-07A: CSM – Potentially	Shows the locations of on-site and off-site PCAs on the Phase Two
Contaminating Activities	Property and within the Phase One Study Area identified in the Phase One
3	ESA.
Figure 1-07B: CSM - Phase Two	Shows the locations of APECs on the Phase Two Property that would result
Property	from the PCAs identified in the Phase One ESA.
Figure 1-08: Sampling Locations and	Shows a plan view of the locations of boreholes and monitoring wells
Profile Locations with APECs	advanced during the Phase Two ESA investigation, and the locations of
	Cross-Sections A-A' to Q-Q'
Figures 1-08A to 1-08Q: General	The cross-sections illustrate the stratigraphy encountered during the Phase
Stratigraphy - Cross-Section A-A' to Q-	Two ESA, the static groundwater elevations observed, and any located
Q'	subsurface structures or utilities if present.
Figure 1-9: Groundwater Elevations &	Illustrates the local groundwater flow direction based on measured ground
Inferred Flow Direction	surface and static shallow groundwater elevations within the Phase Two
	Property.
Figure 2-01A: Impacts in Soil – Metals	Sample locations and concentrations for Metals contaminants that exceed
	the applicable SCS and associated lateral delineation.
Figure 2-01B to Figure 2-01K: Impacts	Cross-sections illustrate the lateral and vertical distribution of Metal
to Soil – Metals Cross-Section B-B', C-	contaminant impacts to soils, the stratigraphy, the observed water table,
C', D-D', E-E', F-F', J-J', K-K', L-L', and	and any subsurface structures and/or utilities, if present.
0-0'	
Figure 2-02A: Impacts in Soil –	Sample locations and concentrations for Hydride-Forming Metals
Hydride-Forming Metals (HFM)	contaminants that exceed the applicable SCS and associated lateral
	delineation.
Figure 2-02B to Figure 2-01G: Impacts	Cross-sections illustrate the lateral and vertical distribution of HFMs
to Soil – HFMs Cross-Section C-C', J-	contaminant impacts to soils, the stratigraphy, the observed water table,
J', K-K', L-L', M-M', and N-N'	and any subsurface structures and/or utilities, if present.
Figure 2-03A: Impacts in Soil – VOCs	Soil sample locations and concentrations for VOC contaminants that
	exceed the applicable SCS and associated lateral delineation.
Figure 2-03B to Figure 3-01C: Impacts	Cross-sections illustrate the lateral and vertical distribution of VOCs
to Soil – VOCs Cross-Section A-A' and	contaminant impacts to soils, the stratigraphy, the observed water table,
B-B'	and any subsurface structures and/or utilities, if present.
Figure 2-04A: Impacts in Soil – PHCs	Soil sample locations and concentrations for PHC contaminants that exceed
	the applicable SCS and associated lateral delineation.
Figure 2-04B to Figure 2-04L: Impacts	Cross-sections illustrate the lateral and vertical distribution of PHCs
to Soil – PHCs Cross-Section A-A', B-	contaminant impacts to soils, the stratigraphy, the observed water table,
B', C-C', D-D', E-E', F-F', G-G', H-H',	and any subsurface structures and/or utilities, if present.
K-K', N-N', and O-O'	
Figure 2-05A: Impacts in Soil – PAHs	Soil sample locations and concentrations for PAH contaminants that exceed
	the applicable SCS and associated lateral delineation.
Figure 2-01B to Figure 2-01M: Impacts	Cross-sections illustrate the lateral and vertical distribution of PAH
to Soil – PAHs Cross-Section A-A', B-	contaminant impacts to soils, the stratigraphy, the observed water table,
B', D-D', E-E', F-F', H-H', J-J', K-K', L-	and any subsurface structures and/or utilities, if present.
L', M-M', N-N', and O-O'	Coil comple le estione and consentuations for DTTV contentions to the
Figure 2-06A: Impacts in Soil – BTEX	Soil sample locations and concentrations for BTEX contaminants that
Eigene 2 06D to Eigene 2 061, Impressed	exceed the applicable SCS and associated lateral delineation. Cross-sections illustrate the lateral and vertical distribution of BTEX
Figure 2-06B to Figure 2-06J: Impacts	
to Soil – BTEX Cross-Section A-A', B-B', D-D', E-E', E-E', L-I', M-M', N-N'	contaminant impacts to soils, the stratigraphy, the observed water table, and any subsurface structures and/or utilities, if present.
B', D-D', E-E', F-F', J-J', M-M', N-N',	and any subsurface structures and/or utilities, it present.
and O-O' Figure 2-07A: Impacts in Soil – ABNs	Soil sample locations and concentrations for ABN contaminants that
rigure 2-07A: impacts in soil – ABNS	exceed the applicable SCS and associated lateral delineation.
Figure 2-07B to Figure 2-07E: Impacts	Cross-sections illustrate the lateral and vertical distribution of ABN
to Soil – PAHs Cross-Section D-D', E-	contaminant impacts to soils, the stratigraphy, the observed water table,
E', F-F', and O-O'	and any subsurface structures and/or utilities, if present.

Page 66 BluMetric

Figure #	Description
Figure 2-08A: Impacts in Soil – PCBs	Soil sample locations and concentrations for PCB contaminants that exceed
	the applicable SCS and associated lateral delineation.
Figure 2-08B to Figure 2-08J: Impacts	Cross-sections illustrate the lateral and vertical distribution of PCB
to Soil – PAHs Cross-Section C-C', D-	contaminant impacts to soils, the stratigraphy, the observed water table,
D', E-E', F-F', H-H', I-I', J-J', K-K', L-L',	and any subsurface structures and/or utilities, if present.
and M-M'	
Figure 2-09A: Impacts in Soil – ORP	Soil sample locations and concentrations for ORP contaminants that
	exceed the applicable SCS and associated lateral delineation.
Figure 2-09B to Figure 2-09G:	Cross-sections illustrate the lateral and vertical distribution of ORP
Impacts to Soil – ORPs Cross-Section	contaminant impacts to soils, the stratigraphy, the observed water table,
A-A', D-D', I-I', K-K', L-L', N-N', and	and any subsurface structures and/or utilities, if present.
0-0,	
Figure 2-10A: Impacts in Soil – OCs	Soil sample locations and concentrations for OCs contaminants that exceed
	the applicable SCS and associated lateral delineation.
Figure 2-11A: Impacts in Soil – CPs	Soil sample locations and concentrations for CPs contaminants that exceed
	the applicable SCS and associated lateral delineation.
Figure 2-12A: Impacts in Groundwater	Groundwater sample locations and concentrations for Metal contaminants
- Metals	that exceed the applicable SCS and associated lateral delineation.
Figure 2-12B to Figure 2-12C: Impacts	Cross-sections illustrate the lateral and vertical distribution of Metals
to Groundwater – Metals Cross-	contaminant impacts to groundwater, the stratigraphy, the observed water
Section L-L' and N-N'	table, and any subsurface structures and/or utilities, if present.
Figure 2-13A: Impacts to	Groundwater sample locations and concentrations for ABN contaminants
Groundwater – ABNs Figure 2-14A: Impacts to	that exceed the applicable SCS and associated lateral delineation.
Groundwater – VOCs	Groundwater sample locations and concentrations for VOC contaminants that exceed the applicable SCS and associated lateral delineation.
Figure 2-14B to Figure 2-14F: Impacts	Cross-sections illustrate the lateral and vertical distribution of VOC
to Groundwater – VOCs Cross-Section	contaminant impacts to groundwater, the stratigraphy, the observed water
B-B', H-H', L-L'. N-N', and O-O'	table, and any subsurface structures and/or utilities, if present.
Figure 2-15A: Impacts to	Groundwater sample locations and concentrations for PHCs contaminants
Groundwater – PHCs	that exceed the applicable SCS and associated lateral delineation.
Figure 2-15B to Figure 2-15I: Impacts	Cross-sections illustrate the lateral and vertical distribution of PHCs
to Groundwater – PHCs Cross-Section	contaminant impacts to groundwater, the stratigraphy, the observed water
A-A', B-B', E-E', H-H', L-L'. N-N', O-	table, and any subsurface structures and/or utilities, if present.
O', and P-P'	
Figure 2-16A: Impacts to	Groundwater sample locations and concentrations for PAH contaminants
Groundwater – PAHs	that exceed the applicable SCS and associated lateral delineation.
Figure 2-16B to Figure 2-16F: Impacts	Cross-sections illustrate the lateral and vertical distribution of PAH
to Groundwater – PAHs Cross-Section	contaminant impacts to groundwater, the stratigraphy, the observed water
A-A', B-B', H-H', N-N', and Q-Q'	table, and any subsurface structures and/or utilities, if present.
Figure 2-17A: Impacts to	Groundwater sample locations and concentrations for BTEX contaminants
Groundwater – BTEX	that exceed the applicable SCS and associated lateral delineation.
Figure 2-17B to Figure 2-17F: Impacts	Cross-sections illustrate the lateral and vertical distribution of BTEX
to Groundwater – BTEX Cross-Section	contaminant impacts to groundwater, the stratigraphy, the observed water
K-K', L-L', N-N', O-O', and P-P' Figure 2-18A: Impacts to	table, and any subsurface structures and/or utilities, if present. Groundwater sample locations and concentrations for ORP contaminants
Groundwater – ORPs	that exceed the applicable SCS and associated lateral delineation.
Figure 2-18B to Figure 2-18C: Impacts	Cross-sections illustrate the lateral and vertical distribution of ORP
to Groundwater – ORPs Cross-Section	contaminant impacts to groundwater, the stratigraphy, the observed water
L-L' and P-P'	table, and any subsurface structures and/or utilities, if present.
Figure 2-19A: Impacts to	Groundwater sample locations and concentrations for PCB contaminants
Groundwater – PCBs	that exceed the applicable SCS and associated lateral delineation.
Figure 2-19B: Impacts to Groundwater	Cross-sections illustrate the lateral and vertical distribution of PCB
- PCBs Cross-Section K-K'	contaminant impacts to groundwater, the stratigraphy, the observed water
	table, and any subsurface structures and/or utilities, if present.

Page 67 BluMetric

Figure #	Description
Figure 2-20A: Impacts to	Groundwater sample locations and concentrations for THM contaminants
Groundwater – THMs	that exceed the applicable SCS and associated lateral delineation.
Figure 2-21A: Impacts to	Groundwater sample locations and concentrations for CPs contaminants
Groundwater – CPs	that exceed the applicable SCS and associated lateral delineation.
Figure 3-01A: Potentially Complete	Shows the release mechanisms, contaminant transport pathways, and the
Exposure Routes for Human	human receptors located on, in or under the Phase Two Property, receptor
Receptors Prior to Remediation	exposure points, and routes of exposure, as required under Section 9 of
	Ontario Regulation 153/04 (as amended).
Figure 3-01B: Potentially Complete	Shows the release mechanisms, contaminant transport pathways, and the
Exposure Routes for Ecological	ecological receptors located on, in or under the Phase Two Property,
Receptors Prior Remediation	receptor exposure points, and routes of exposure, as required under
	Section 9 of Ontario Regulation 153/04 (as amended).
Figure 3-01C: Potentially Complete	Shows the release mechanisms, contaminant transport pathways, and the
Exposure Routes for Human	human receptors located on, in or under the Phase Two Property, receptor
Receptors After Remediation	exposure points, and routes of exposure, as required under Section 9 of
	Ontario Regulation 153/04 (as amended).
Figure 3-01D: Potentially Complete	Shows the release mechanisms, contaminant transport pathways, and the
Exposure Routes for Ecological	ecological receptors located on, in or under the Phase Two Property,
Receptors After Remediation	receptor exposure points, and routes of exposure, as required under
	Section 9 of Ontario Regulation 153/04 (as amended).

Page 68 BluMetric

7 CONCLUSIONS

Historically the Phase Two Property was used as part of the former Bakelite property for industrial and commercial purposes. From 1947 to 1959, the property was owned and operated by the Bakelite Company of Canada. In 1959, the property and operations were purchased by Union Carbide Canada and then transferred to Bakelite Thermoset Limited in 1976. The property was sold to Mr. Jim Sinclair under the name Thermoset Limited in 2006; Mr. Sinclair intended to redevelop the property. Extensive earthwork and building demolition were conducted between 2006 and 2009. During this period, part of the Phase Two property was used as a waste transfer station for recyclable materials. In 2011, the Phase Two property was purchased by the current owner, 2255718 Ontario Inc.

Based on the findings of the Phase One ESA, a total of 18 PCAs were identified which may pose environmental concerns for the Phase Two Property, and as such 45 corresponding APECs were defined. A Phase Two ESA was recommended to assess any subsurface impacts arising from the identified PCAs and APECs. The scope of the Phase Two ESA included sampling historical wells existing on the property, drilling boreholes for the purpose of collecting soil samples, and installing groundwater monitoring wells to evaluate the significance of the APECs identified in the Phase One ESA. Representative soil and groundwater samples were analyzed for the contaminants of potential concern identified, including PHCs, BTEX, metals, VOCs, PCBs, and PAHs. Representative soil samples were also analyzed for metals, HFMs, PHCs, BTEX, VOCs, PCBs, PAHS, and ORPs for excess soil management purposes.

7.1 Has The Phase Two ESA Determined The Presence Of Contaminant Impacts On The Phase Two Property?

Phase Two ESA has determined that there are multiple contaminant impacts on the Phase Two Property. Both soil and groundwater samples exceeded the applicable Table 7 SCS.

7.2 LIMITING CONDITIONS, QP STATEMENT, AND QP SIGNATURE

This Phase Two ESA report was performed in accordance with the substance and intent of the Guideline for Professional Engineers Providing Services in Environmental Site Assessment, Remediation and Management published by Professional Engineers Ontario (PEO), and the requirements for Phase Two Environmental Site Assessments described in O. Reg. 153/04. The conclusions presented in this report represent our professional opinion and are based on the conditions observed on the dates set out in the report, the information available at the time this report was prepared, the scope of work, and any limiting conditions noted herein.

Page 69 BluMetric

BluMetric Environmental Inc. provides no assurances regarding changes to conditions subsequent to the time of the assessment. BluMetric Environmental Inc. makes no warranty as to the accuracy or completeness of the information provided by others or of the conclusions and recommendations predicated on the accuracy of that information.

This report has been prepared for 2255718 ONTARIO INC Any use a third party makes of this report, any reliance on the report, or decisions based upon the report, are the responsibility of those third parties unless authorization is received from BluMetric Environmental Inc. in writing.

BluMetric Environmental Inc. accepts no responsibility for any loss or damages suffered by any unauthorized third party as a result of decisions made or actions taken based on this report.

This report was written by Emily Leblanc, B.SC, P.Geo and Erica Gray, B.E.S of BluMetric Environmental Inc. QA/QC review of the report has been completed by Alessandro Pellerito, M.Sc., P.Eng., of BluMetric Environmental Inc.

Statement and Signature of the Qualified Person

This Phase Two Environmental Site Assessment includes the evaluation of information gathered during previous assessments, site investigations including the collection of samples and taking measurements, and chemical analysis of selected samples. It has been conducted in accordance with O. Reg. 153/04 by or under the supervision of a qualified person.

Respectfully submitted, BluMetric Environmental Inc.

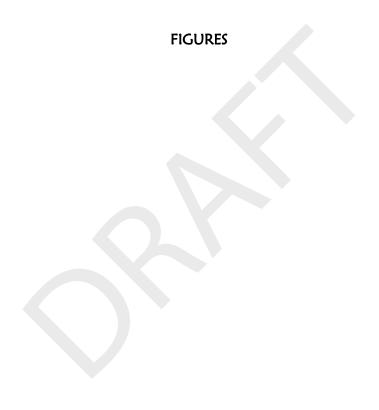
DRAFT

Emily Leblanc, B.SC, P.Geo. Geoscientist DRAFT

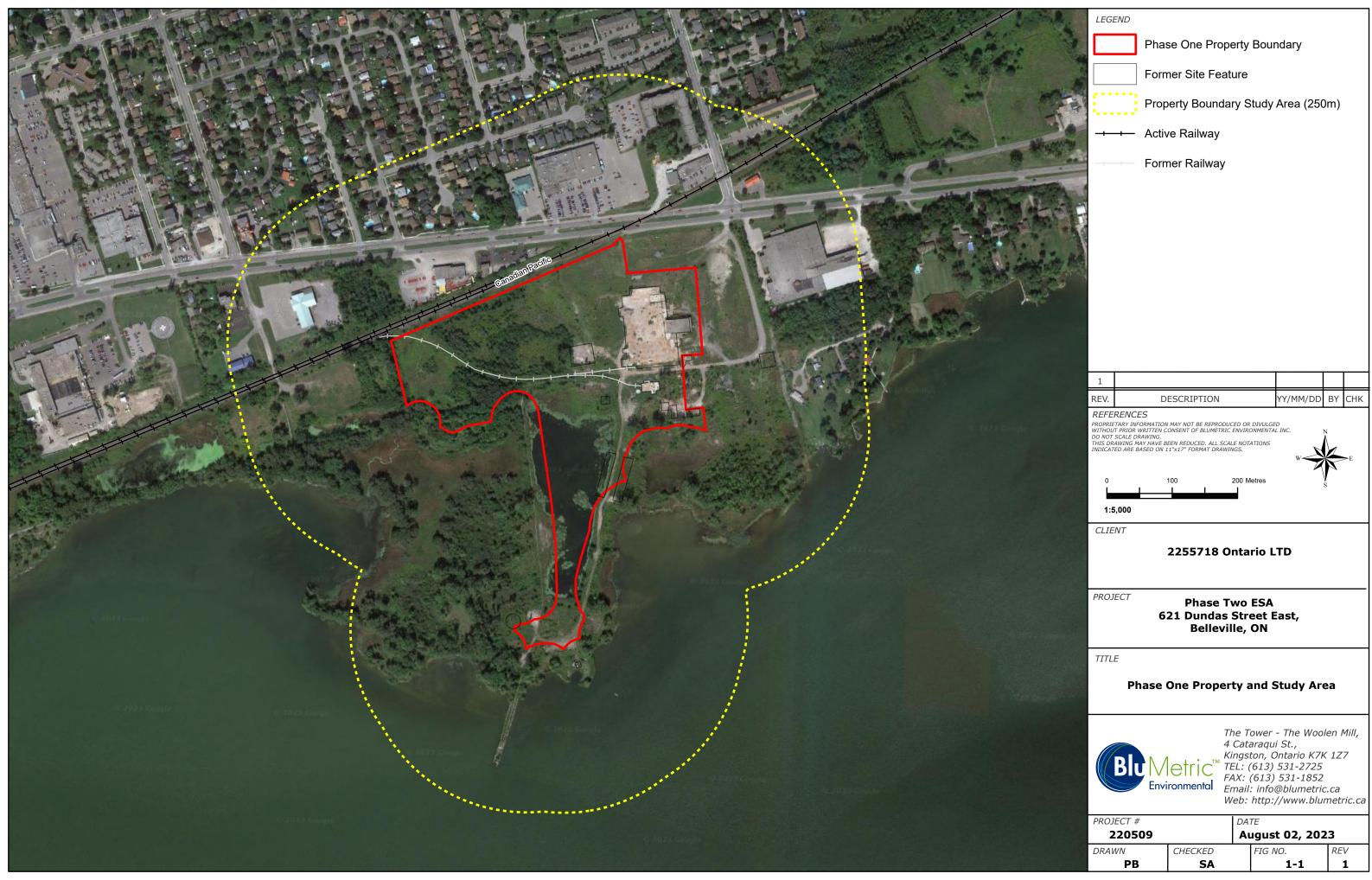
Erica Gray, B.E.S. Senior Environmental Scientist, Risk Assessor

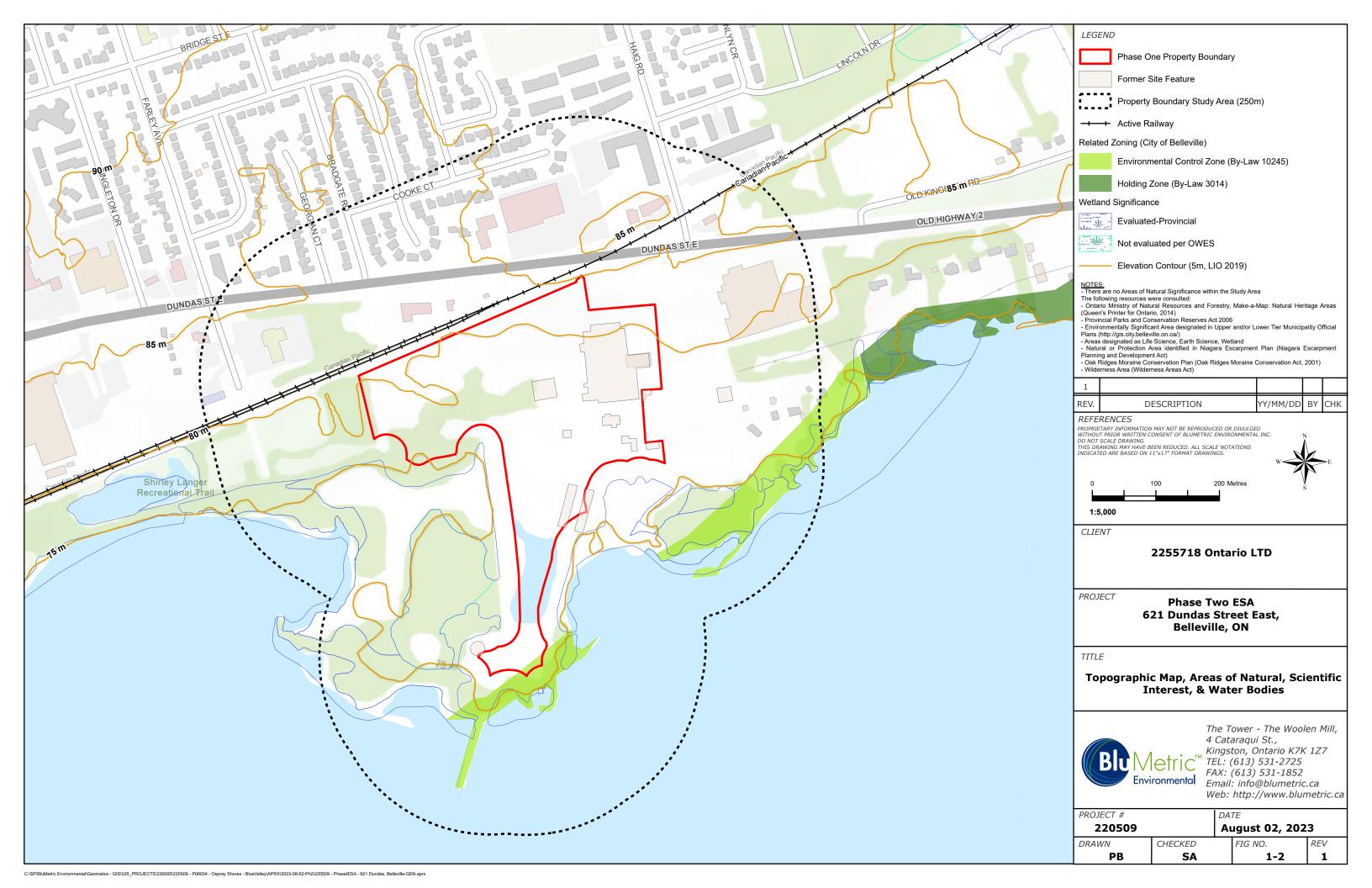
DRAFT

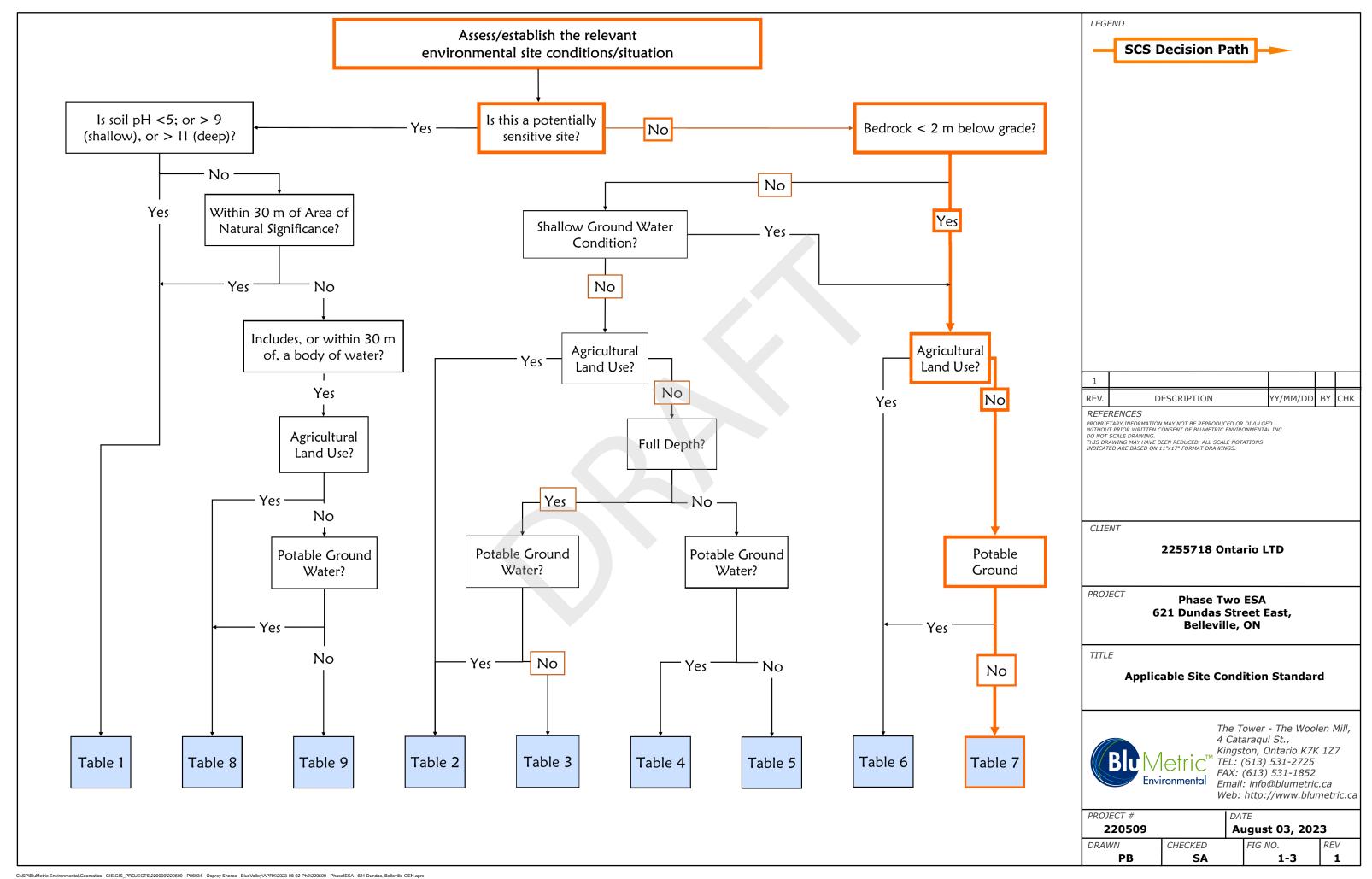
Alessandro Pellerito, PhD., C.Chem., P. Eng. QP_{ESA} Senior Environmental Engineer

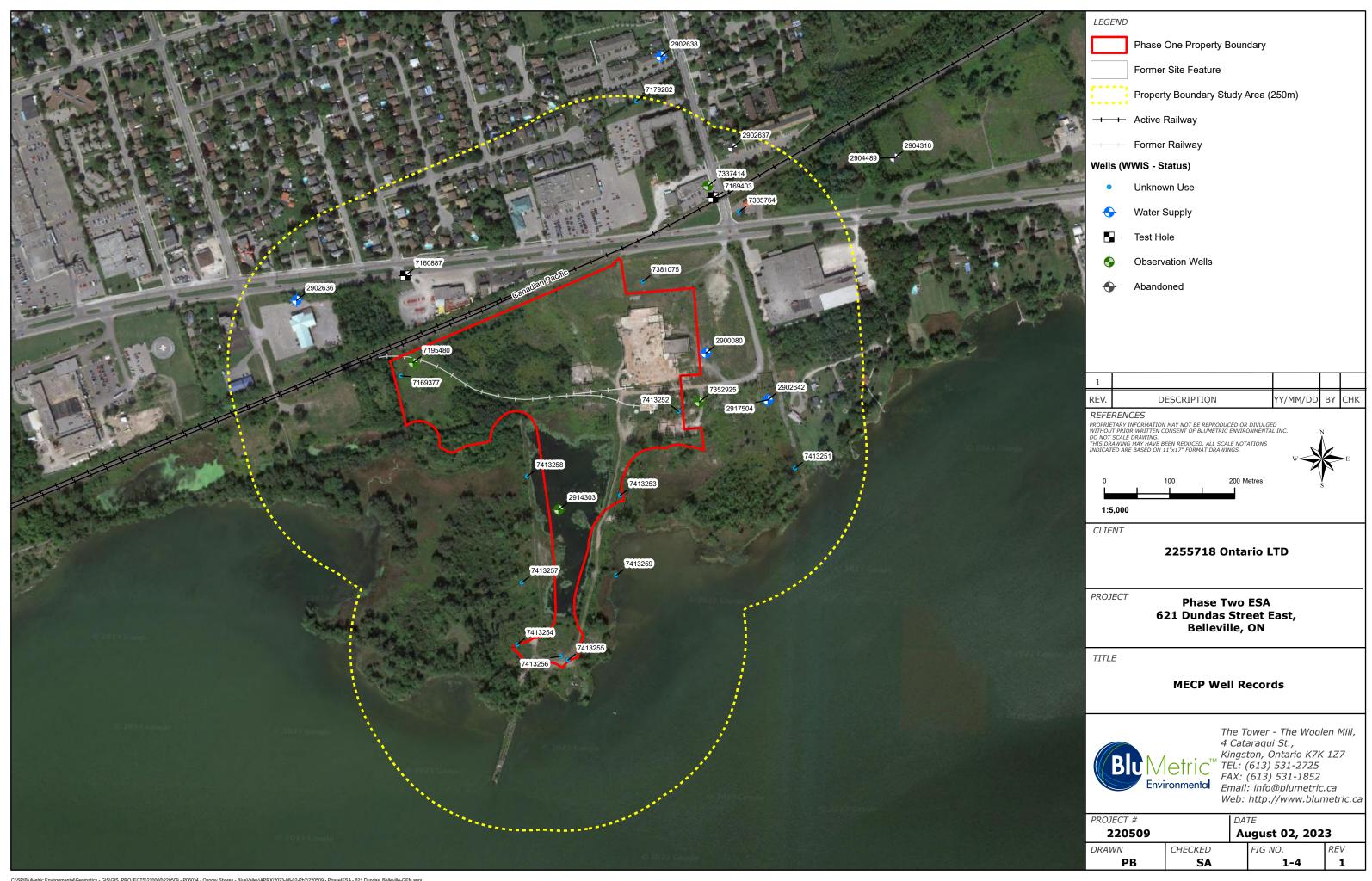

Page 70 BluMetric

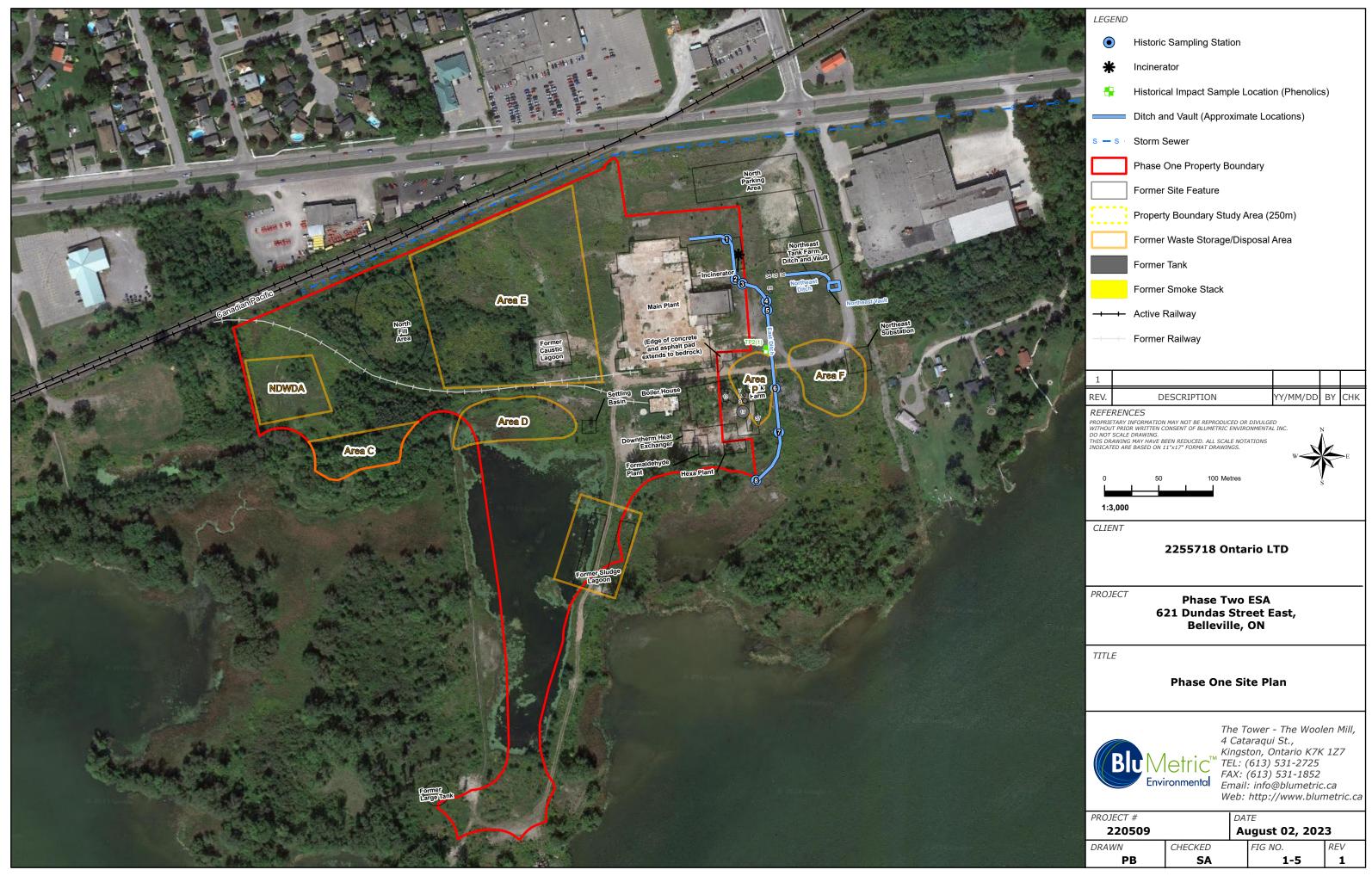
8 REFERENCES

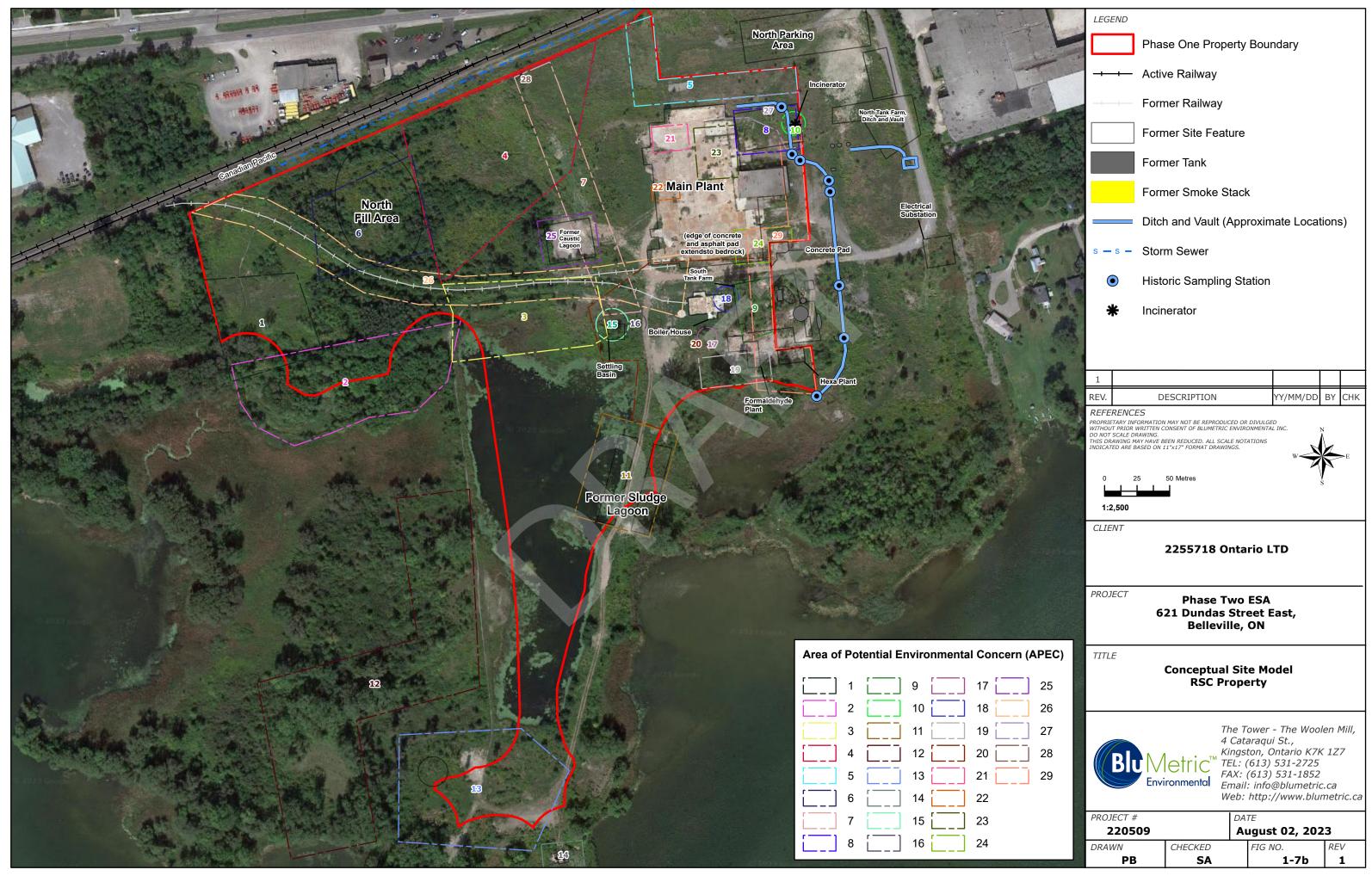

- BluMetric Environmental Inc., 2022, Summary of finding from the July 2022 groundwater sampling and well inspection event.
- BluMetric Environmental Inc., 2023, *Phase One Environmental Site Assessment Update*, 621 Dundas Street East, Belleville, Ontario. August 2023.
- Ontario Ministry of Environment, 2004, *Technical Guidance Manual for Phase II Environmental Site Assessments in Ontario* (MOE).
- Ontario Ministry of the Environment (MOE), 2011. Soil, Ground Water and Sediment Standards for Use Under Part XV.I of the Environmental Protection Act. PIBS 7382e01. April.
- Ontario Geological Survey 2010. Surficial geology of southern Ontario; Ontario Geological Survey, Miscellaneous Release—Data 128 Revised.
- Ontario Geological Survey 2011. 1:250 000 scale bedrock geology of Ontario; Ontario Geological Survey, Miscellaneous Release–Data 126 Revision 1.
- Queen's Printer, 2011. Soil, Ground Water and Sediment Standards for Use Under Part XV.1 of the Environmental Protection Act.
- Michalski Nielsen Associates Ltd (Michalski Nielsen). 2012. Memorandum from Gord Nielsen to lan Brady Regarding the Former Bakelite Site. 21 September 2012.
- WESA. 2012. Phase I Environmental Site Assessment, Former Bakelite property at 621 Dundas Street East, Belleville, Ontario. January 2012.
- WESA. 2012. Phase II Environmental Site Assessment, Former Bakelite property at 621 Dundas Street East, Belleville, Ontario. January 2012.

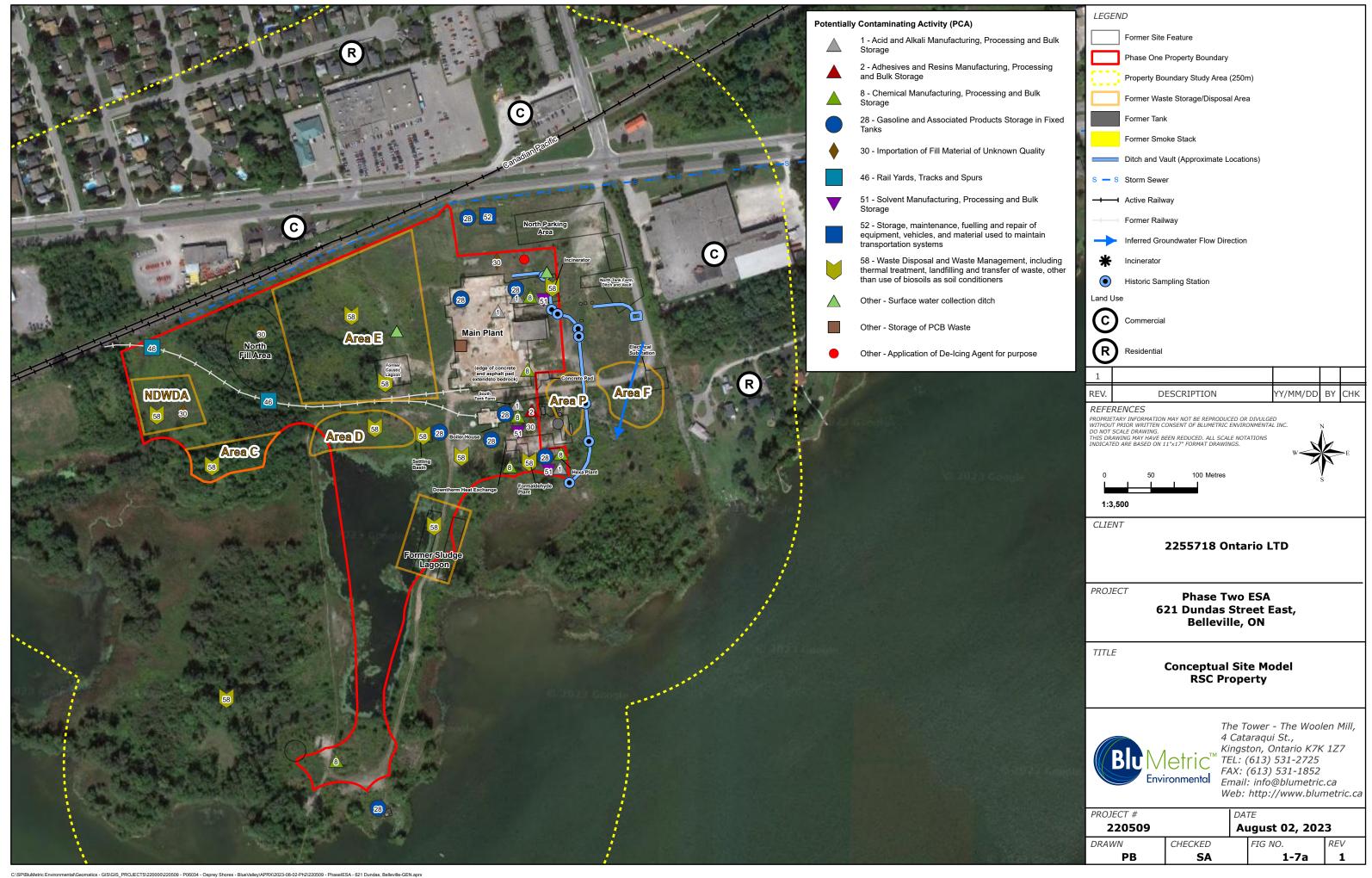


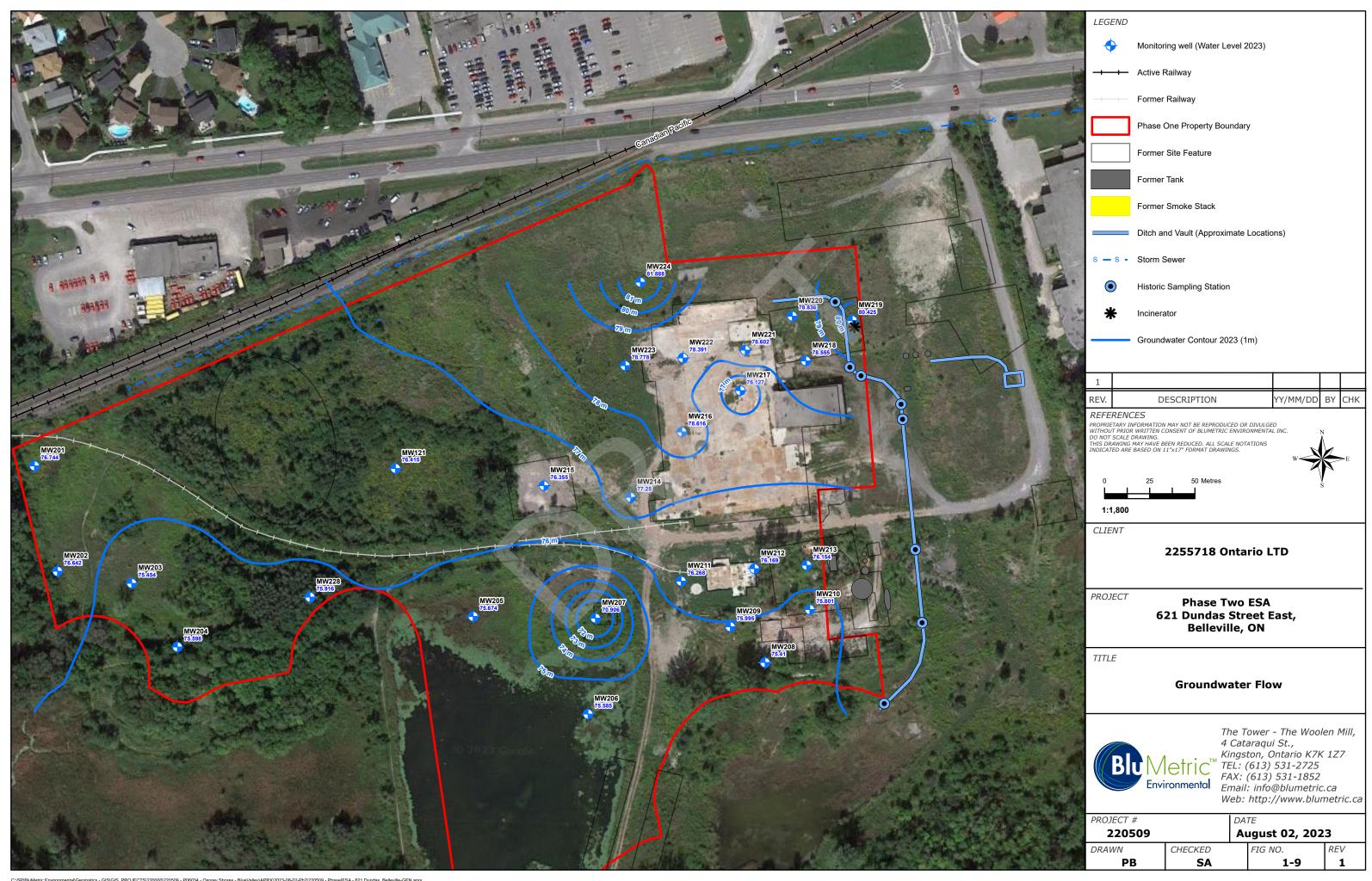

Page 71 BluMetric

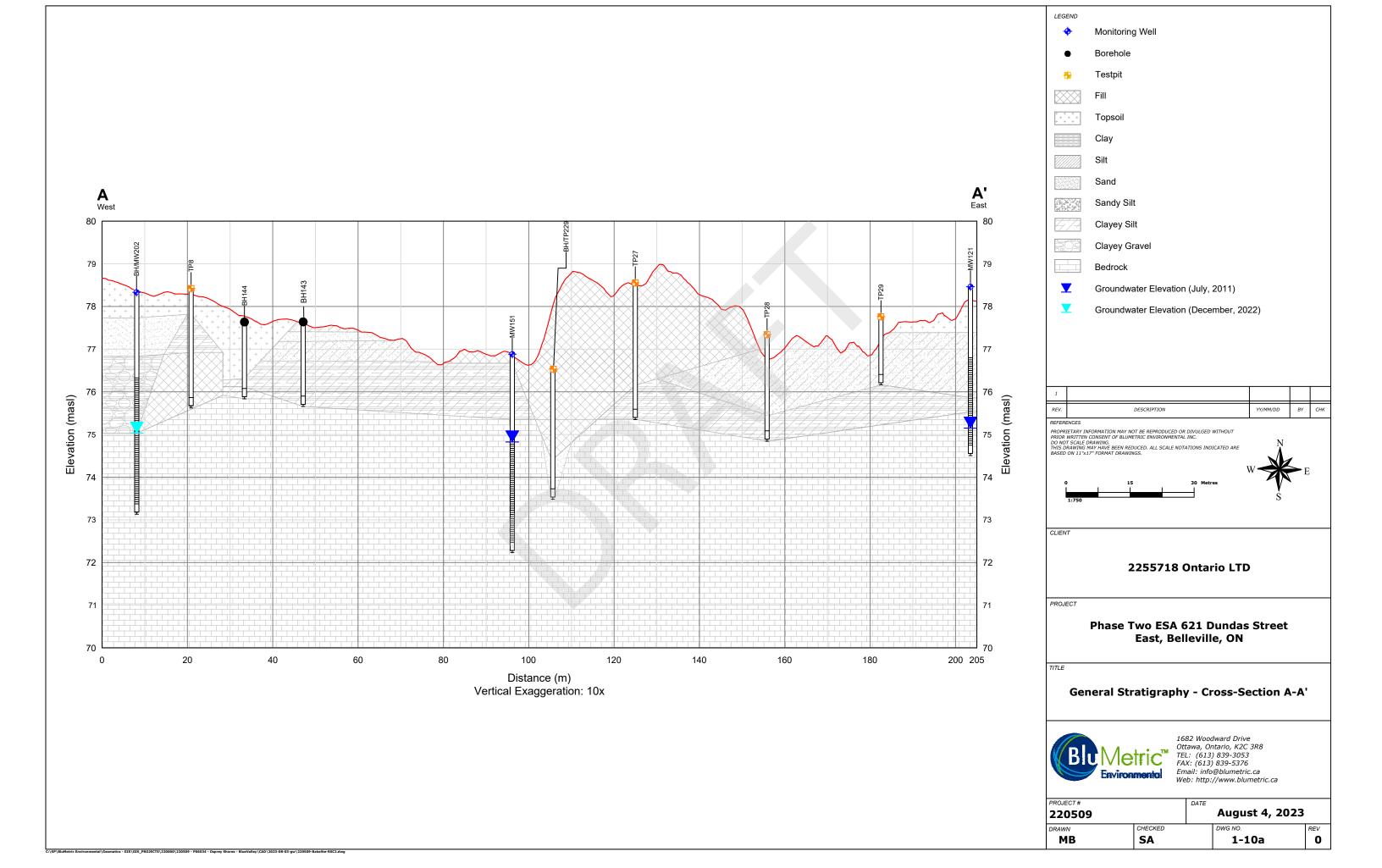


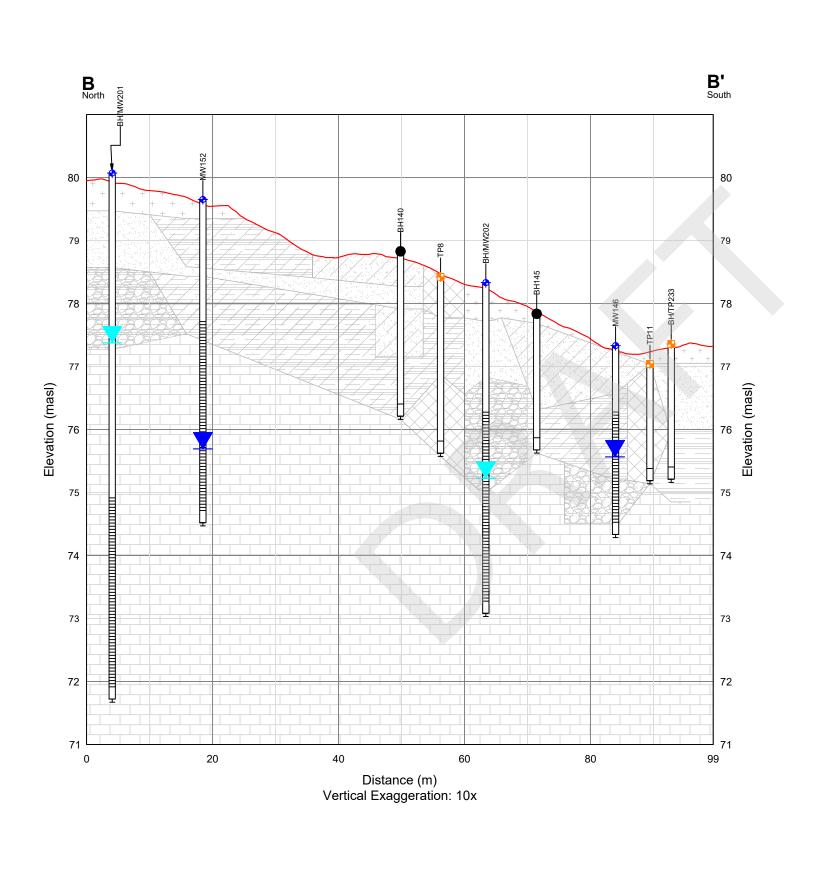












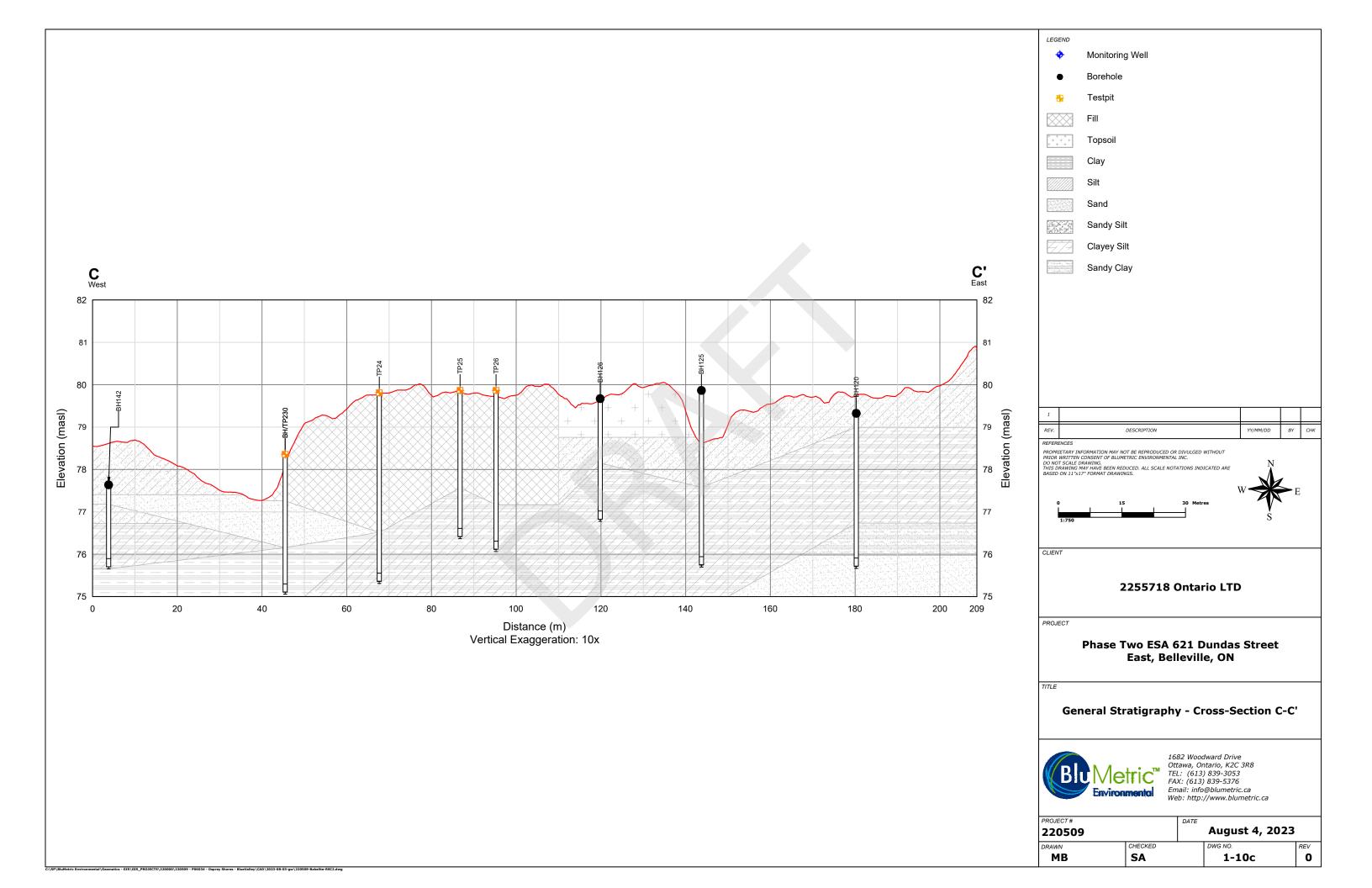
C:\SP\BluMetric Environmental\Geomatics - GIS\GIS_PROJECTS\220000\220509 - P06034 - Osprey Shores - BlueValley\CAD\2023-08-03-gw\220509-Bakelite-RSC2.dwg

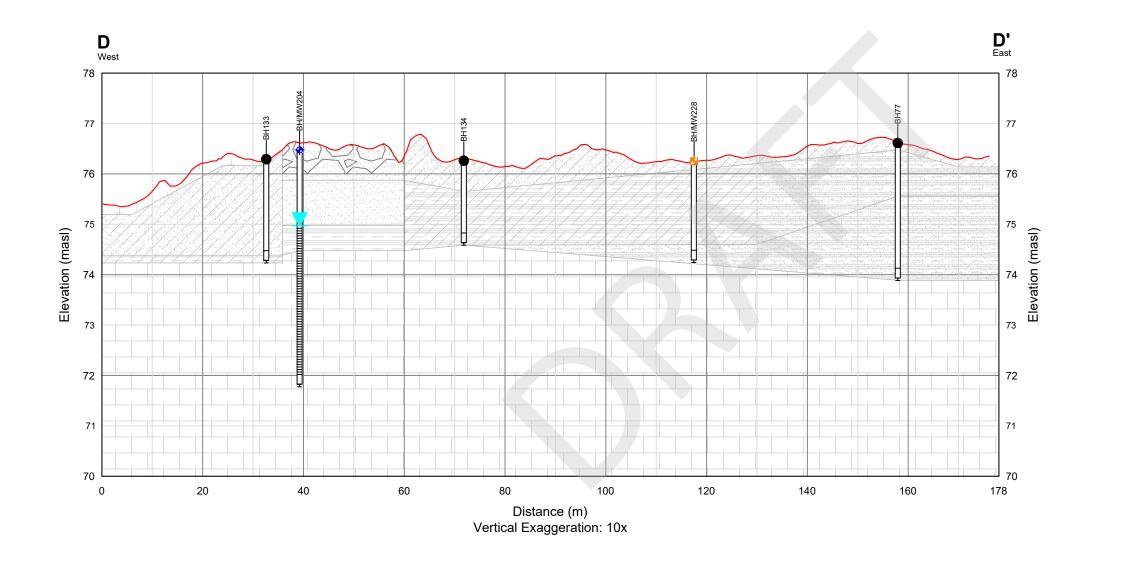
1				
REV.	DESCRIPTION	YY/MM/DD	BY	СНК
REFER	ENCES			

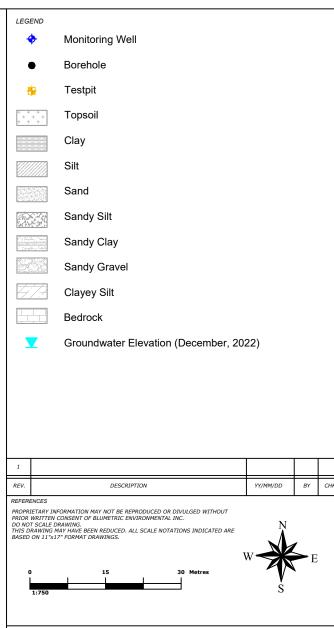
PROPRIETARY INFORMATION MAY NOT BE REPRODUCED OR DIVULGED WITHOUT PRIOR WRITTEN CONSENT OF BLUMETRIC ENVIRONMENTAL INC.
DO NOT SCALE DRAWING.
THIS DRAWING MAY HAVE BEEN REDUCED. ALL SCALE NOTATIONS INDICATED ARE BASED ON 11*217" FORMAT DRAWINGS.

2255718 Ontario LTD

PROJECT


Phase Two ESA 621 Dundas Street East, Belleville, ON


General Stratigraphy - Cross-Section B-B'



1682 Woodward Drive Ottawa, Ontario, K2C 3R8 TEL: (613) 839-3053 FAX: (613) 839-5376 Email: info@blumetric.ca Web: http://www.blumetric.ca

PROJECT#		DATE		
220509			August 4, 2023	
DRAWN	CHECKED		DWG NO.	REV
MB	SA		1-10b	0

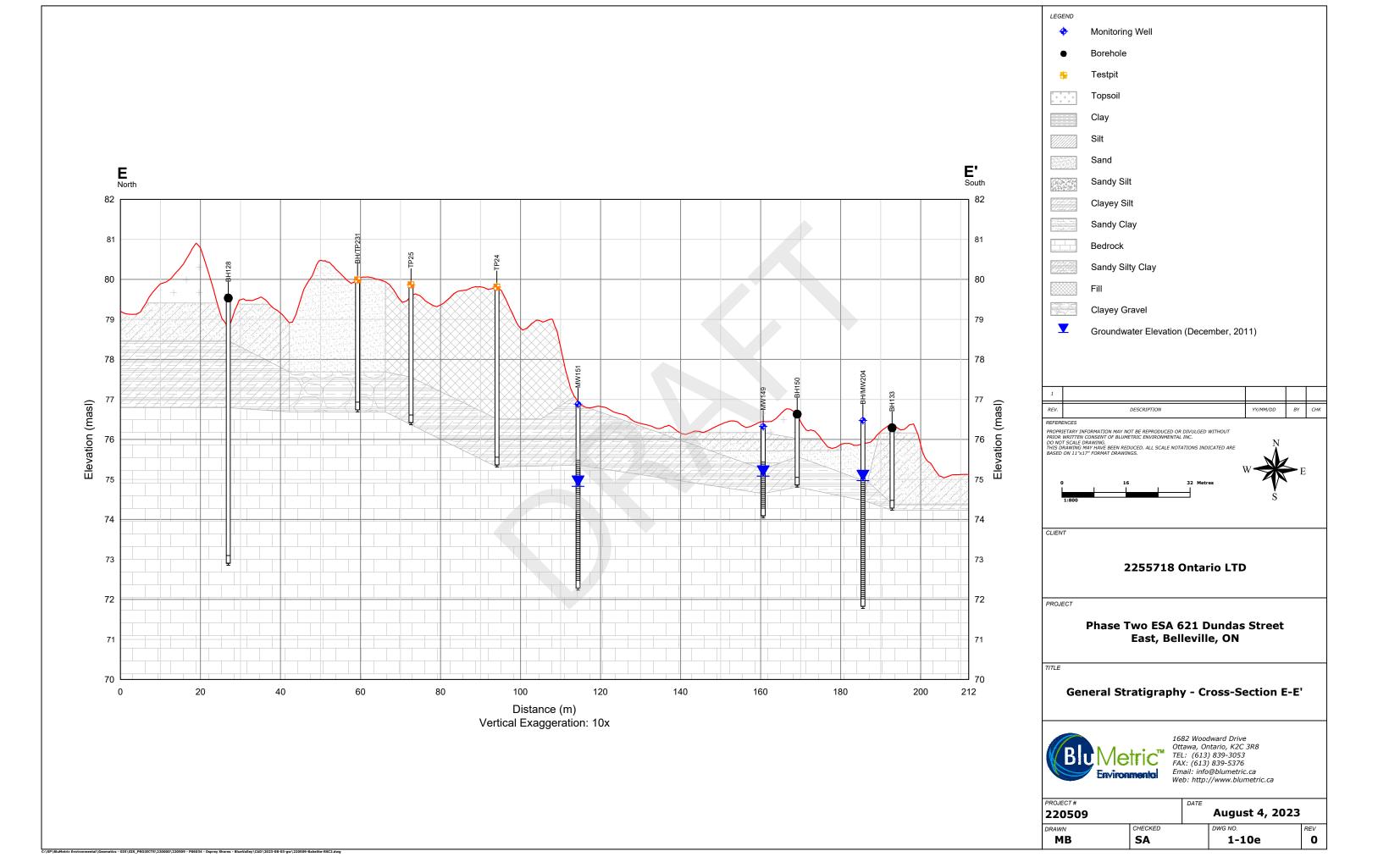
CLIENT

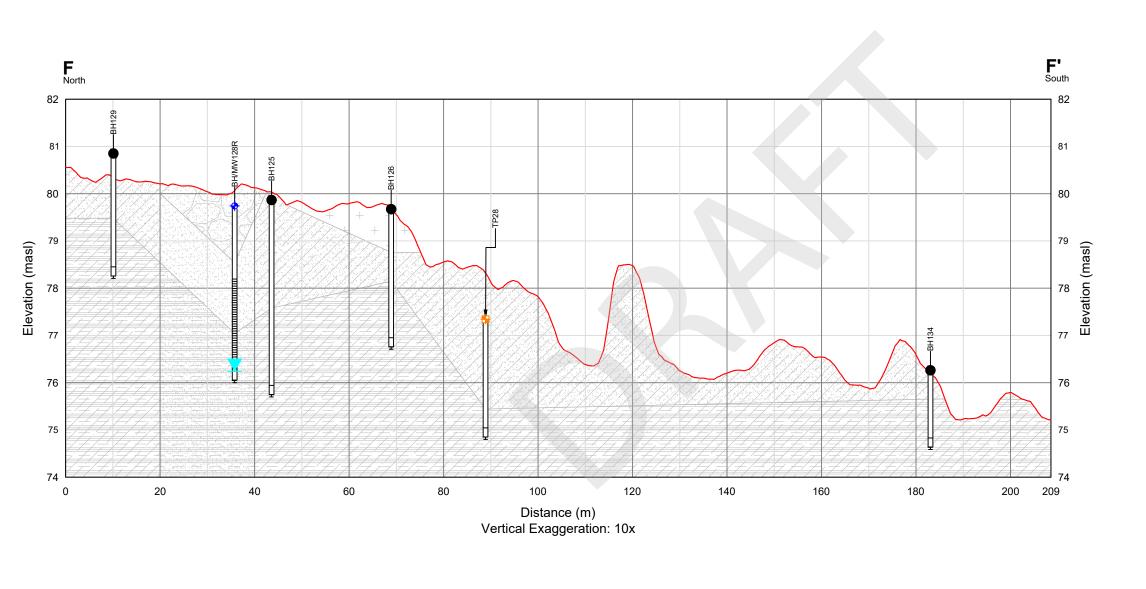
2255718 Ontario LTD

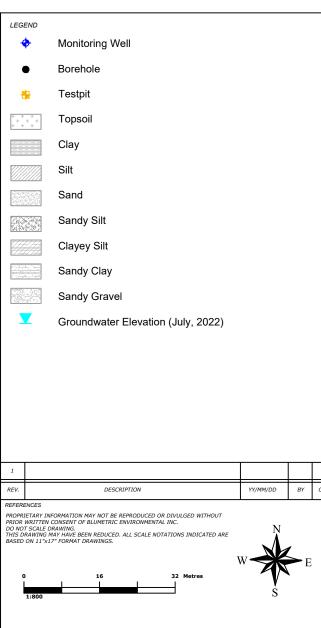
PROJECT

Phase Two ESA 621 Dundas Street East, Belleville, ON

TITL


General Stratigraphy - Cross-Section D-D'




1682 Woodward Drive Ottawa, Ontario, K2C 3R8 TEL: (613) 839-3053 FAX: (613) 839-5376 Email: info@blumetric.ca Web: http://www.blumetric.ca

PROJECT#		DATE		
220509			August 4, 2023	
DRAWN	CHECKED		DWG NO.	REV
MB	SA		1-10d	0

C\SP\BluMetric Environmental\Geomatics - GIS\GIS_PROJECTS\220000\220509 - P06034 - Osprey Shores - BlueValley\CAD\2023-08-03-gw\220509-Bakelite-RSC2.dwg

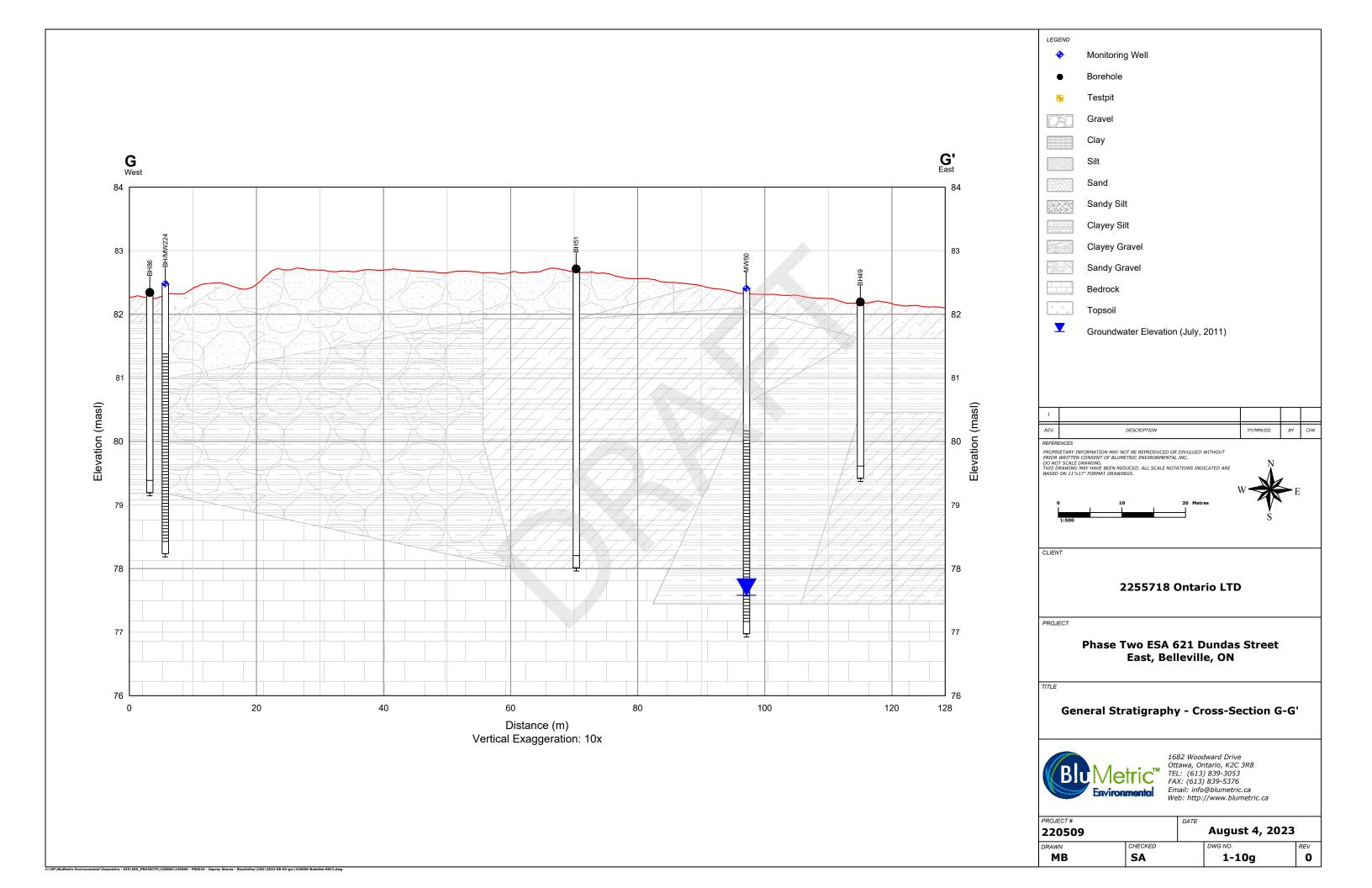
CLIENT

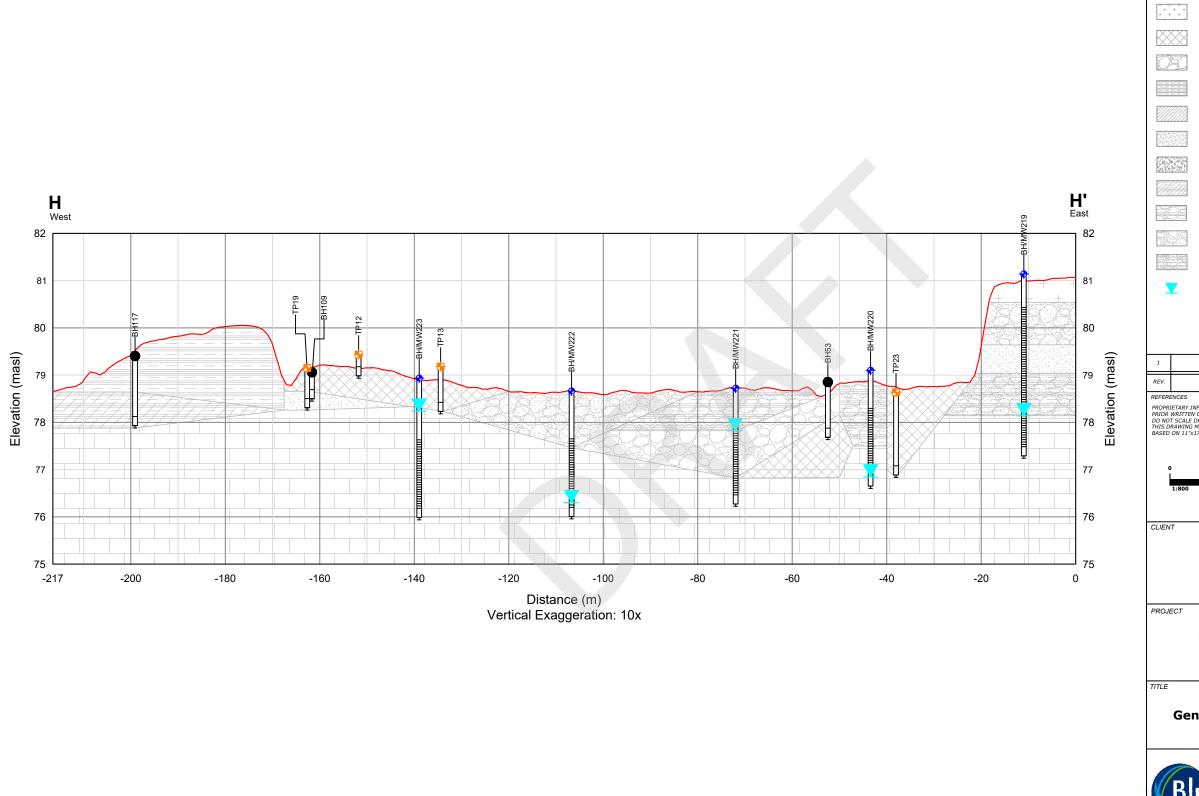
2255718 Ontario LTD

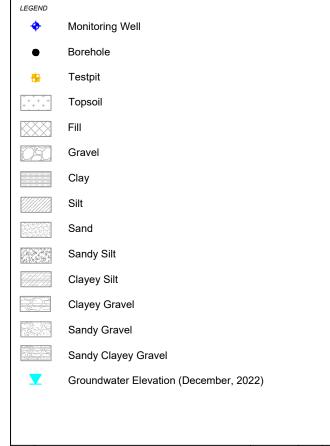
PROJECT

Phase Two ESA 621 Dundas Street East, Belleville, ON

TITL


General Stratigraphy - Cross-Section F-F'




1682 Woodward Drive Ottawa, Ontario, K2C 3R8 TEL: (613) 839-3053 FAX: (613) 839-5376 Email: info@blumetric.ca Web: http://www.blumetric.ca

220509		DATE	3	
DRAWN	CHECKED		DWG NO.	REV
МВ	SA		1-10f	0

C\SP\BluMetric Environmental\Geomatics - GIS\GIS_PROJECTS\220000\220509 - P06034 - Osprey Shores - BlueValley\CAD\2023-08-03-gw\220509-Bakelite-RSC2.dwg

PROPRIETARY INFORMATION MAY NOT BE REPRODUCED OR DIVULGED WITHOUT PRIOR WRITTEN CONSENT OF BLUMETRIC ENVIRONMENTAL INC.
DO NOT SCALE DRAWING.
THIS DRAWING MAY HAVE BEEN REDUCED. ALL SCALE NOTATIONS INDICATED ARE BASED ON 11*217" FORMAT DRAWINGS.

DESCRIPTION

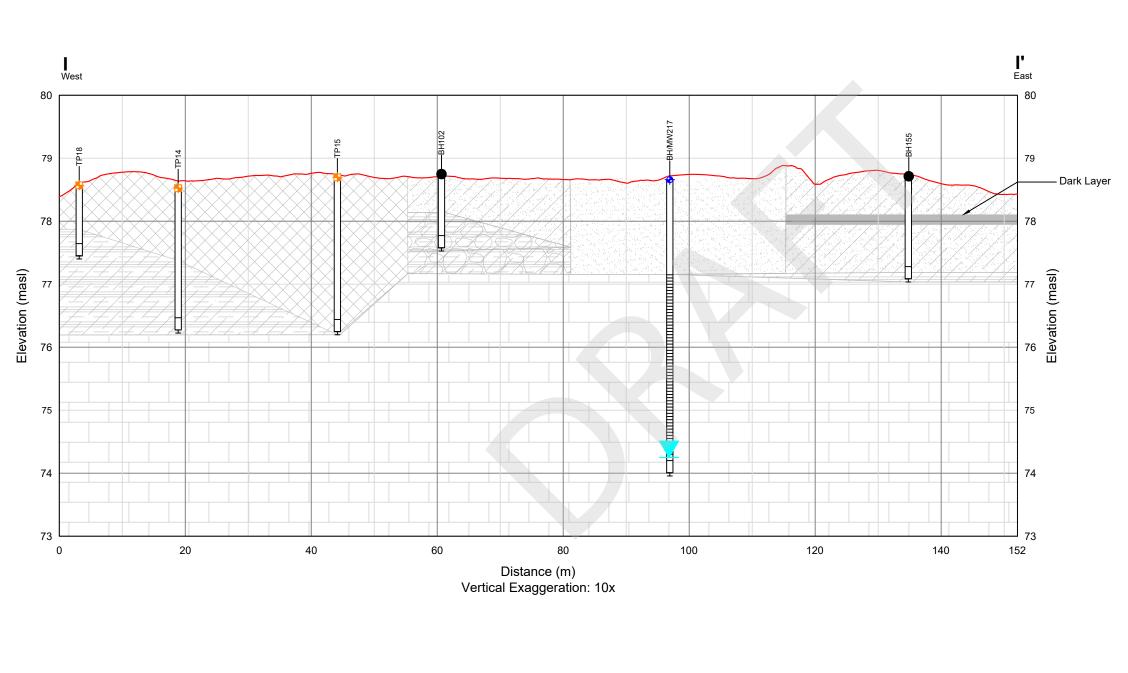
2255718 Ontario LTD

Phase Two ESA 621 Dundas Street East, Belleville, ON

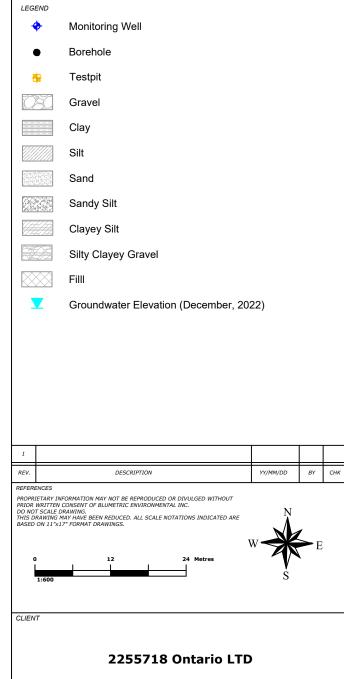
General Stratigraphy - Cross-Section H-H'

MB

1682 Woodward Drive Ottawa, Ontario, K2C 3R8 TEL: (613) 839-3053 FAX: (613) 839-5376 Email: info@blumetric.ca Web: http://www.blumetric.ca


1-10h

0


PROJECT# August 4, 2023 220509 CHECKED

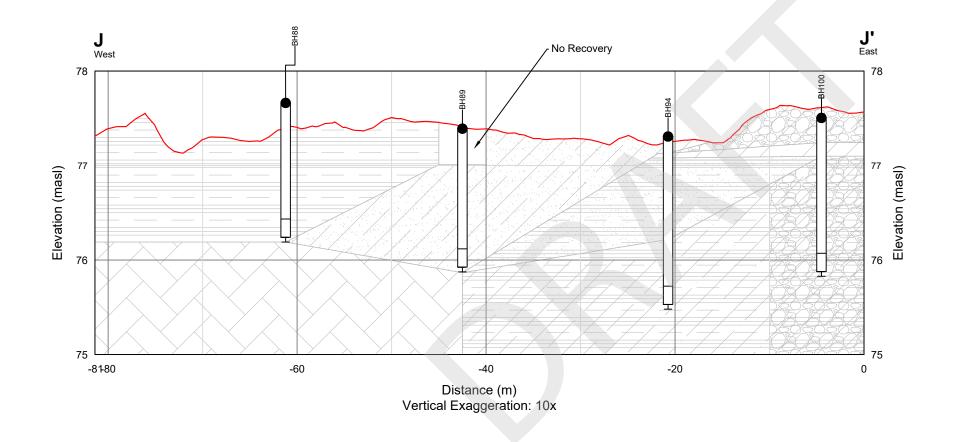
SA

C:\SP\BluMetric Environmental\Geomatics - GIS\GIS_PROJECTS\220000\220509 - P06034 - Osprey Shores - BlueValley\CAD\2023-08-03-gw\220509-Bakelite-RSC2.dwg

C:\SP\BluMetric Environmental\Geomatics - GIS\GIS_PROJECTS\220000\220509 - P06034 - Osprey Shores - BlueValley\CAD\2023-08-03-gw\220509-Bakelite-RSC2.dwg

PROJECT

Phase Two ESA 621 Dundas Street East, Belleville, ON


TITI

General Stratigraphy - Cross-Section I-I'

1682 Woodward Drive Ottawa, Ontario, K2C 3R8 TEL: (613) 839-3053 FAX: (613) 839-5376 Email: info@blumetric.ca Web: http://www.blumetric.ca

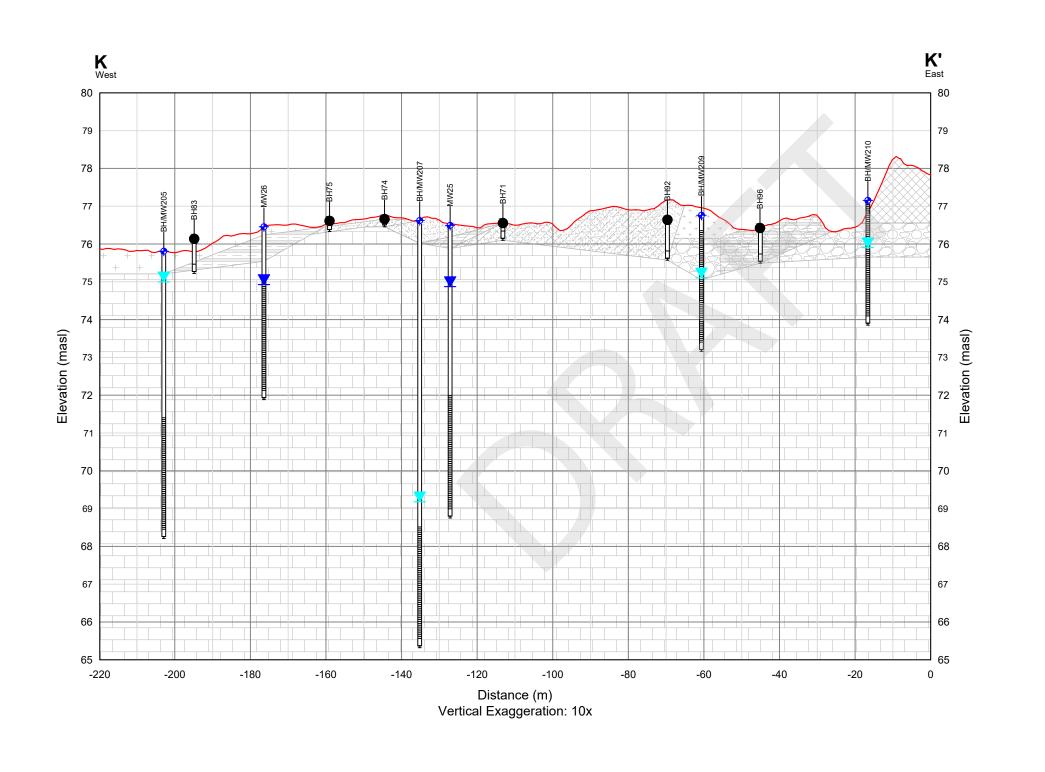
PROJECT #		DATE		
220509			August 4, 2023	
DRAWN	CHECKED		DWG NO.	REV
MB	SA		1-10i	0

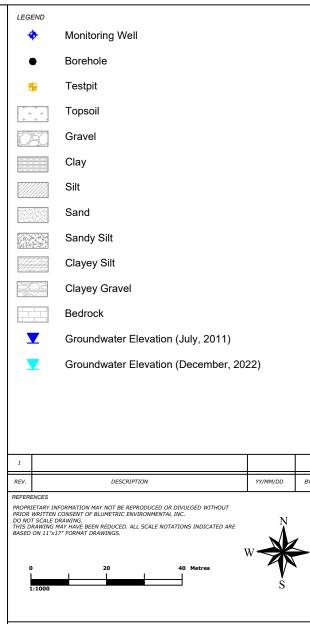
CLIENT

2255718 Ontario LTD

PROJECT

Phase Two ESA 621 Dundas Street East, Belleville, ON


General Stratigraphy - Cross-Section J-J'


1682 Woodward Drive Ottawa, Ontario, K2C 3R8 TEL: (613) 839-3053 FAX: (613) 839-5376 Email: info@blumetric.ca Web: http://www.blumetric.ca

PROJECT#		DATE		
220509			August 4, 2023	
DRAWN	CHECKED		DWG NO.	REV
MB	SA		1-10i	0

C:\SP\BluMetric Environmental\Geomatics - GIS\GIS_PROJECTS\220000\220509 - P06034 - Osprey Shores - BlueValley\CAD\2023-08-03-gw\220509-Bakelite-RSC2.dwg

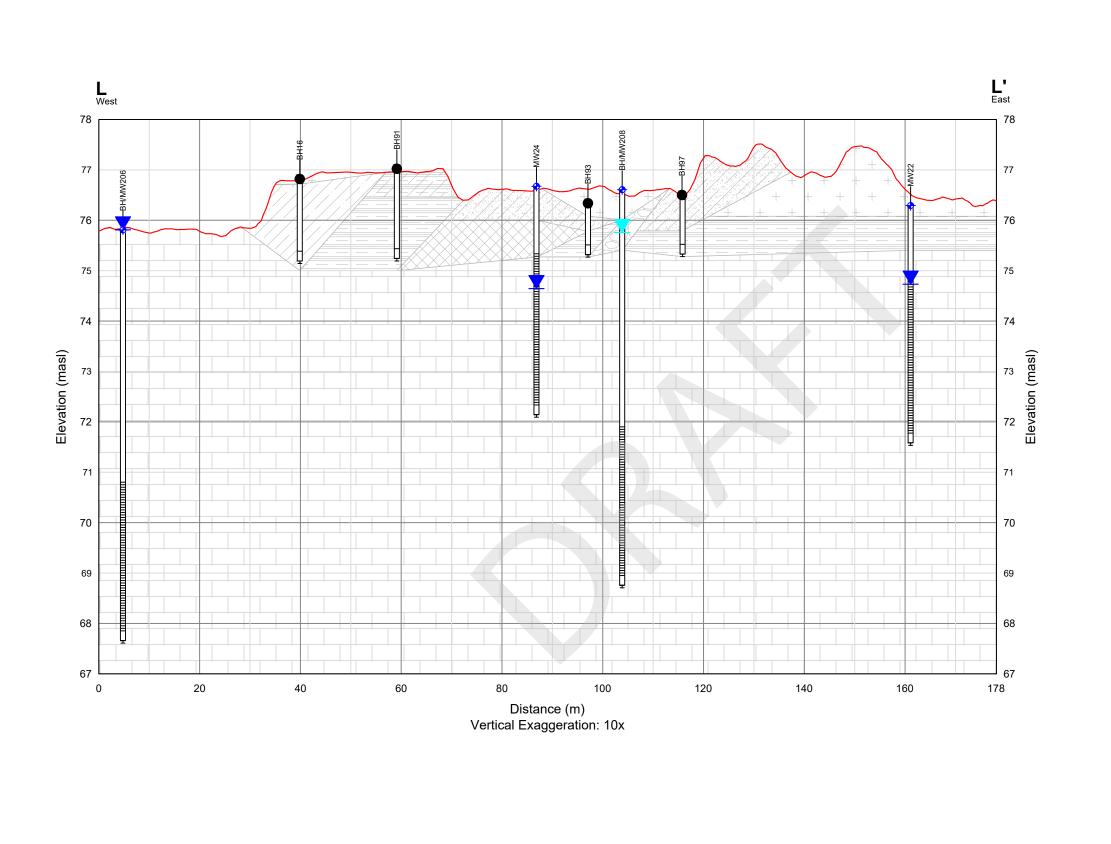
C:\SP\BluMetric Environmental\Geomatics - GIS\GIS_PROJECTS\220000\220509 - P06034 - Osprey Shores - BlueValley\CAD\2023-08-03-gw\220509-Bakelite-RSC2.dwg

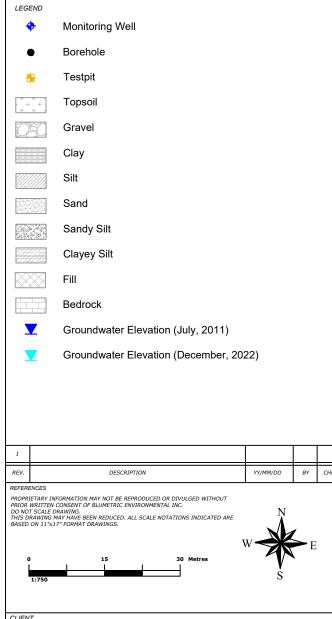
CLIEN

2255718 Ontario LTD

PROJECT

Phase Two ESA 621 Dundas Street East, Belleville, ON


TITL


General Stratigraphy - Cross-Section K-K'

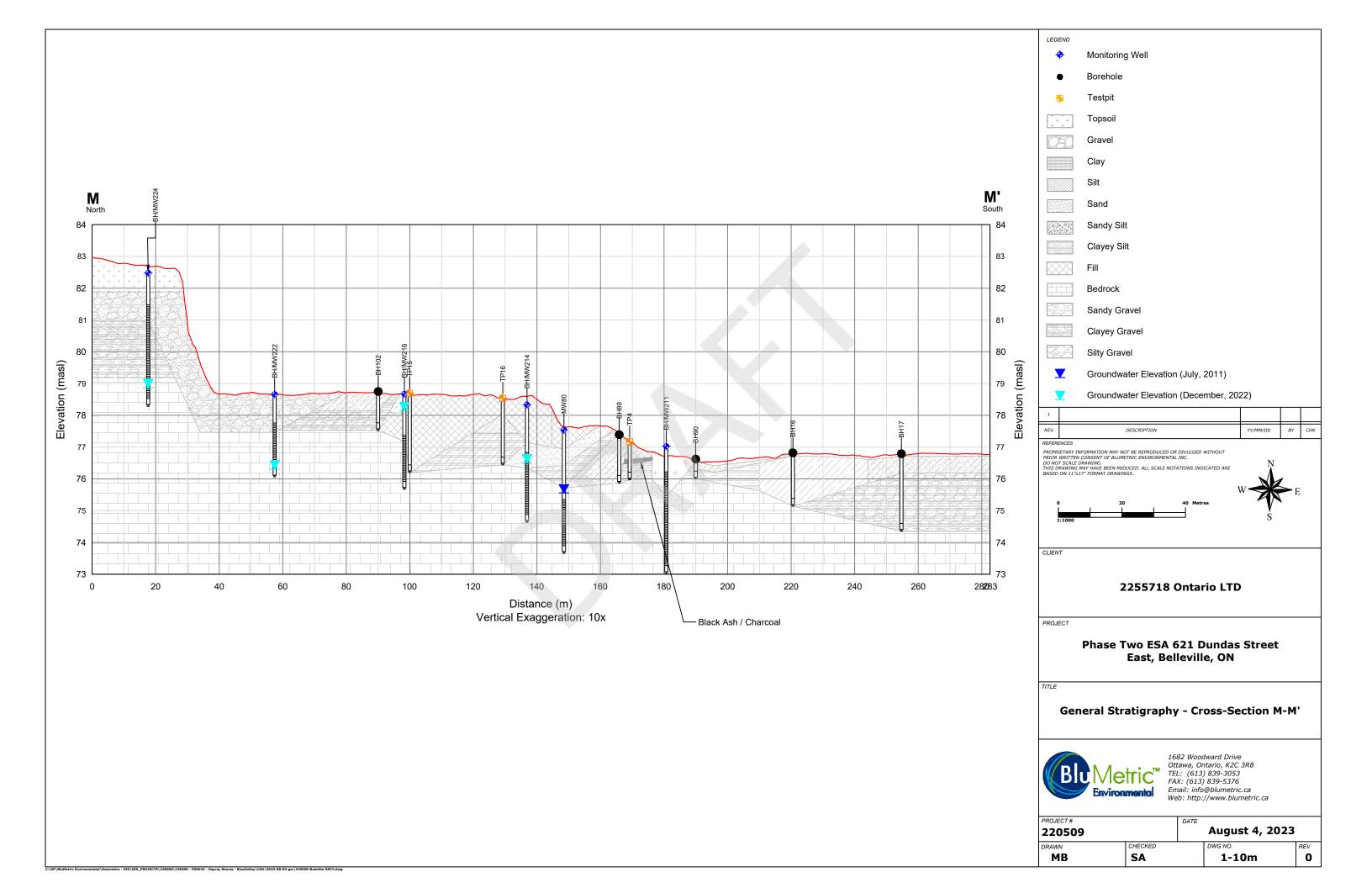
1682 Woodward Drive Ottawa, Ontario, K2C 3R8 TEL: (613) 839-3053 FAX: (613) 839-5376 Email: info@blumetric.ca Web: http://www.blumetric.ca

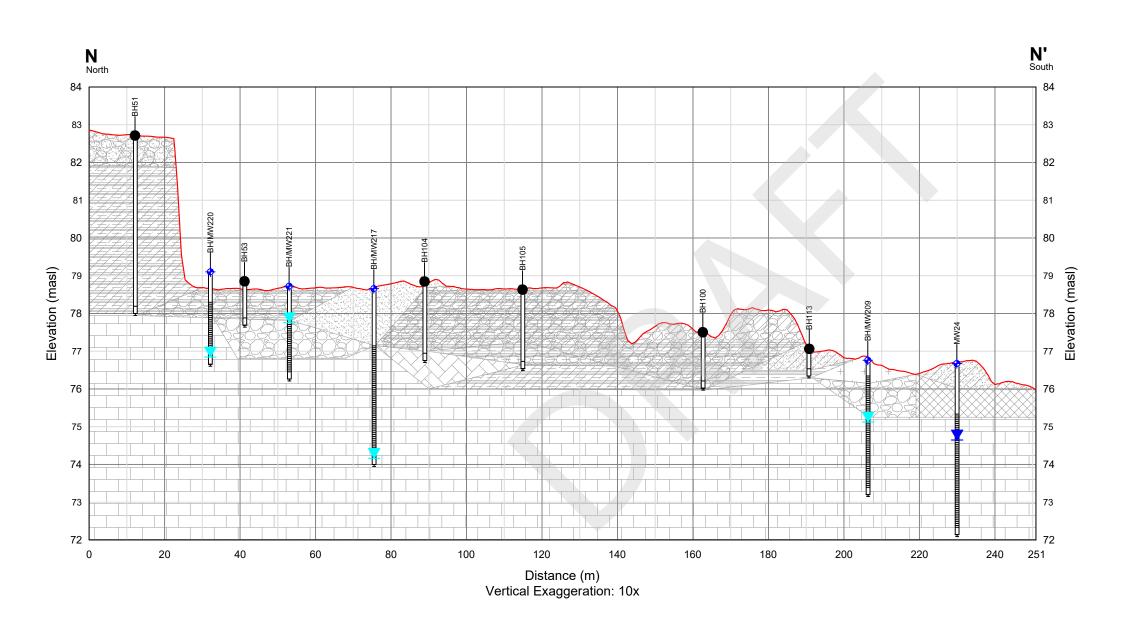
220509		August 4, 2023			
DRAWN	CHECKED	-	DWG NO.	REV	
MB	SA		1-10k	0	

CLIENT

2255718 Ontario LTD

PROJECT


Phase Two ESA 621 Dundas Street East, Belleville, ON


General Stratigraphy - Cross-Section L-L'

1682 Woodward Drive Ottawa, Ontario, K2C 3R8 TEL: (613) 839-3053 FAX: (613) 839-5376 Email: info@blumetric.ca Web: http://www.blumetric.ca

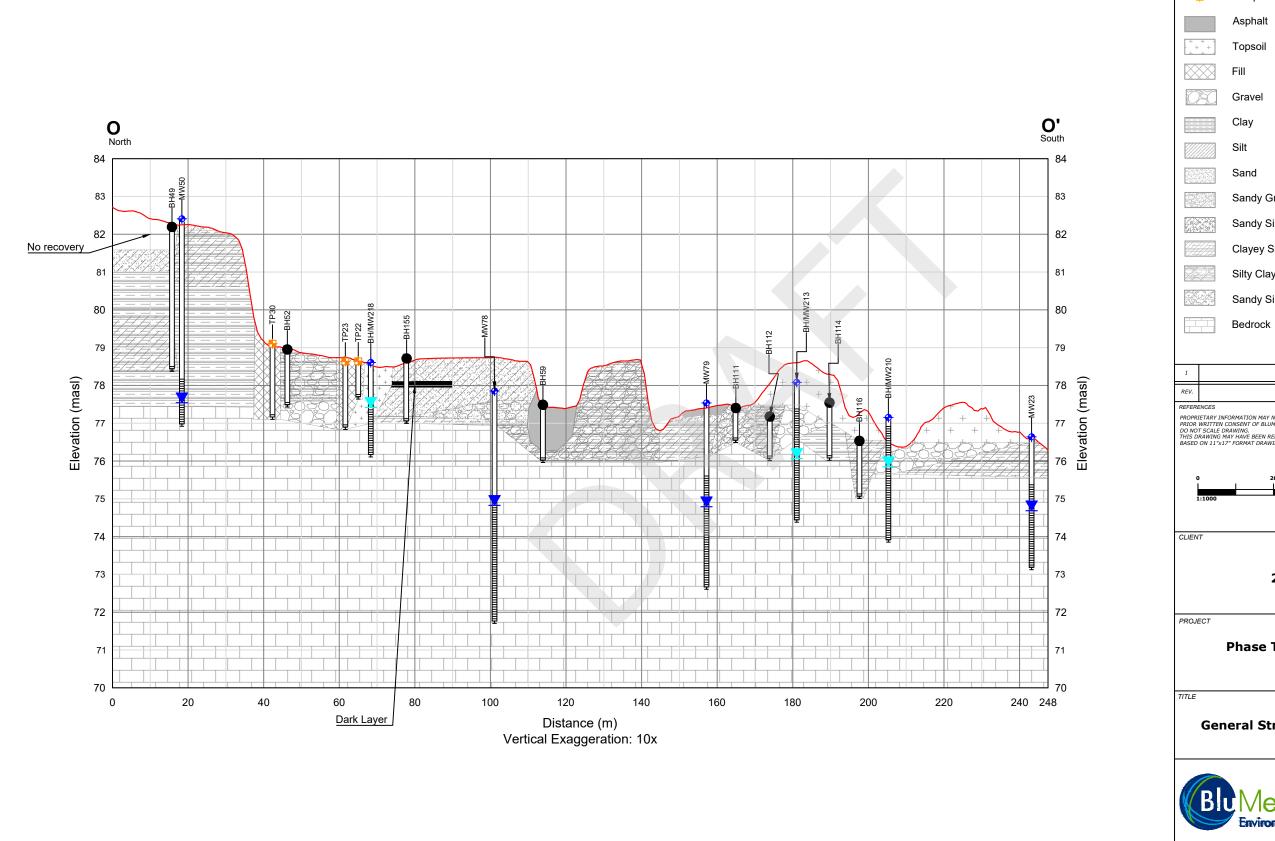
PROJECT#		DATE		
220509			August 4, 2023	
DRAWN	CHECKED		DWG NO.	REV
MB	SA		1-10l	0

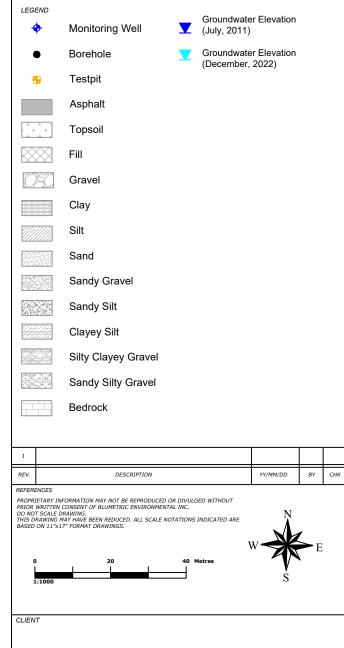
CLIENT

2255718 Ontario LTD

PROJECT

Phase Two ESA 621 Dundas Street East, Belleville, ON

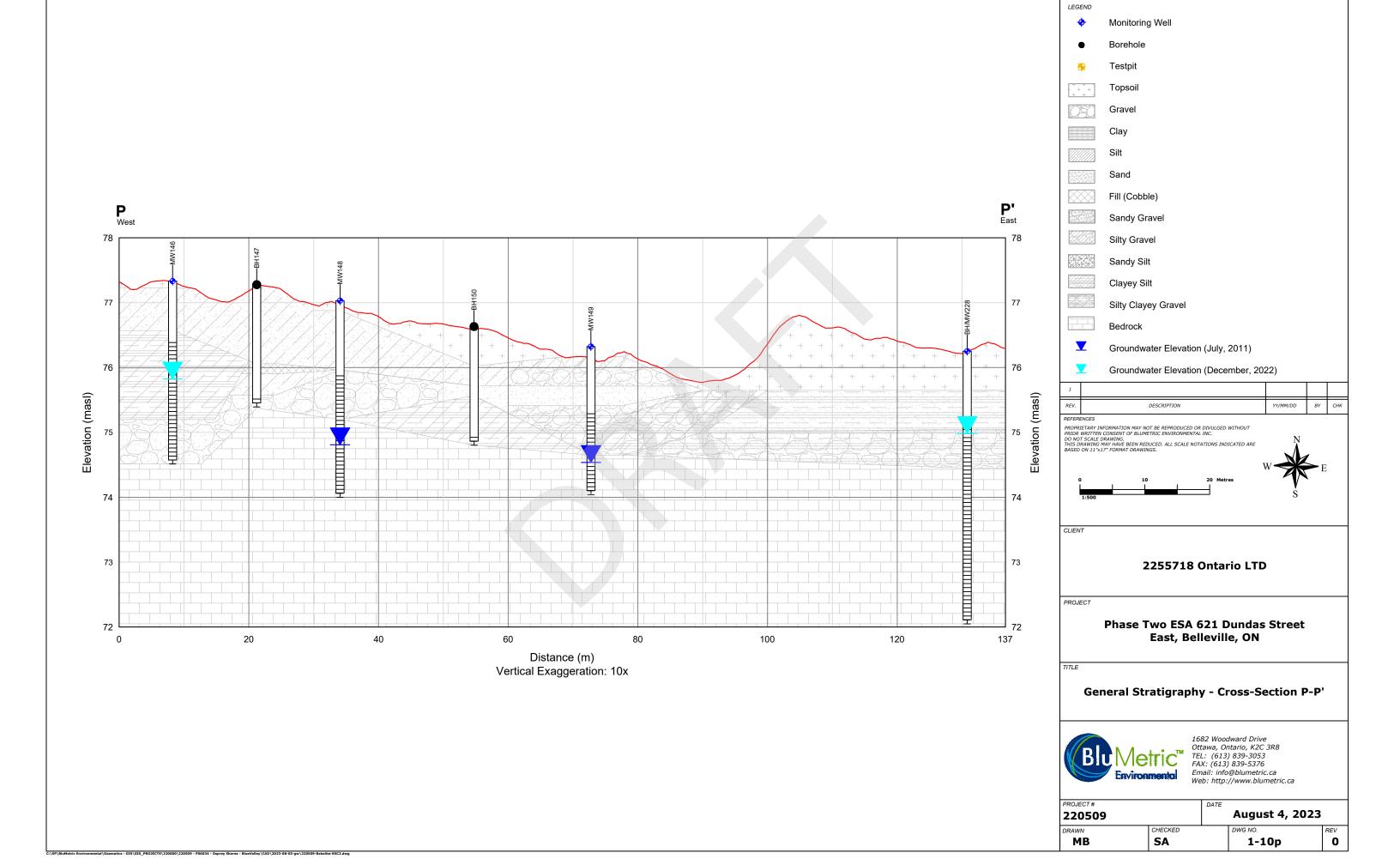

TITL

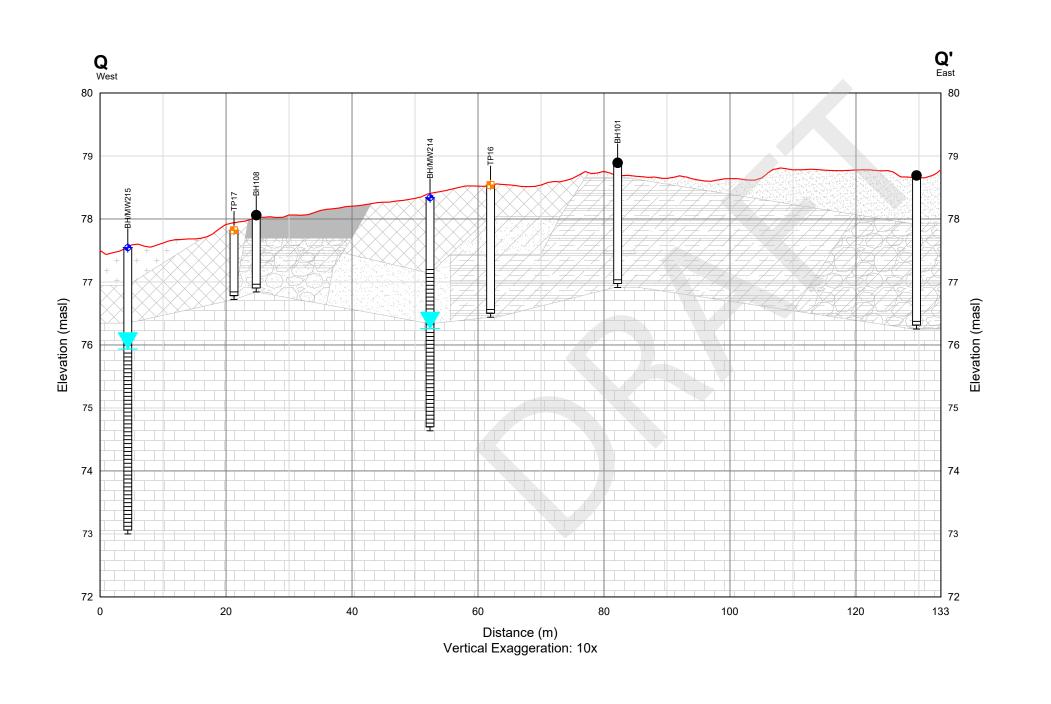

General Stratigraphy - Cross-Section N-N'

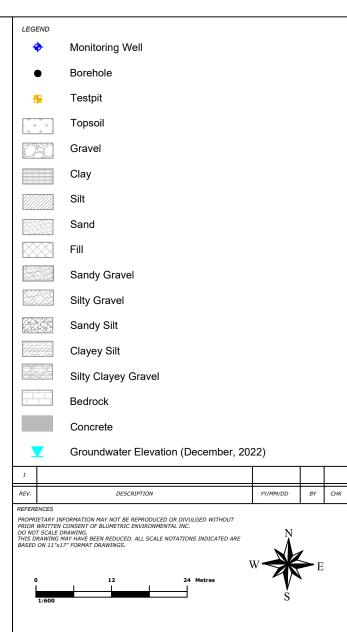
1682 Woodward Drive Ottawa, Ontario, K2C 3R8 TEL: (613) 839-3053 FAX: (613) 839-5376 Email: info@blumetric.ca Web: http://www.blumetric.ca

220509		DATE	August 4, 2023	
DRAWN	CHECKED		DWG NO.	REV
МВ	SA		1-10n	0

2255718 Ontario LTD


Phase Two ESA 621 Dundas Street East, Belleville, ON


General Stratigraphy - Cross-Section O-O'



1682 Woodward Drive Ottawa, Ontario, K2C 3R8 TEL: (613) 839-3053 FAX: (613) 839-5376 Email: info@blumetric.ca Web: http://www.blumetric.ca

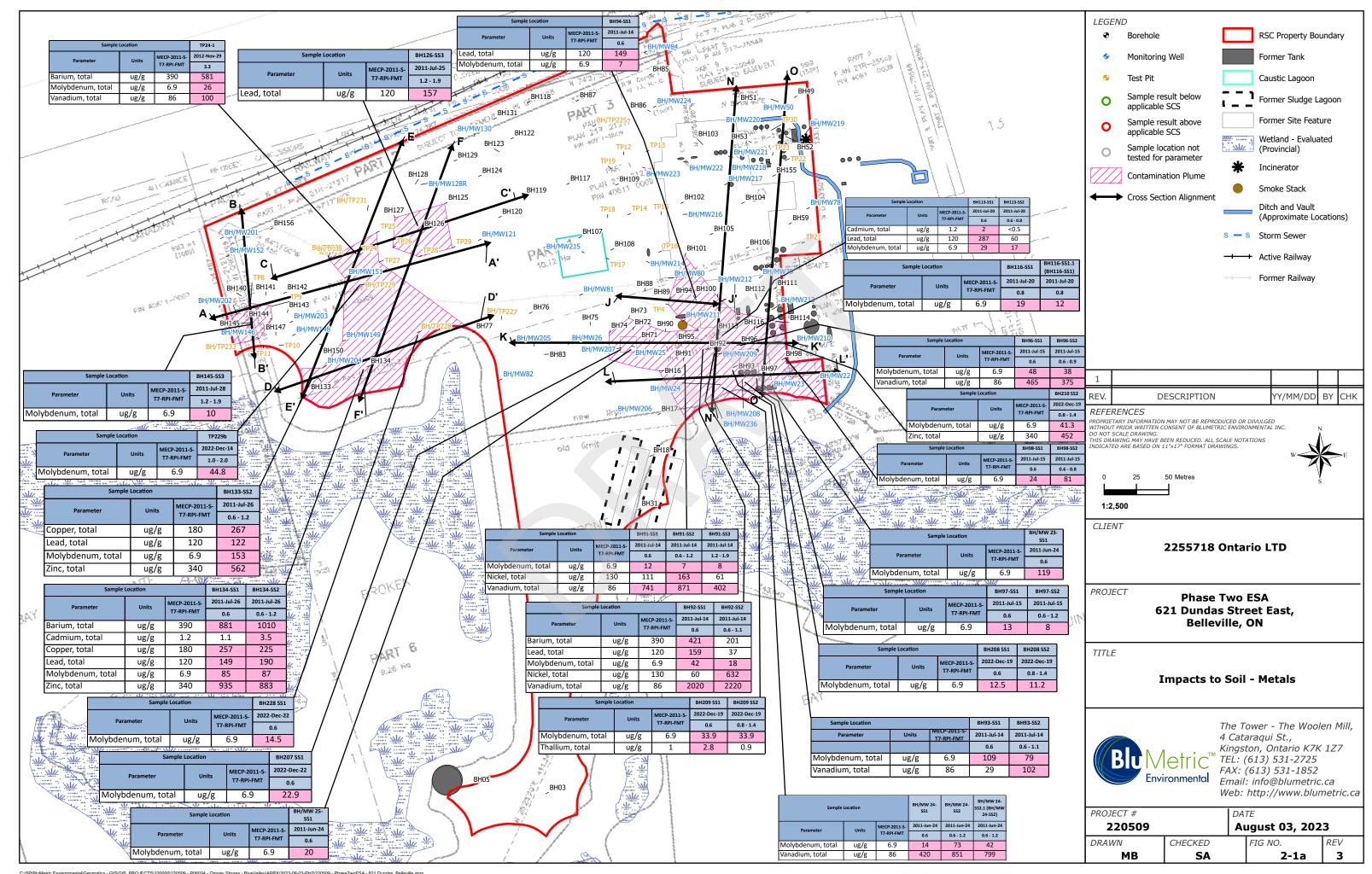
ROJECT# 220509		DATE	August 4, 2023	
RAWN	CHECKED		DWG NO.	REV
MB	SA		1-10o	0

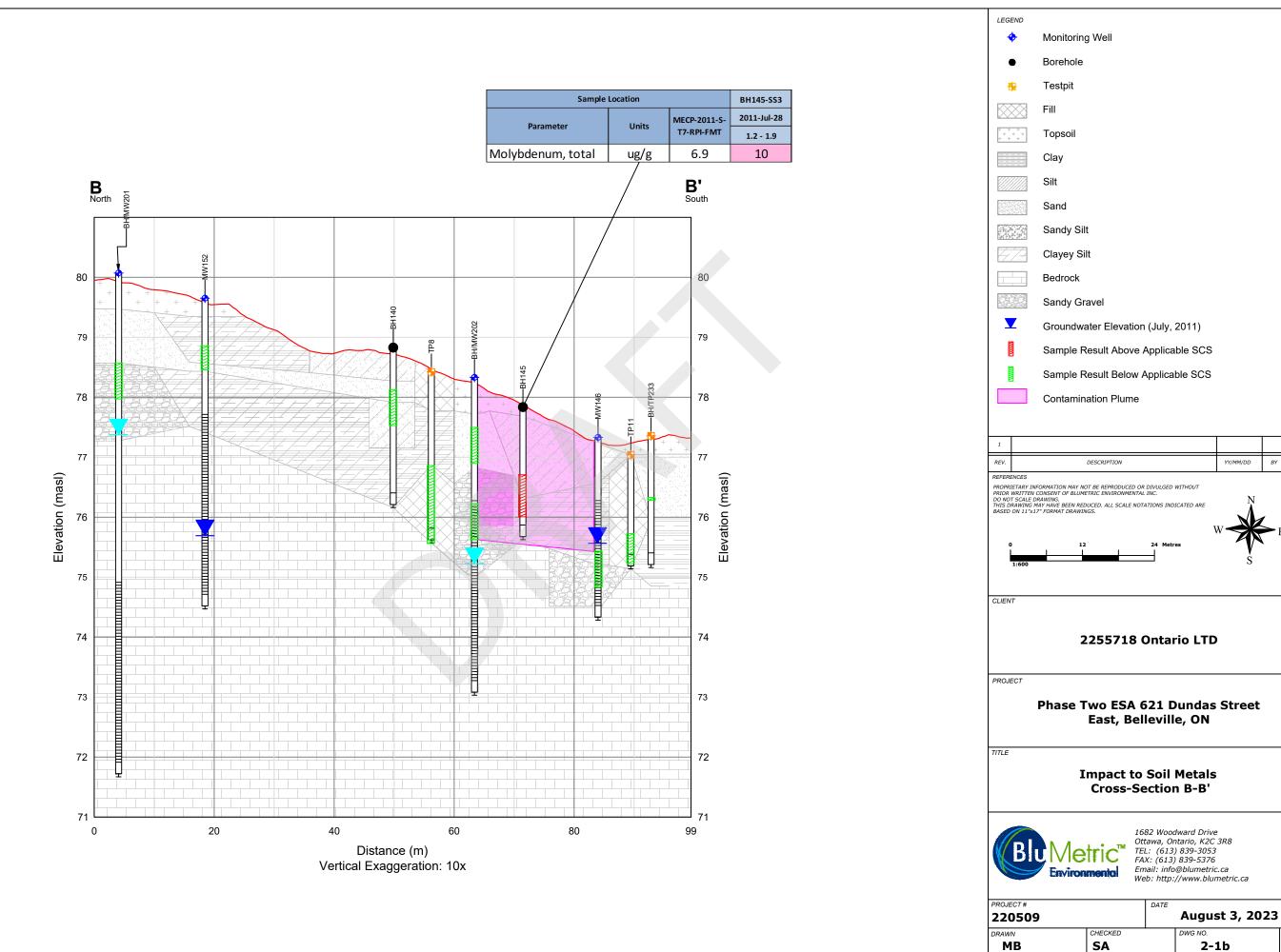
CLIEN

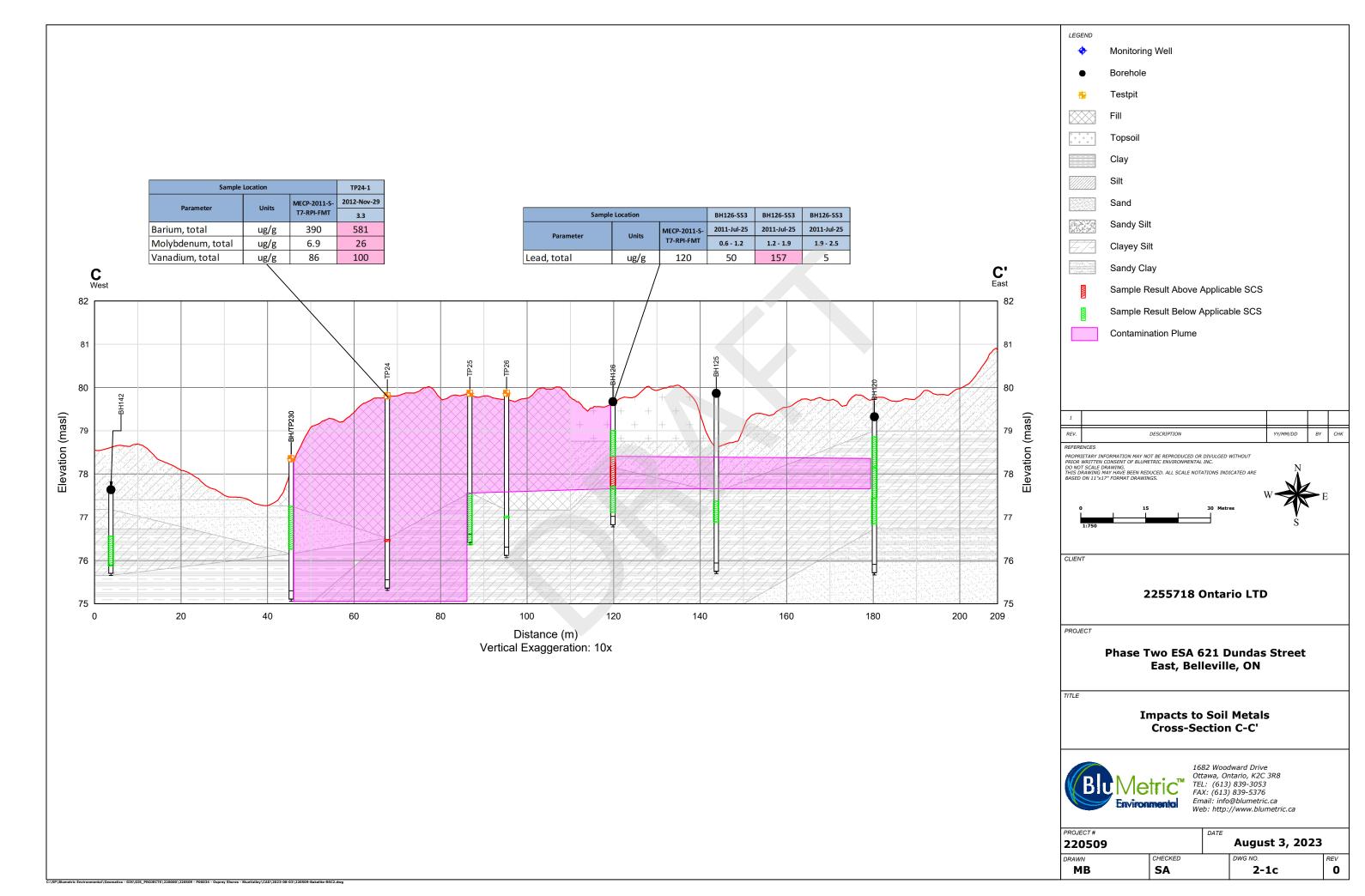
2255718 Ontario LTD

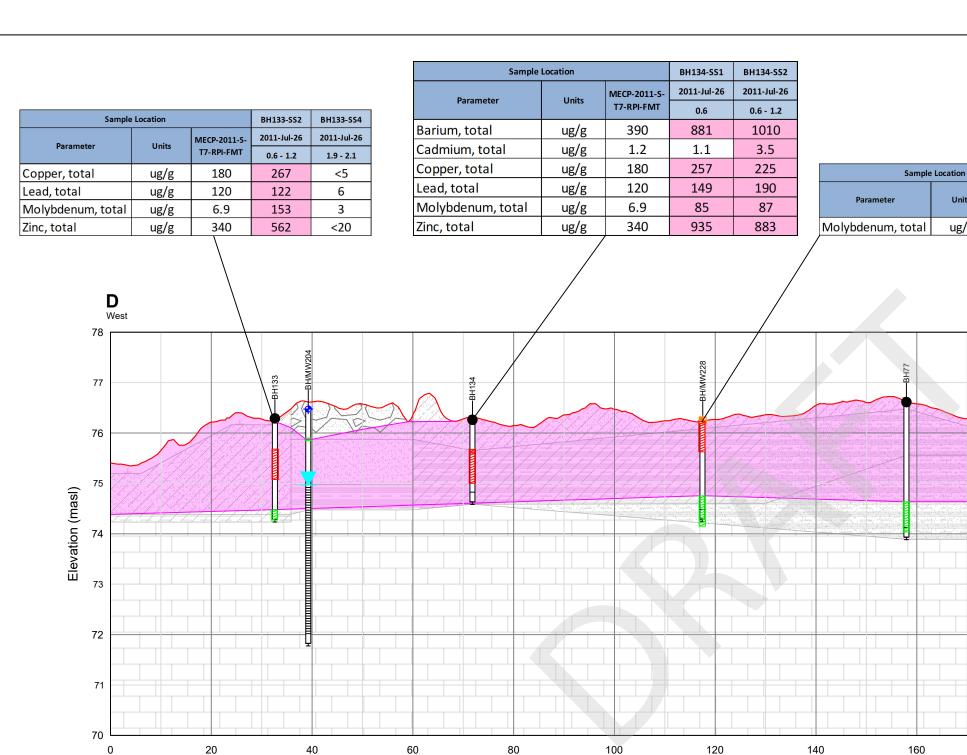
PROJECT

Phase Two ESA 621 Dundas Street East, Belleville, ON


TITL


General Stratigraphy - Cross-Section Q-Q'


1682 Woodward Drive Ottawa, Ontario, K2C 3R8 TEL: (613) 839-3053 FAX: (613) 839-5376 Email: info@blumetric.ca Web: http://www.blumetric.ca


PROJECT#		DATE		
220509			August 4, 2023	
DRAWN	CHECKED		DWG NO.	REV
МВ	SA		1-10q	0

0

Distance (m) Vertical Exaggeration: 10x

LEGEND Monitoring Well Borehole Testpit Topsoil Clay BH228 SS3 2022-Dec-22 2022-Dec-22 Silt 1.5 - 2.1 Sand Sandy Silt Clayey Silt Sandy Clay Bedrock

> DESCRIPTION PROPRIETARY INFORMATION MAY NOT BE REPRODUCED OR DIVULGED WITHOUT PRIOR WRITTEN CONSENT OF BLUMETRIC ENVIRONMENTAL INC.
>
> DN OT SCALE DRAWING.
> THIS DRAWING MAY HAVE BEEN REDUCED. ALL SCALE NOTATIONS INDICATED ARE BASED ON 11*217" FORMAT DRAWINGS.

Groundwater Elevation (December, 2022) Sample Result Above Applicable SCS

Sample Result Below Applicable SCS

Contamination Plume

CLIENT

2255718 Ontario LTD

PROJECT

BH228 SS1

0.0 - 0.6

14.5

5

MECP-2011-S-

T7-RPI-FMT

6.9

D'

East

77

76

75

levation (masl)

Ш

72

70

178

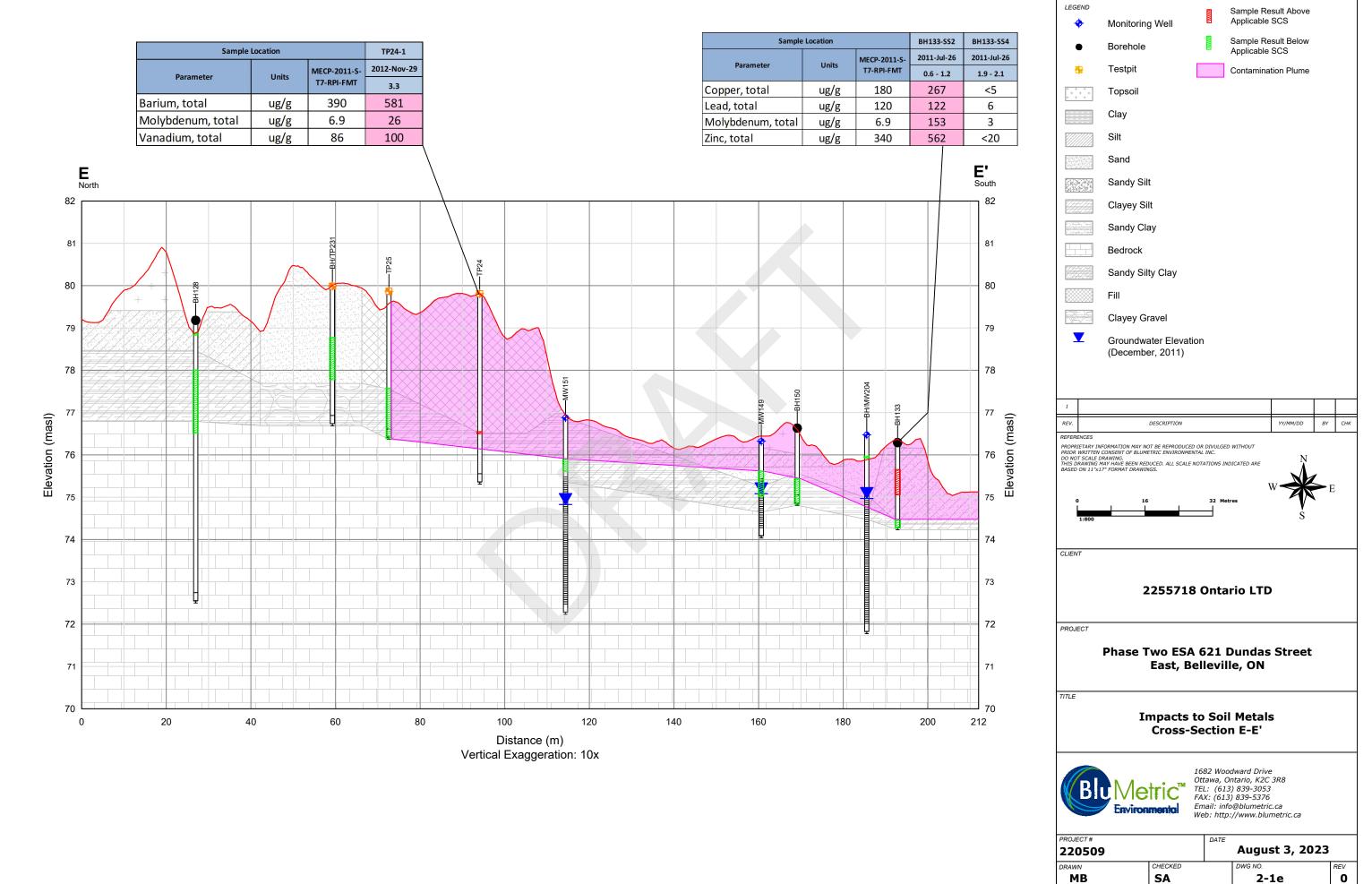
Units

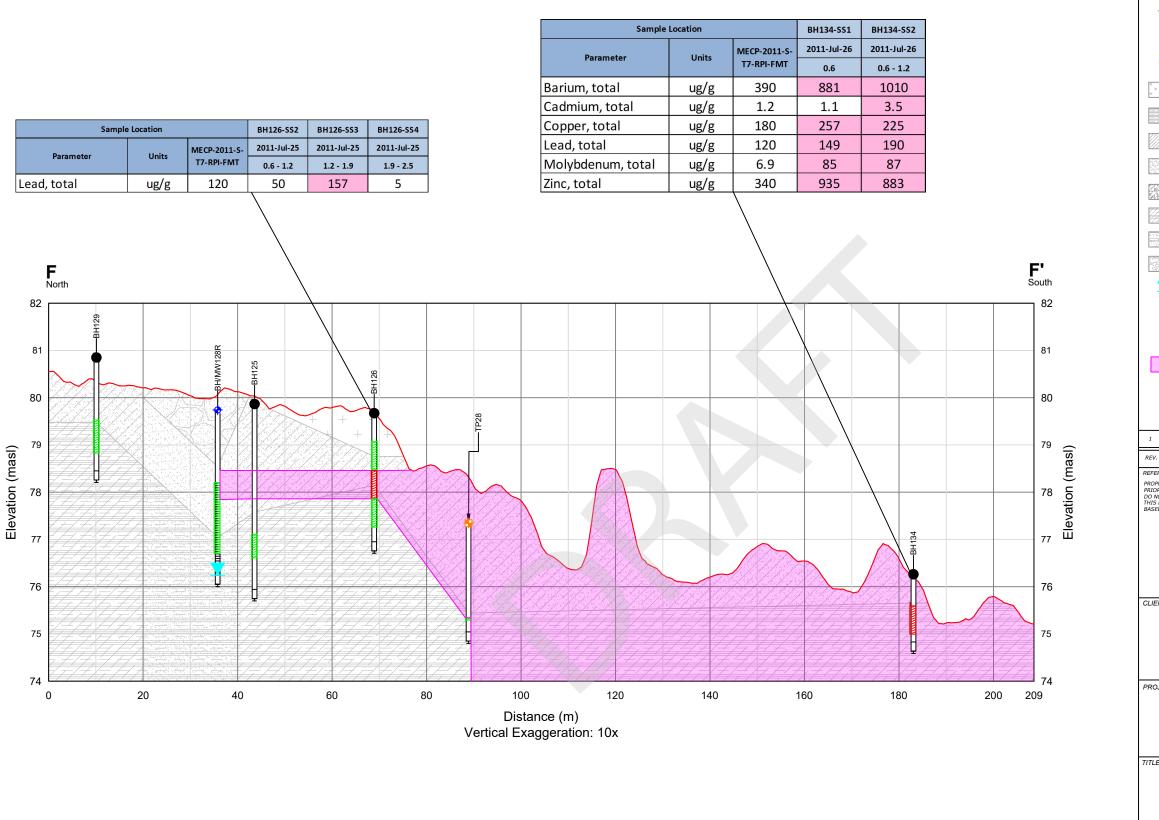
ug/g

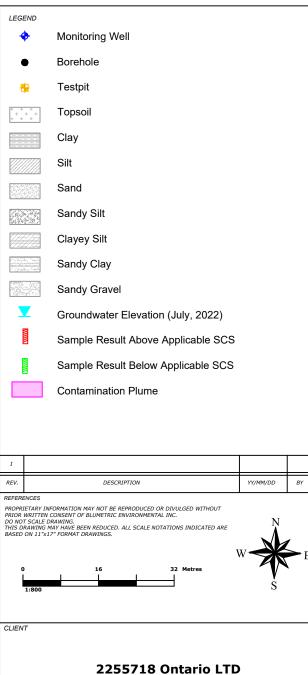
Phase Two ESA 621 Dundas Street East, Belleville, ON

MB

Impacts to Soil Metals Cross-Section D-D'


1682 Woodward Drive Ottawa, Ontario, K2C 3R8 TEL: (613) 839-3053 FAX: (613) 839-5376 Email: info@blumetric.ca Web: http://www.blumetric.ca

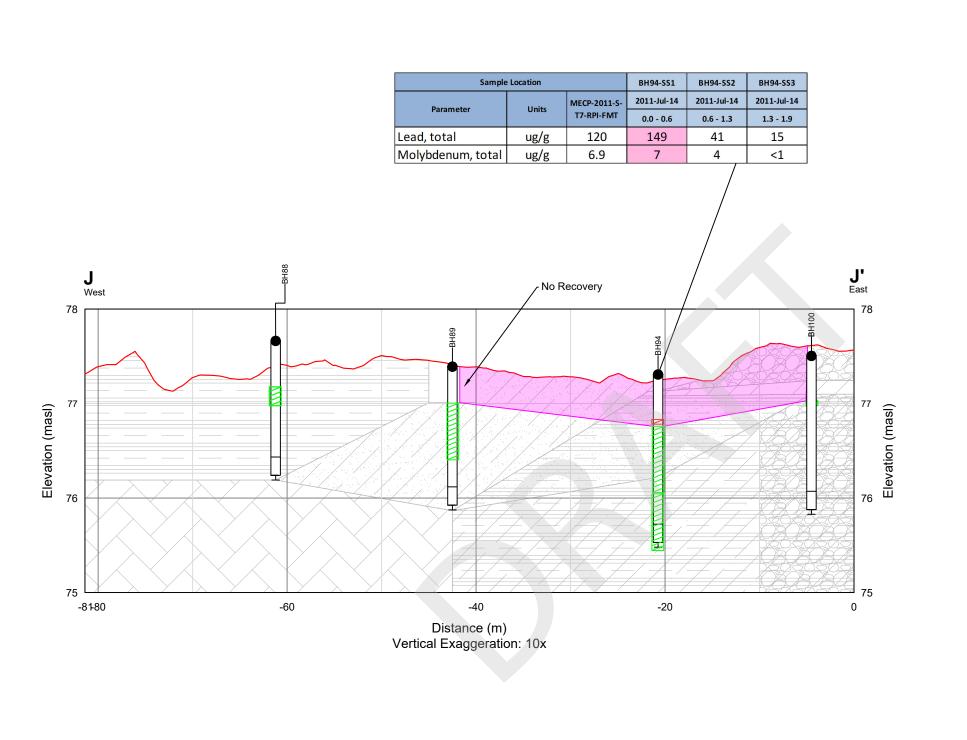

2-1d

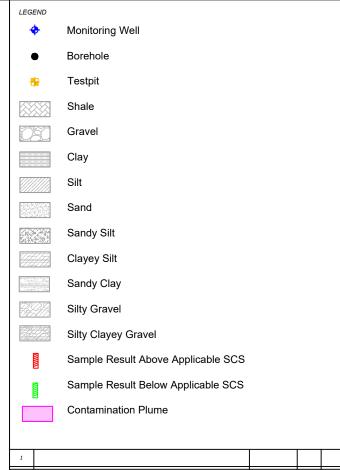

0

PROJECT# August 3, 2023 220509 CHECKED

SA

PROJECT


Phase Two ESA 621 Dundas Street East, Belleville, ON


Impacts to Soil Metals Cross-Section F-F'

1682 Woodward Drive Ottawa, Ontario, K2C 3R8 TEL: (613) 839-3053 FAX: (613) 839-5376 Email: info@blumetric.ca Web: http://www.blumetric.ca

PROJECT#		DATE		
220509			August 3, 2023	
DRAWN	CHECKED		DWG NO.	REV
МВ	SA		2-1f	0

1				
REV.	DESCRIPTION	YY/MM/DD	BY	СНК
PRIOR DO NO THIS D	ENCES IETARY INFORMATION MAY NOT BE REPRODUCED OR DIVULGED WITHOUT WRITTEN CONSENT OF BLUMETRIC ENVIRONMENTAL INC. T SCALE DRAWING. RAWING MAY HAVE BEEN REDUCED. ALL SCALE NOTATIONS INDICATED ARE ON 11*127* FORMAT DRAWINGS.	N . A		

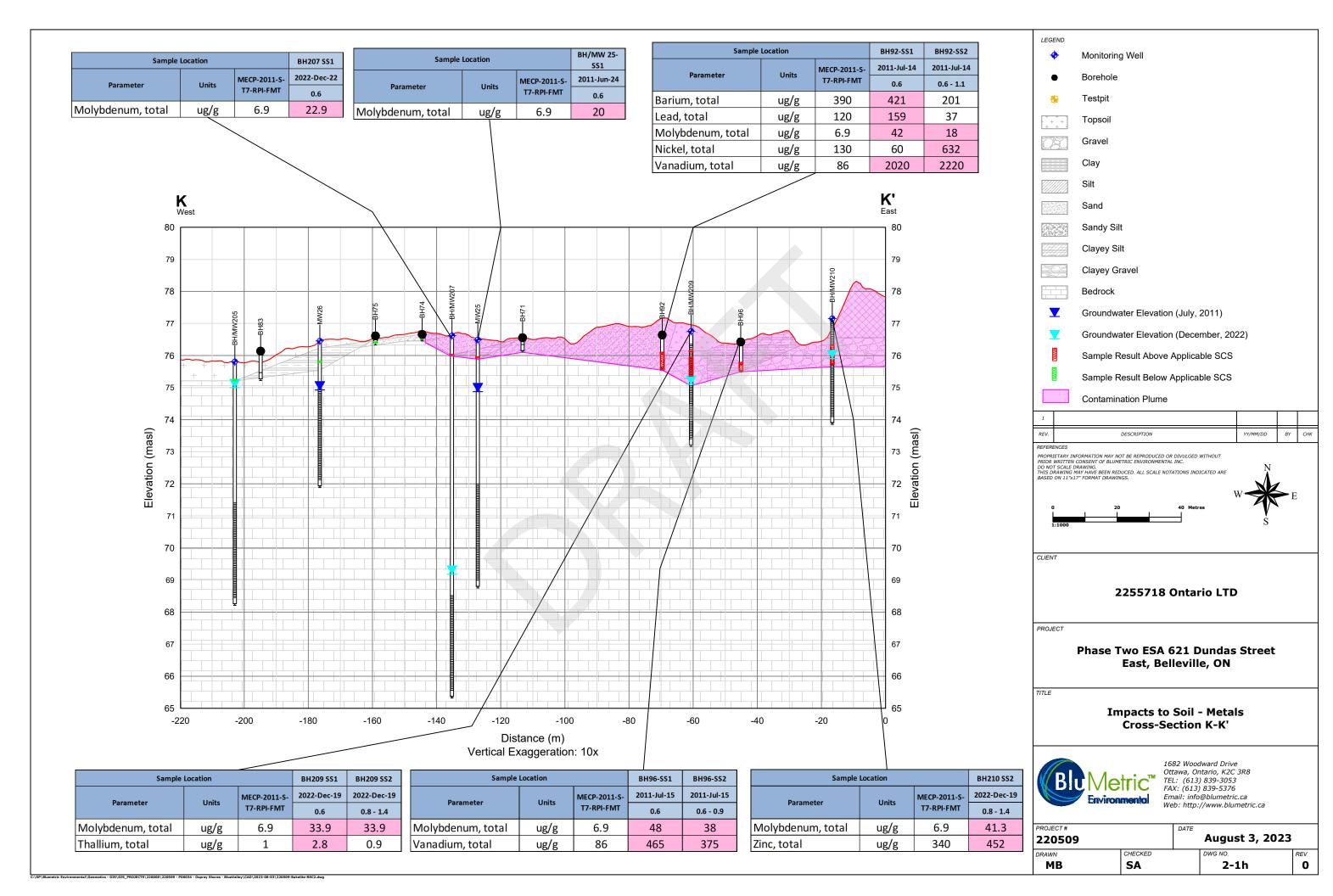
0 8 16 Metres

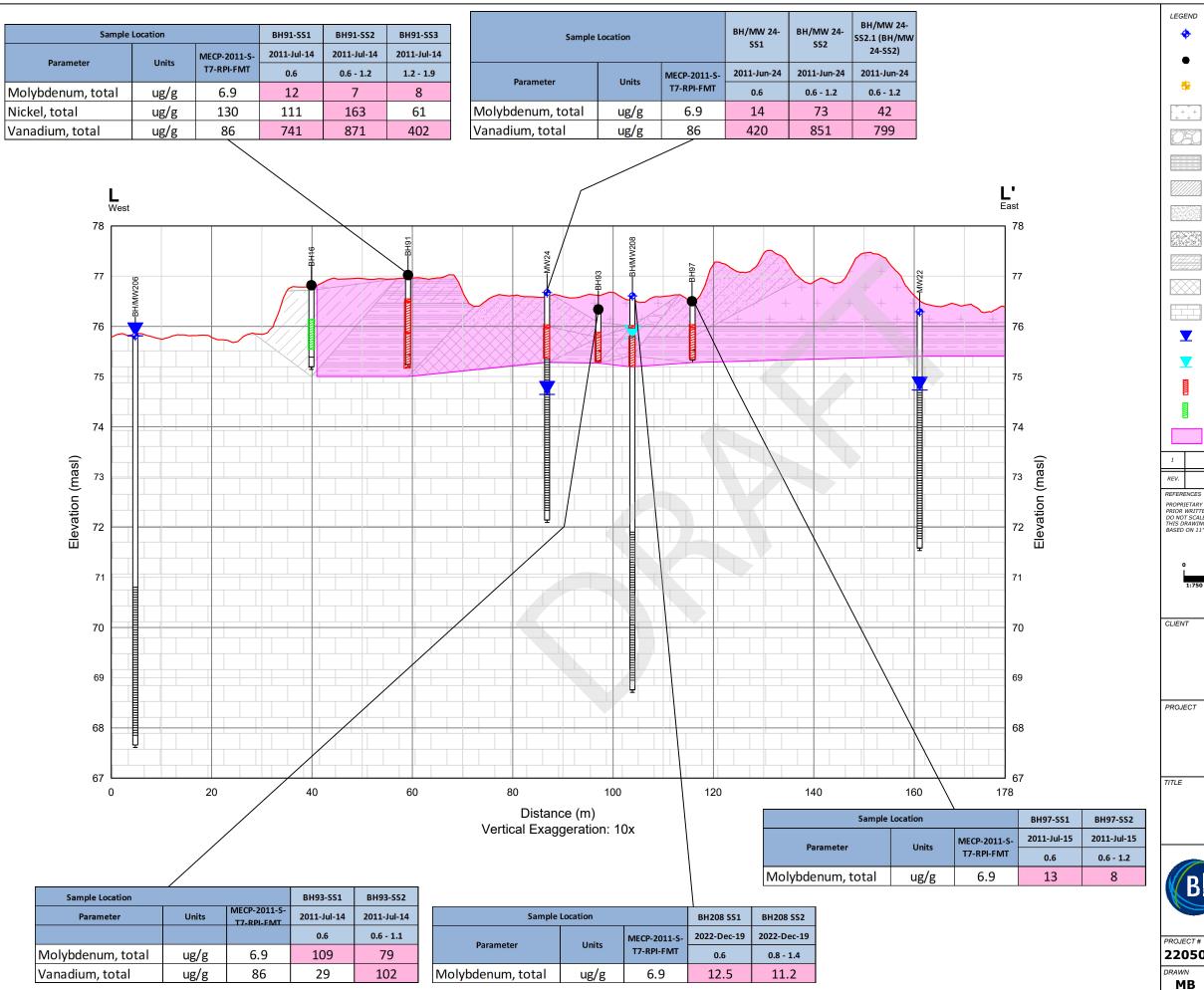
CLIENT

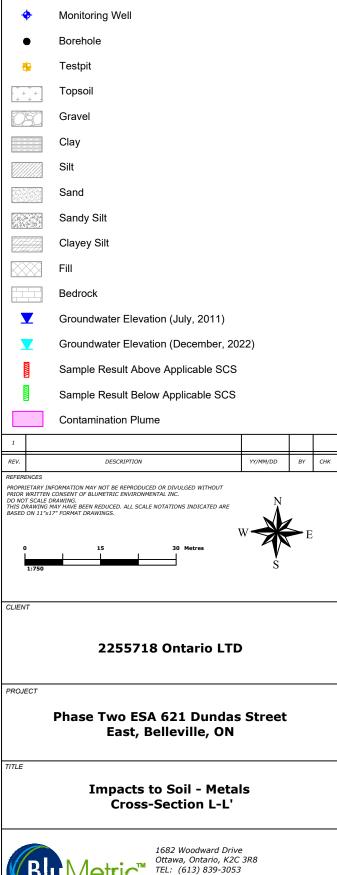
2255718 Ontario LTD

PROJECT

Phase Two ESA 621 Dundas Street East, Belleville, ON


TITL


Impacts to Soil - Metals Cross-Section J-J'



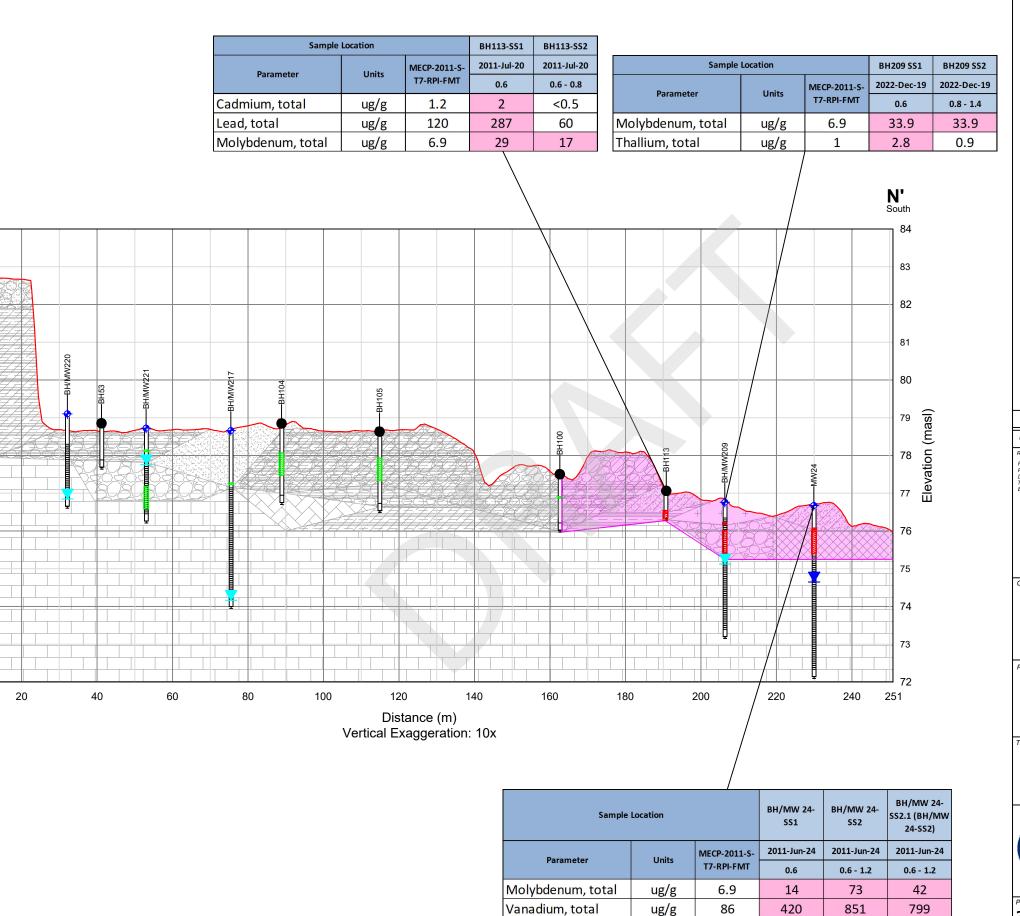
1682 Woodward Drive Ottawa, Ontario, K2C 3R8 TEL: (613) 839-3053 FAX: (613) 839-5376 Email: info@blumetric.ca Web: http://www.blumetric.ca

220509		DATE	August 3, 202	3
DRAWN	CHECKED	-	DWG NO.	REV
МВ	SA		2-1g	0

 220509
 August 3, 2023

 DRAWN
 CHECKED
 DWG NO.

 MB
 SA
 2-1i


Environmenta

FAX: (613) 839-5376

Email: info@blumetric.ca

Web: http://www.blumetric.ca

0

N

84

83

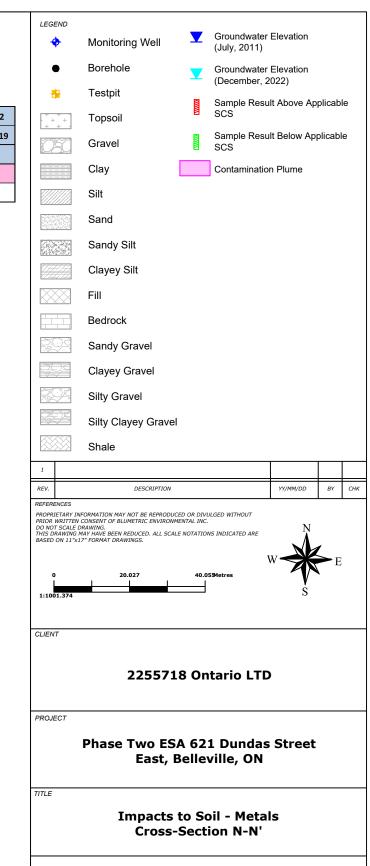
82

81

80

76

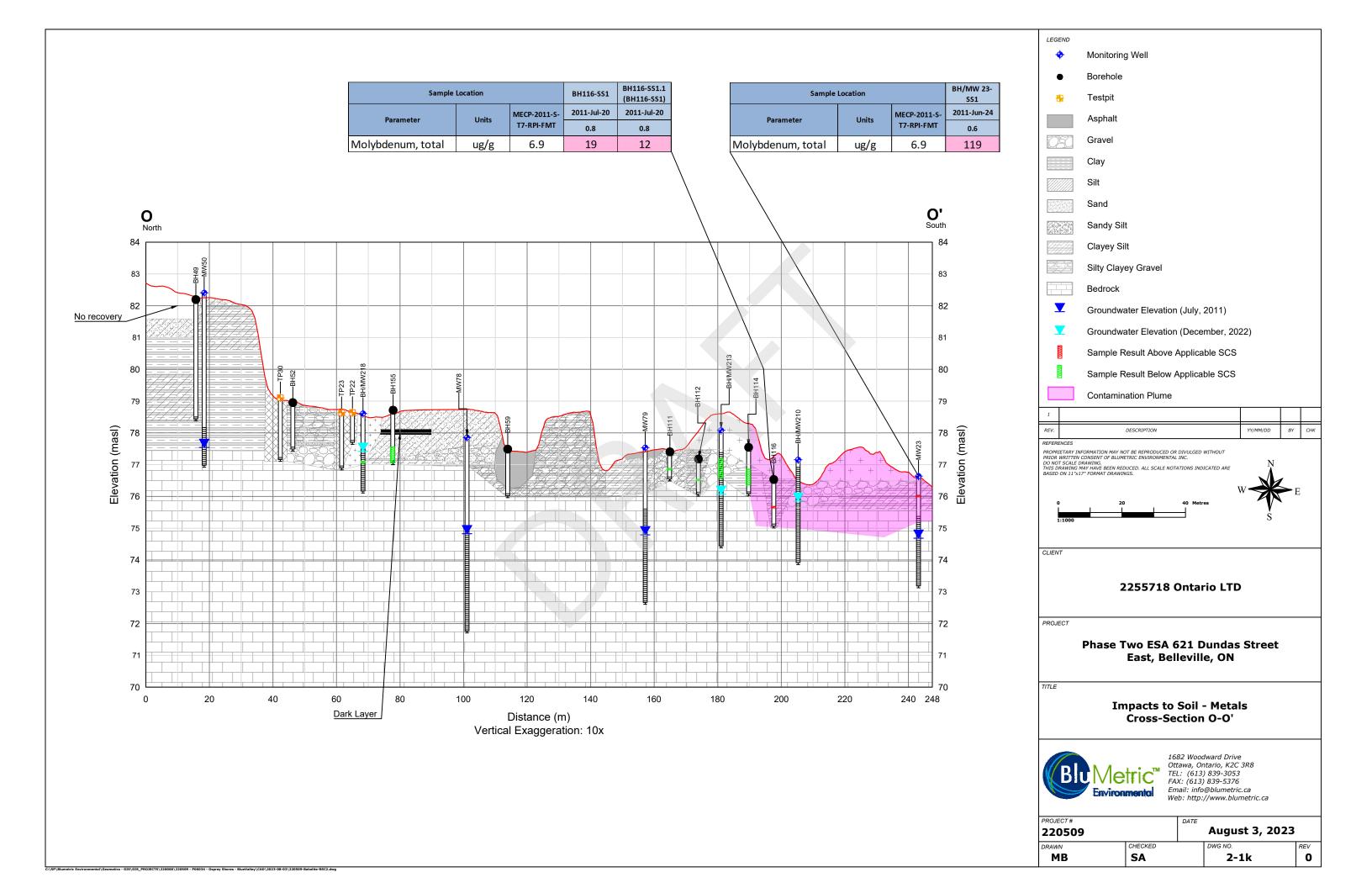
75

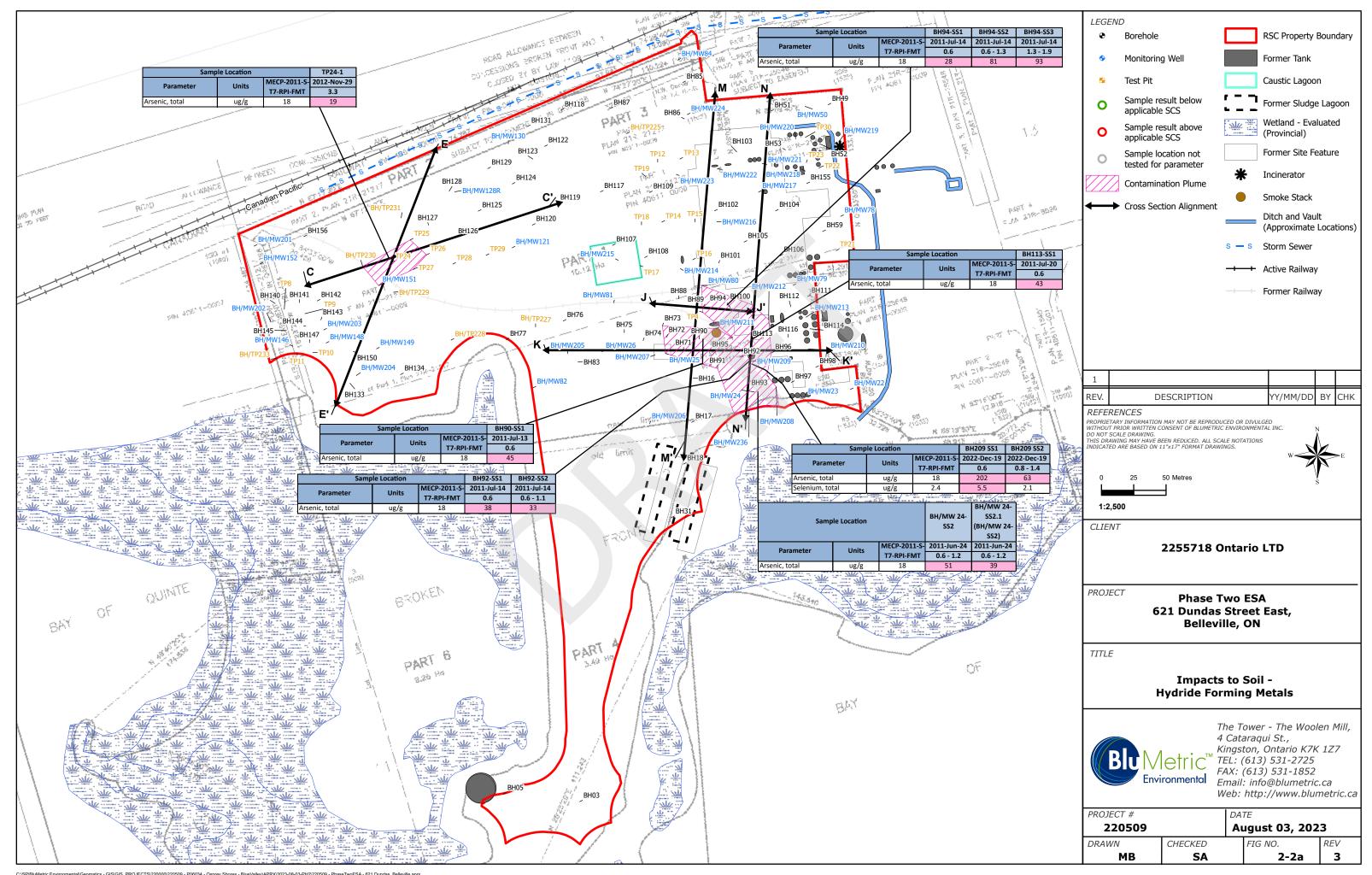

74

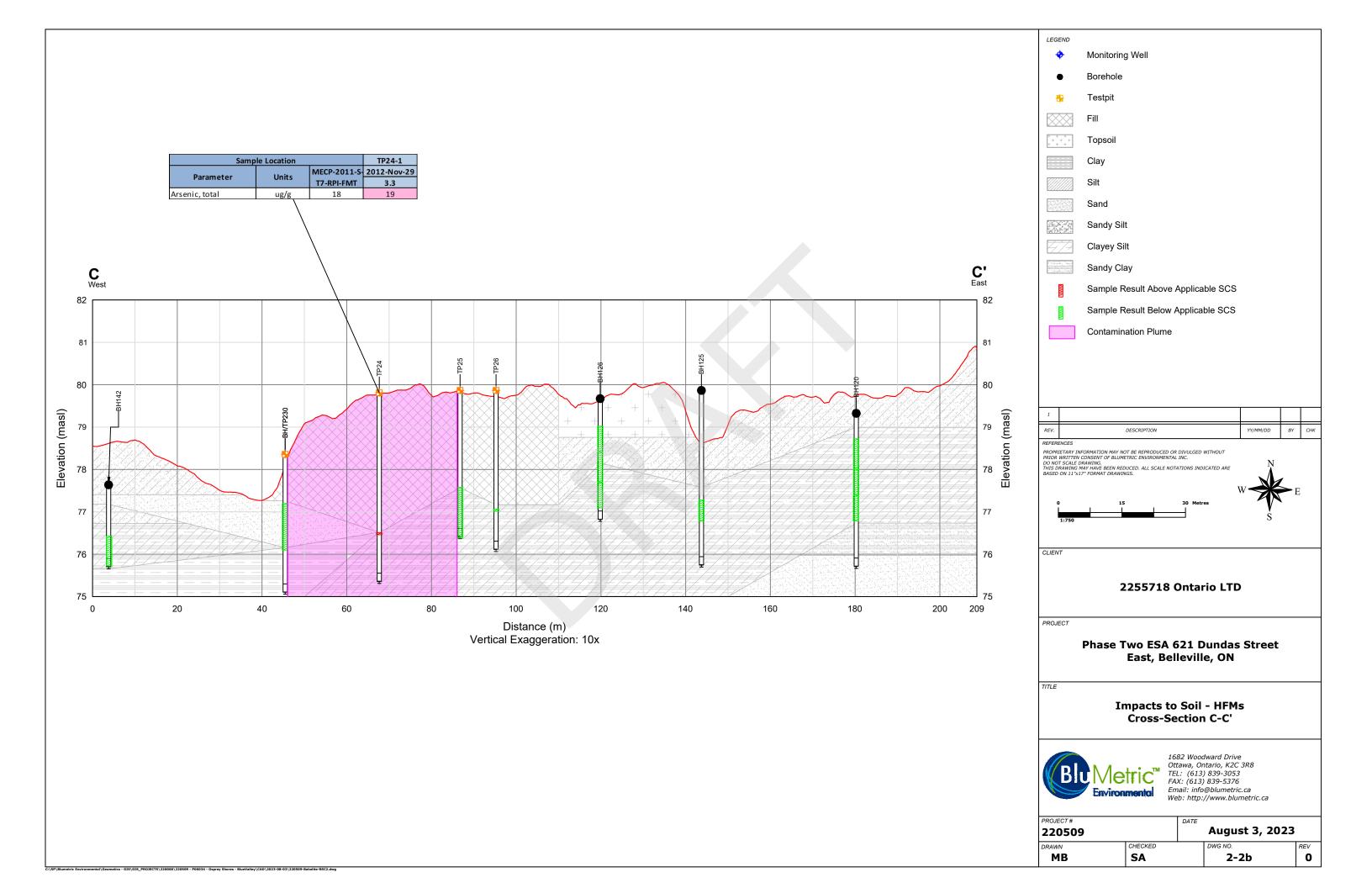
73

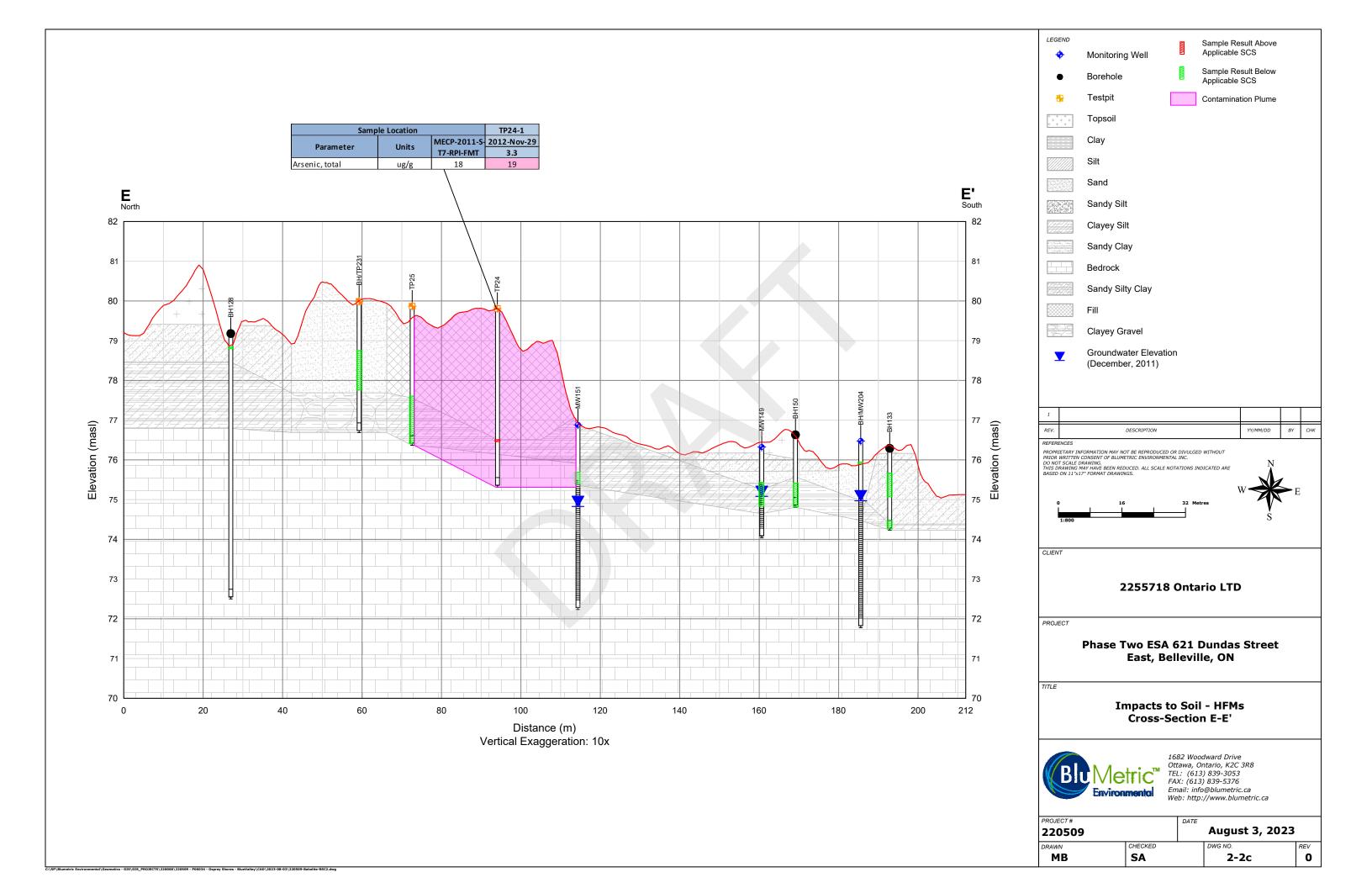
72

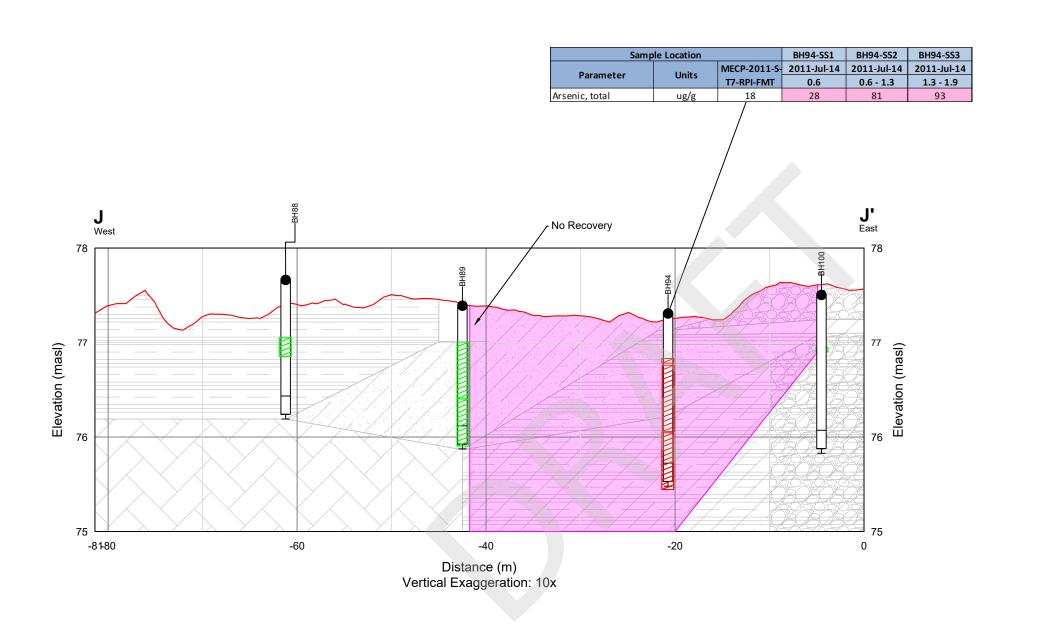
C:\SP\Blumetric Environmental\Geomatics - GIS\GIS PROJECTS\220000\220509 - P06034 - Osprey Shores - BlueValley\CAD\2023-08-03\220509-Bakelite-RSC2.dwg

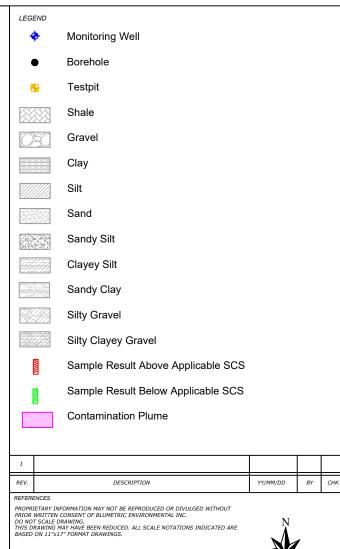

Elevation (masl)






1682 Woodward Drive Ottawa, Ontario, K2C 3R8 TEL: (613) 839-3053 FAX: (613) 839-5376 Email: info@blumetric.ca Web: http://www.blumetric.ca


PROJECT#		DATE		
220509			August 3, 2023	
DRAWN	CHECKED		DWG NO.	REV
МВ	SA		2-1j	0



0 8 16 Metres

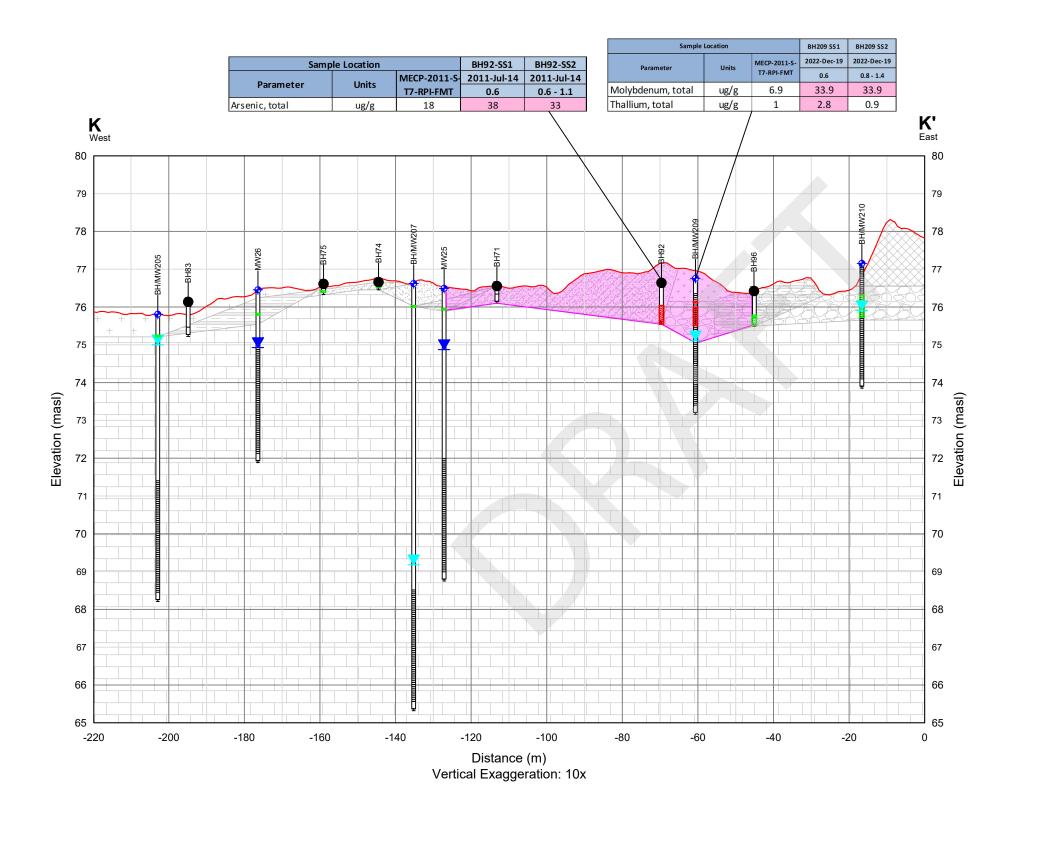
W S

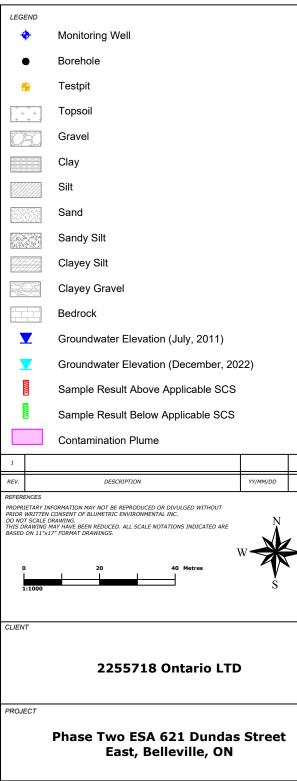
CLIENT

2255718 Ontario LTD

PROJECT

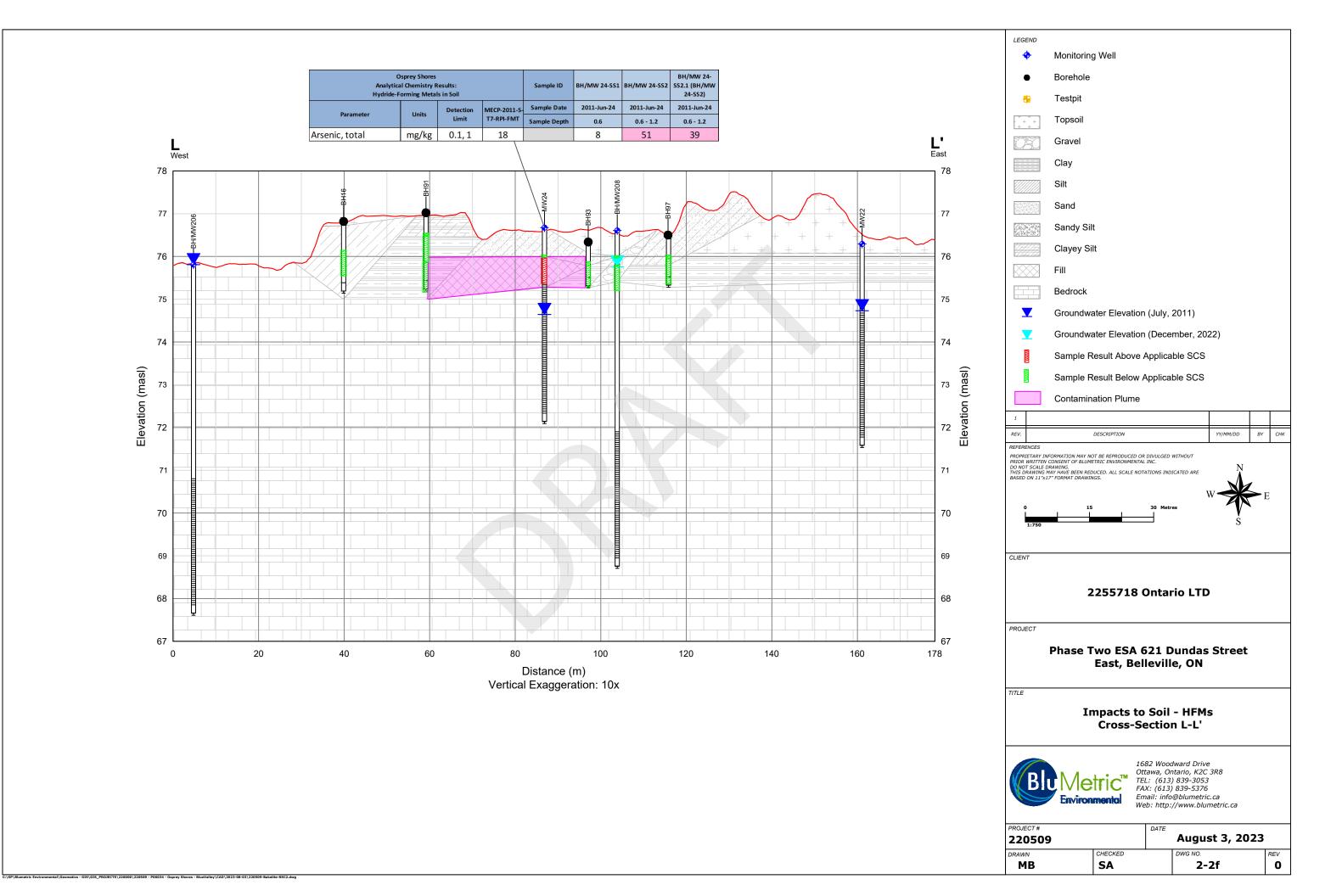
Phase Two ESA 621 Dundas Street East, Belleville, ON

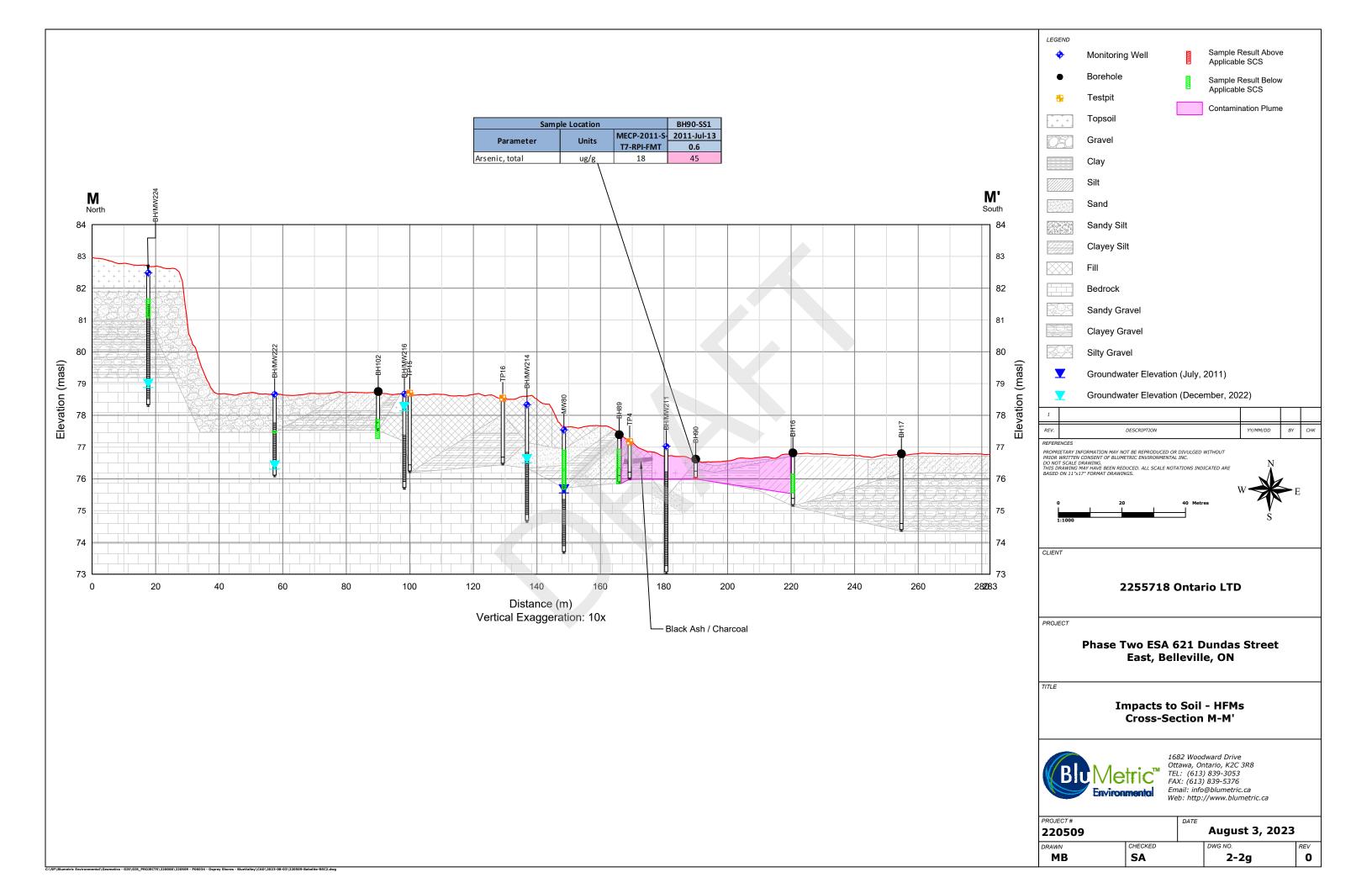

TITLE

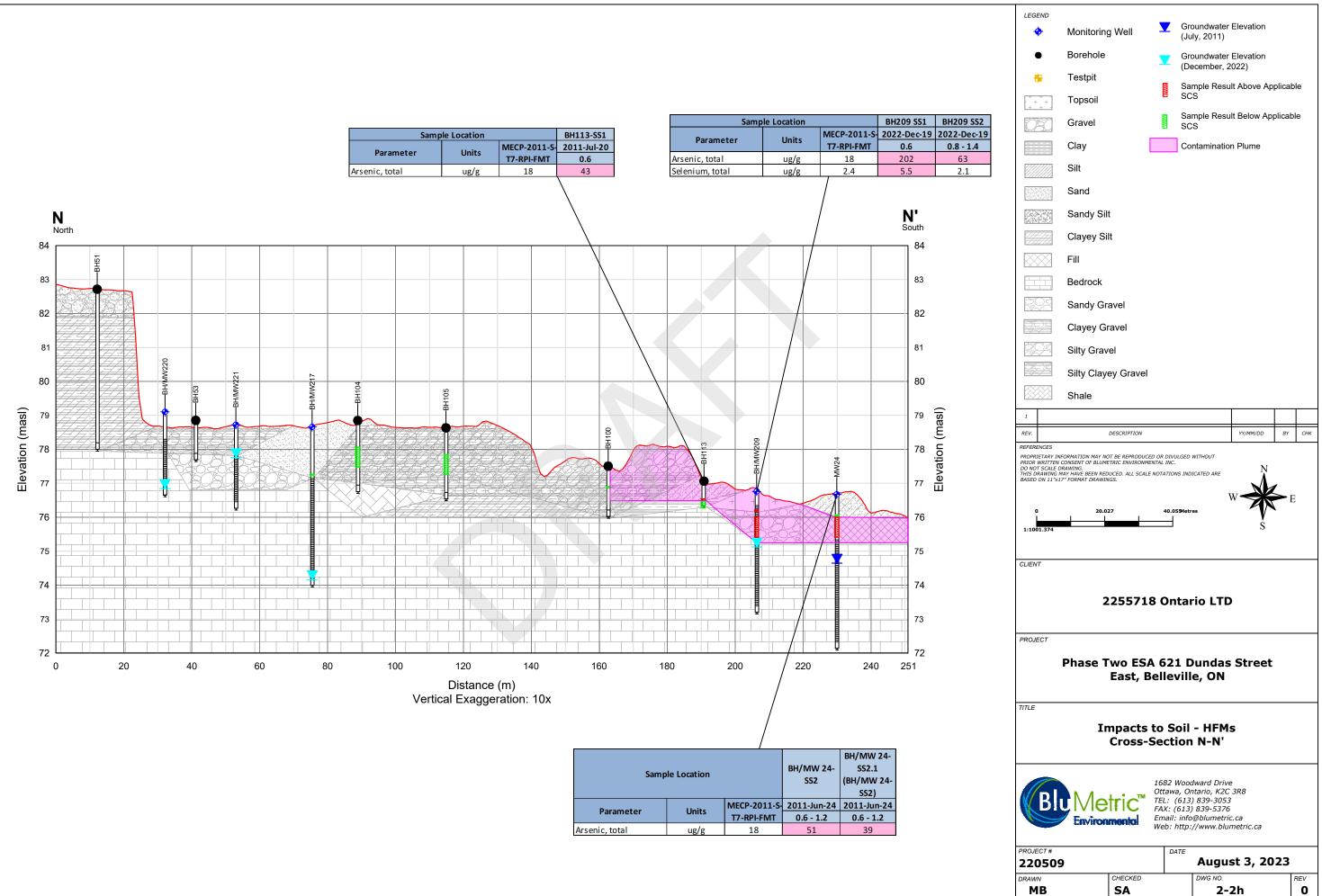

Impacts to Soil - HFMs Cross-Section J-J'

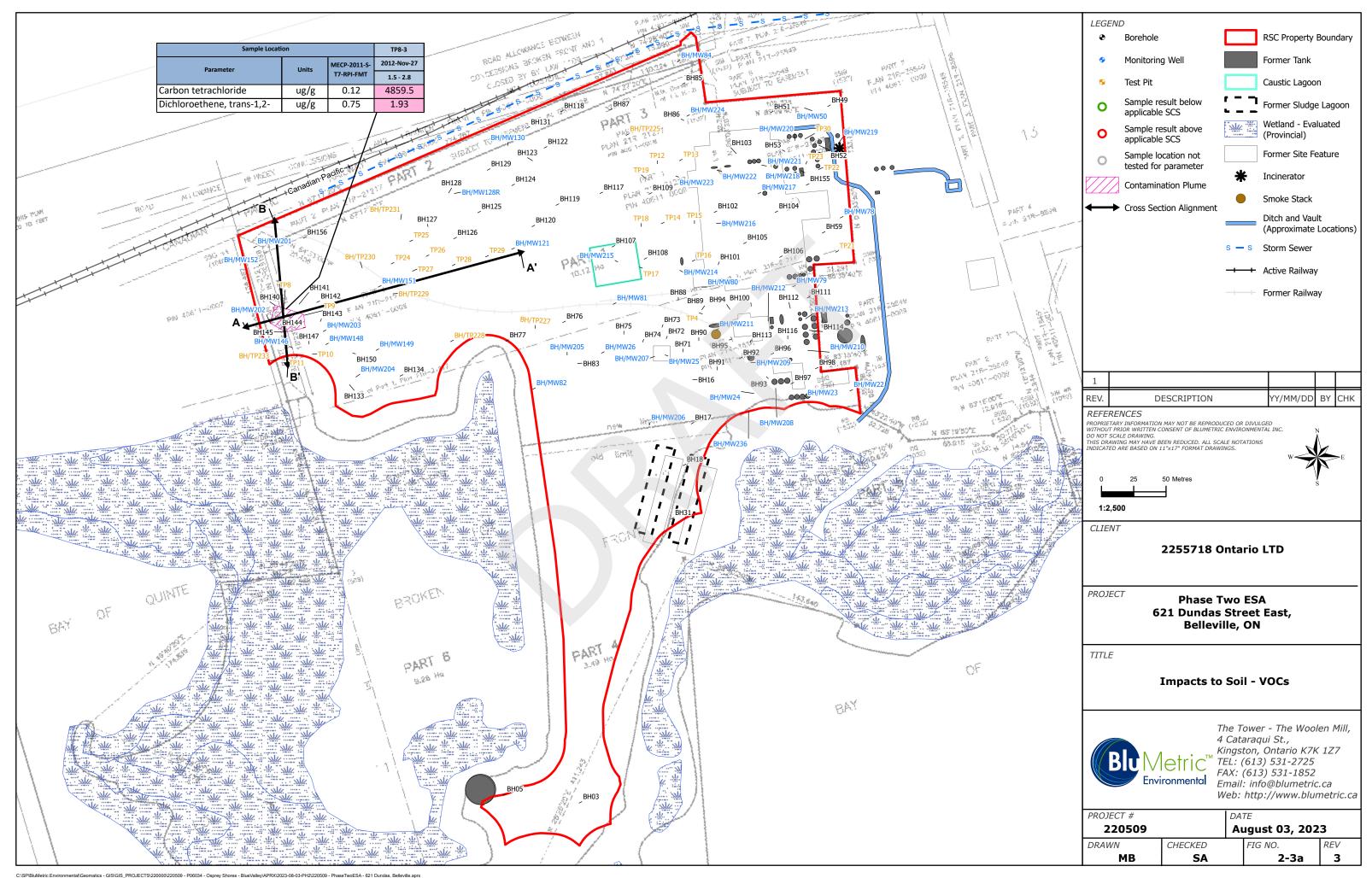
1682 Woodward Drive Ottawa, Ontario, K2C 3R8 TEL: (613) 839-3053 FAX: (613) 839-5376 Email: info@blumetric.ca Web: http://www.blumetric.ca

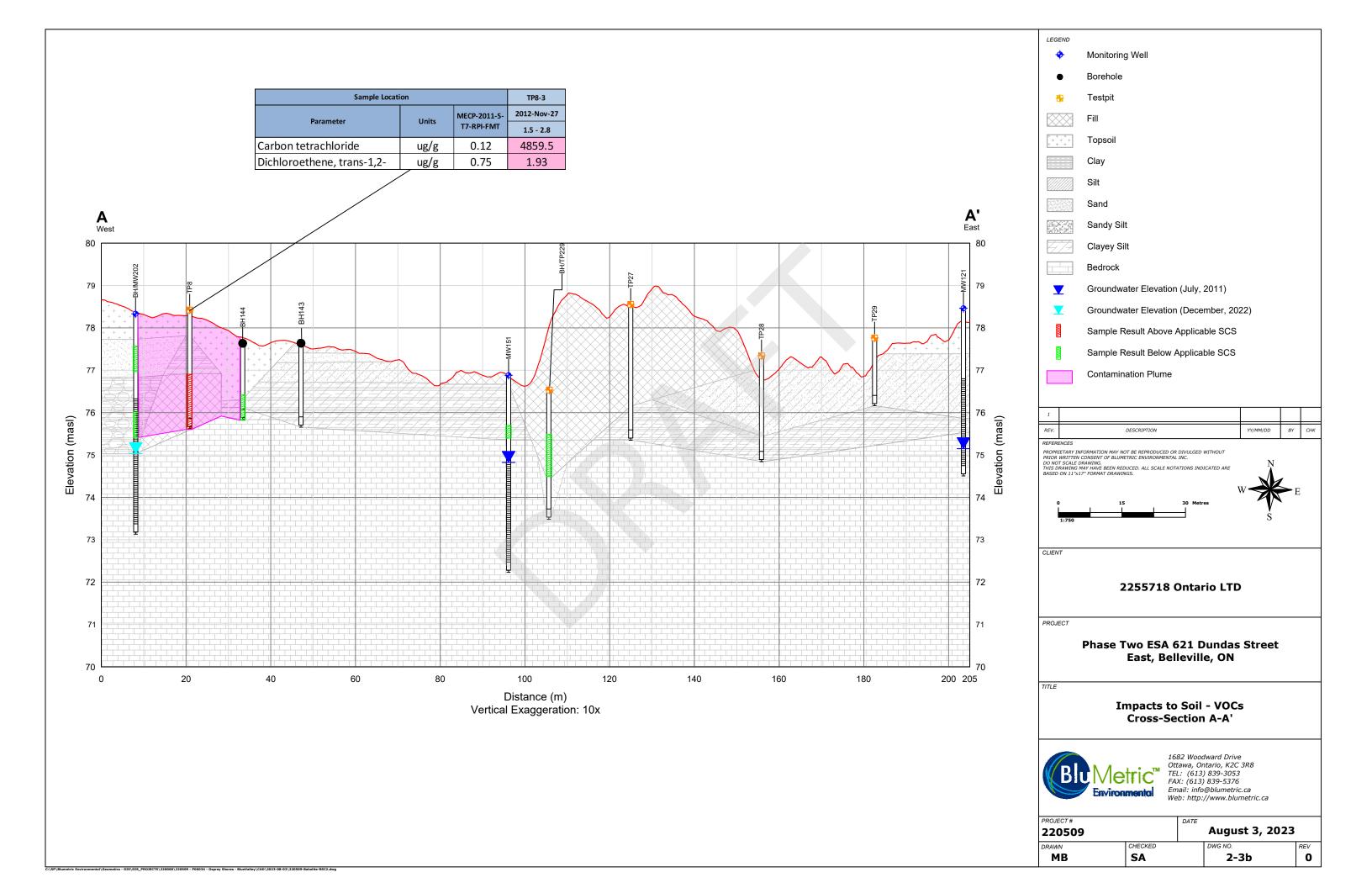
220509		DATE	August 3, 2023	
DRAWN	CHECKED		DWG NO.	REV
MB	SA		2-2d	0

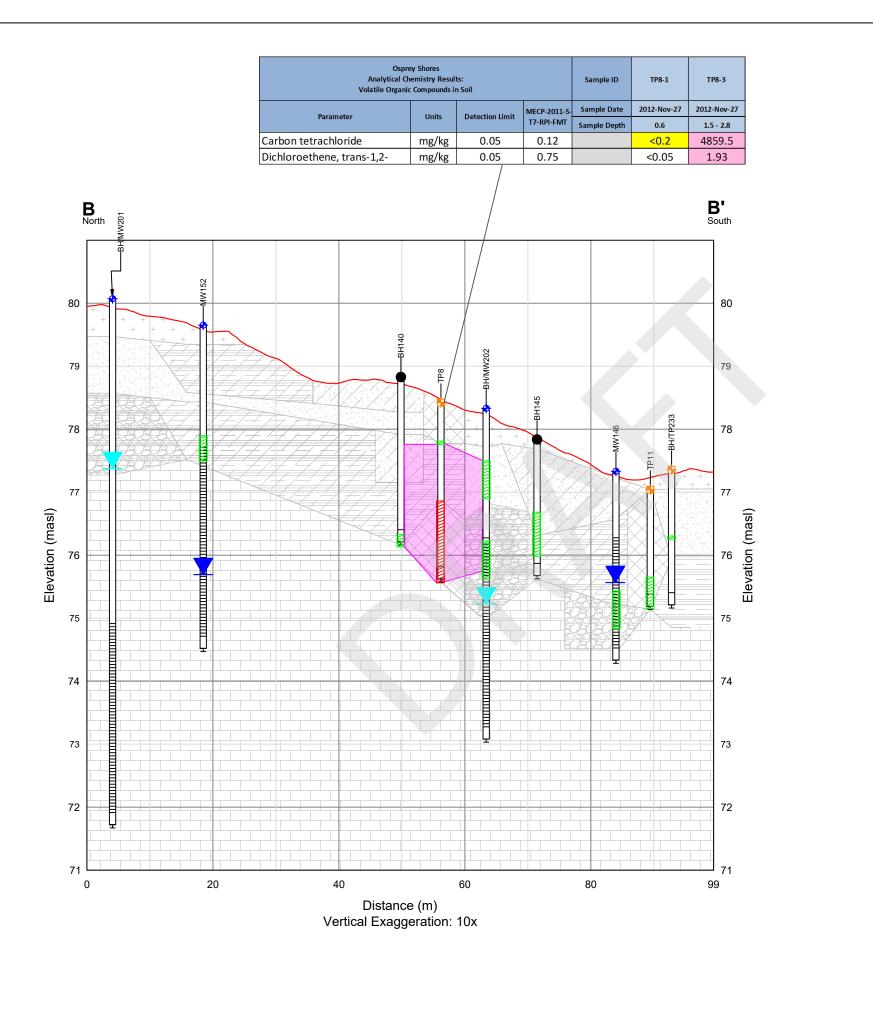

TIT

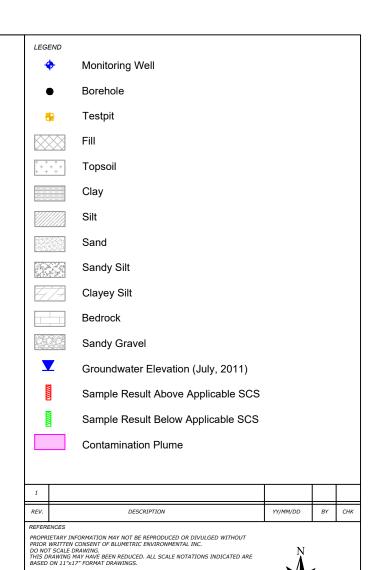

Impacts to Soil - HFMs Cross-Section K-K'




1682 Woodward Drive Ottawa, Ontario, K2C 3R8 TEL: (613) 839-3053 FAX: (613) 839-5376 Email: info@blumetric.ca Web: http://www.blumetric.ca


PROJECT#		DATE		
220509			August 3, 2023	
DRAWN	CHECKED		DWG NO.	REV
MB	SA		2-2e	0





C:\SP\Blumetric Environmental\Geomatics - GIS\GIS_PROJECTS\220000\220509 - P06034 - Osprey Shores - BlueValley\CAD\2023-08-03\220509-Bakelite-RSC2.dwg

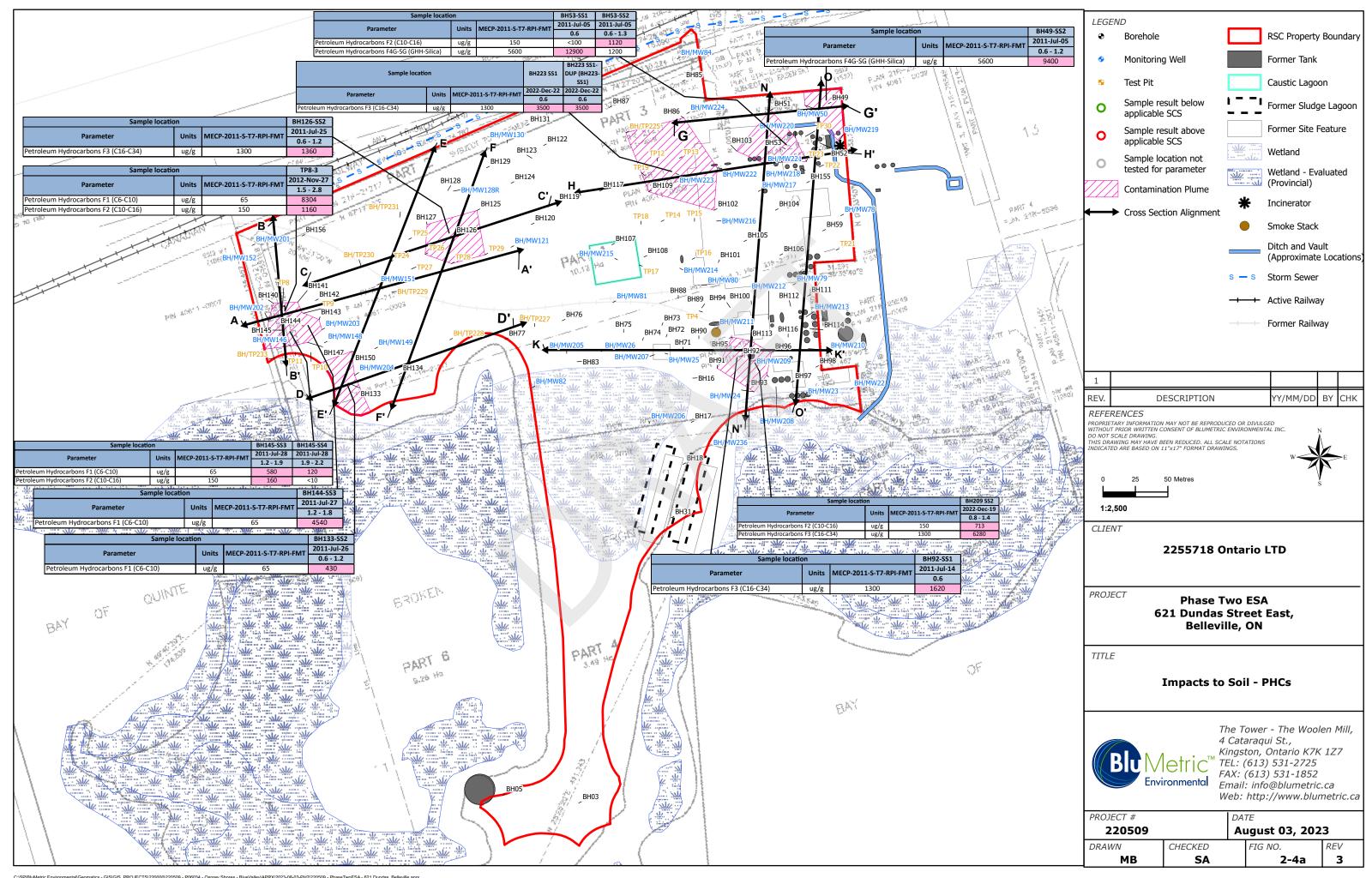
1:600 12 24 Metres

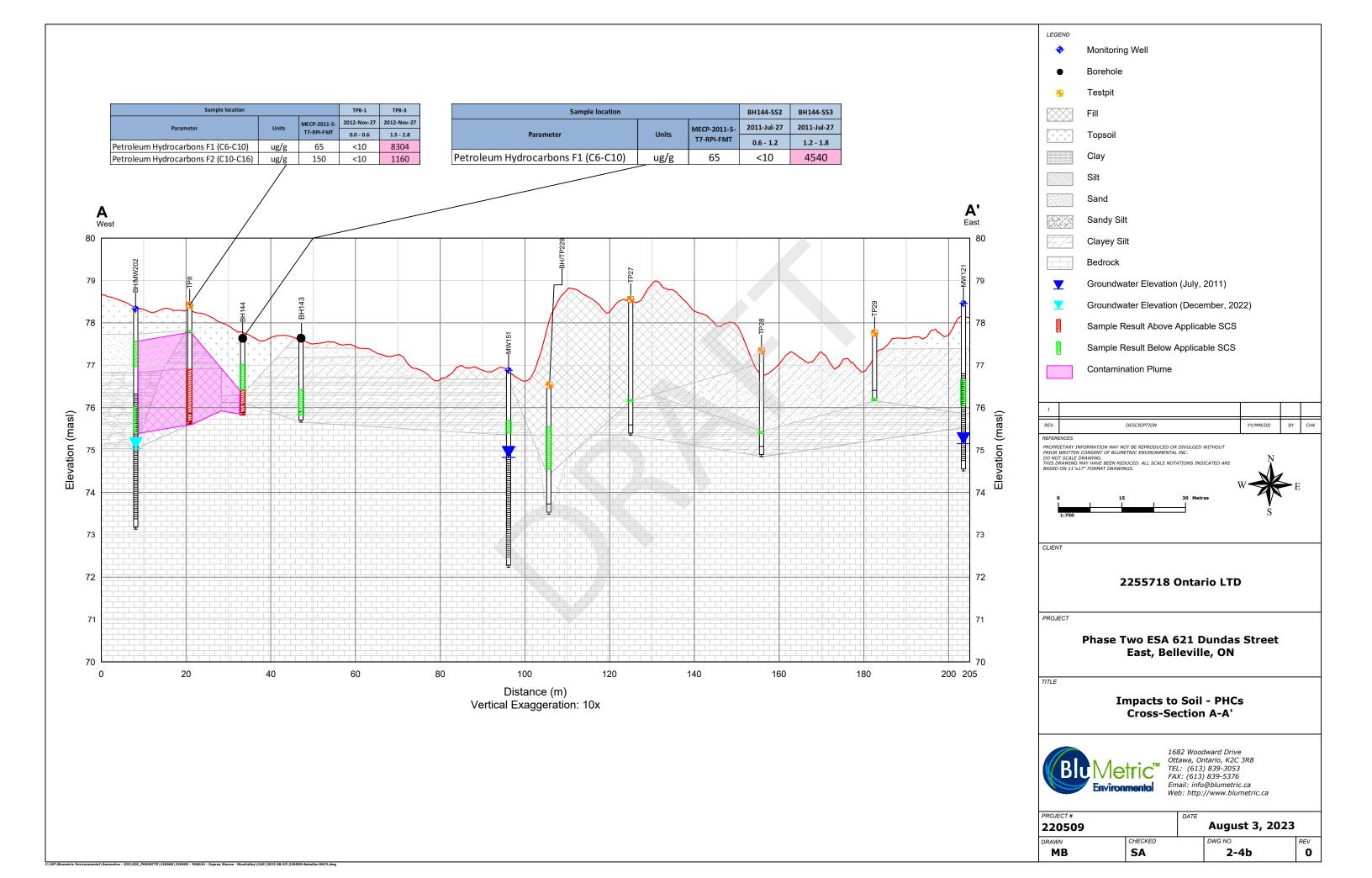
CLIENT

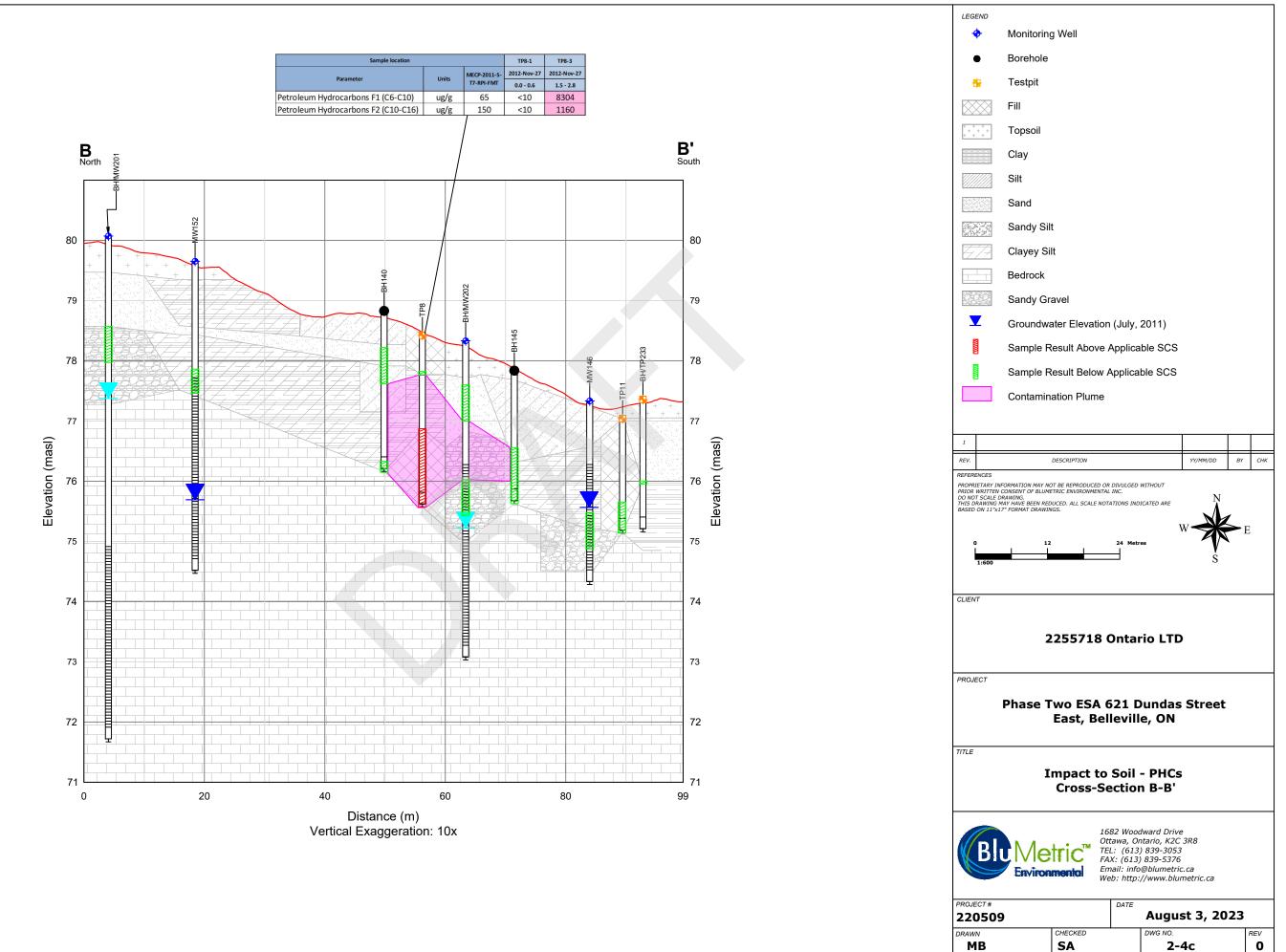
2255718 Ontario LTD

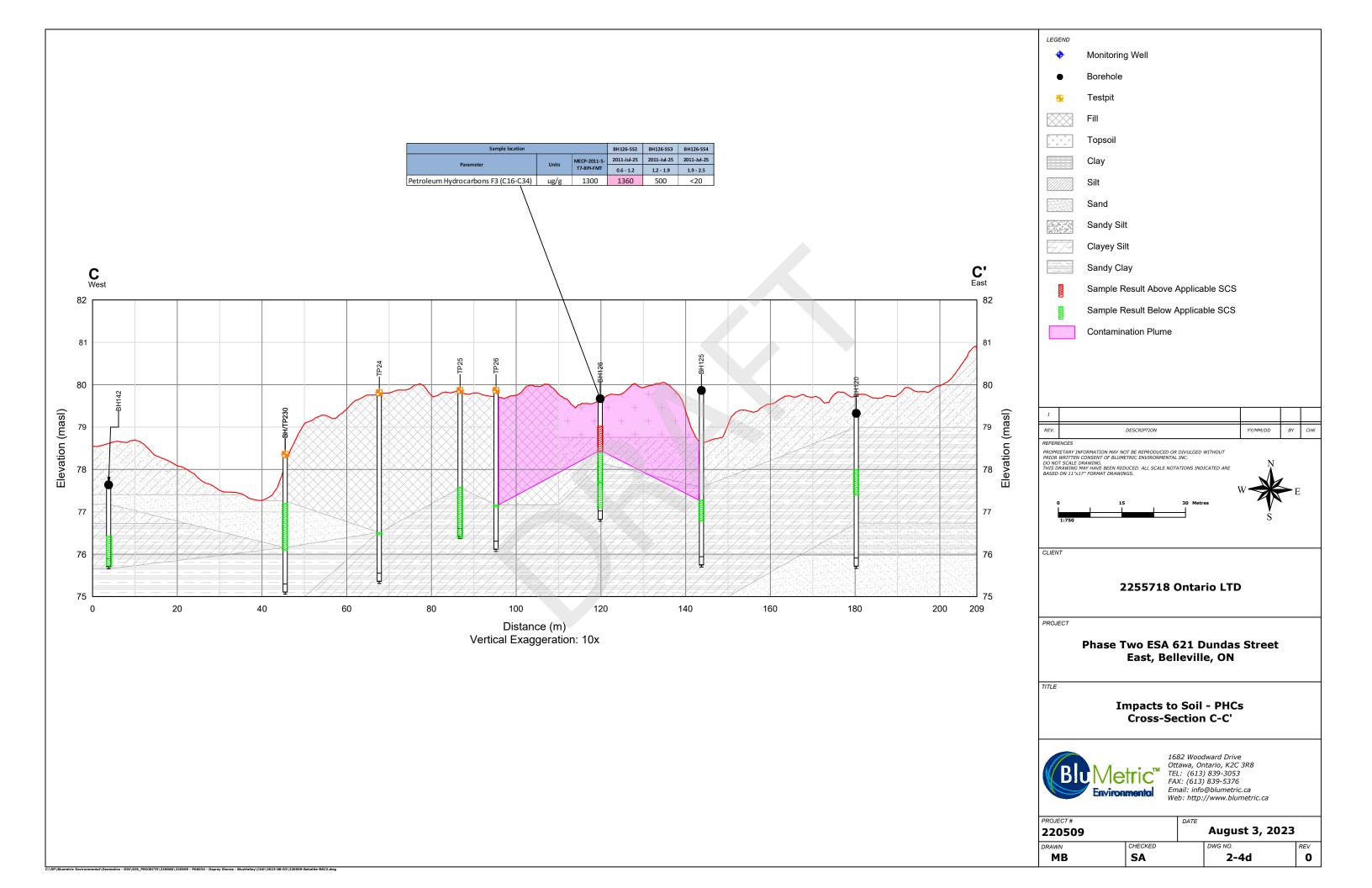
PROJECT

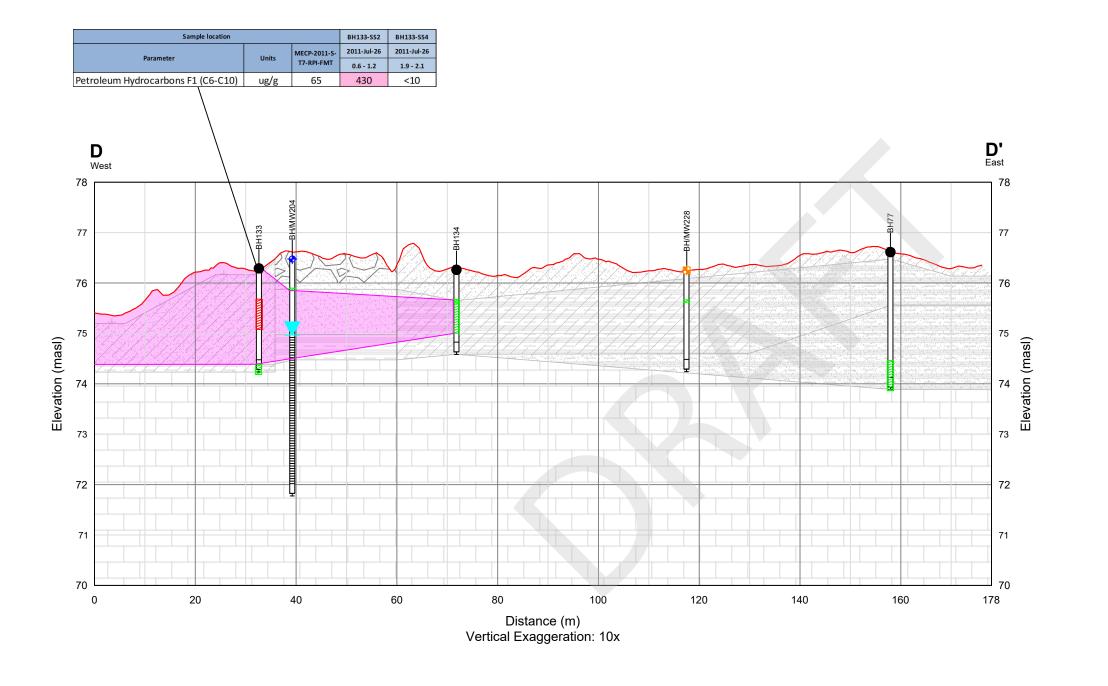
Phase Two ESA 621 Dundas Street East, Belleville, ON

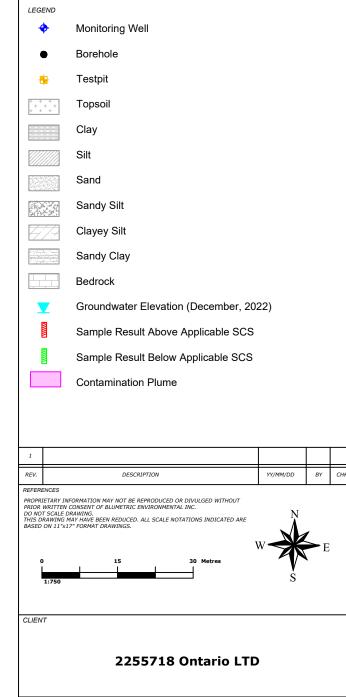

TITLE


Impact to Soil - VOCs Cross-Section B-B'



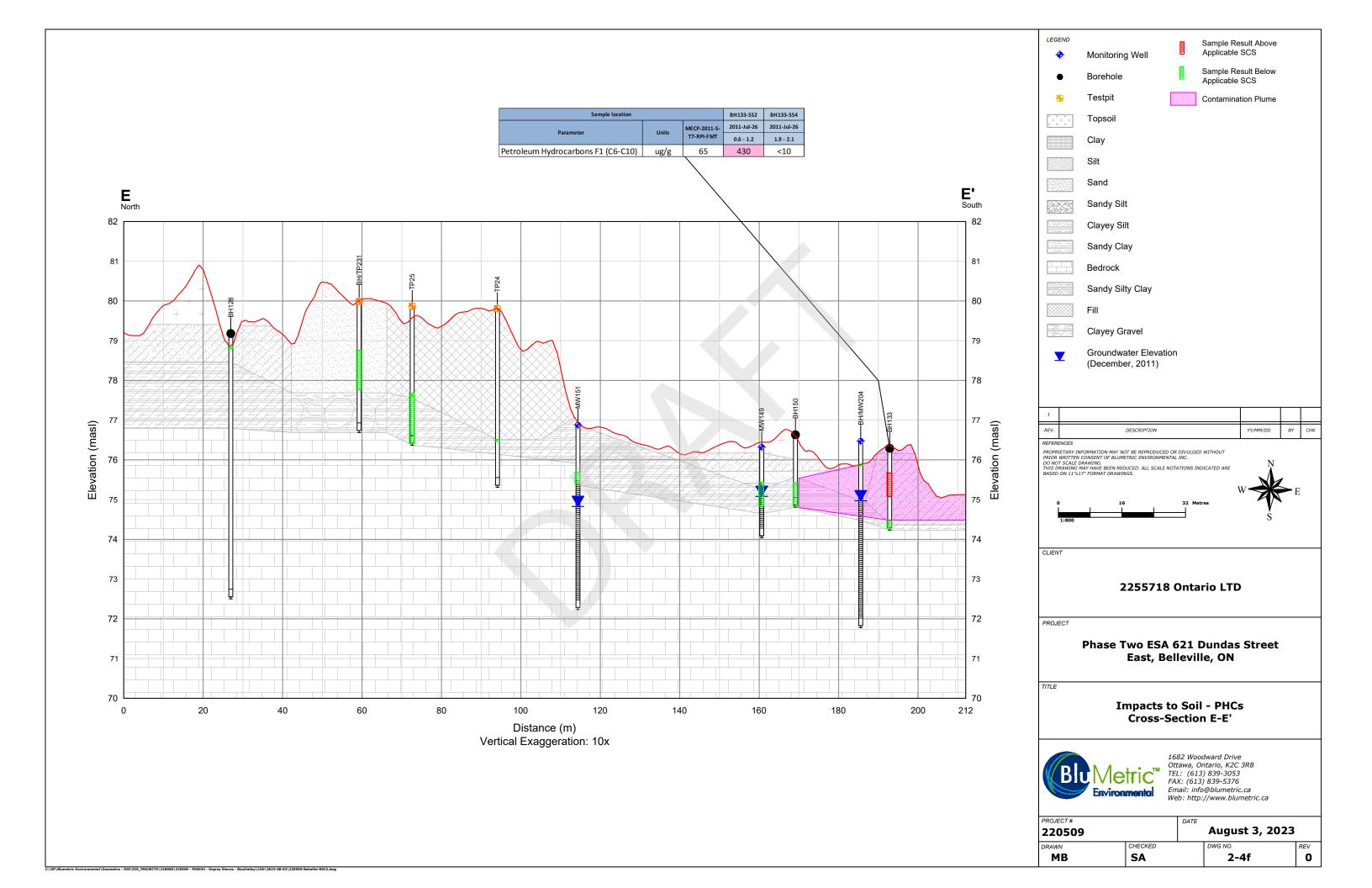

1682 Woodward Drive Ottawa, Ontario, K2C 3R8 TEL: (613) 839-3053 FAX: (613) 839-5376 Email: info@blumetric.ca Web: http://www.blumetric.ca

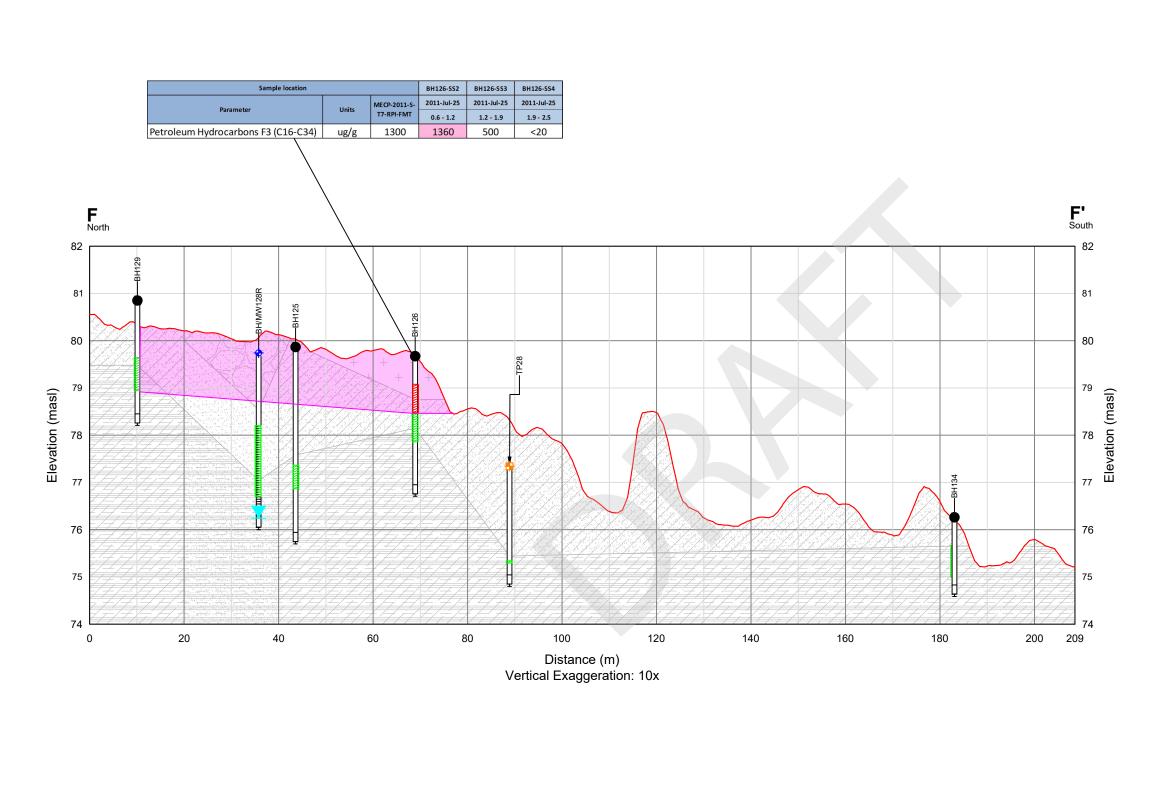

220509		DATE	August 3, 2023	
DRAWN	CHECKED		DWG NO.	REV
МВ	SA		2-3c	0



PROJECT

Phase Two ESA 621 Dundas Street East, Belleville, ON

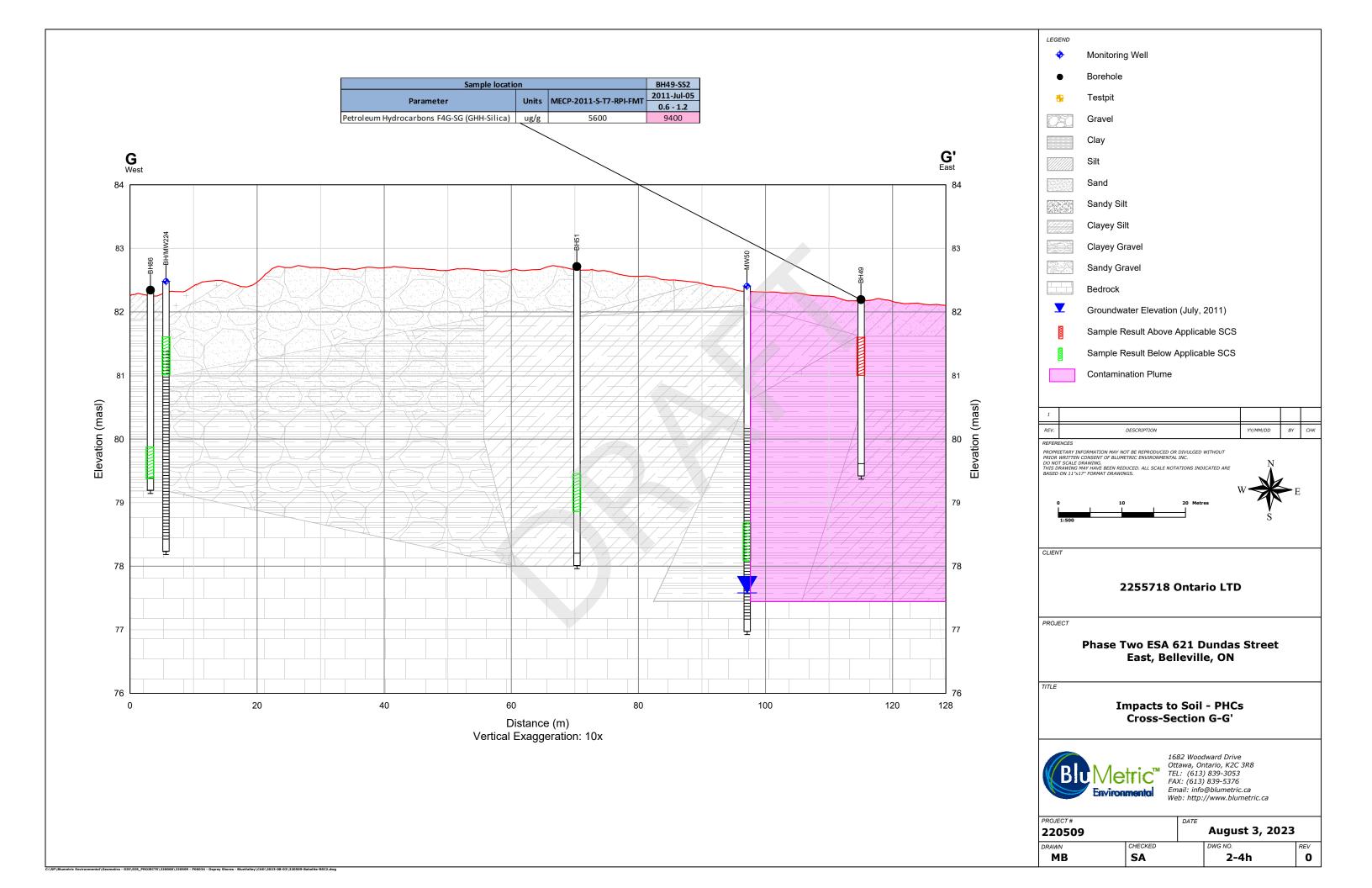

TITL

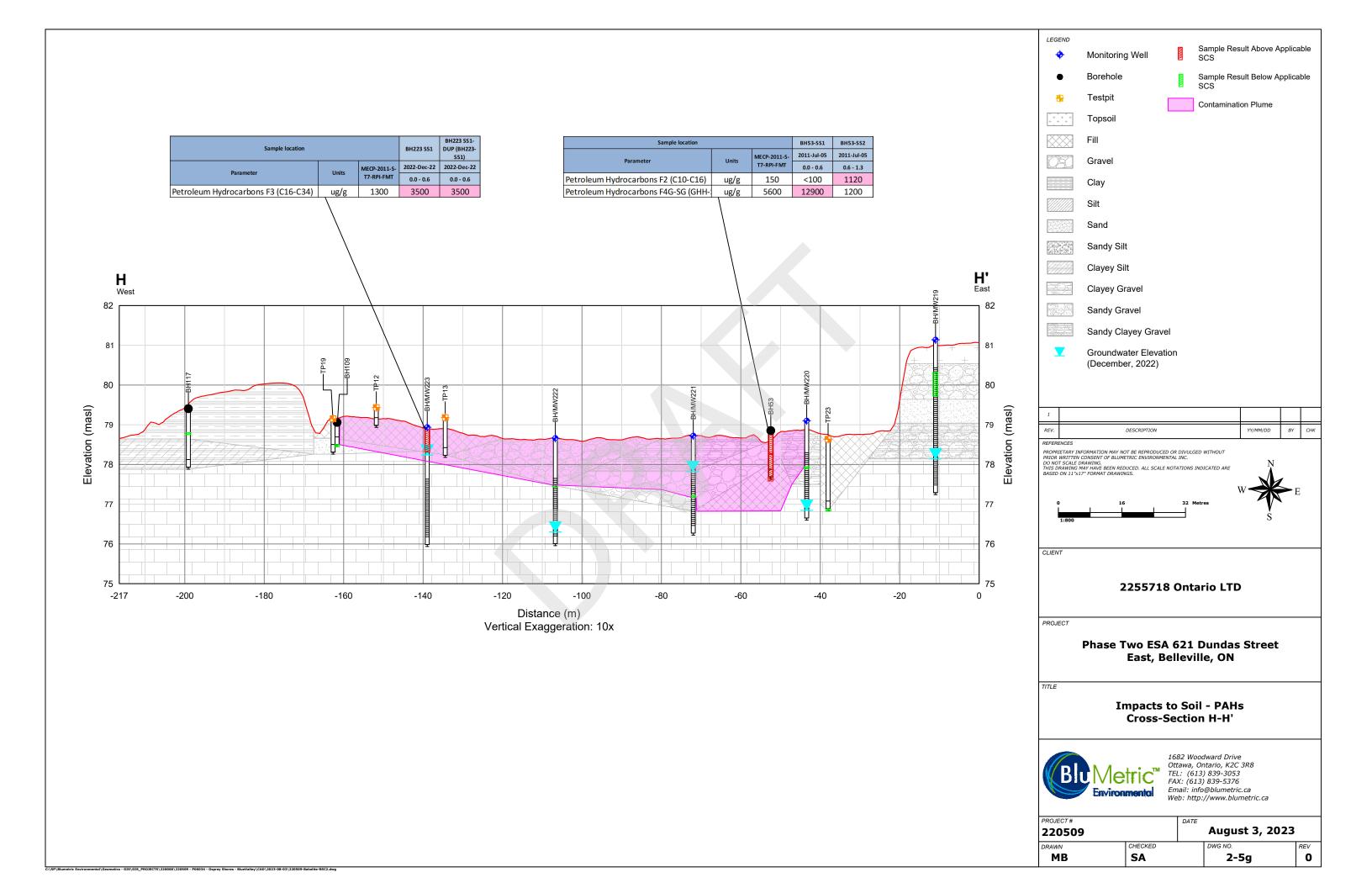

Impacts to Soil - PHCs Cross-Section D-D'

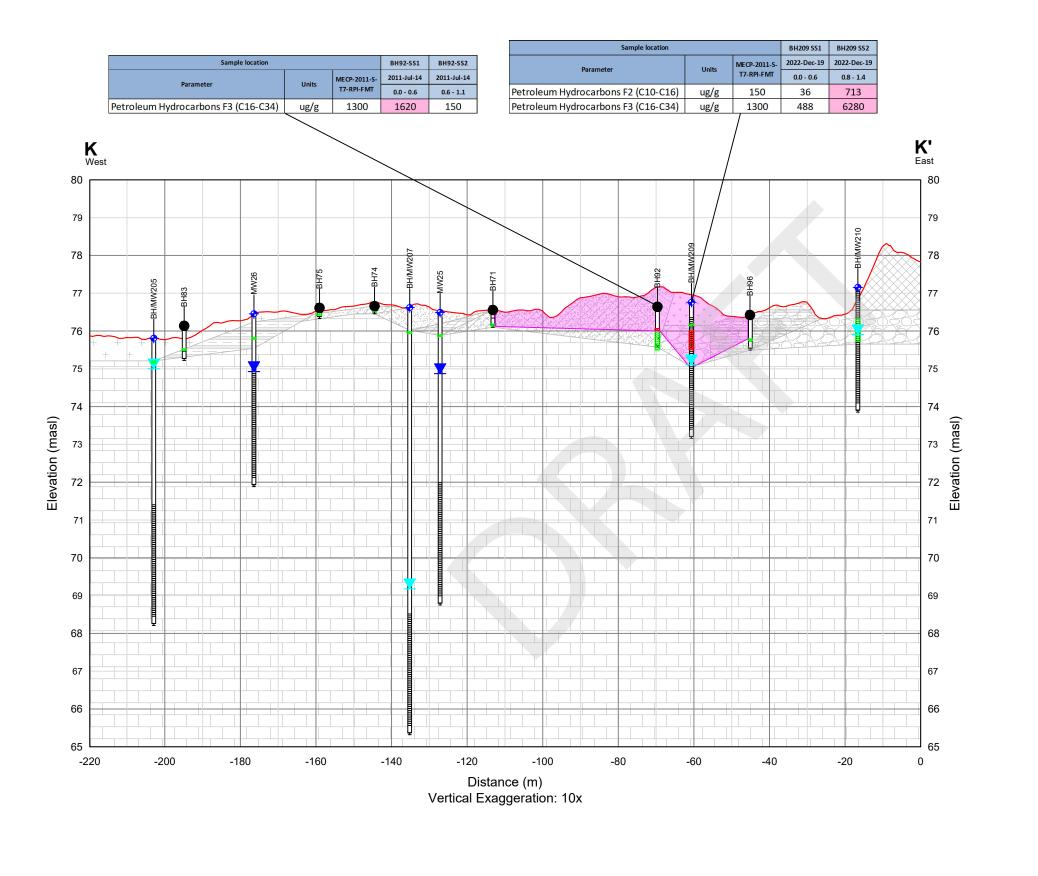
1682 Woodward Drive Ottawa, Ontario, K2C 3R8 TEL: (613) 839-3053 FAX: (613) 839-5376 Email: info@blumetric.ca Web: http://www.blumetric.ca

PROJECT # 220509		DATE	August 3, 2023	
DRAWN	CHECKED		DWG NO.	REV
MB	SA		2-4e	0

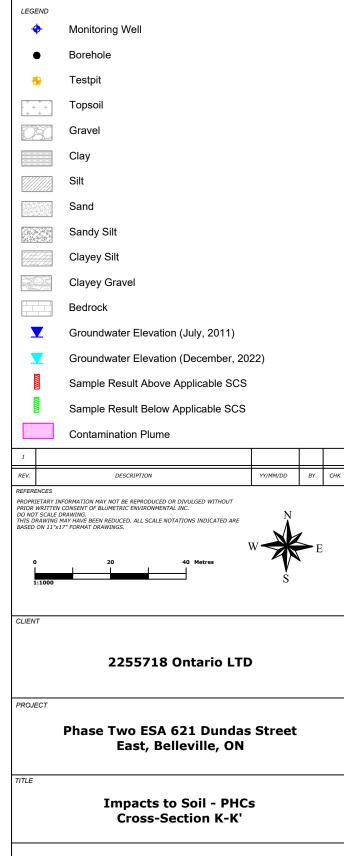
Phase Two ESA 621 Dundas Street East, Belleville, ON

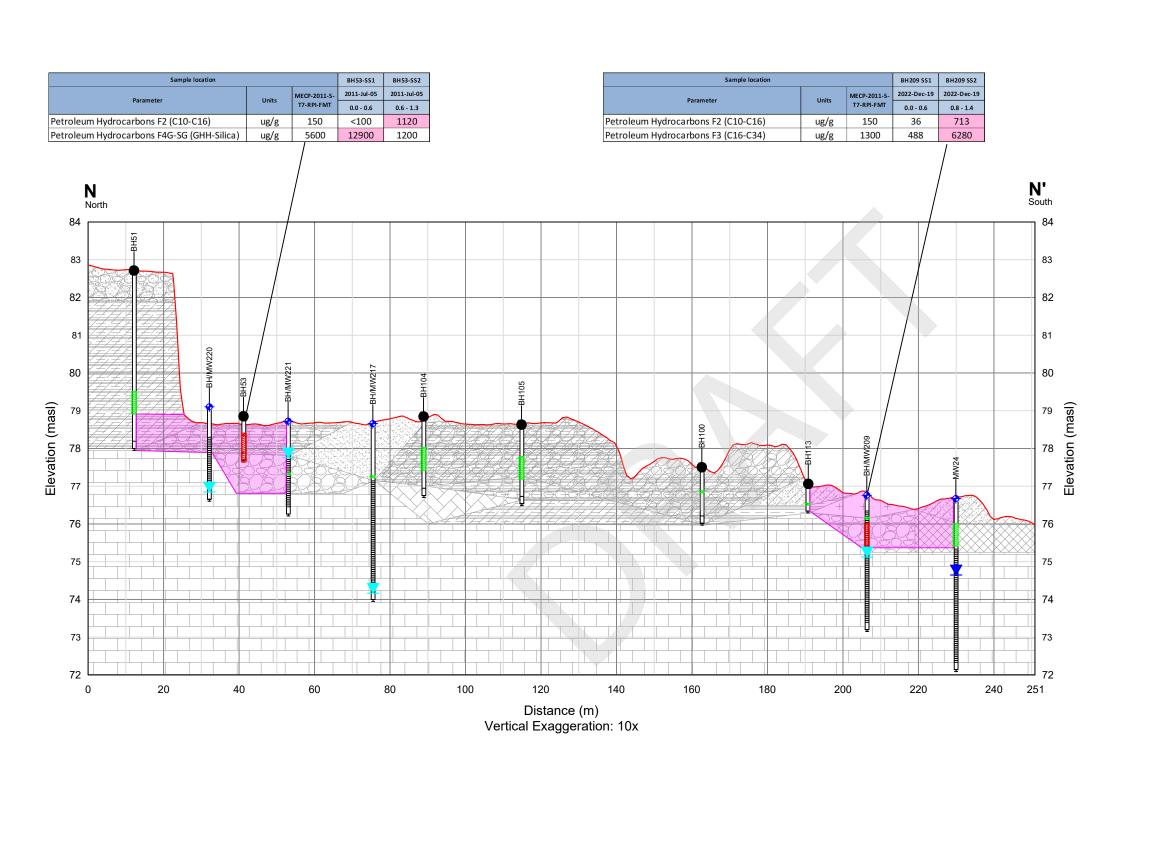

TITLE

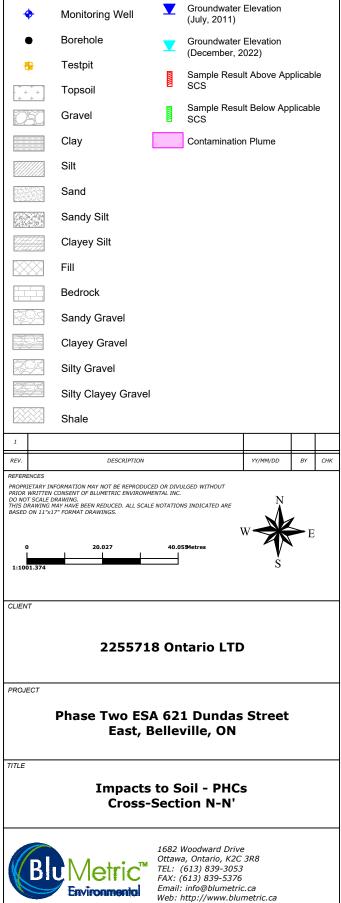

Impacts to Soil - PHCs Cross-Section F-F'



1682 Woodward Drive Ottawa, Ontario, K2C 3R8 TEL: (613) 839-3053 FAX: (613) 839-5376 Email: info@blumetric.ca Web: http://www.blumetric.ca


PROJECT# 220509		DATE	August 3, 2023	
DRAWN	CHECKED		DWG NO.	REV
МВ	SA		2-4g	0


C:\SP\Blumetric Environmental\Geomatics - GIS\GIS PROJECTS\220000\220509 - P06034 - Osprey Shores - BlueValley\CAD\2023-08-03\220509-Bakelite-RSC2.dwg



1682 Woodward Drive Ottawa, Ontario, K2C 3R8 TEL: (613) 839-3053 FAX: (613) 839-5376 Email: info@blumetric.ca Web: http://www.blumetric.ca

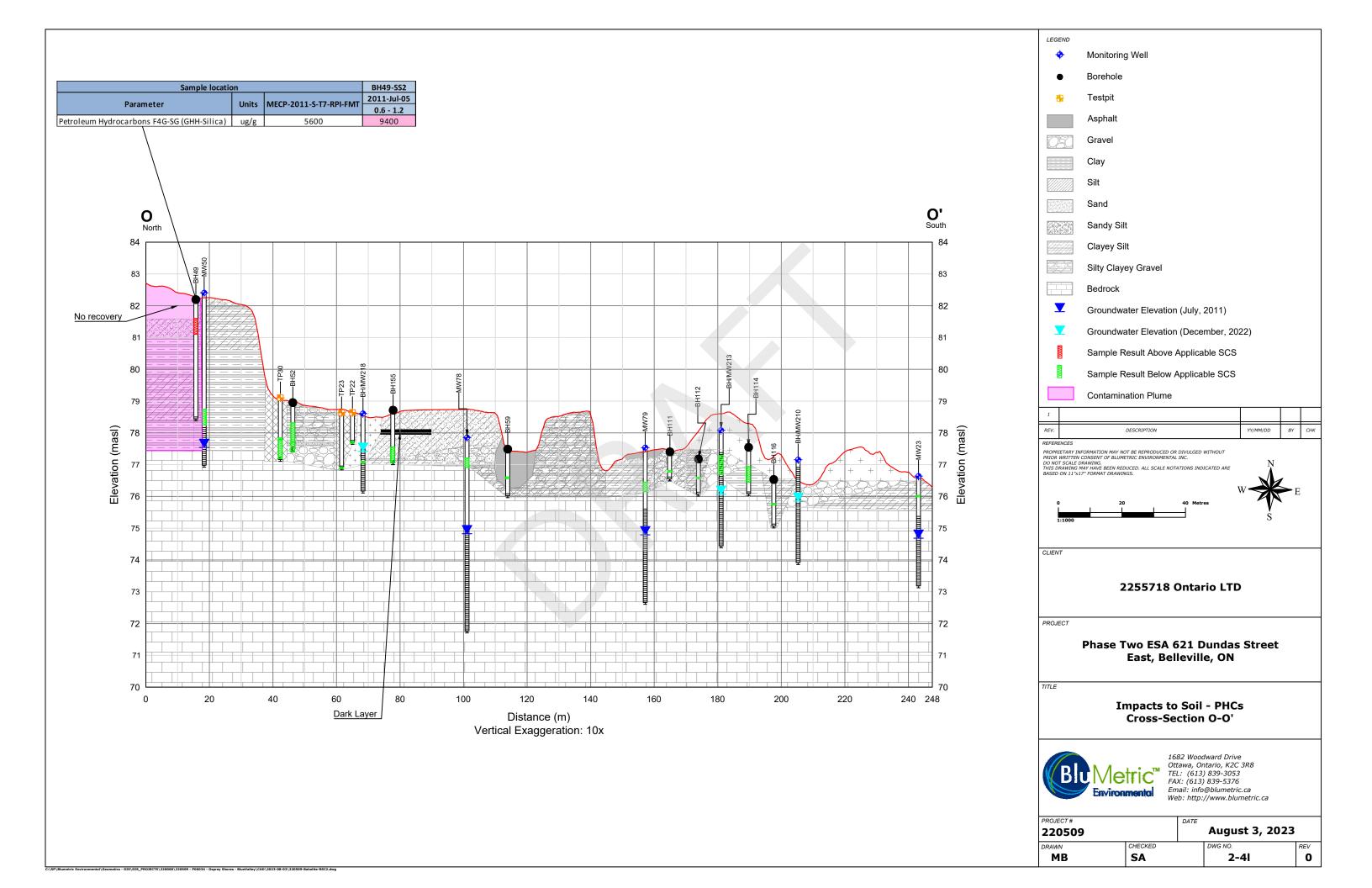
PROJECT#		DATE		
220509			August 3, 2023	
DRAWN	CHECKED		DWG NO.	REV
МВ	SA		2-4j	0

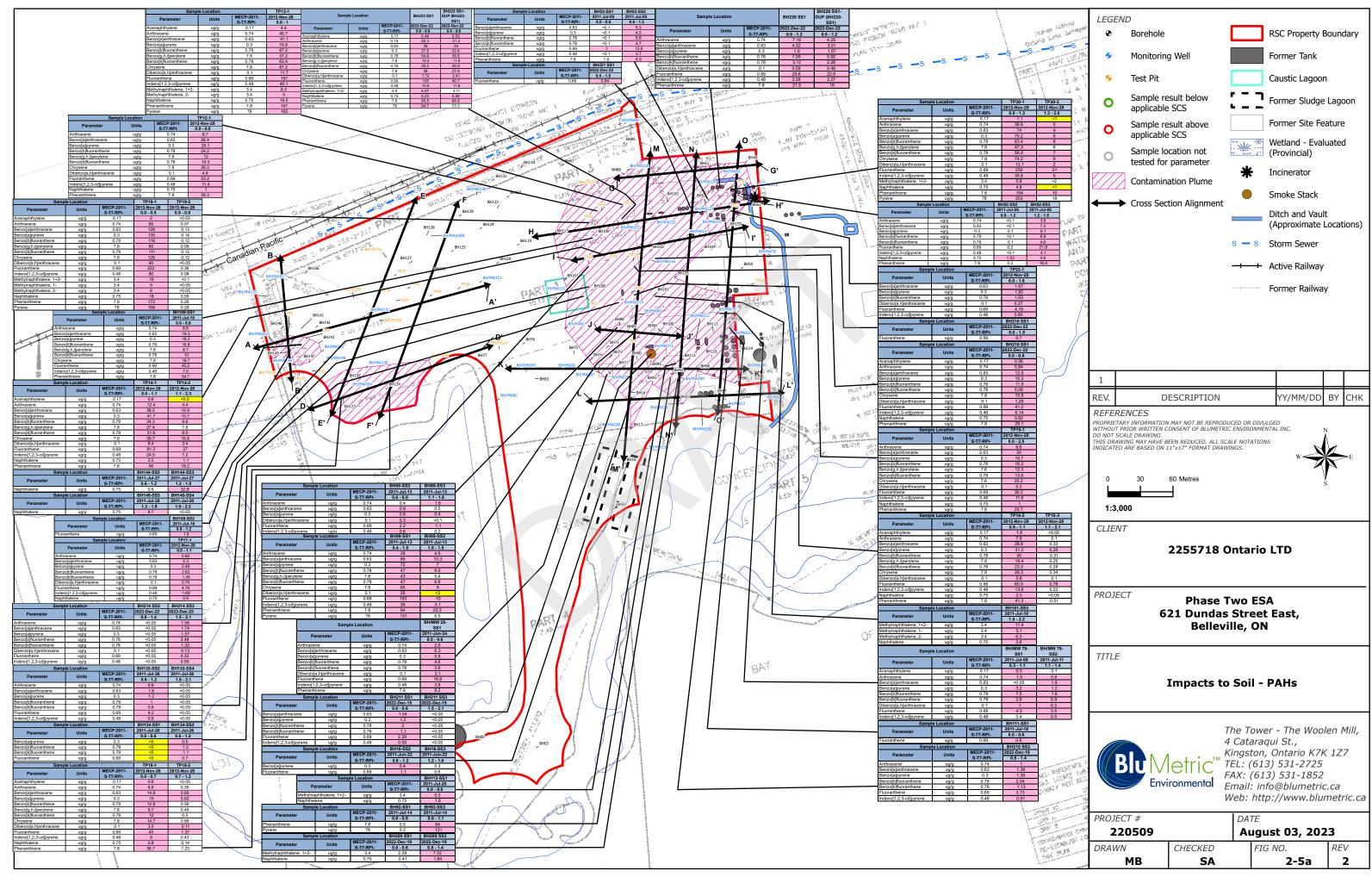
August 3, 2023

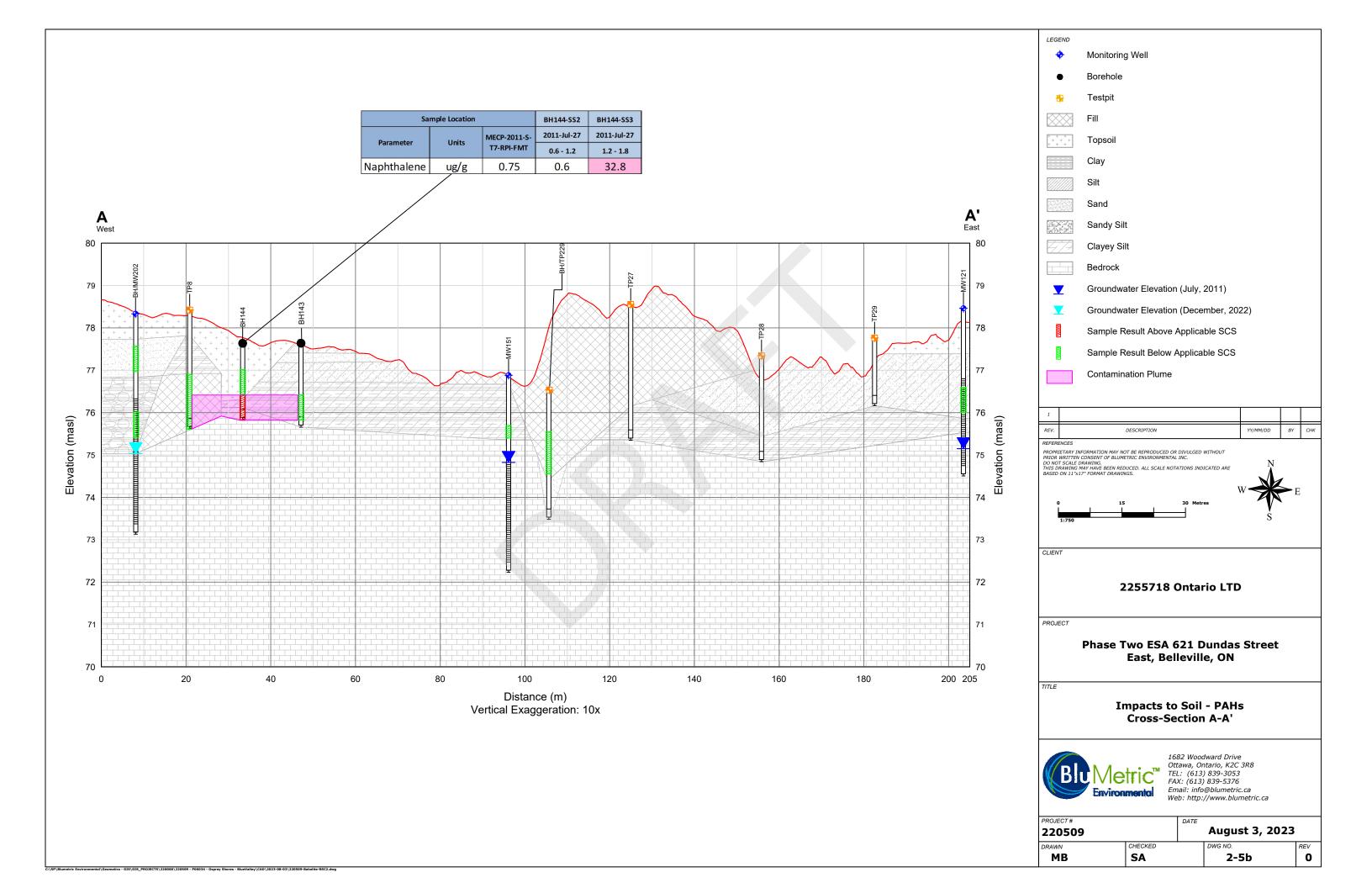
2-4k

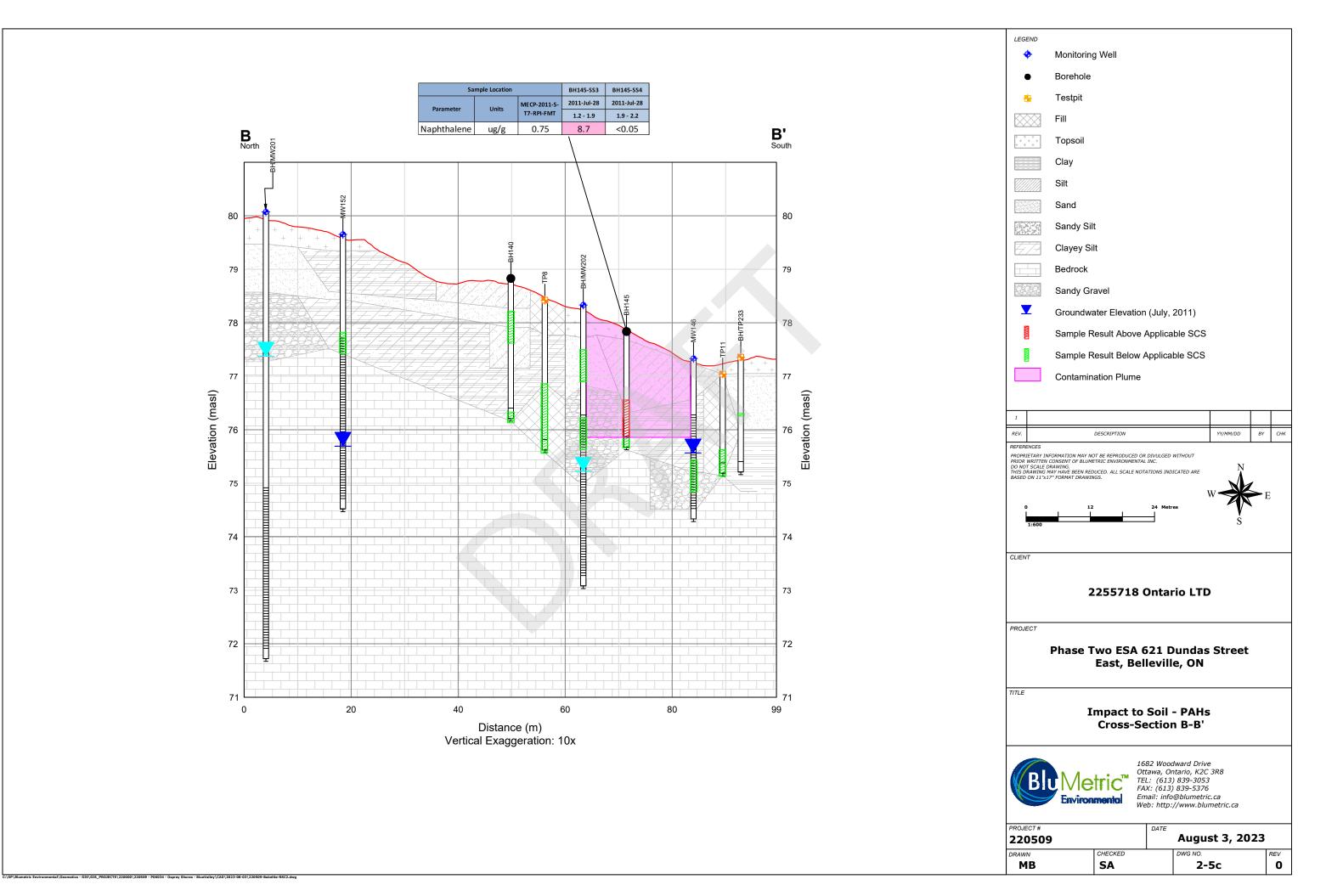
0

LEGEND

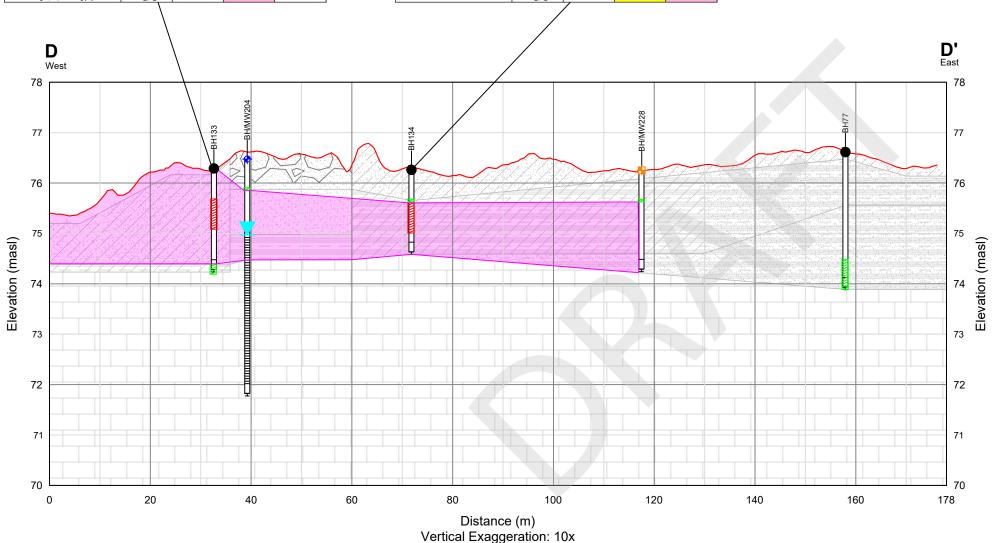

PROJECT#


MB


220509


CHECKED

SA



Sample Lo	BH133-SS2	BH133-SS4		
Parameter	Units	MECP-2011-S-	2011-Jul-26	2011-Jul-26
Parameter	Units	T7-RPI-FMT	0.6 - 1.2	1.9 - 2.1
Anthracene	ug/g	0.74	0.9	<0.05
Benzo[a]anthracene	ug/g	0.63	1.6	<0.05
Benzo[a]pyrene	ug/g	0.3	1.2	<0.05
Benzo[b]fluoranthene	ug/g	0.78	1	<0.05
Benzo[k]fluoranthene	ug/g	0.78	0.8	<0.05
Fluoranthene	ug/g	0.69	4.2	<0.05
Indeno[1,2,3-cd]pyrene	ug/g	0.48	0.9	<0.05

Sample Lo	BH134-SS1	BH134-SS2			
Downston	Units MECP-2011-S-		2011-Jul-26	2011-Jul-26	
Parameter	Units	T7-RPI-FMT	0.0 - 0.6	0.6 - 1.2	
Benzo[a]pyrene	ug/g	0.3	<5	0.6	
Benzo[b]fluoranthene	ug/g	0.78	<5	1.2	
Benzo[k]fluoranthene	ug/g	0.78	<5	1.1	
Fluoranthene	ug/g	0.69	<5	0.7	

LEGEND Monitoring Well Borehole Testpit Topsoil Clay Sand Sandy Silt Clayey Silt Sandy Clay Bedrock Groundwater Elevation (December, 2022) Sample Result Above Applicable SCS Sample Result Below Applicable SCS Contamination Plume DESCRIPTION

PROPRIETARY INFORMATION MAY NOT BE REPRODUCED OR DIVULGED WITHOUT PRIOR WRITTEN CONSENT OF BLUMETRIC ENVIRONMENTAL INC.

DO NOT SCALE DRAWING.

THIS DRAWING MAY HAVE BEEN REDUCED. ALL SCALE NOTATIONS INDICATED ARE BASED ON 11"x17" FORMAT DRAWINGS.

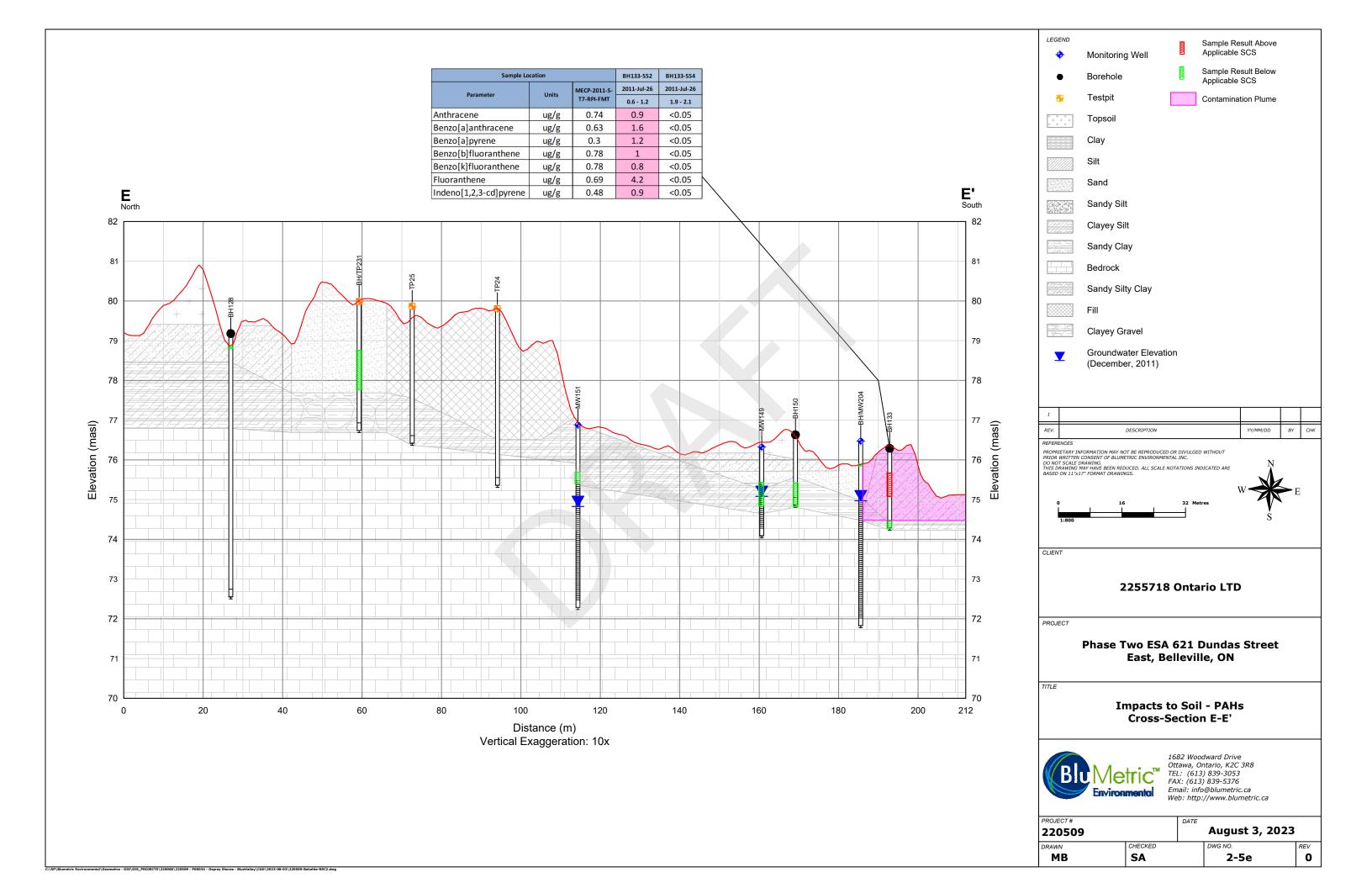
W

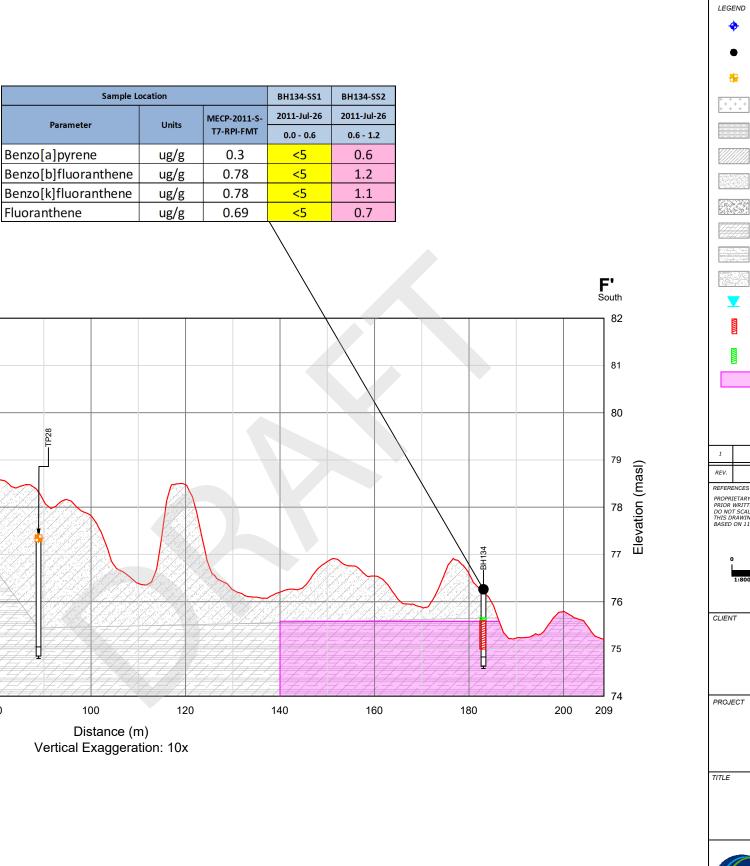
CLIENT

2255718 Ontario LTD

PROJECT

Phase Two ESA 621 Dundas Street East, Belleville, ON


TITL


Impacts to Soil - PAHs Cross-Section D-D'

1682 Woodward Drive Ottawa, Ontario, K2C 3R8 TEL: (613) 839-3053 FAX: (613) 839-5376 Email: info@blumetric.ca Web: http://www.blumetric.ca

PROJECT#		DATE		
220509			August 3, 2023	
DRAWN	CHECKED		DWG NO.	REV
MB	SA		2-5d	0

Borehole Testpit Topsoil Clay Silt Sand Sandy Silt Clayey Silt Sandy Clay Sandy Gravel Groundwater Elevation (July, 2022) Sample Result Above Applicable SCS Sample Result Below Applicable SCS Contamination Plume DESCRIPTION PROPRIETARY INFORMATION MAY NOT BE REPRODUCED OR DIVULGED WITHOUT PRIOR WRITTEN CONSENT OF BLUMETRIC ENVIRONMENTAL INC. DO NOT SCALE DRAWING. THIS DRAWING MAY HAVE BEEN REDUCED. ALL SCALE NOTATIONS INDICATED ARE BASED ON 11*217" FORMAT DRAWINGS. **2255718 Ontario LTD Phase Two ESA 621 Dundas Street** East, Belleville, ON **Impacts to Soil - PAHs Cross-Section F-F'** 1682 Woodward Drive Ottawa, Ontario, K2C 3R8 TEL: (613) 839-3053 FAX: (613) 839-5376 Email: info@blumetric.ca Web: http://www.blumetric.ca Environmental PROJECT# August 3, 2023 220509

CHECKED

2-5f

0

SA

MB

Monitoring Well

C:\SP\Blumetric Environmental\Geomatics - GIS\GIS_PROJECTS\220000\220509 - P06034 - Osprey Shores - BlueValley\CAD\2023-08-03\220509-Bakelite-RSC2.dwg

20

40

60

80

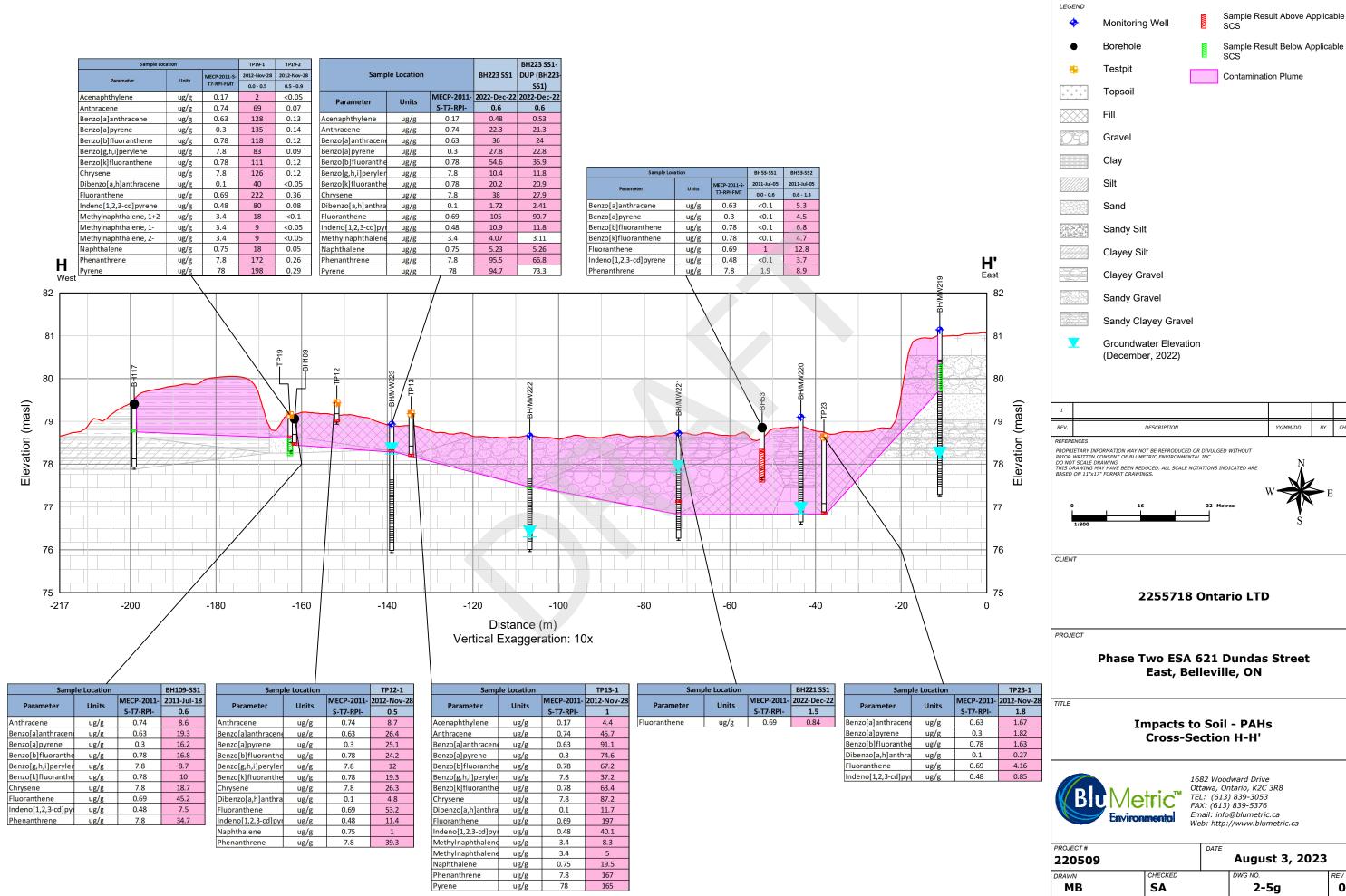
F North

82

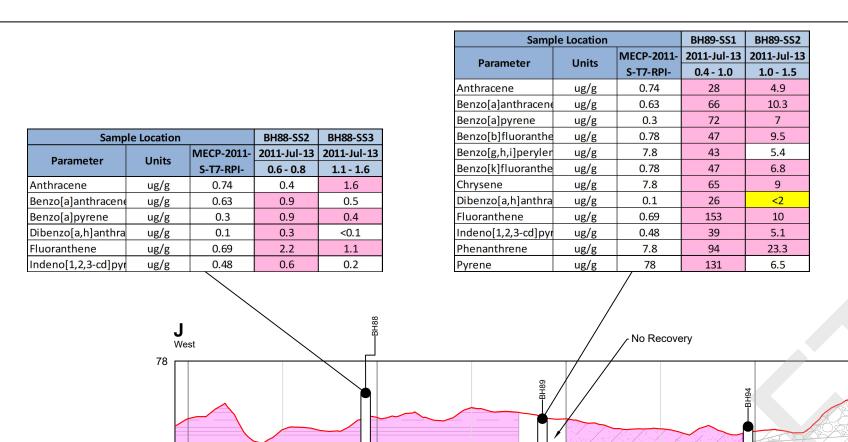
81

80

78


76

75


74

0

Elevation (masl)

0

-60

-40 Distance (m) Vertical Exaggeration: 10x -20

LEGEND Monitoring Well Borehole Testpit Shale Gravel Clay Sand Sandy Silt Clayey Silt Sandy Clay Silty Gravel Silty Clayey Gravel Sample Result Above Applicable SCS Sample Result Below Applicable SCS Contamination Plume

1	REV.	DESCRIPTION	YY/MM/DD	BY	СНК	l		
	1					ı		

J' East

78

Elevation (masl)

76

PROPRIETARY INFORMATION MAY NOT BE REPRODUCED OR DIVULGED WITHOUT PRIOR WRITTEN CONSENT OF BLUMETRIC ENVIRONMENTAL INC.
DO NOT SCALE DRAWING.
THIS DRAWING MAY HAVE BEEN REDUCED. ALL SCALE NOTATIONS INDICATED ARE BASED ON 11*217" FORMAT DRAWINGS.

CLIENT

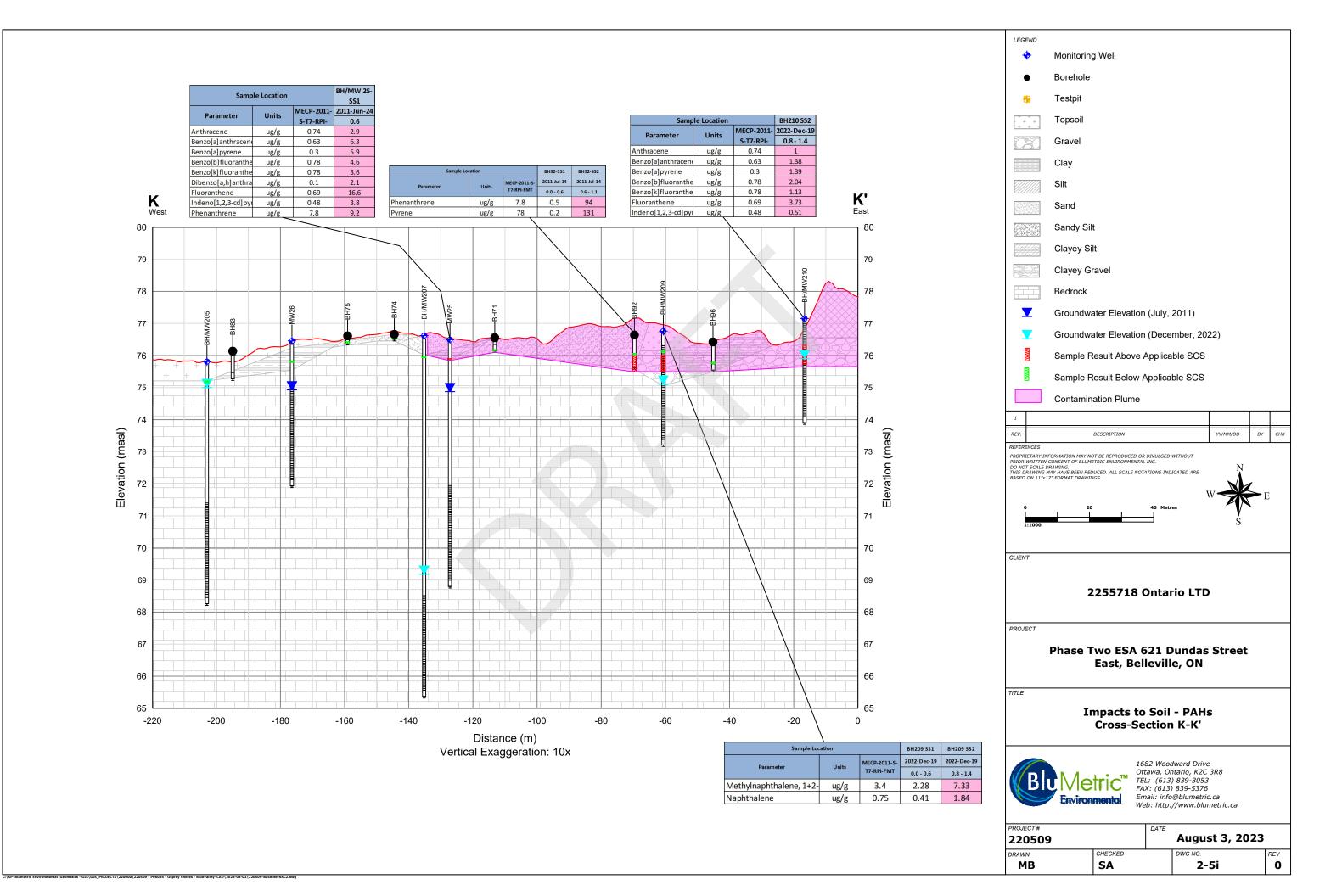
2255718 Ontario LTD

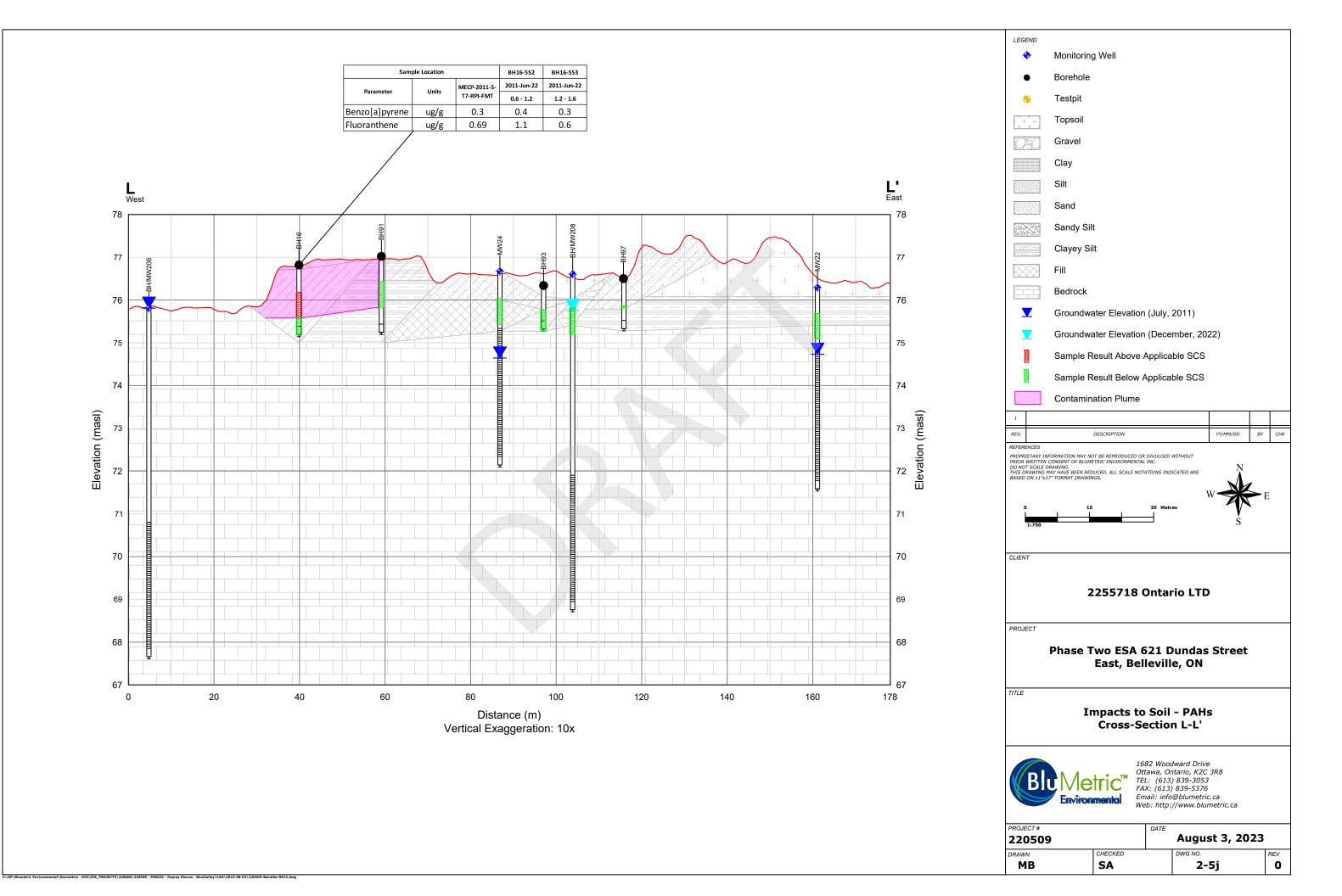
PROJECT

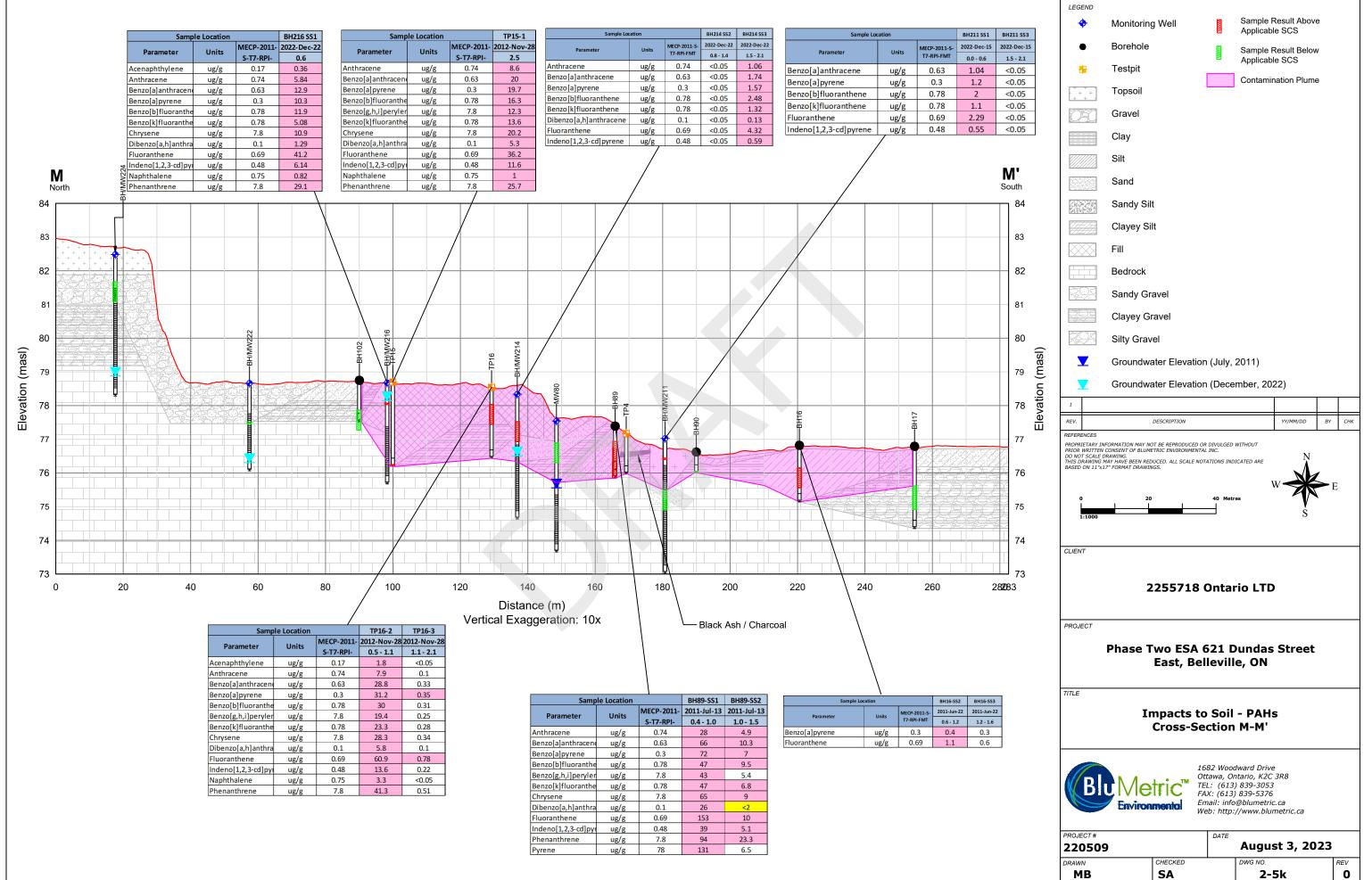
Phase Two ESA 621 Dundas Street East, Belleville, ON

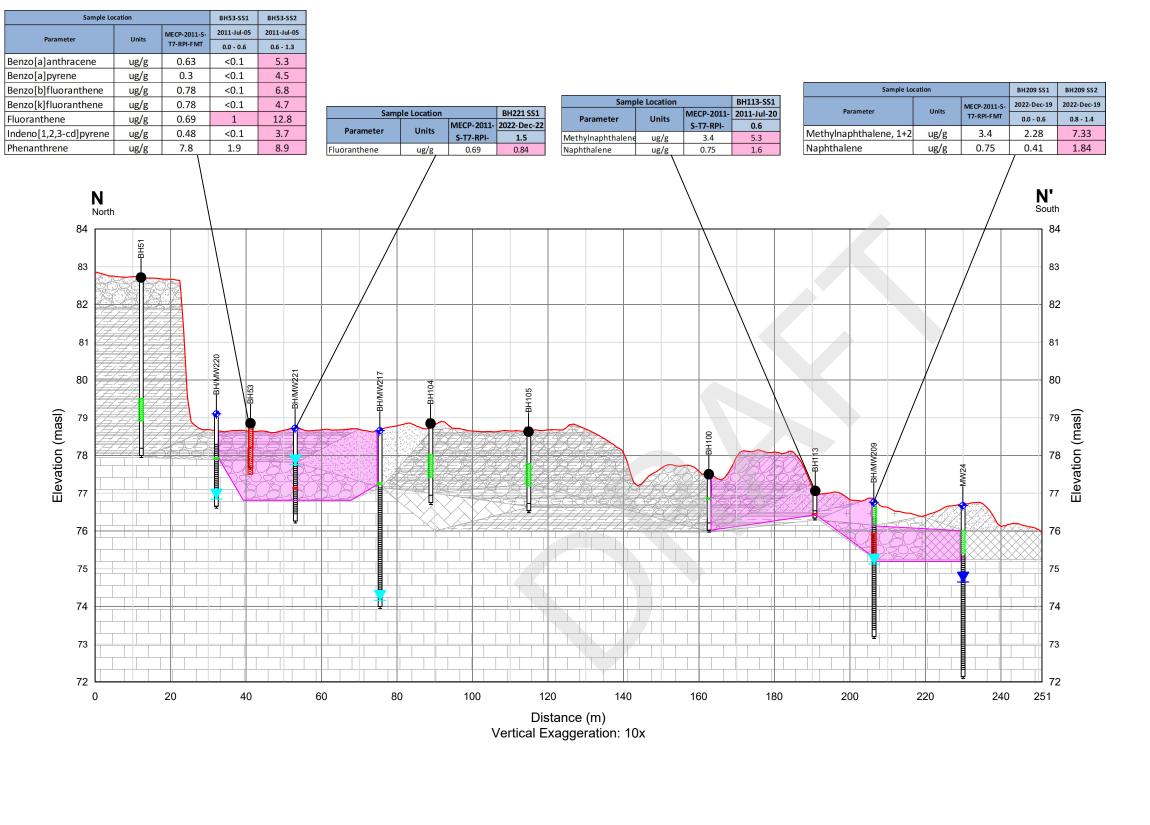
Impacts to Soil - PAHs Cross-Section J-J'

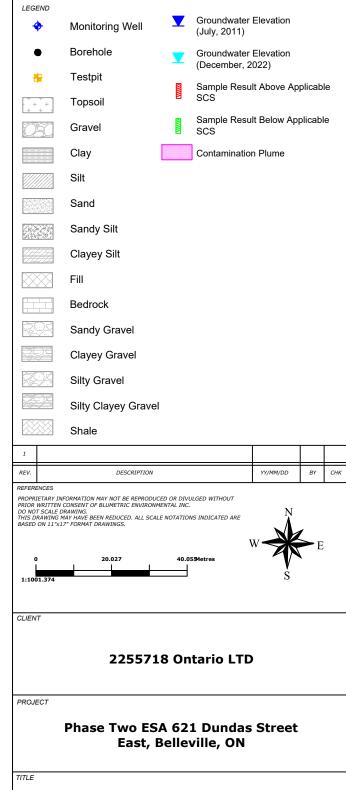
1682 Woodward Drive Ottawa, Ontario, K2C 3R8 TEL: (613) 839-3053 FAX: (613) 839-5376 Email: info@blumetric.ca Web: http://www.blumetric.ca

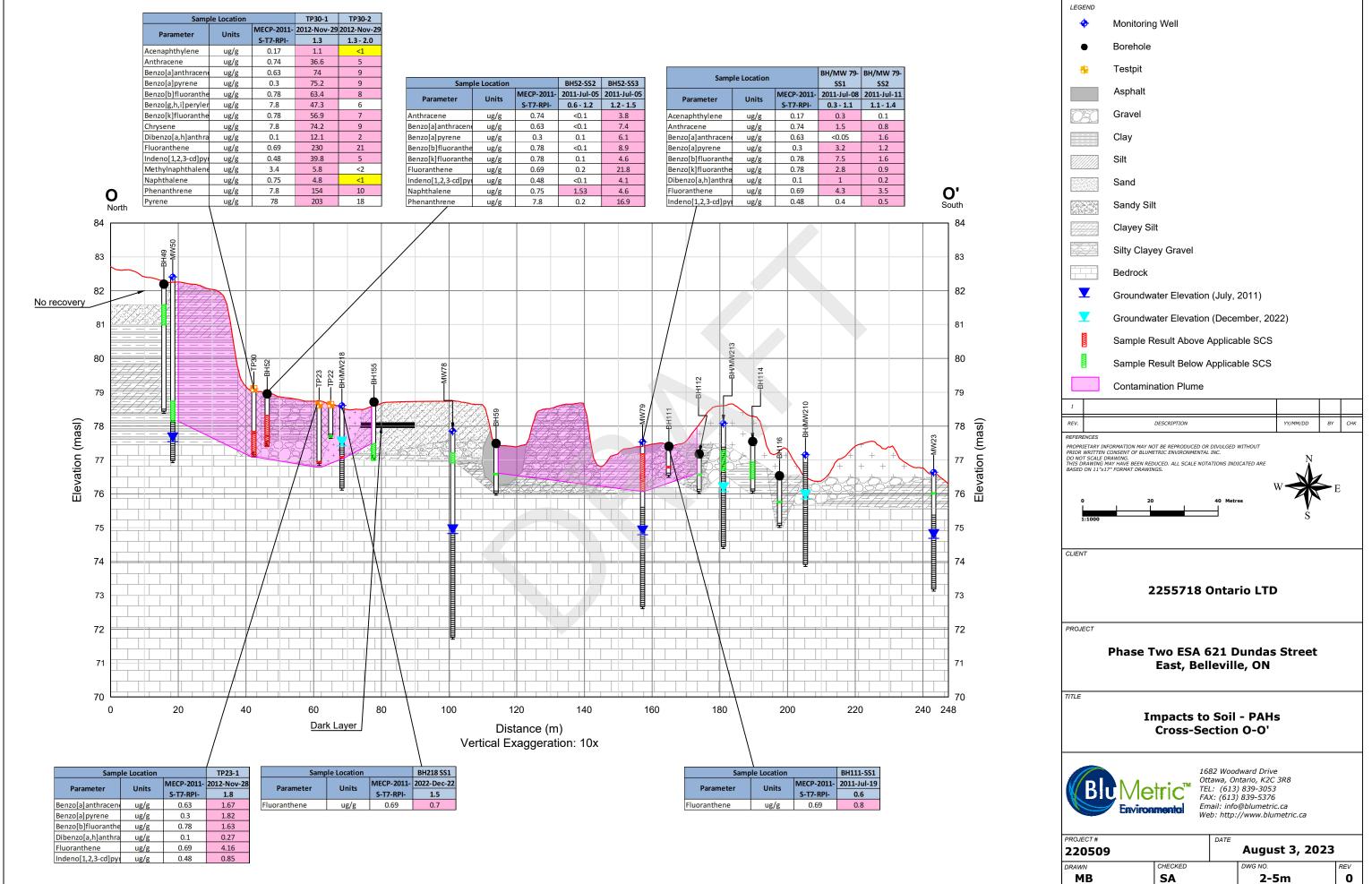

220509		DATE	August 3, 2023	
DRAWN	CHECKED	-	DWG NO.	REV
МВ	SA		2-5h	0

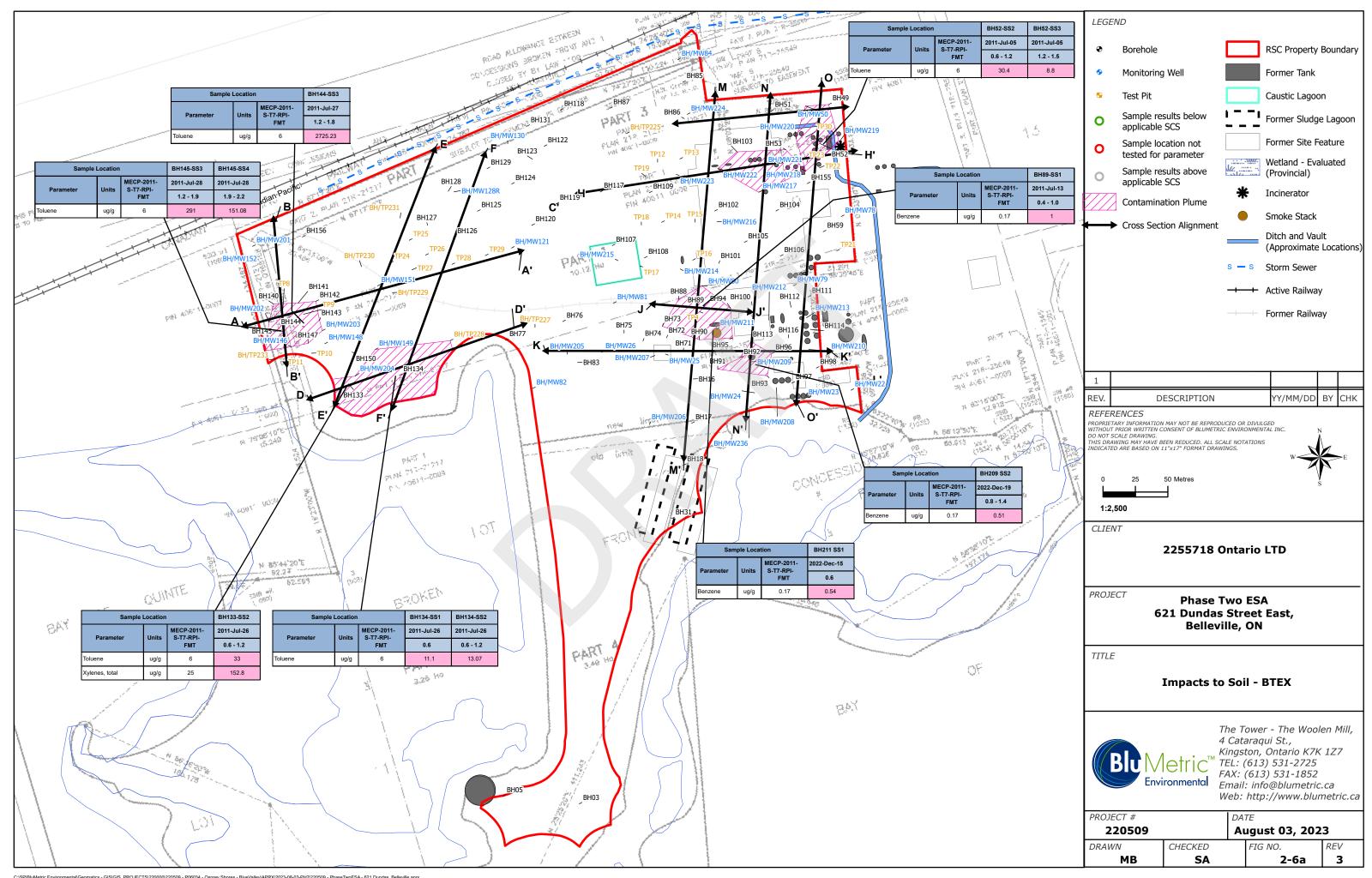

[...] SP\Blumetric Environmental\Geomatics - GIS\GIS PROJECTS\220000\220509 - P06034 - Osprey Shores - BlueValley\CAD\2023-08-03\220509-Bakelite-RSC2.dva

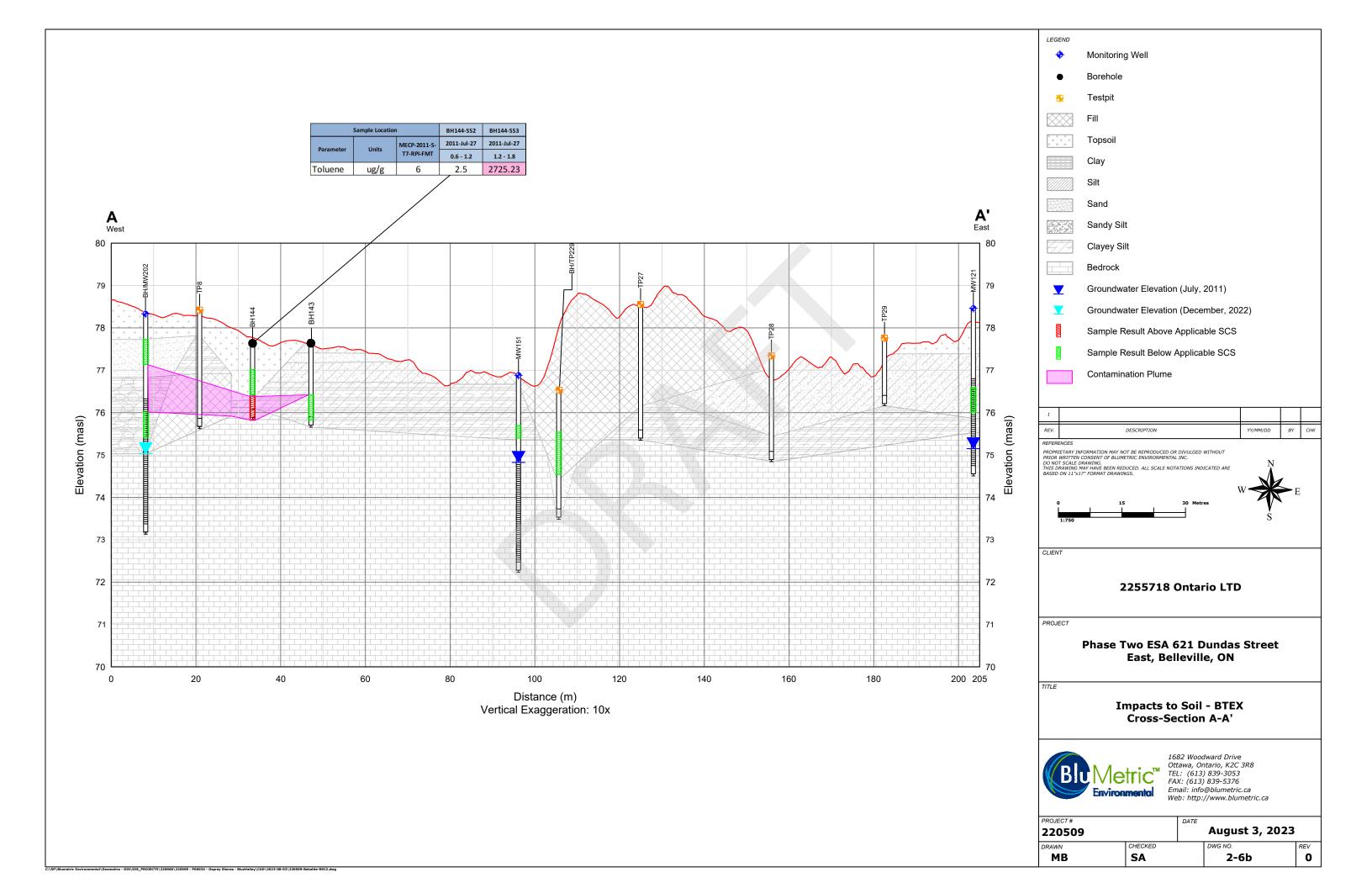

Elevation (masl)

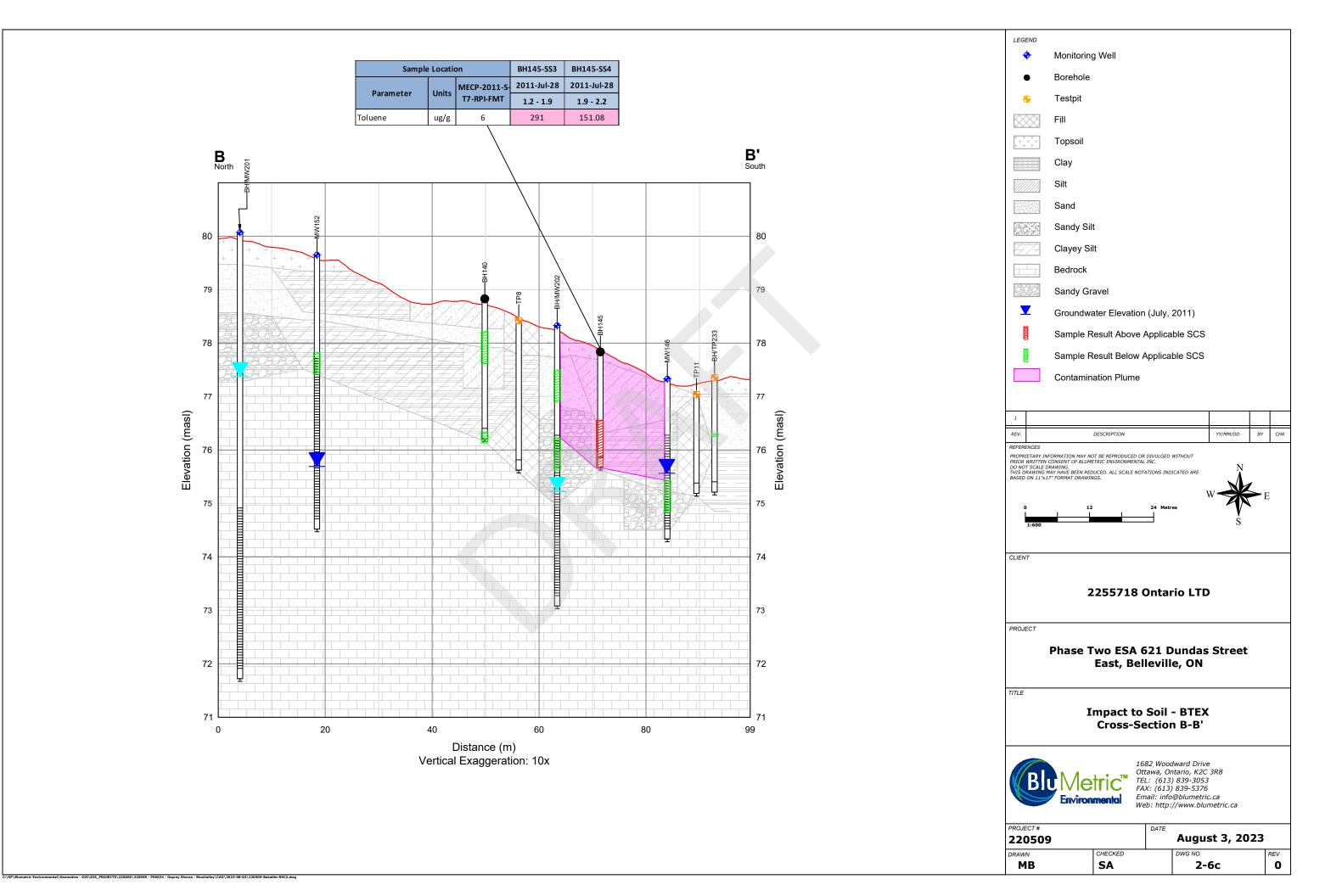

75

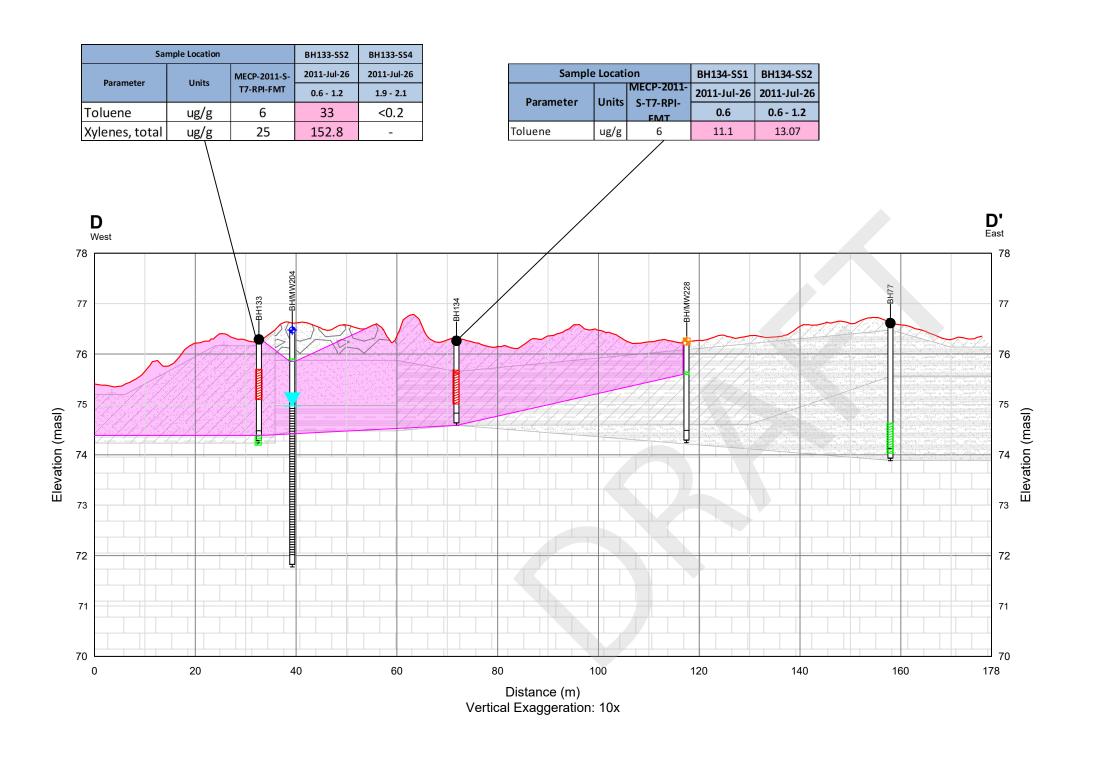

-8180

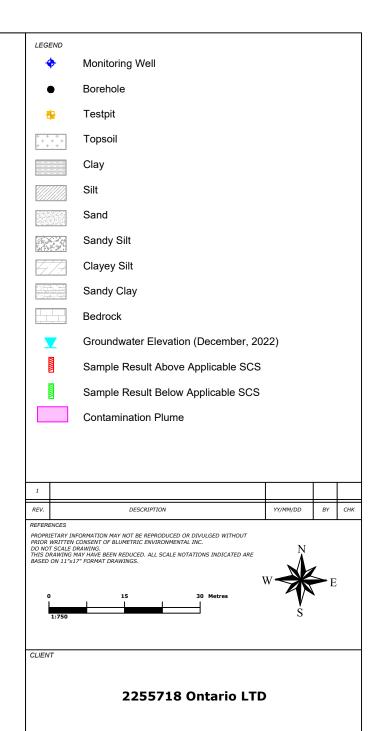



Impacts to Soil - PAHs Cross-Section N-N'



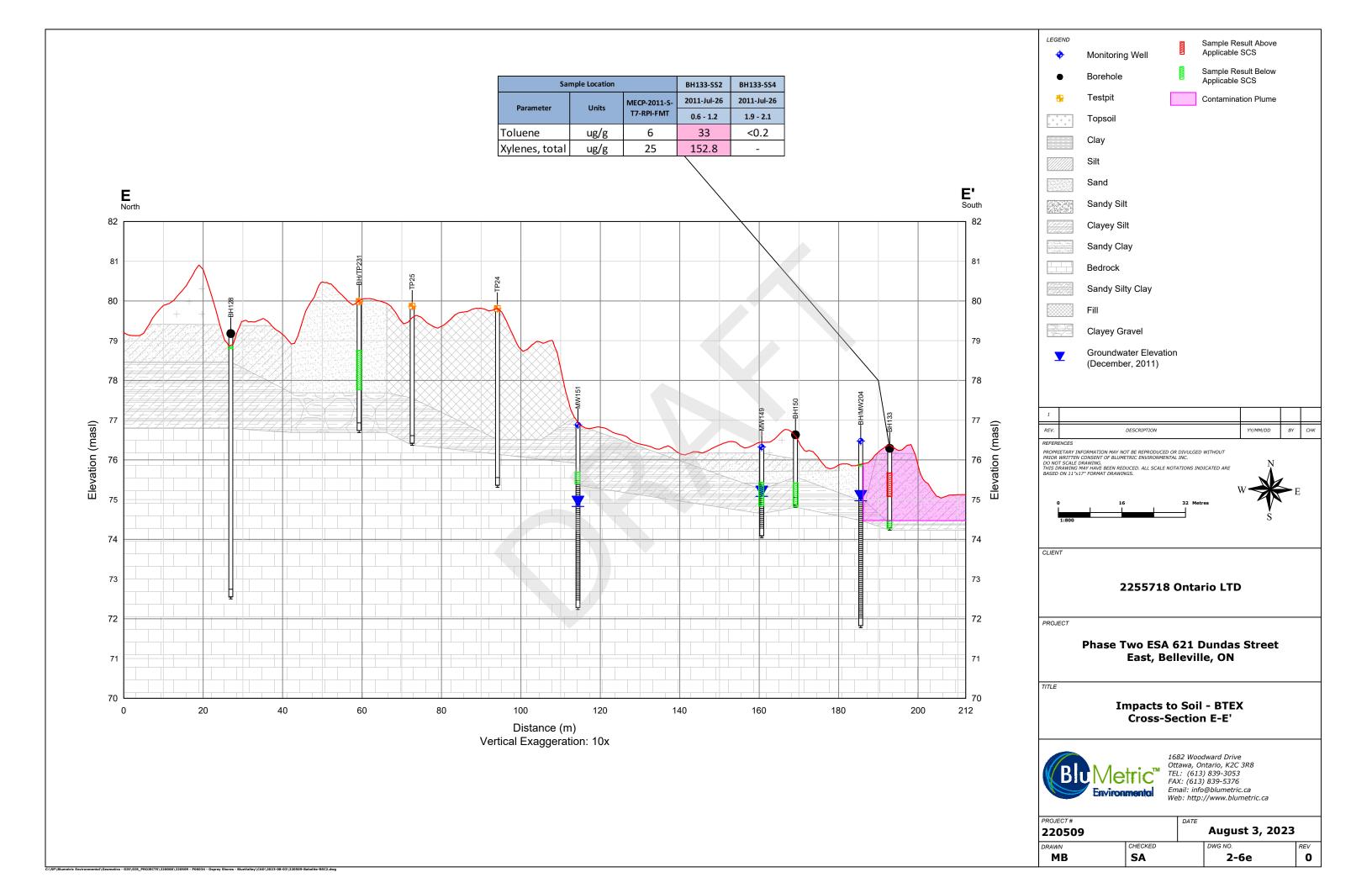

1682 Woodward Drive Ottawa, Ontario, K2C 3R8 TEL: (613) 839-3053 FAX: (613) 839-5376 Email: info@blumetric.ca Web: http://www.blumetric.ca

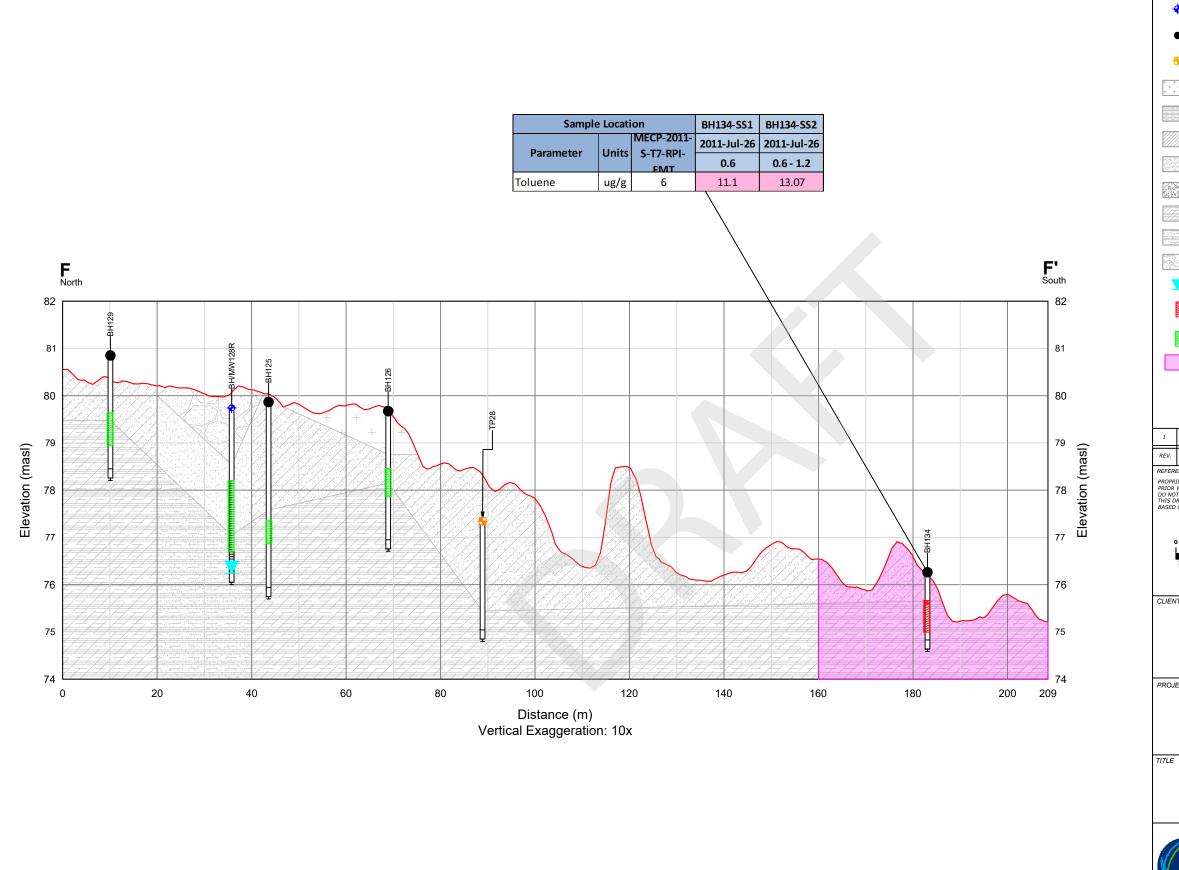

PROJECT # 220509		DATE	August 3, 2023	
DRAWN	CHECKED		DWG NO.	REV
МВ	SA		2-5I	0

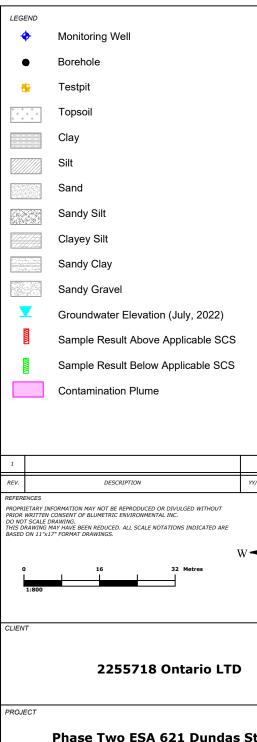


PROJECT

Phase Two ESA 621 Dundas Street East, Belleville, ON

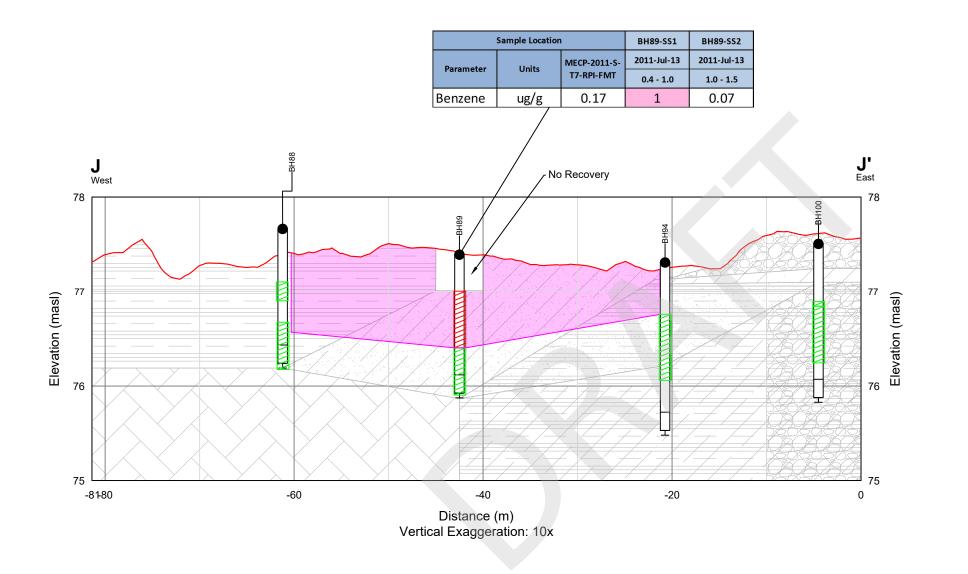

TITL

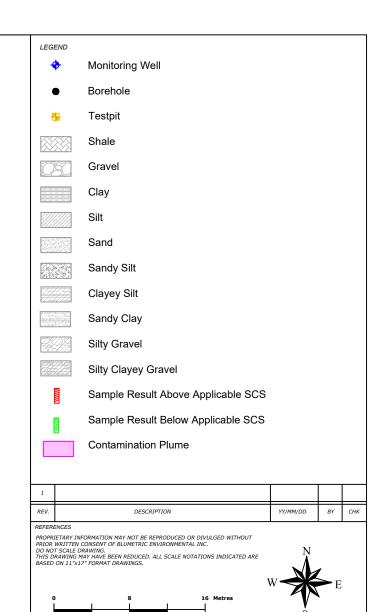

Impacts to Soil - BTEX Cross-Section D-D'



1682 Woodward Drive Ottawa, Ontario, K2C 3R8 TEL: (613) 839-3053 FAX: (613) 839-5376 Email: info@blumetric.ca Web: http://www.blumetric.ca

220509		DATE	August 3, 2023	
DRAWN	CHECKED		DWG NO.	REV
МВ	SA		2-6d	0


Phase Two ESA 621 Dundas Street East, Belleville, ON


Impacts to Soil - BTEX Cross-Section F-F'

1682 Woodward Drive Ottawa, Ontario, K2C 3R8 TEL: (613) 839-3053 FAX: (613) 839-5376 Email: info@blumetric.ca Web: http://www.blumetric.ca

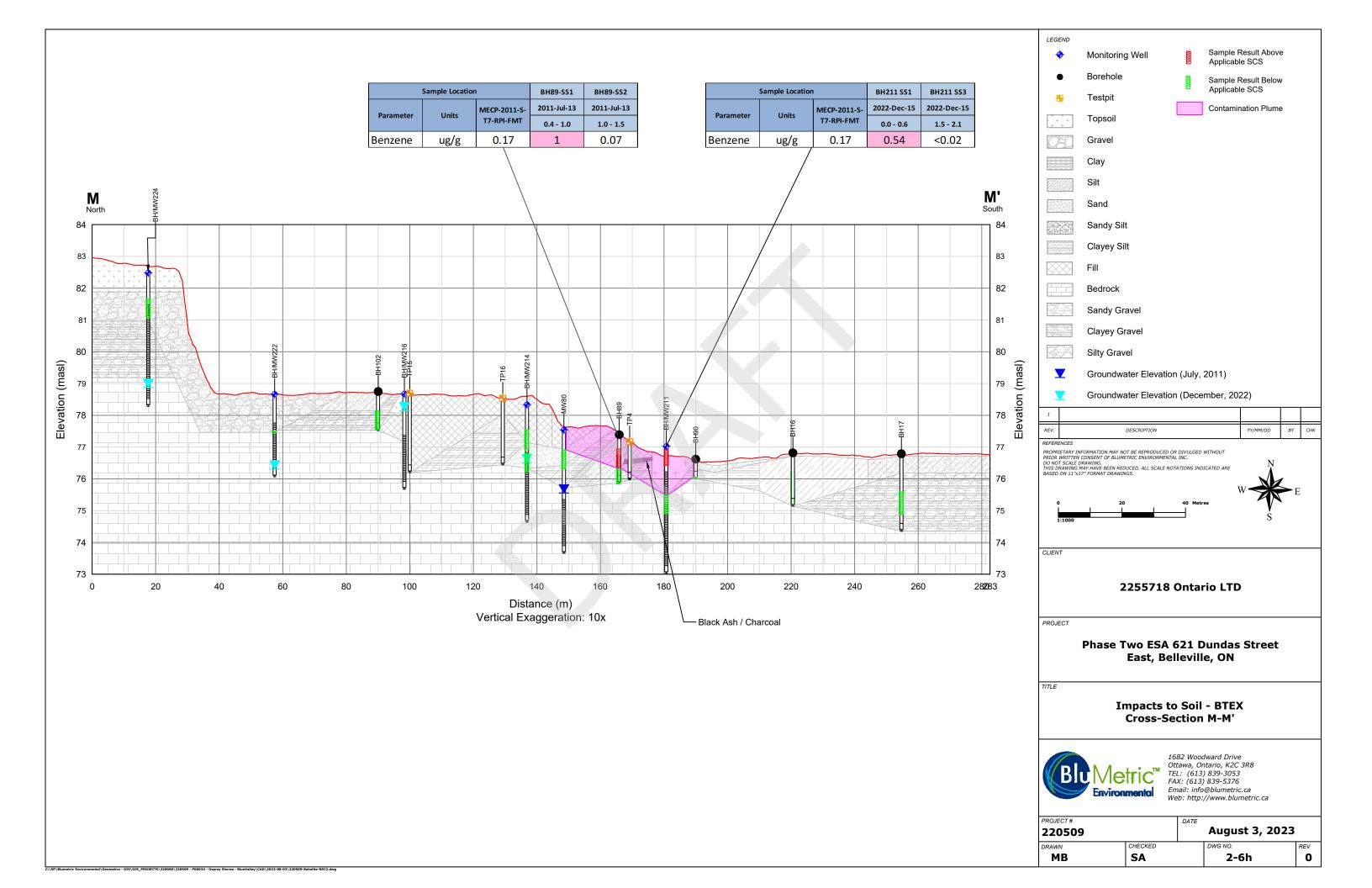
PROJECT#		DATE		
220509			August 3, 2023	
DRAWN	CHECKED		DWG NO.	REV
MB	SA		2-6f	0

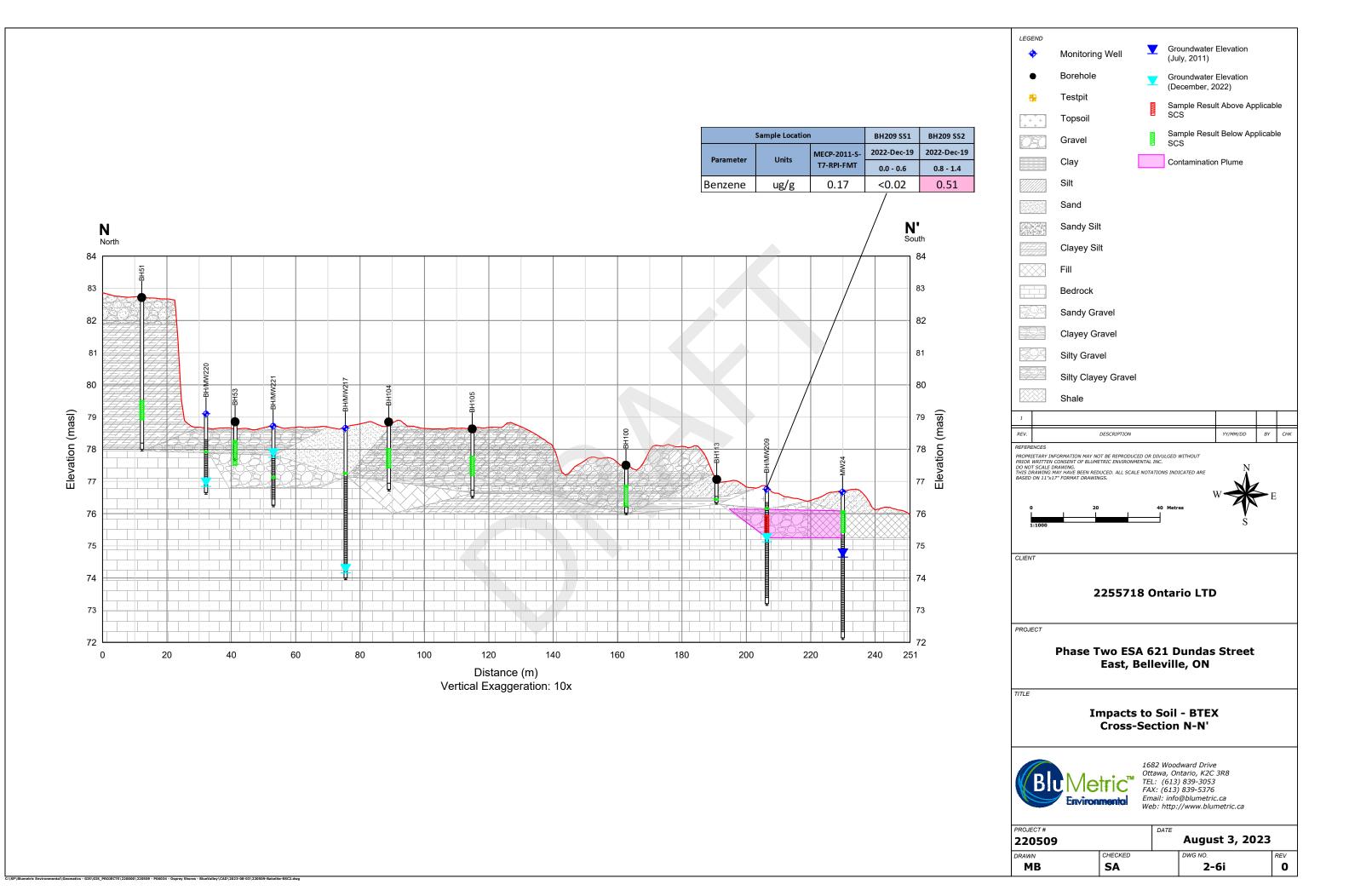
CLIENT

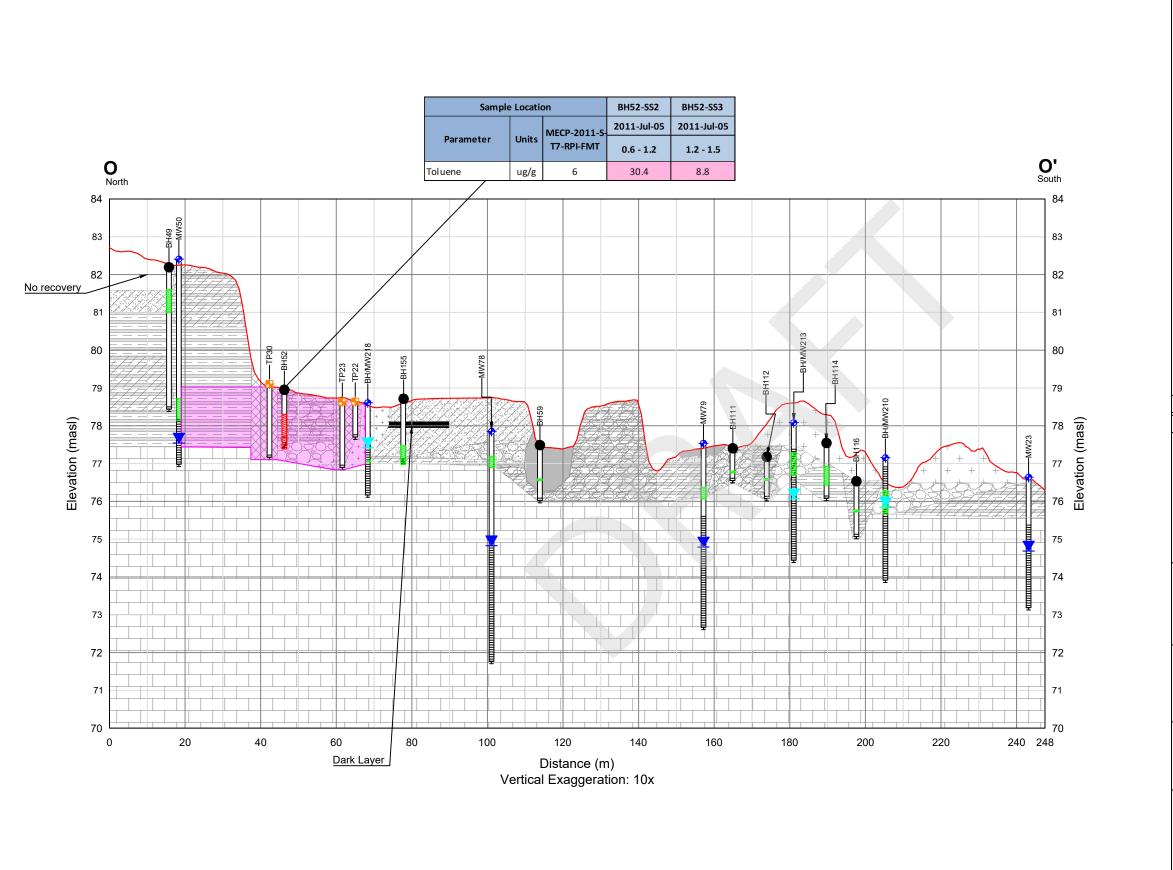
2255718 Ontario LTD

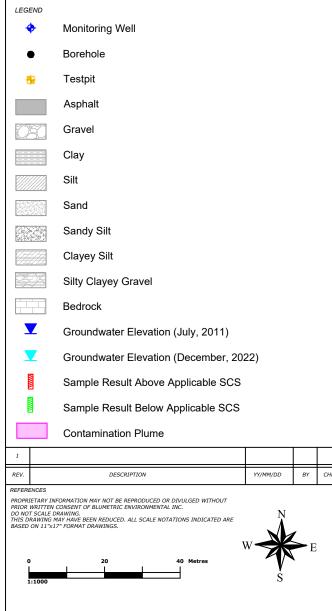
PROJECT

Phase Two ESA 621 Dundas Street East, Belleville, ON


TITLE


Impacts to Soil - BTEX Cross-Section J-J'




1682 Woodward Drive Ottawa, Ontario, K2C 3R8 TEL: (613) 839-3053 FAX: (613) 839-5376 Email: info@blumetric.ca Web: http://www.blumetric.ca

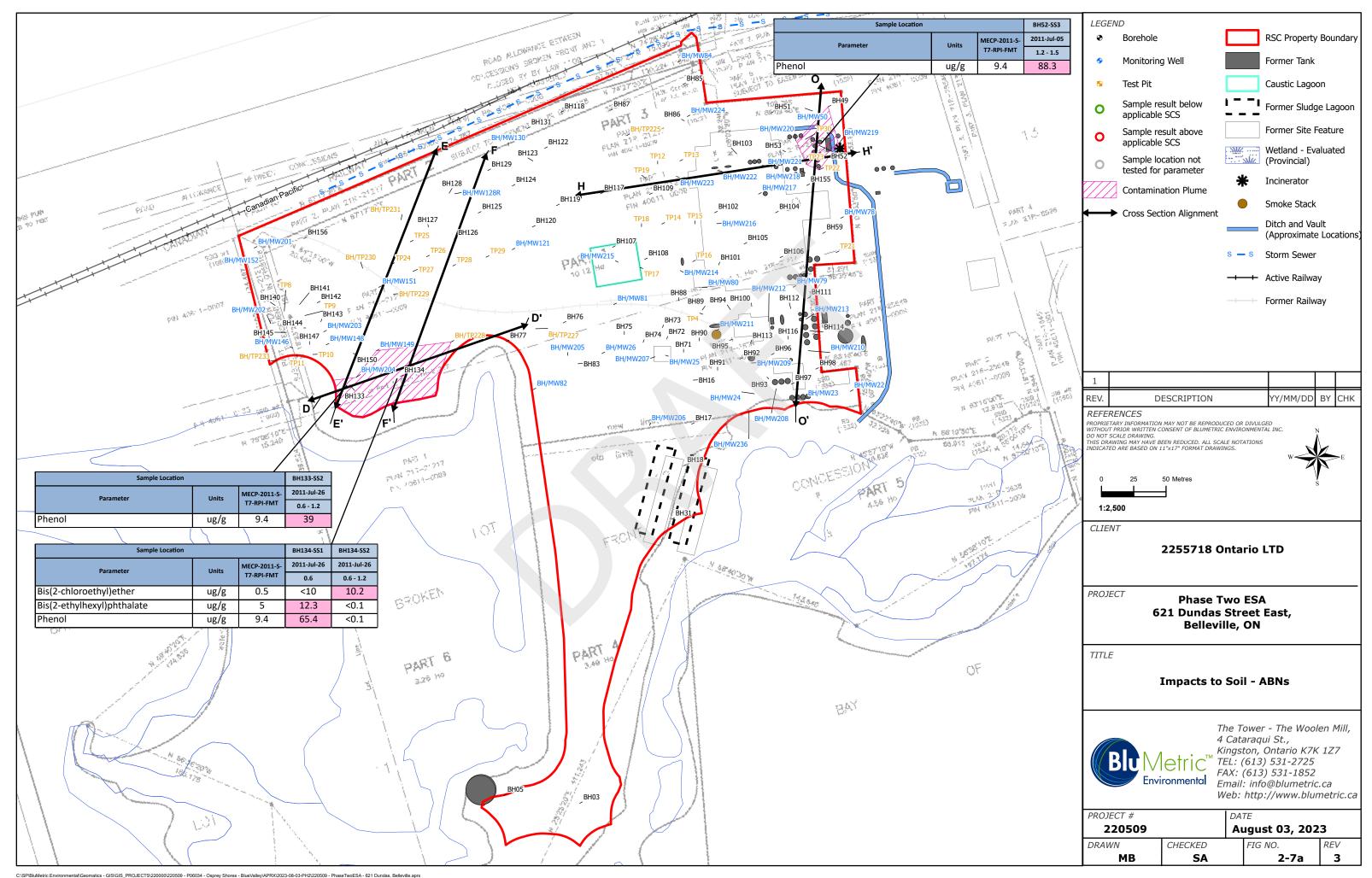
220509		DATE	August 3, 2023		
DRAWN	CHECKED		DWG NO.	REV	
МВ	SA		2-6g	0	

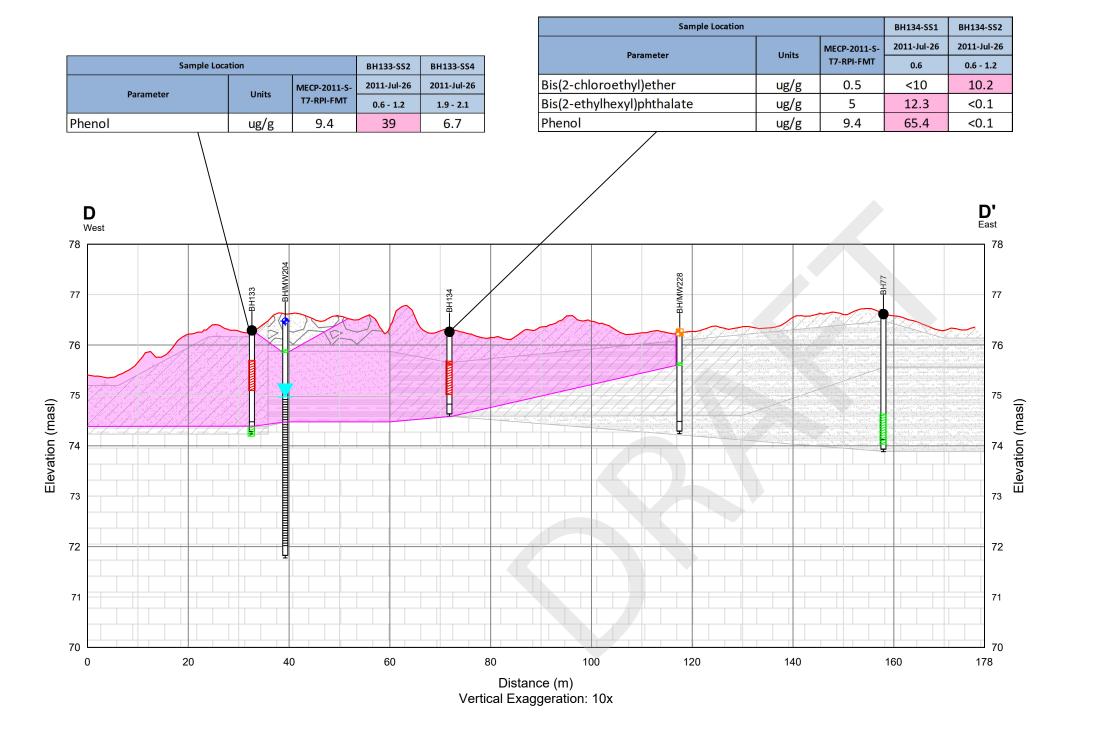
CLIENT

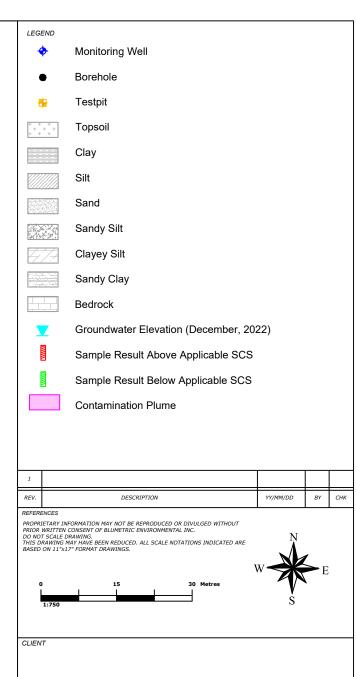
2255718 Ontario LTD

PROJECT

Phase Two ESA 621 Dundas Street East, Belleville, ON


TITLE


Impacts to Soil - BTEX Cross-Section O-O'



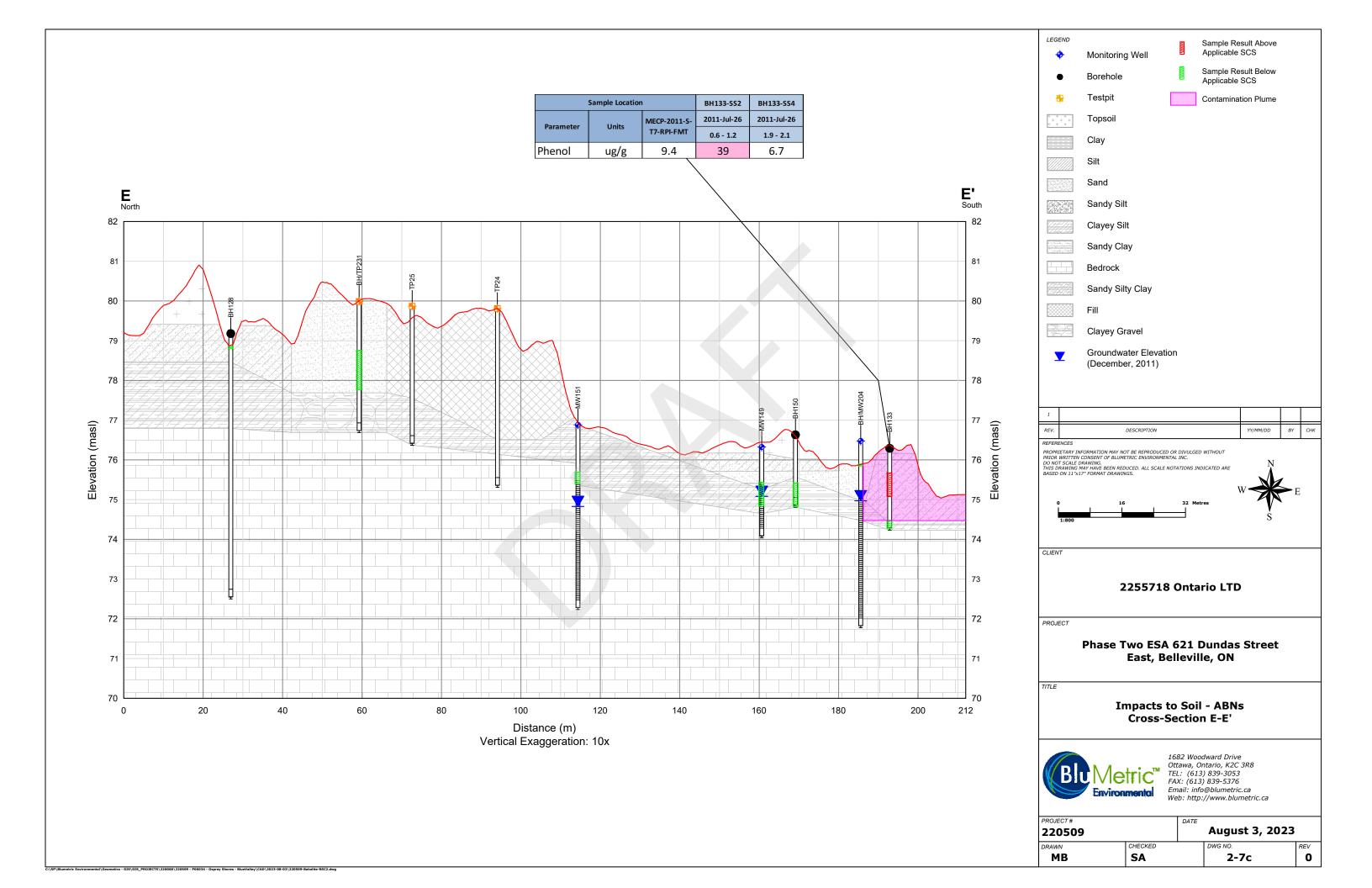
1682 Woodward Drive Ottawa, Ontario, K2C 3R8 TEL: (613) 839-3053 FAX: (613) 839-5376 Email: info@blumetric.ca Web: http://www.blumetric.ca

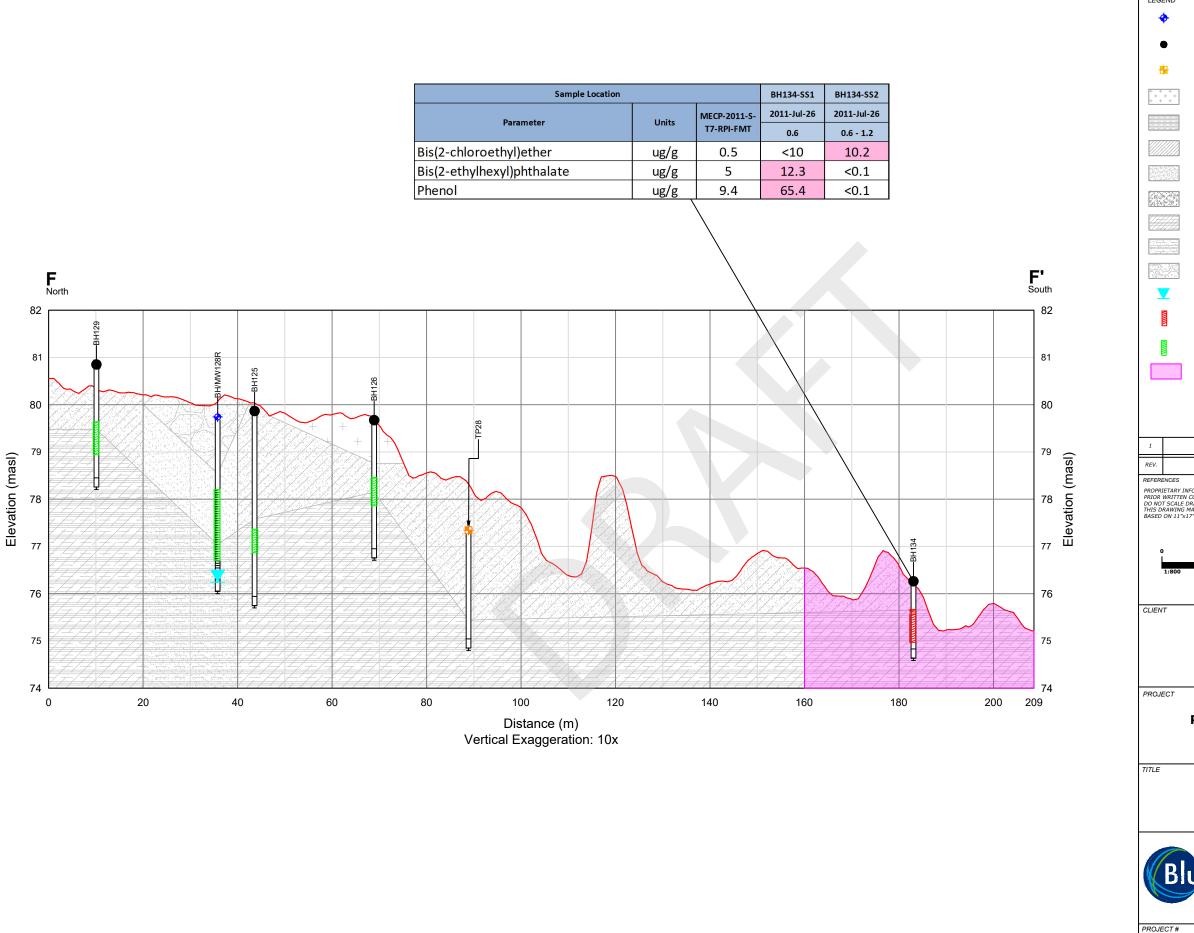
PROJECT #		DATE		
		DAIL	A 2 2022	
220509			August 3, 2023	
DRAWN	CHECKED		DWG NO.	REV
МВ	SA		2-6j	0

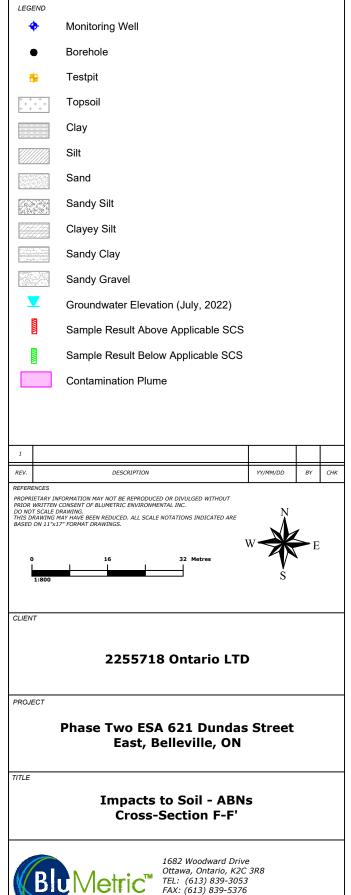
2255718 Ontario LTD

PROJECT

Phase Two ESA 621 Dundas Street East, Belleville, ON


TITL


Impacts to Soil - ABNs Cross-Section D-D'



1682 Woodward Drive Ottawa, Ontario, K2C 3R8 TEL: (613) 839-3053 FAX: (613) 839-5376 Email: info@blumetric.ca Web: http://www.blumetric.ca

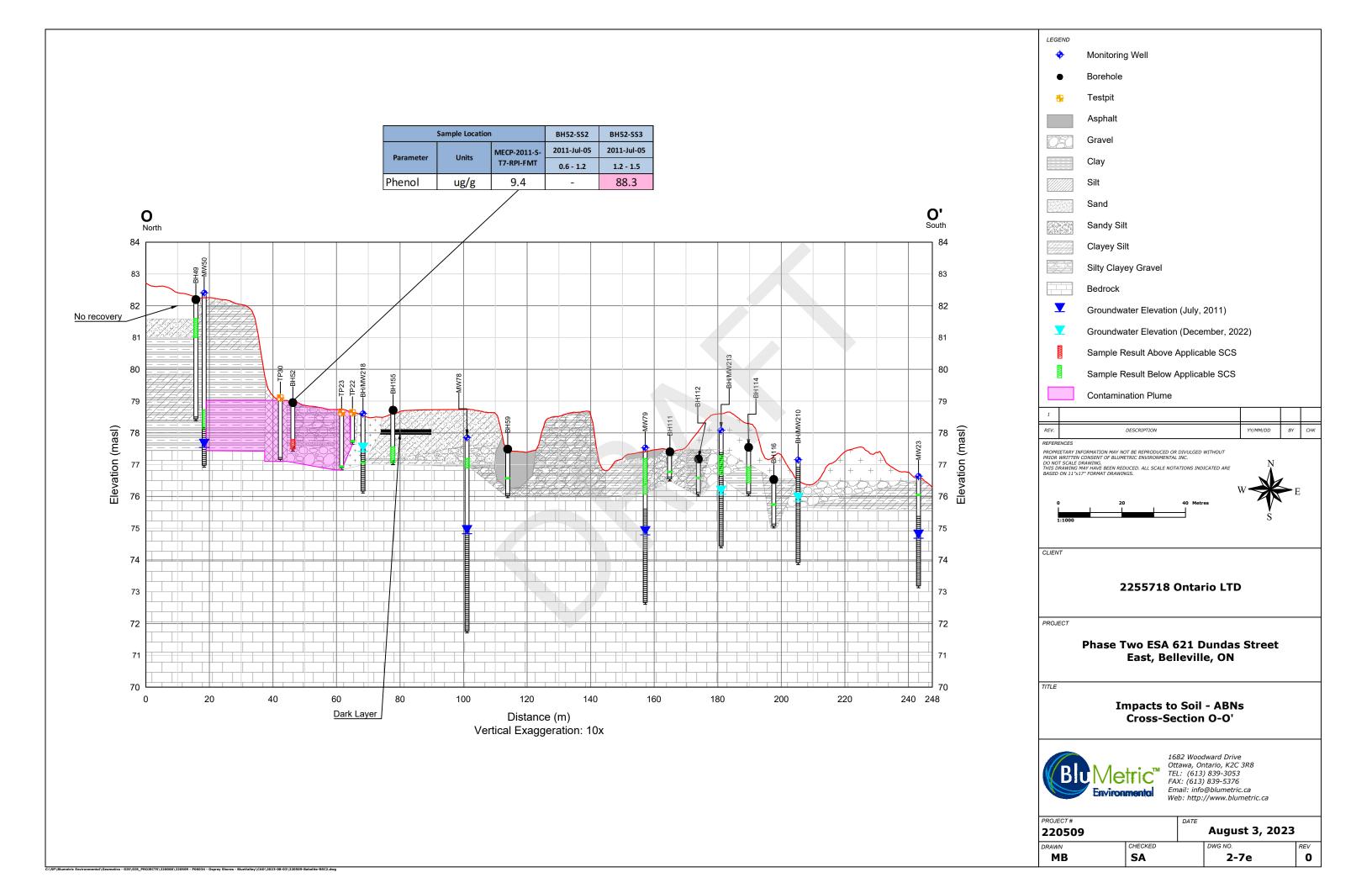
PROJECT#		DATE		
220509			August 3, 2023	
DRAWN	CHECKED		DWG NO.	REV
МВ	SA		2-7b	0

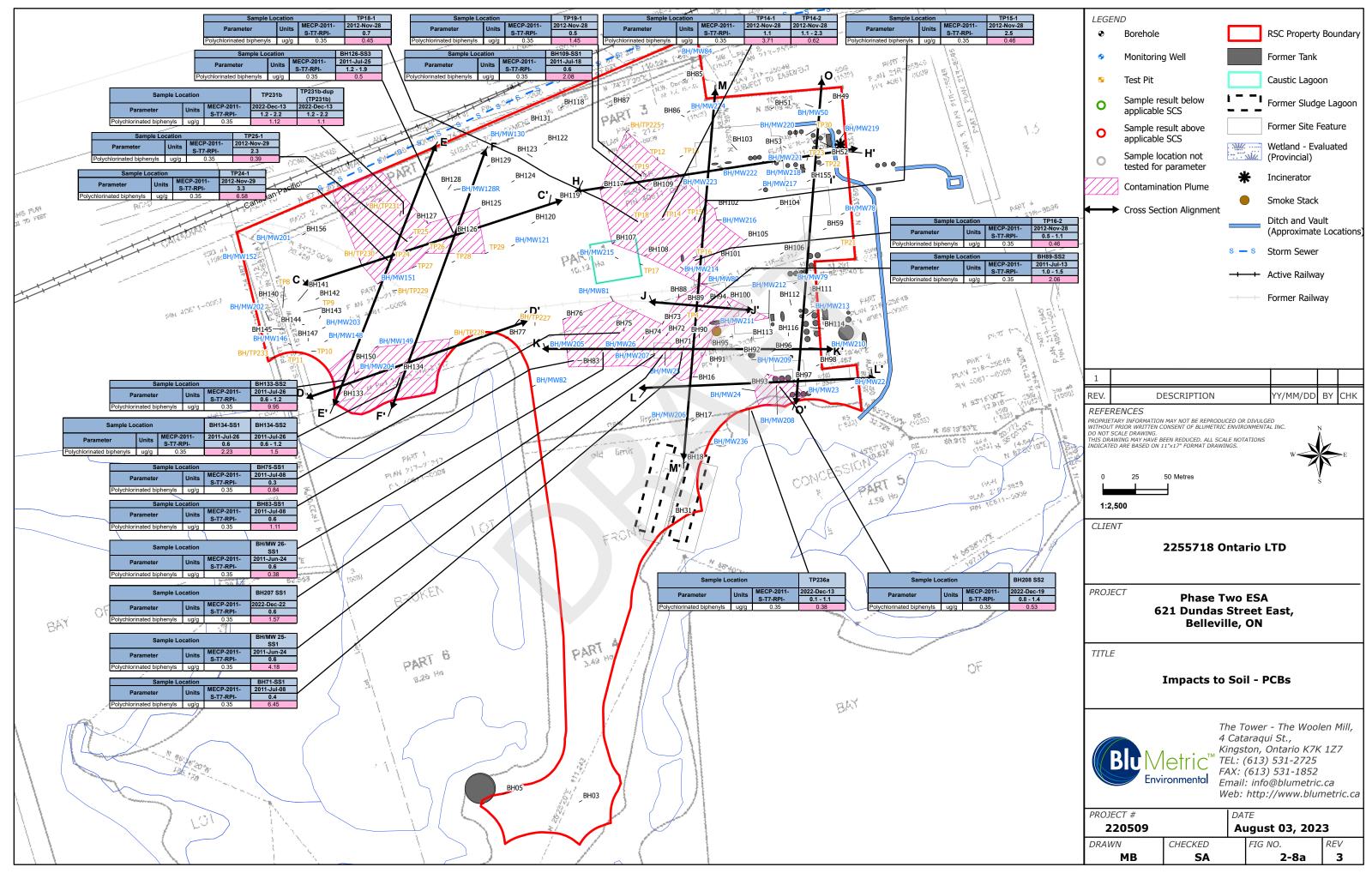
Email: info@blumetric.ca Web: http://www.blumetric.ca

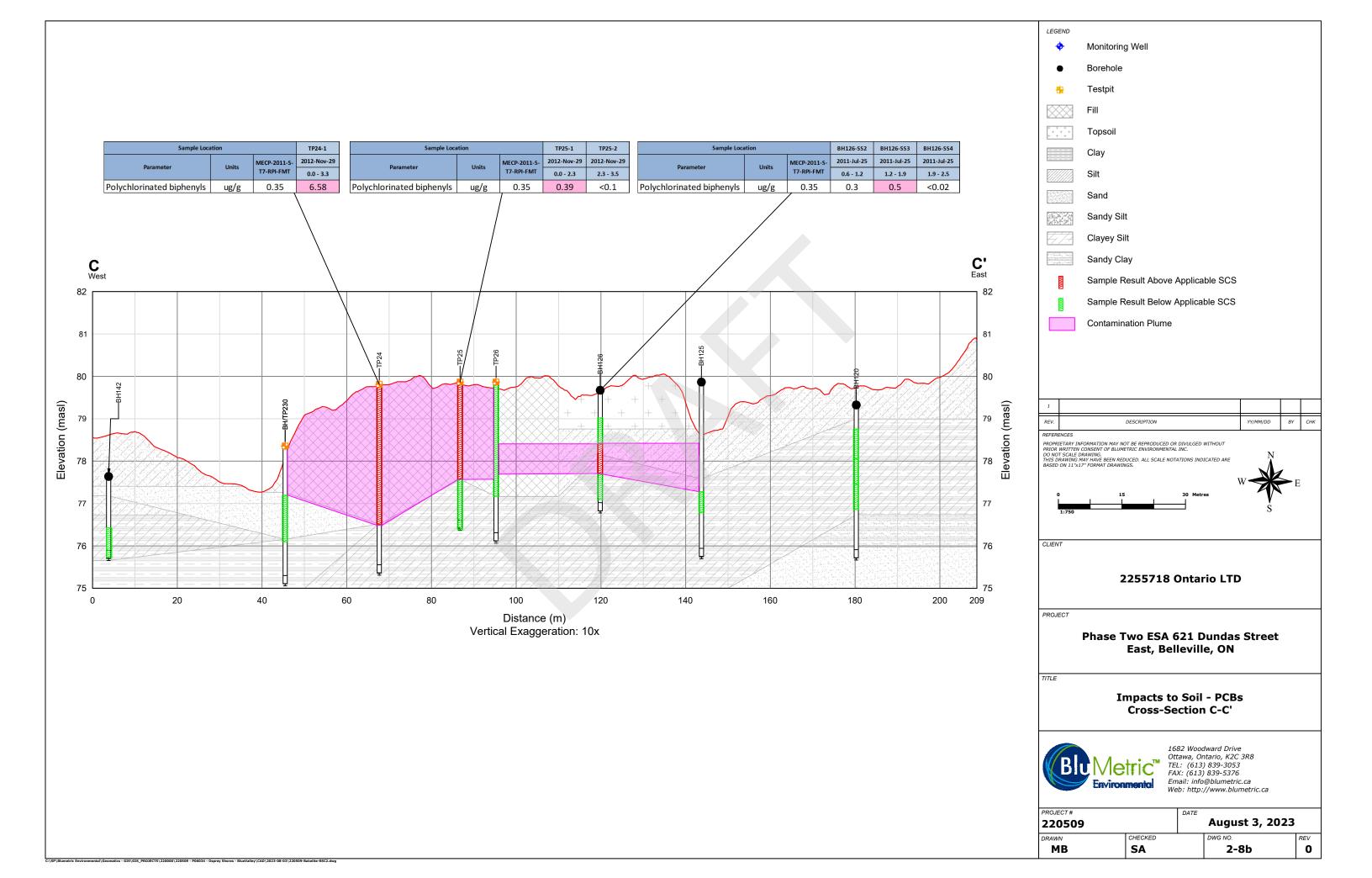
August 3, 2023

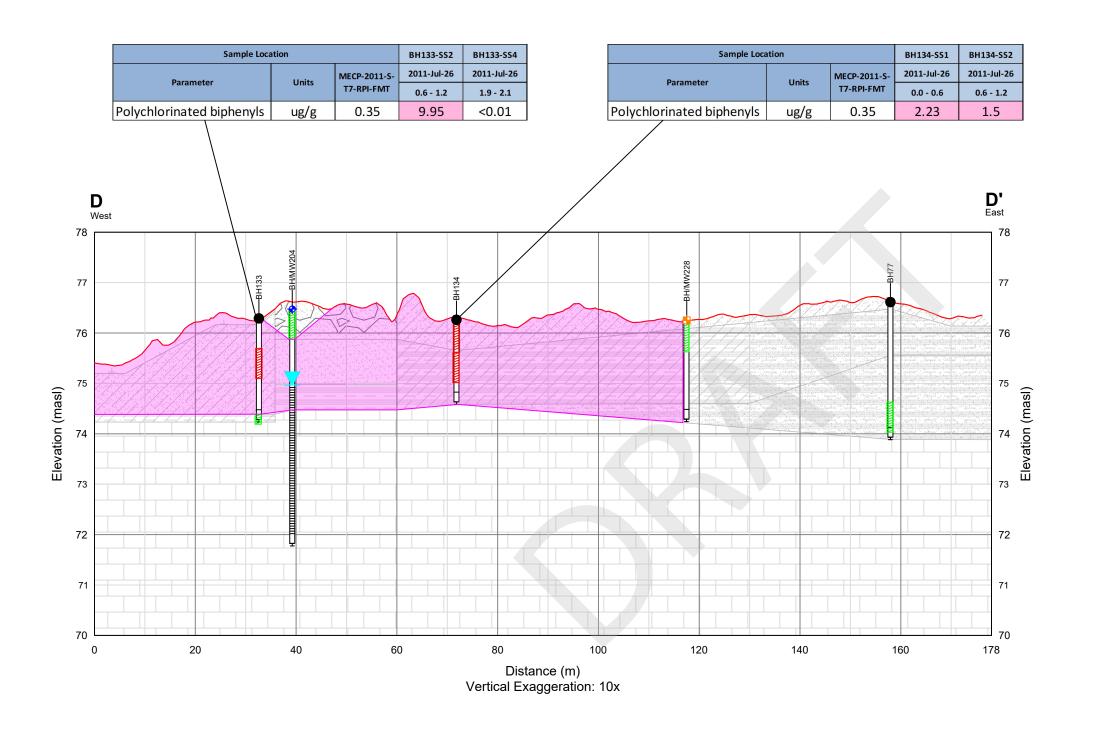
0

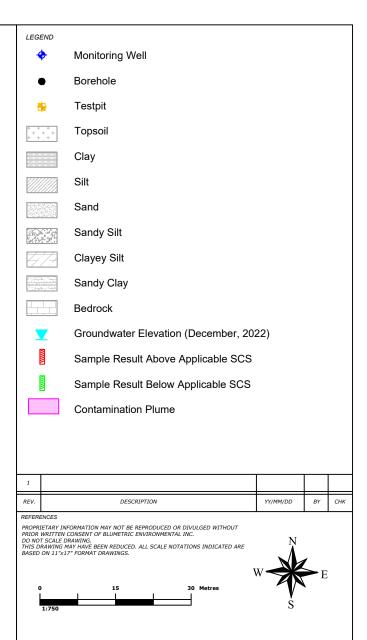
2-7d


Environmental


CHECKED


SA


220509

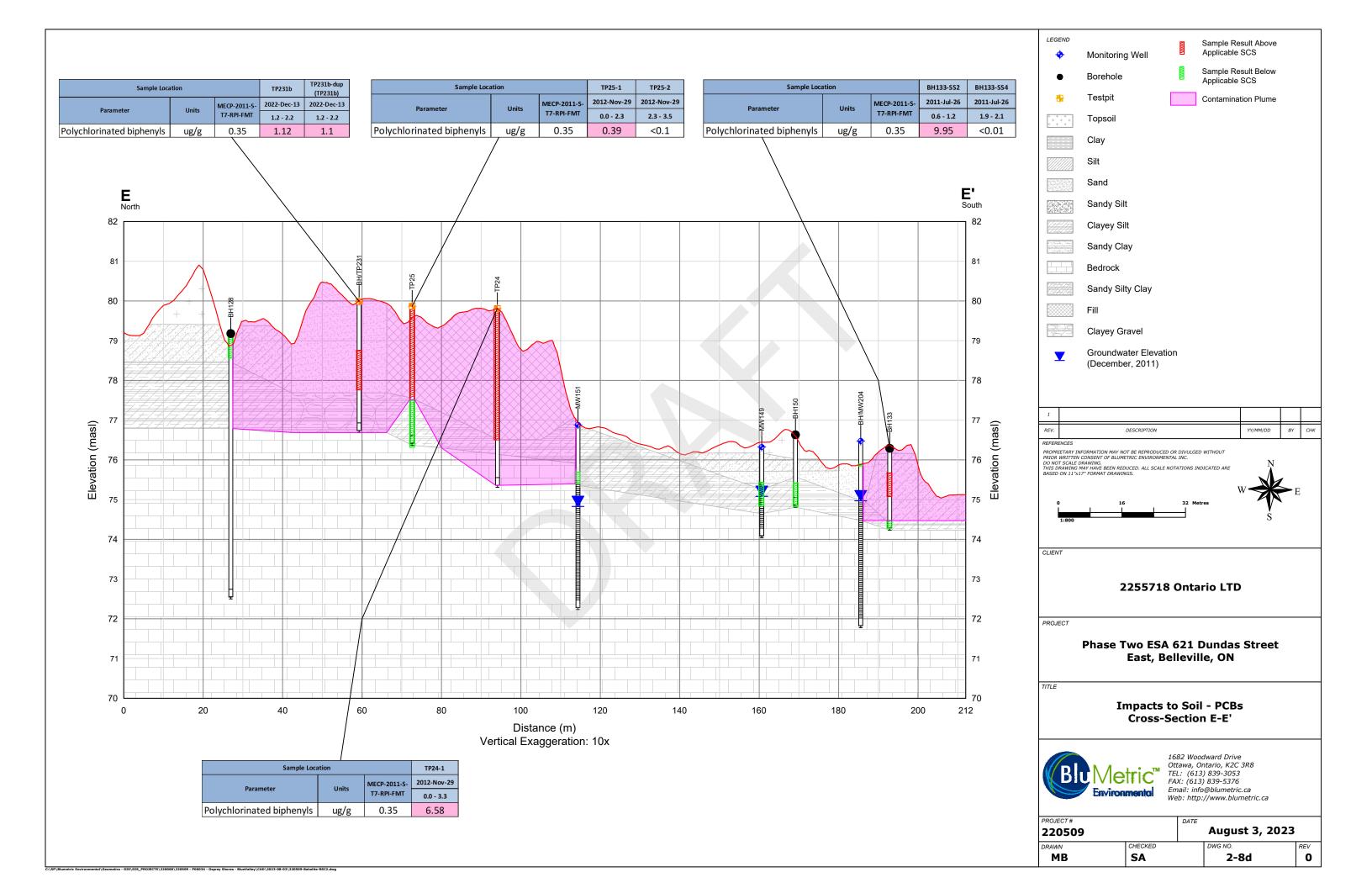

MB

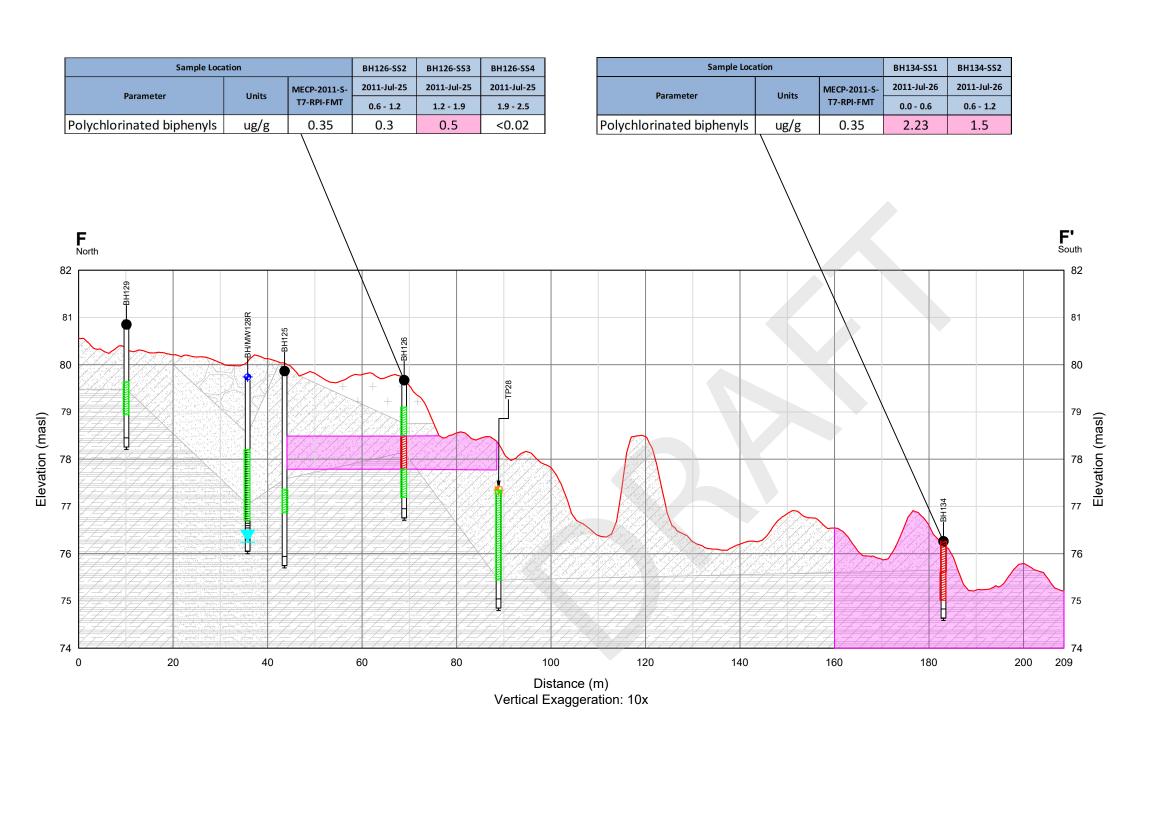
CLIENT

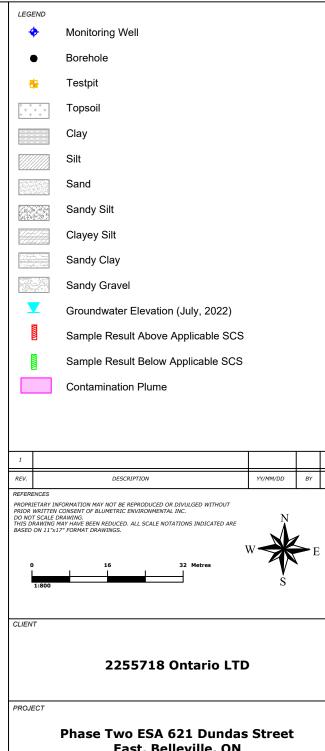
2255718 Ontario LTD

PROJECT

Phase Two ESA 621 Dundas Street East, Belleville, ON

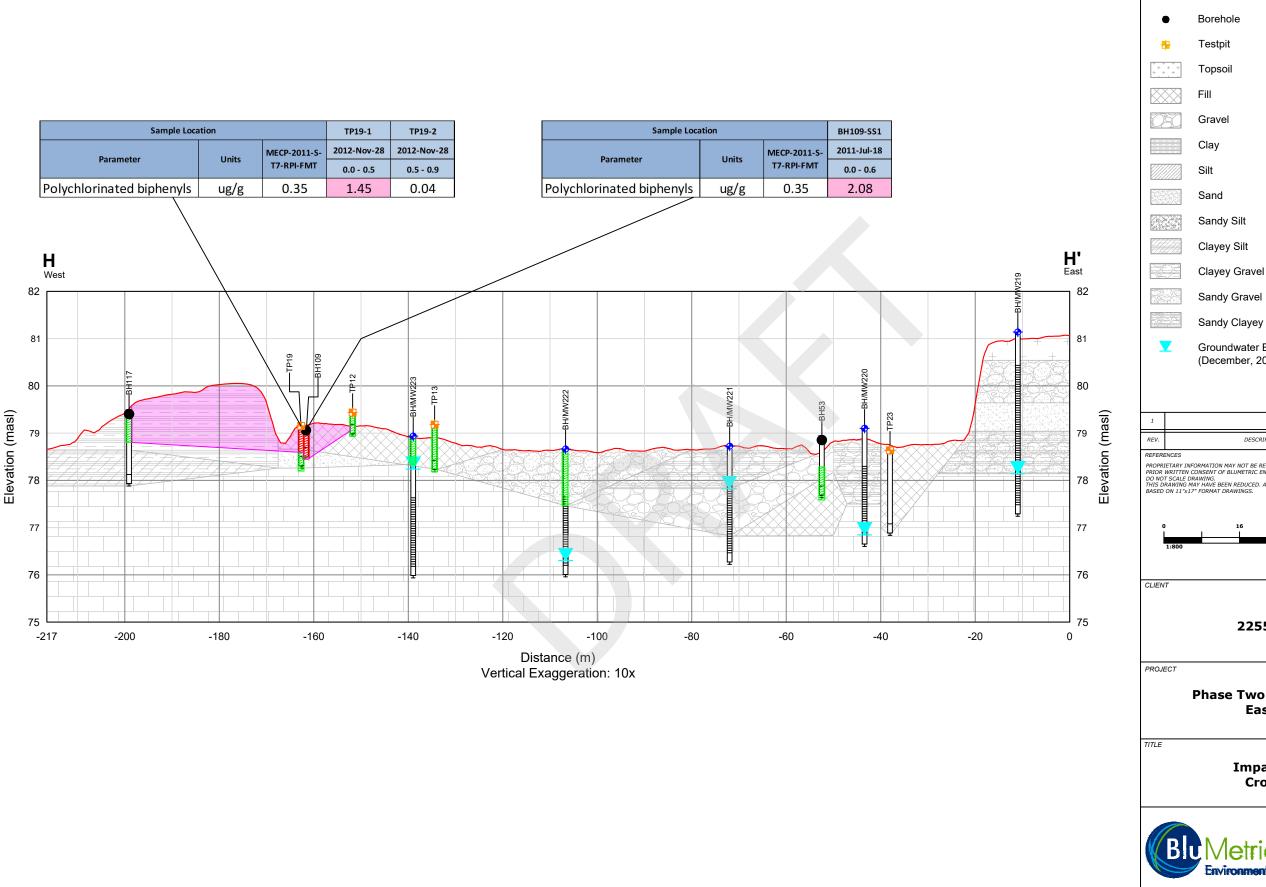

TITL


Impacts to Soil - PCBs Cross-Section D-D'

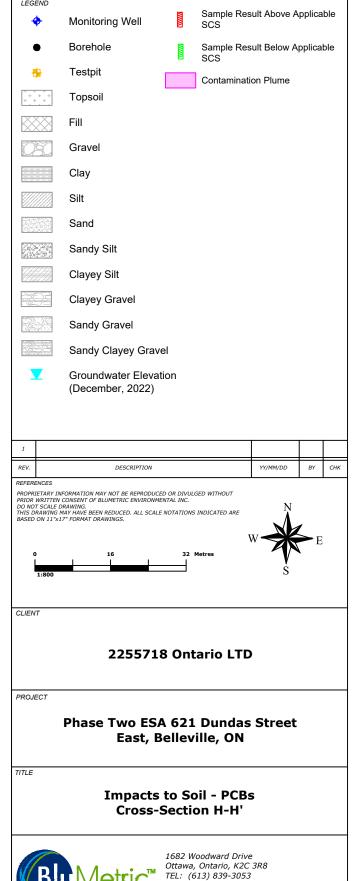


1682 Woodward Drive Ottawa, Ontario, K2C 3R8 TEL: (613) 839-3053 FAX: (613) 839-5376 Email: info@blumetric.ca Web: http://www.blumetric.ca

220509		DATE	August 3, 2023		
DRAWN	CHECKED		DWG NO.	REV	
МВ	SA		2-8c	0	


East, Belleville, ON

Impacts to Soil - PCBs Cross-Section F-F'



1682 Woodward Drive Ottawa, Ontario, K2C 3R8 TEL: (613) 839-3053 FAX: (613) 839-5376 Email: info@blumetric.ca Web: http://www.blumetric.ca

PROJECT#		DATE		
220509			August 3, 2023	}
DRAWN	CHECKED		DWG NO.	REV
MB	SA		2-8e	0

C:\SP\Blumetric Environmental\Geomatics - GIS\GIS_PROJECTS\2200000\220509 - P06034 - Osprey Shores - BlueValley\CAD\2023-08-03\220509-Bakelite-RSC2.dwg

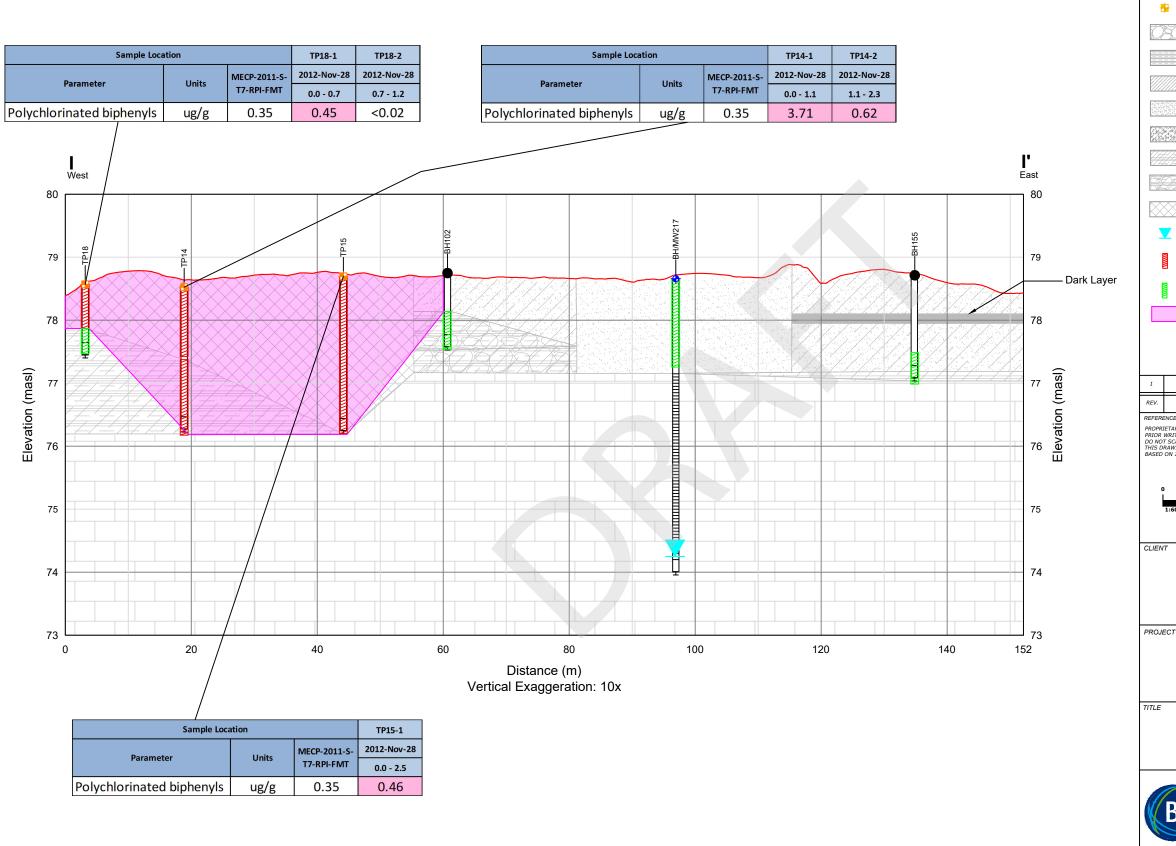
FAX: (613) 839-5376 Email: info@blumetric.ca Web: http://www.blumetric.ca

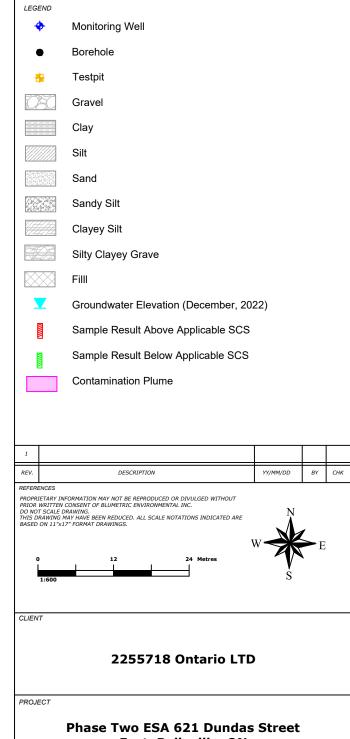
CHECKED

SA

August 3, 2023

0


2-8f

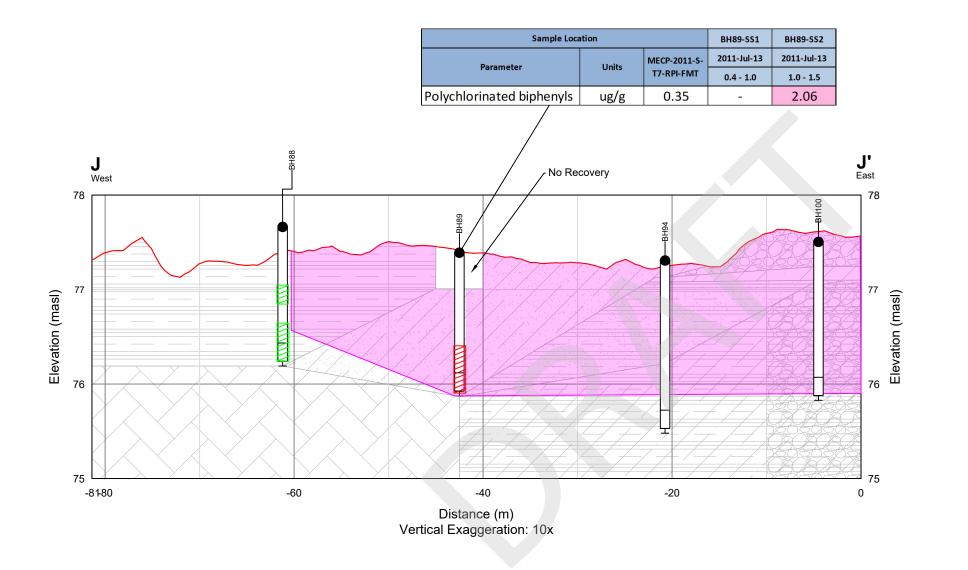

PROJECT#

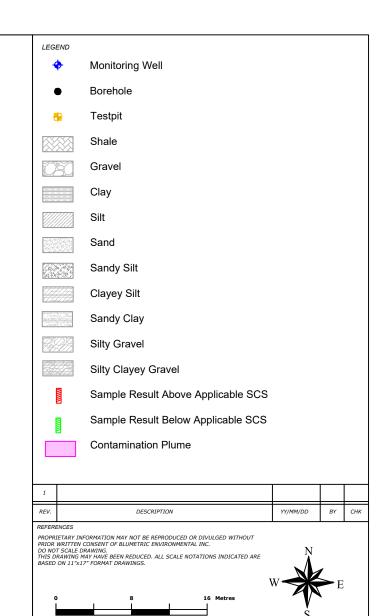
MB

220509

LEGEND

East, Belleville, ON


Impacts to Soil - PCBs Cross-Section I-I'



1682 Woodward Drive Ottawa, Ontario, K2C 3R8 TEL: (613) 839-3053 FAX: (613) 839-5376 Email: info@blumetric.ca Web: http://www.blumetric.ca

PROJECT#		DATE		
220509			August 3, 2	023
DRAWN	CHECKED	•	DWG NO.	REV
МВ	SA		2-8a	0

C:\SP\Blumetric Environmental\Geomatics - GIS\GIS_PROJECTS\2200000\220509 - P06034 - Osprey Shores - BlueValley\CAD\2023-08-03\220509-Bakelite-RSC2.dwg

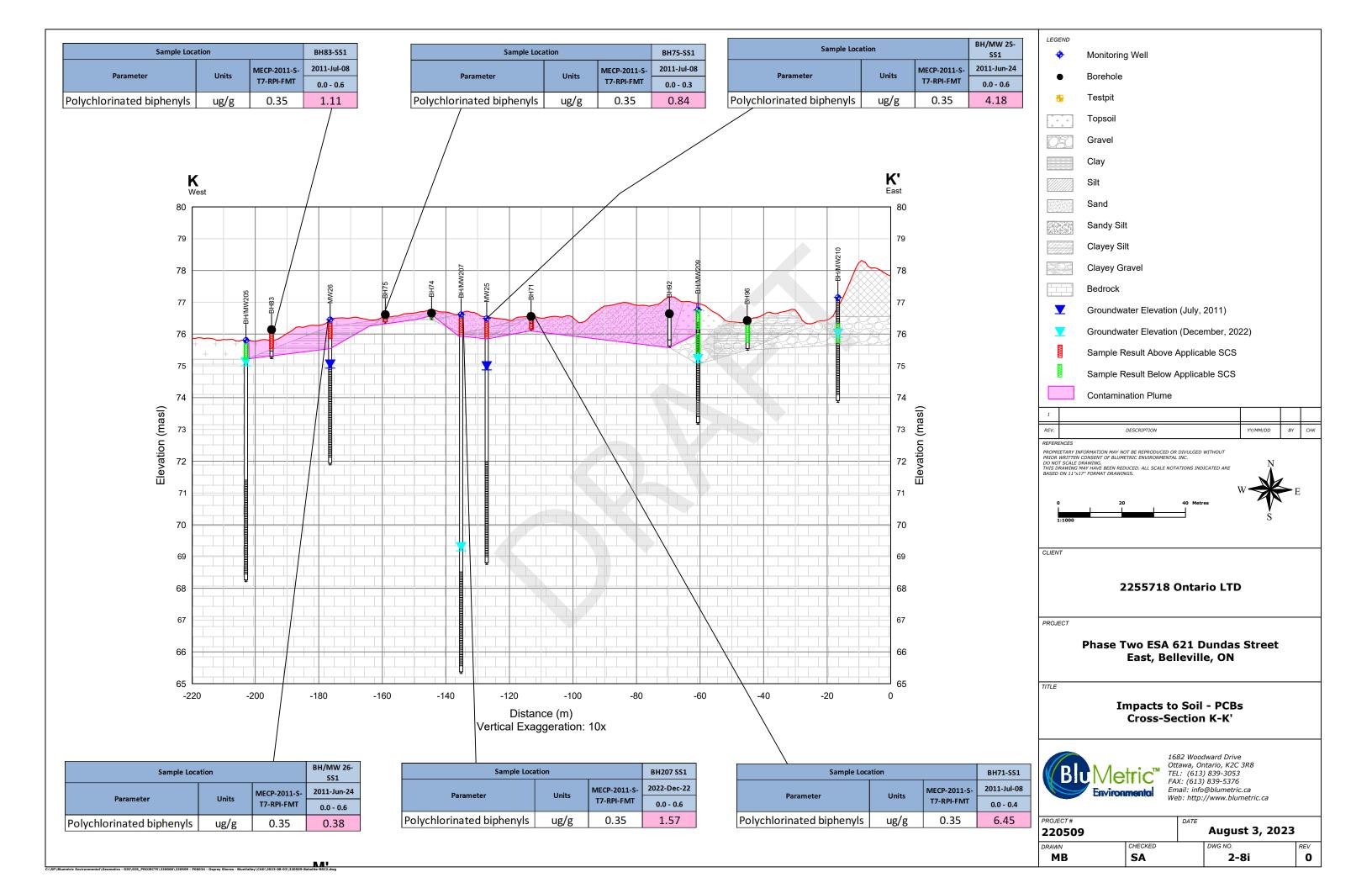
CLIENT

2255718 Ontario LTD

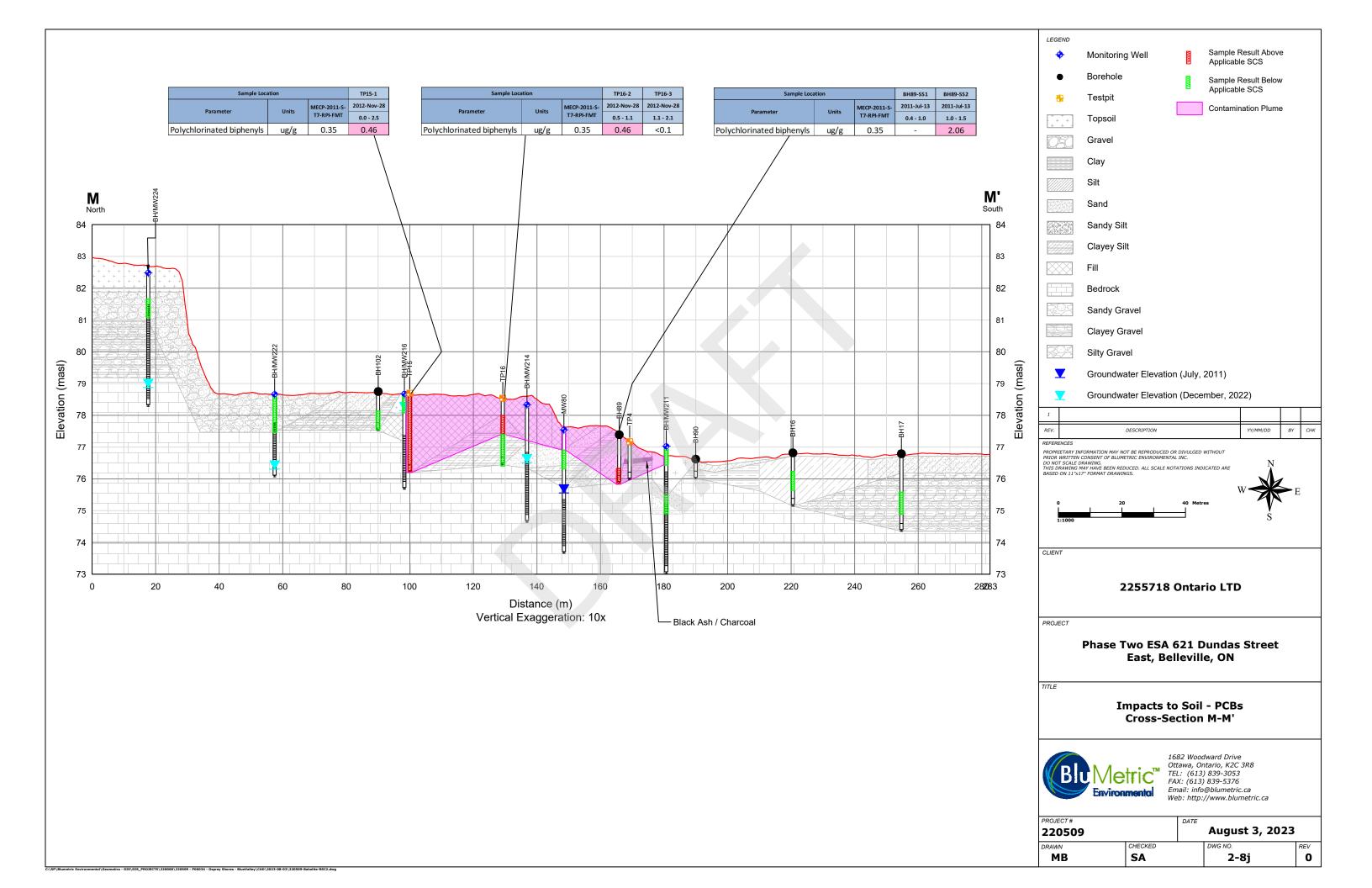
PROJECT

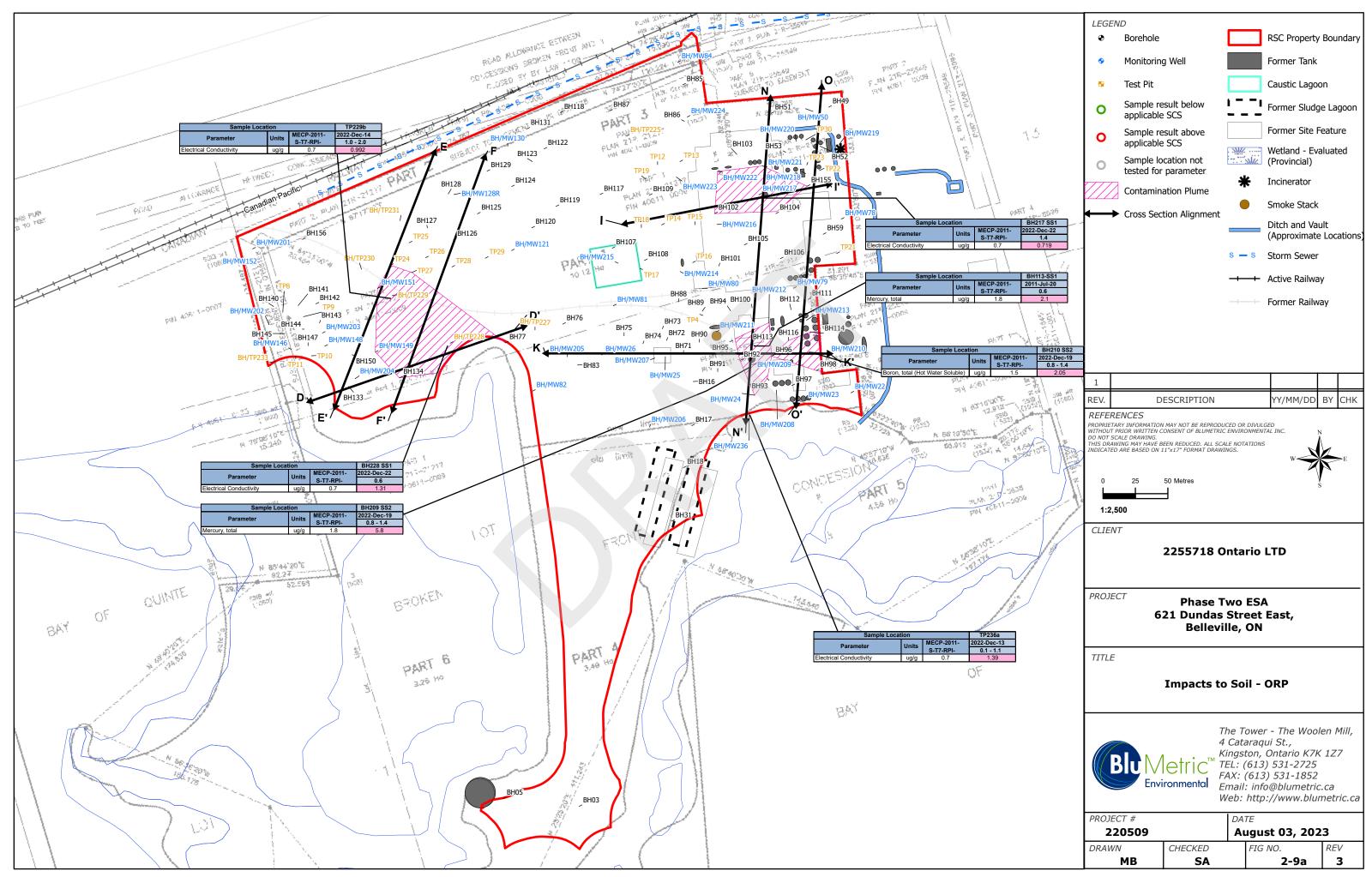
Phase Two ESA 621 Dundas Street East, Belleville, ON

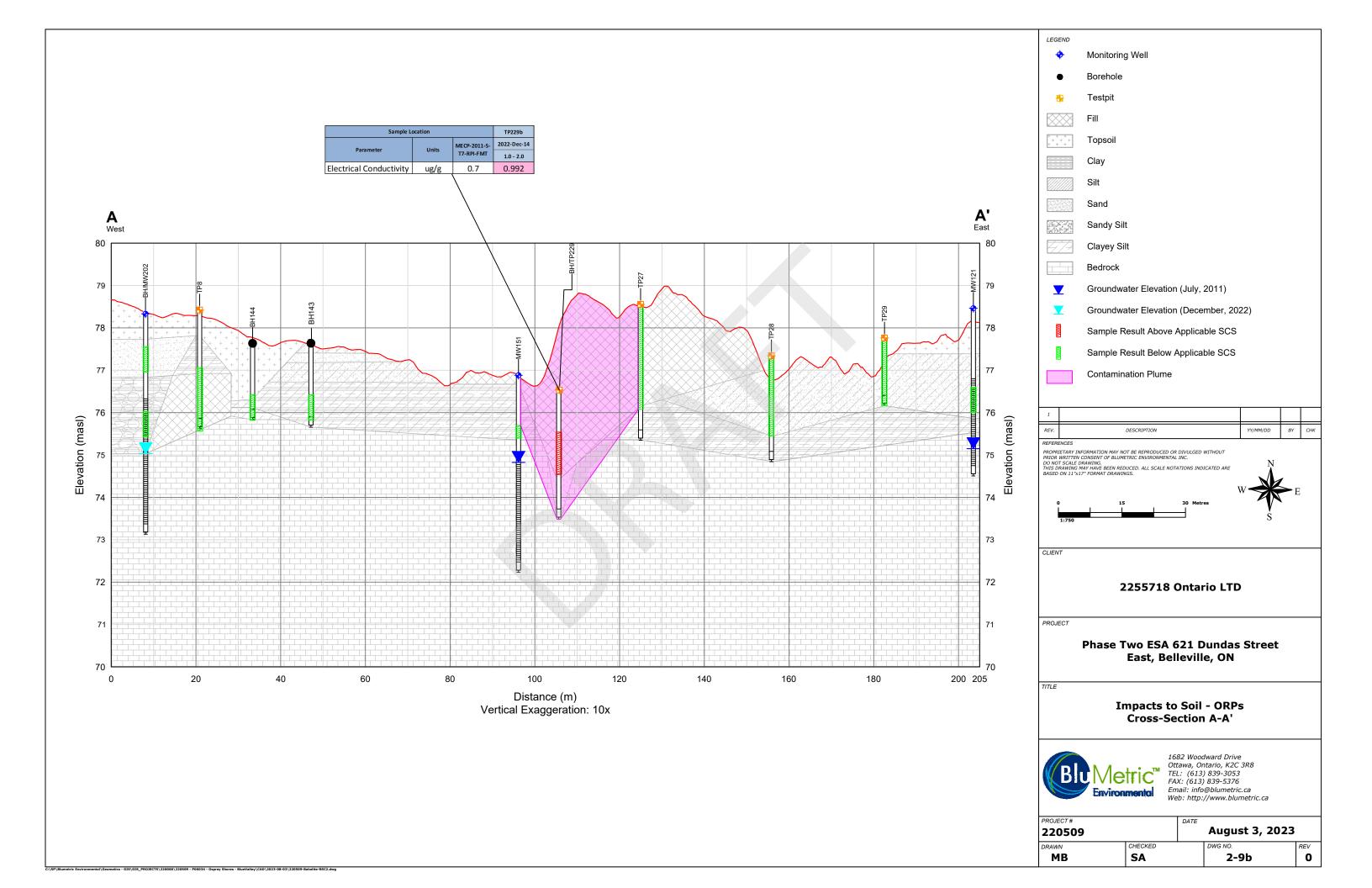
TITLE

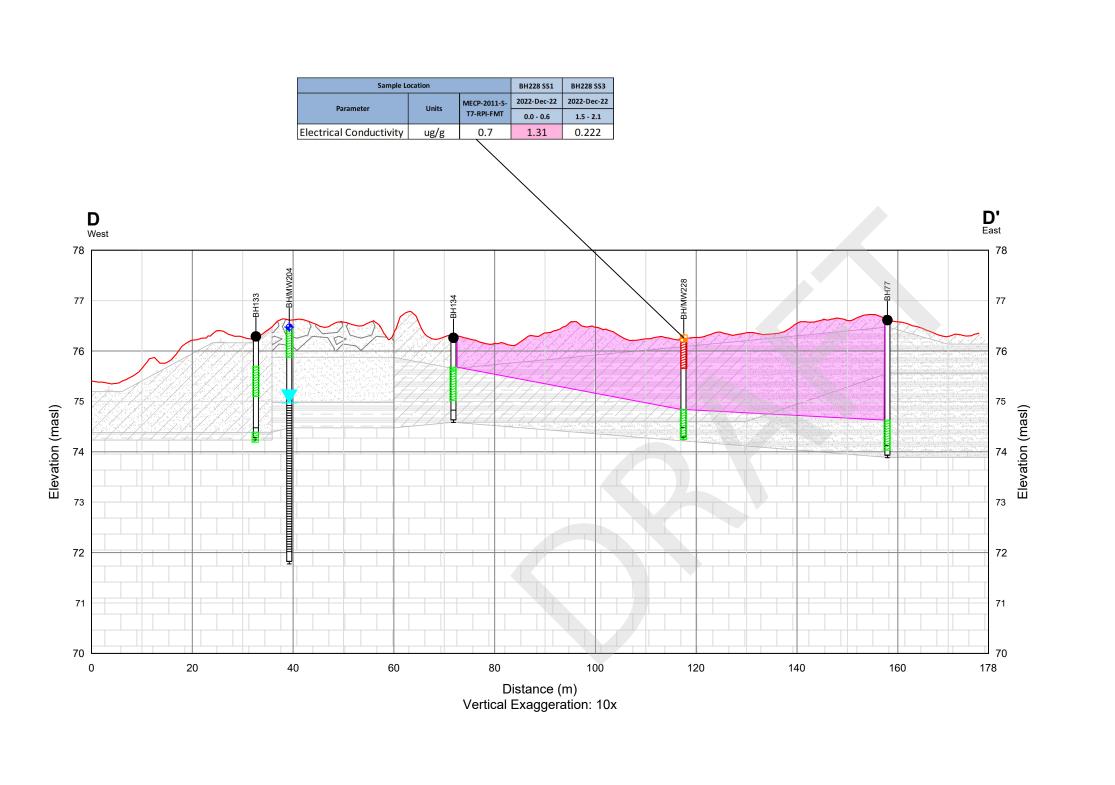

Impacts to Soil - PCBs Cross-Section J-J'

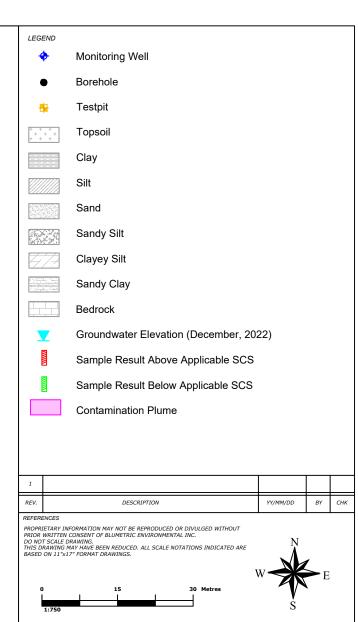
1682 Woodward Drive Ottawa, Ontario, K2C 3R8 TEL: (613) 839-3053 FAX: (613) 839-5376 Email: info@blumetric.ca Web: http://www.blumetric.ca


220509		DATE	August 3, 2023	
DRAWN	CHECKED		DWG NO.	REV
МВ	SA		2-8h	0


C:\SP\Blumetric Environmental\Geomatics - GIS\GIS_PROJECTS\220000\220509 - P06034 - Osprey Shores - BlueValley\CAD\2023-08-03\220509-Bakelite-RSC2.dwg






C\SP\Blumetric Environmental\Geomatics - GIS\GIS PROJECTS\220000\220509 - P06034 - Osprey Shores - BlueValley\CAD\2023-08-03\220509-Bakelite-RSC2.dwa

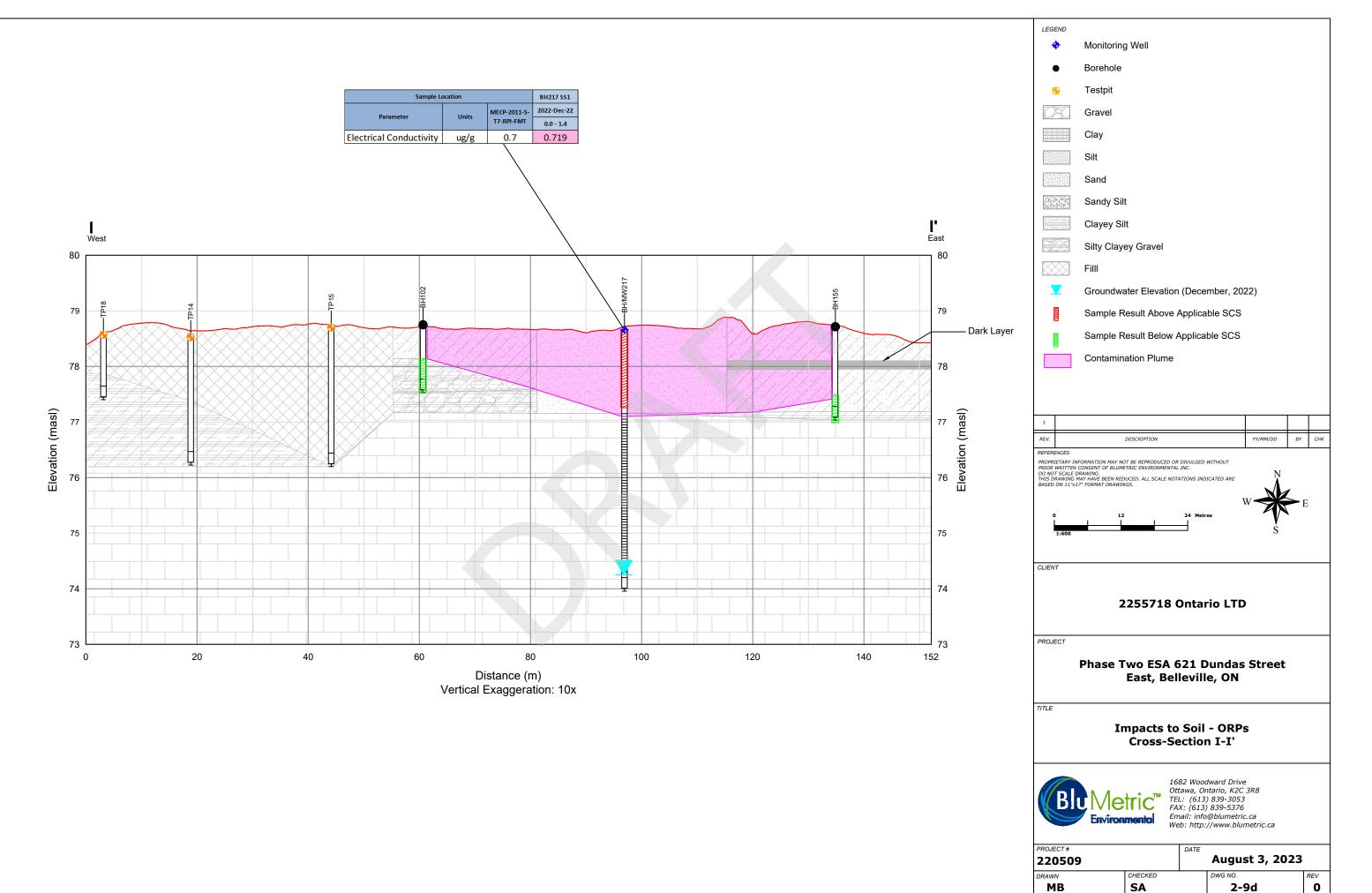
CLIENT

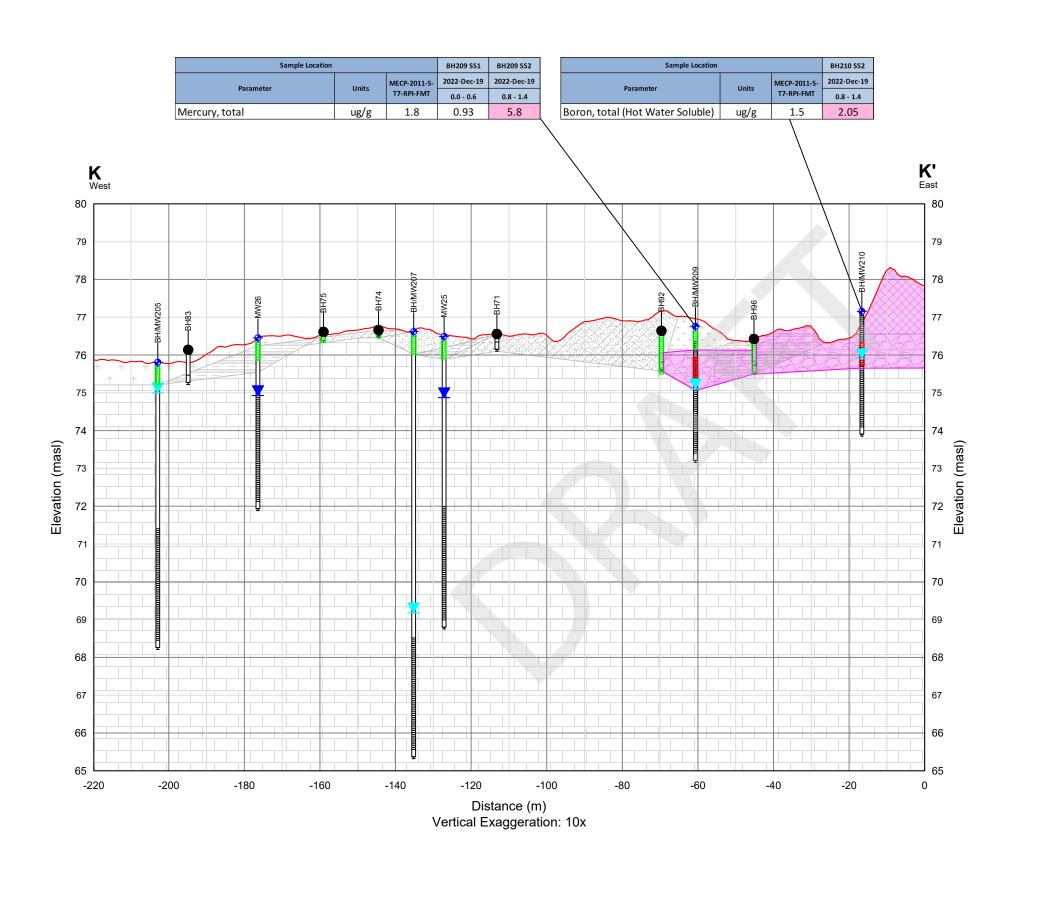
2255718 Ontario LTD

PROJECT

Phase Two ESA 621 Dundas Street East, Belleville, ON

TITL


Impacts to Soil - ORPs Cross-Section D-D'


1682 Woodward Drive Ottawa, Ontario, K2C 3R8 TEL: (613) 839-3053 FAX: (613) 839-5376 Email: info@blumetric.ca Web: http://www.blumetric.ca

PROJECT#		DATE		
220509			August 3, 2023	
DRAWN	CHECKED		DWG NO.	REV
MB	SA		2-9c	0

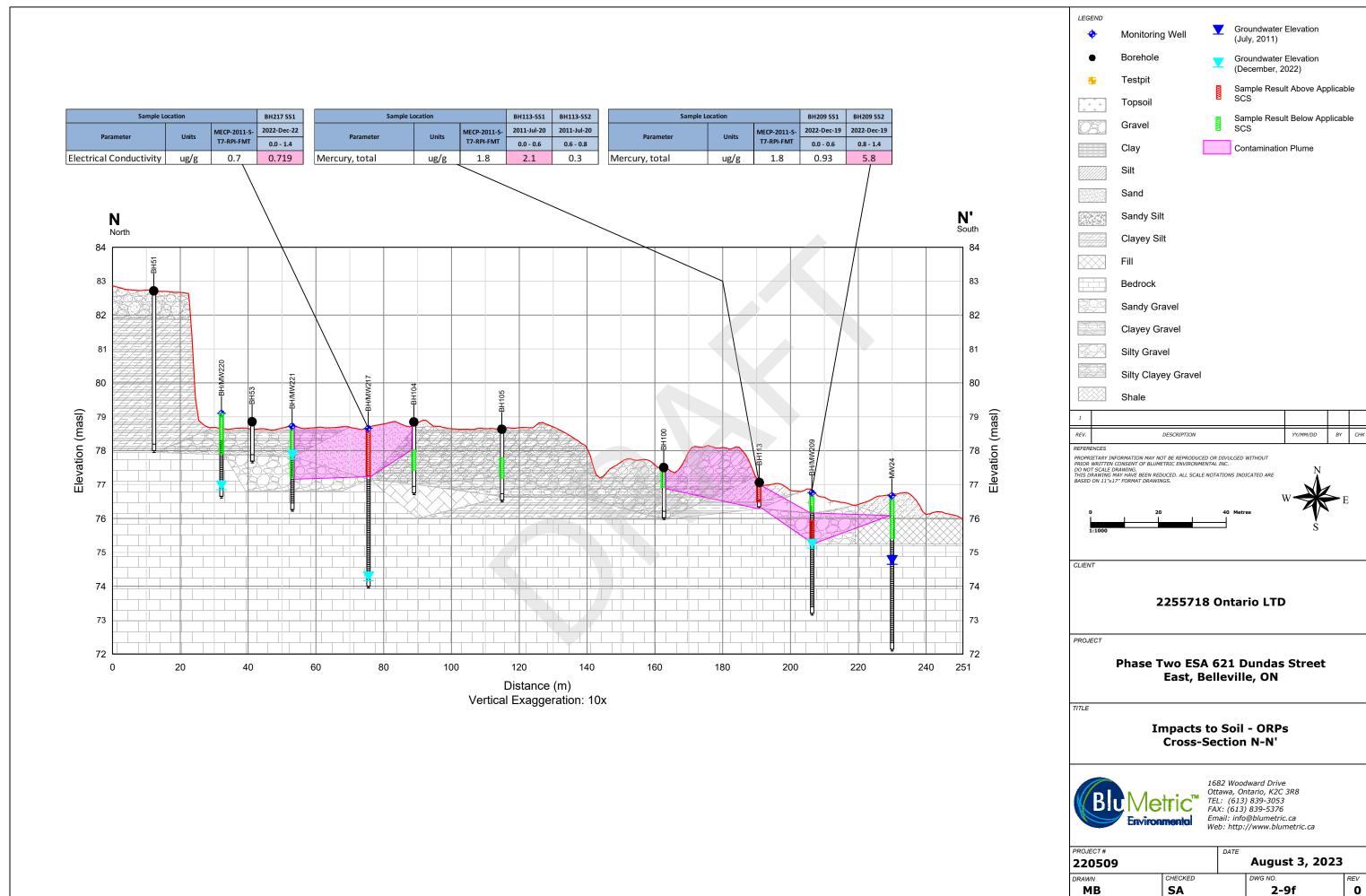
C:\SP\Blumetric Environmental\Geomatics - GIS\GIS_PROJECTS\220000\220509 - P06034 - Osprey Shores - BlueValley\CAD\2023-08-03\220509-Bakelite-RSC2.dwg

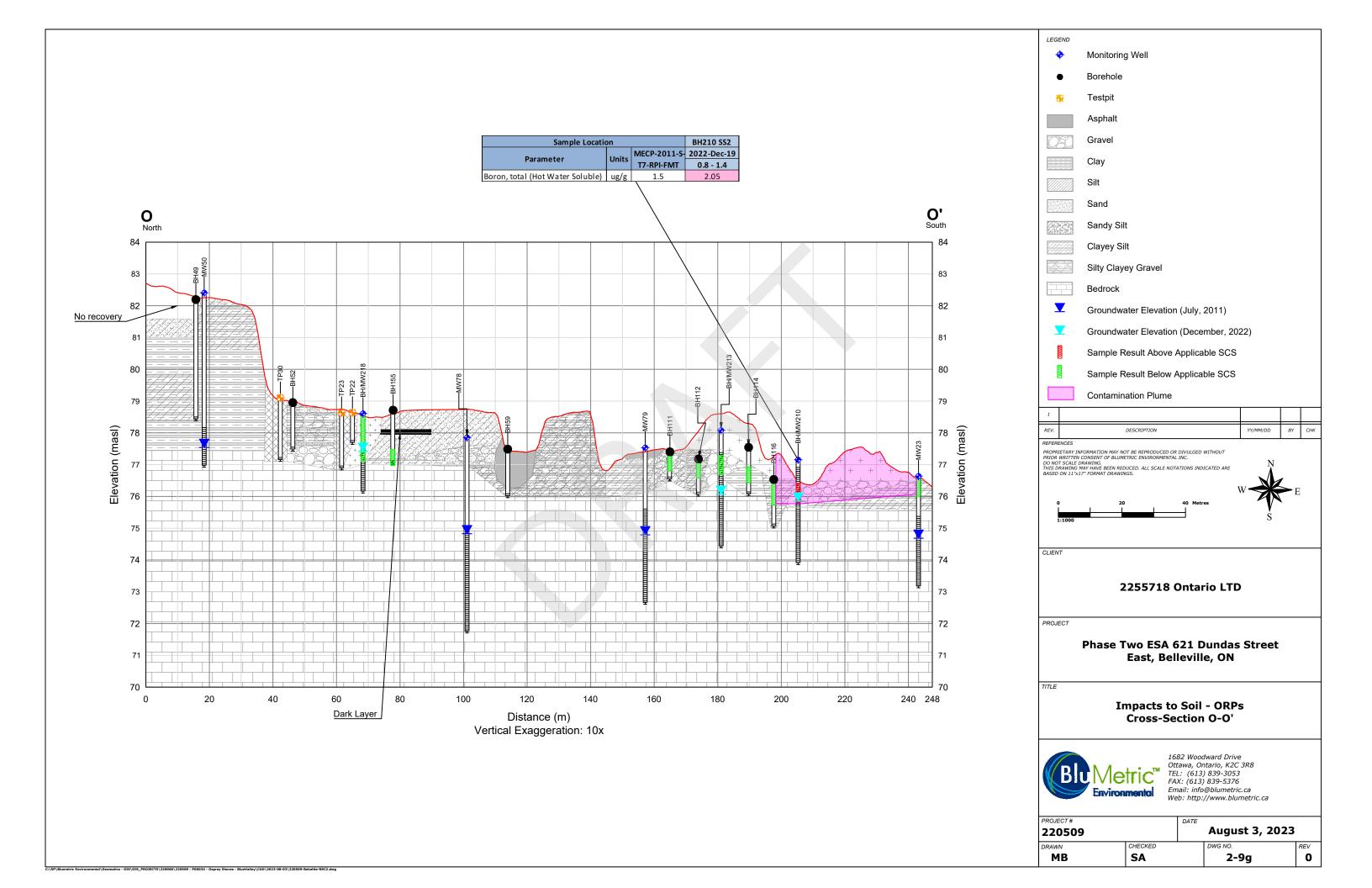
C:\SP\Blumetric Environmental\Geomatics - GIS\GIS_PROJECTS\220000\220509 - P06034 - Osprey Shores - BlueValley\CAD\2023-08-03\220509-Bakelite-RSC2.dwg

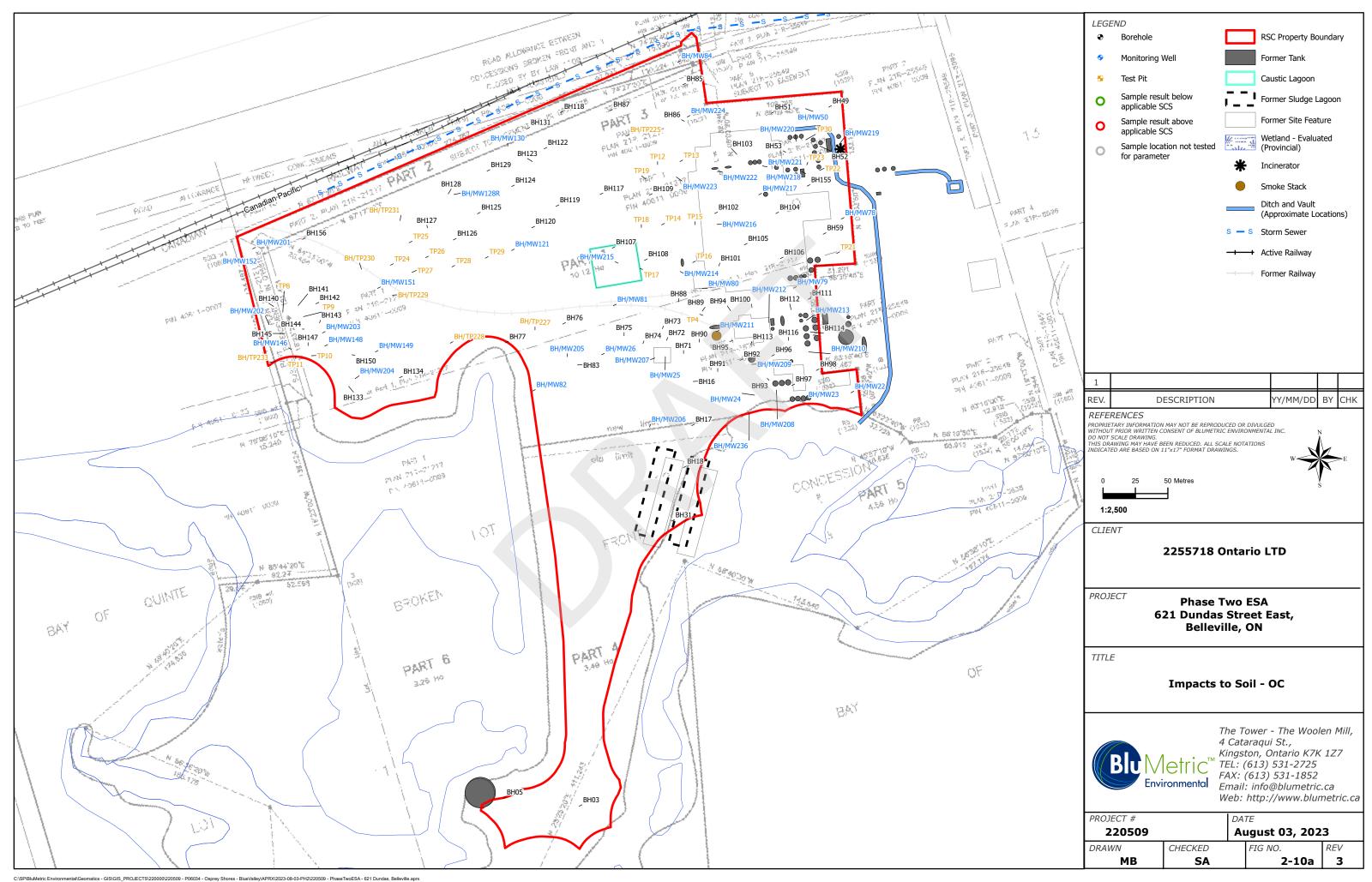
2255718 Ontario LTD

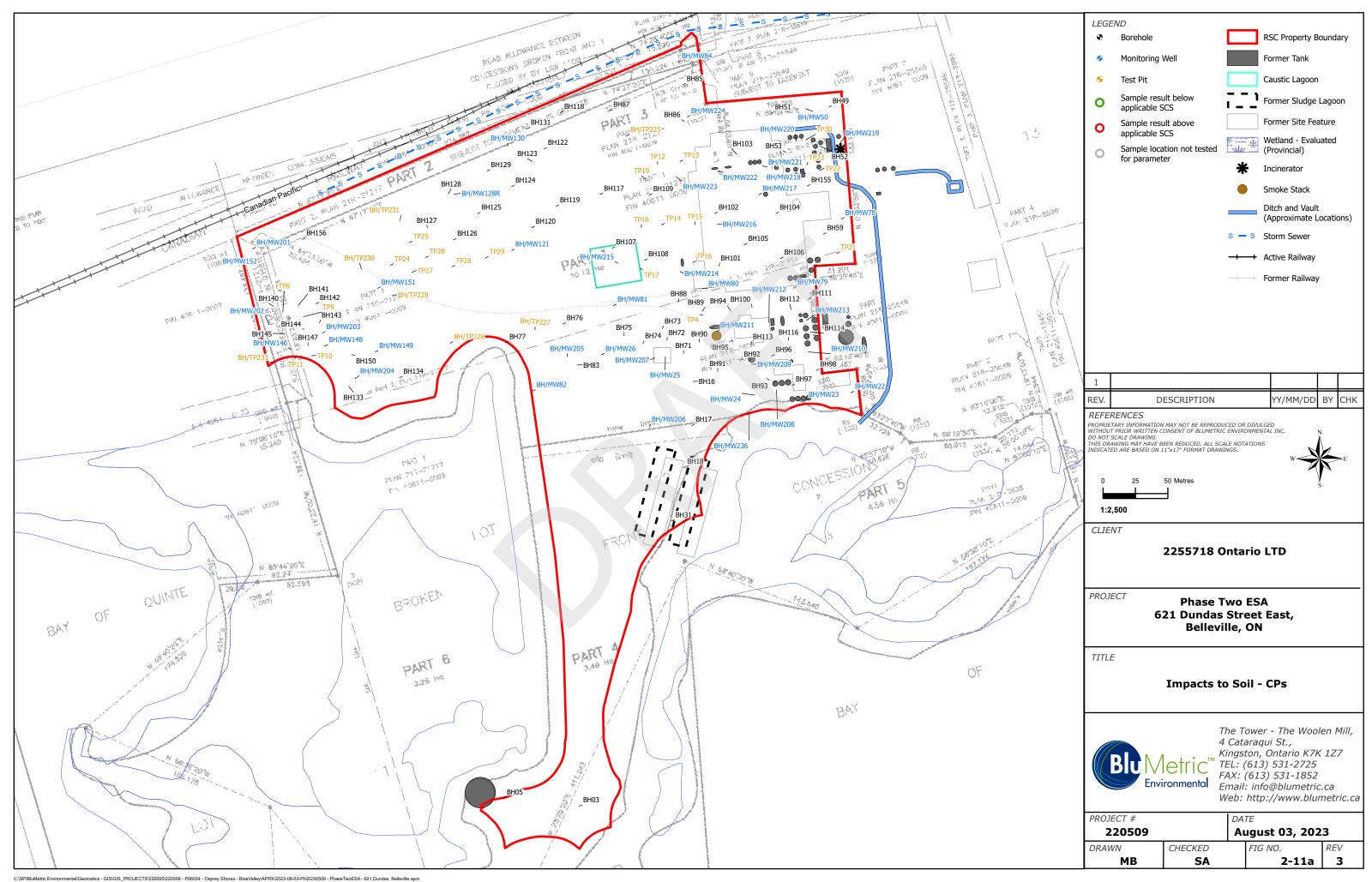
PROJECT

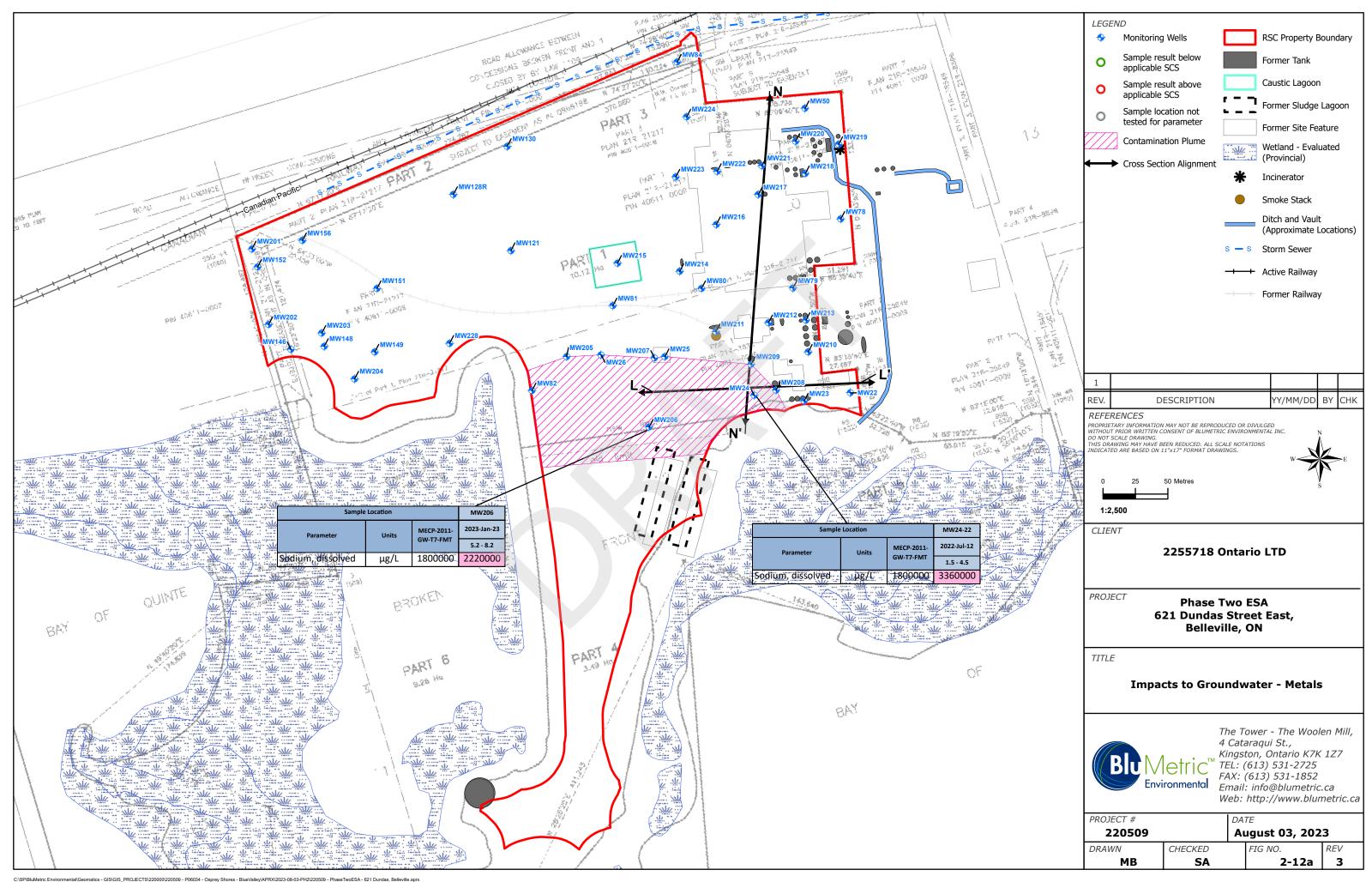
Phase Two ESA 621 Dundas Street East, Belleville, ON

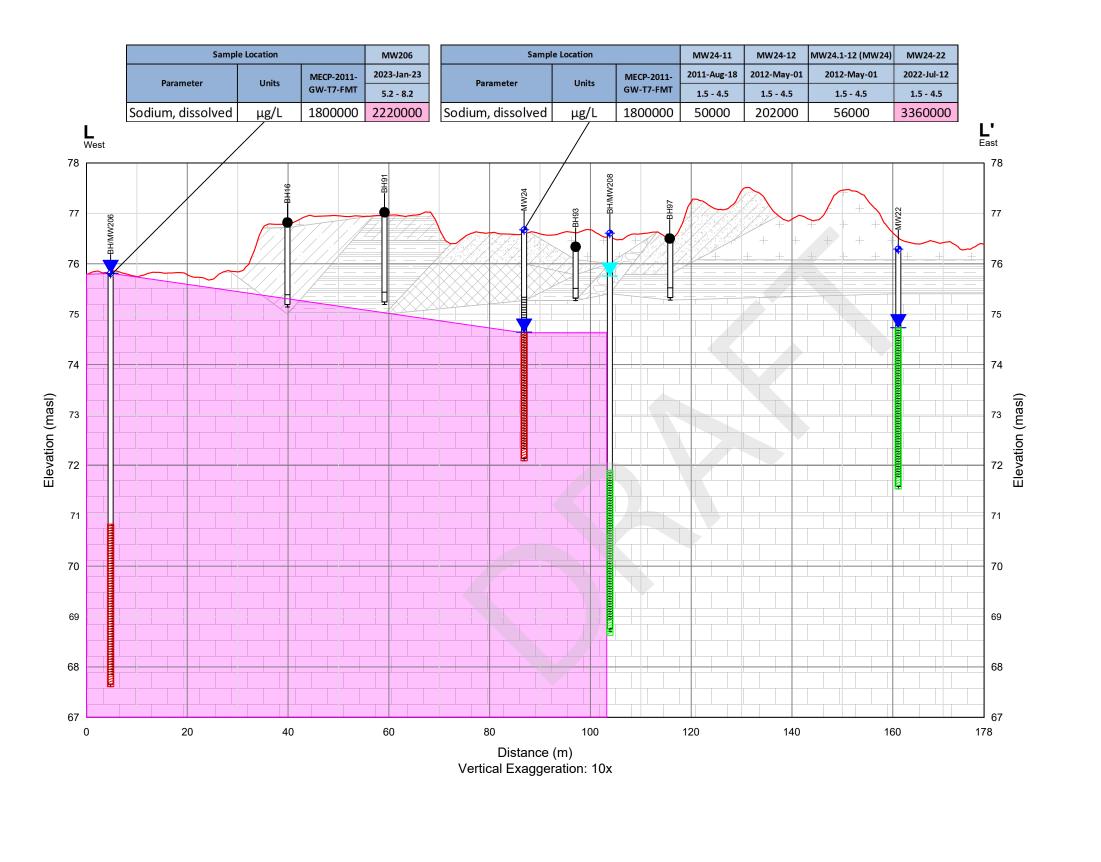

Impacts to Soil - ORPs Cross-Section K-K'

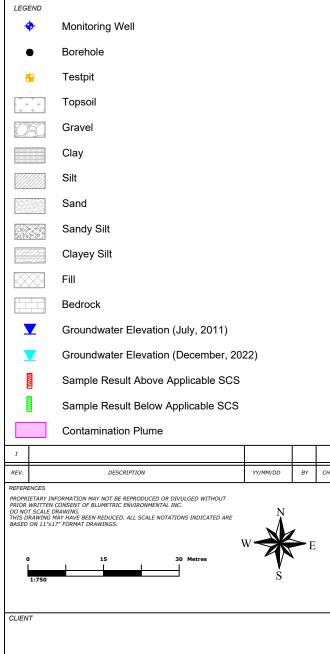

1682 Woodward Drive Ottawa, Ontario, K2C 3R8 TEL: (613) 839-3053 FAX: (613) 839-5376 Email: info@blumetric.ca Web: http://www.blumetric.ca


220509		DATE	August 3, 2023	
DRAWN	CHECKED		DWG NO.	REV
МВ	SA		2-9e	0


C:\SP\Blumetric Environmental\Geomatics - GIS\GIS_PROJECTS\2200000\220509 - P06034 - Osprey Shores - BlueValley\CAD\2023-08-03\220509-Bakelite-RSC2.dwg



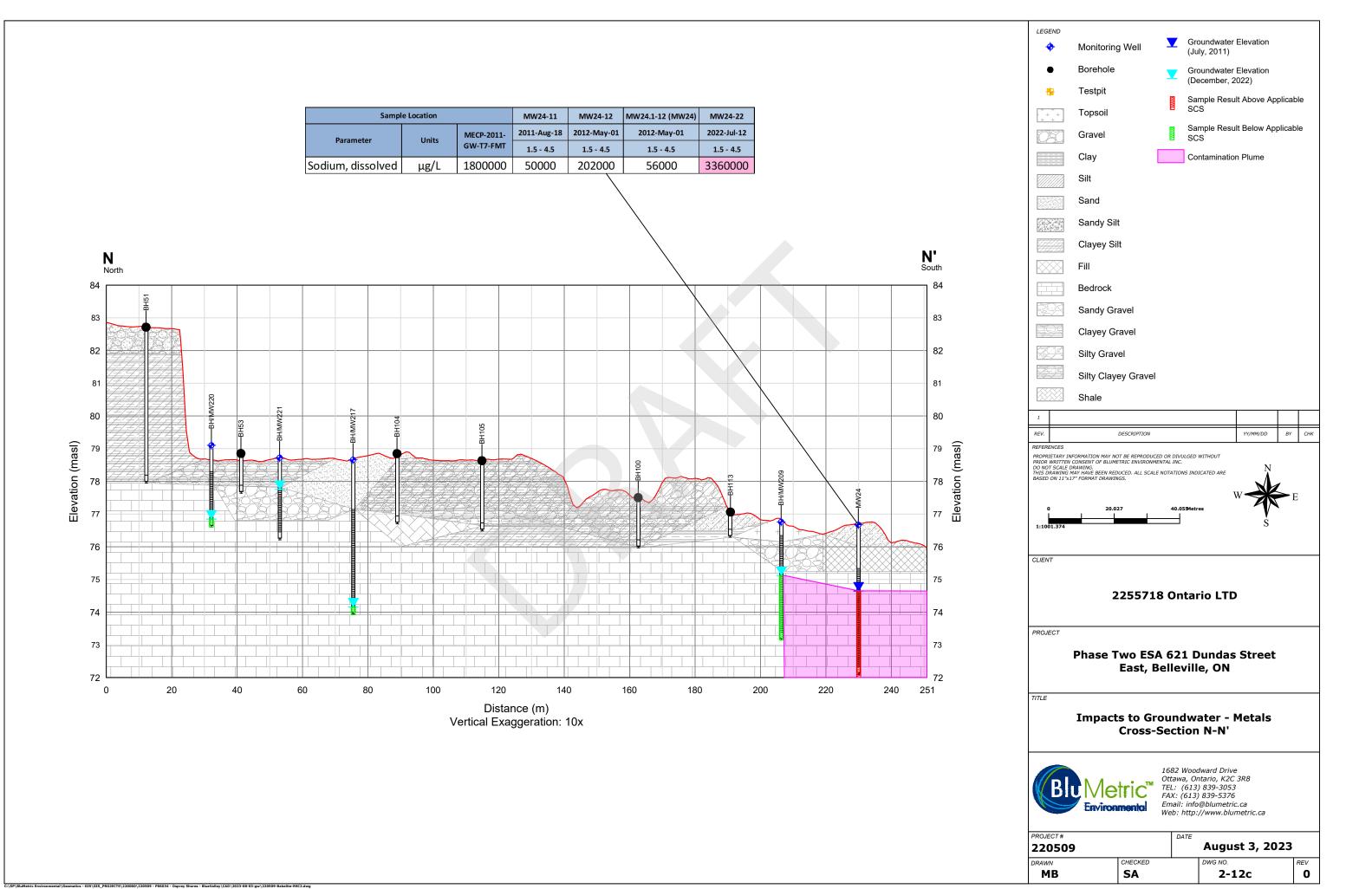

C:\SP\Blumetric Environmental\Geomatics - GIS\GIS_PROJECTS\2200000\220509 - P06034 - Osprey Shores - BlueValley\CAD\2023-08-03\220509-Bakelite-RSC2.dwg

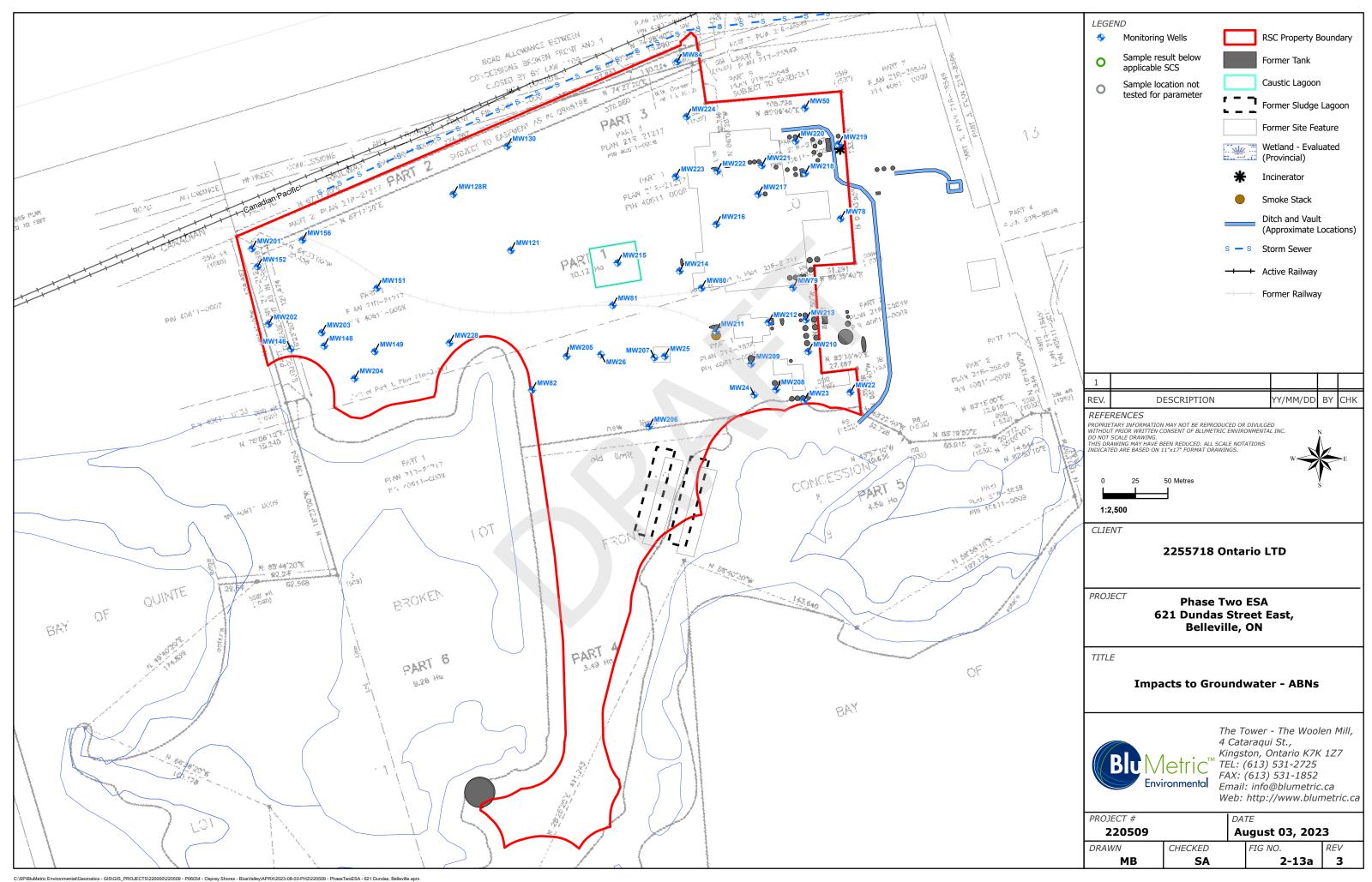


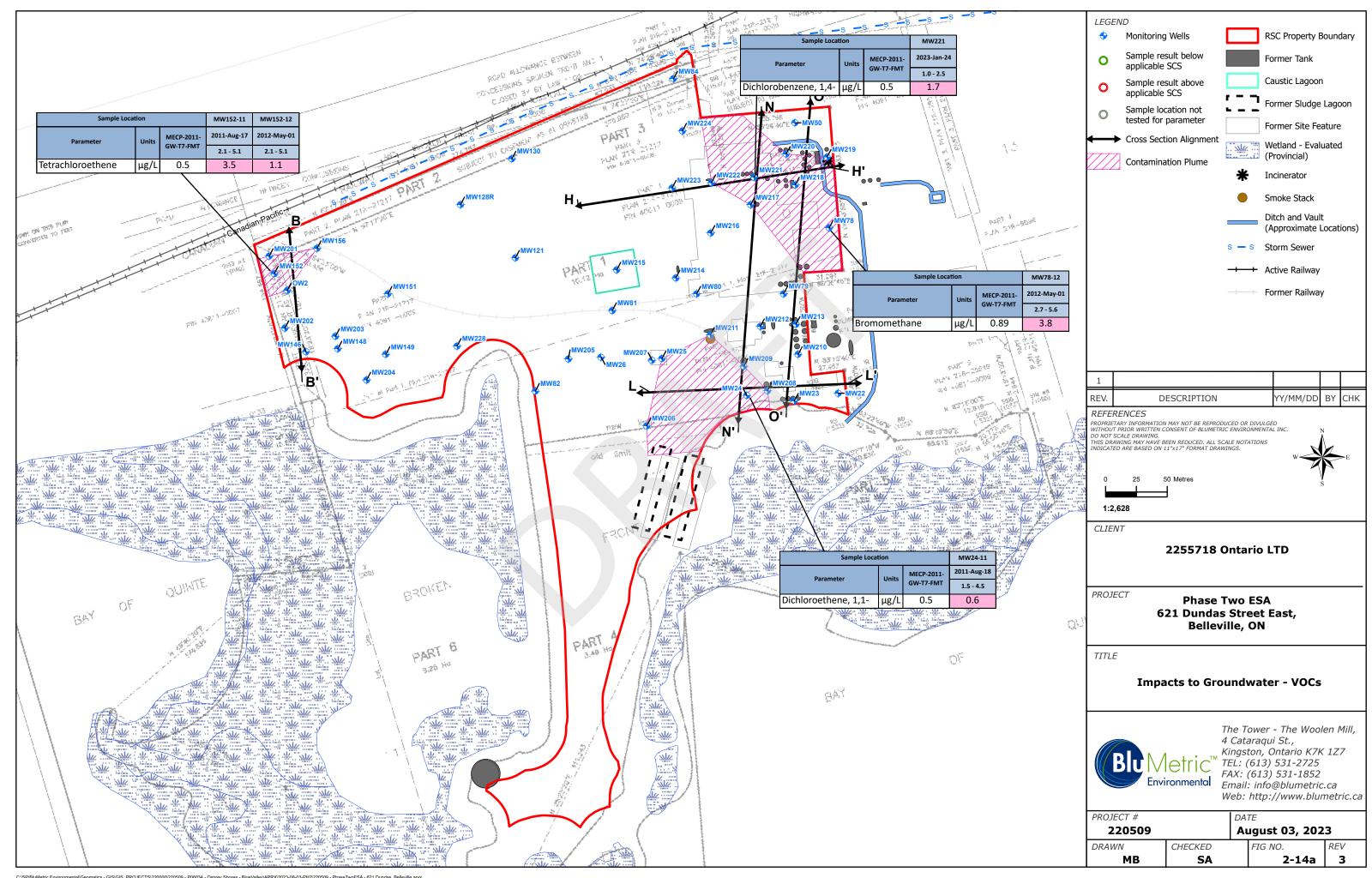
2255718 Ontario LTD

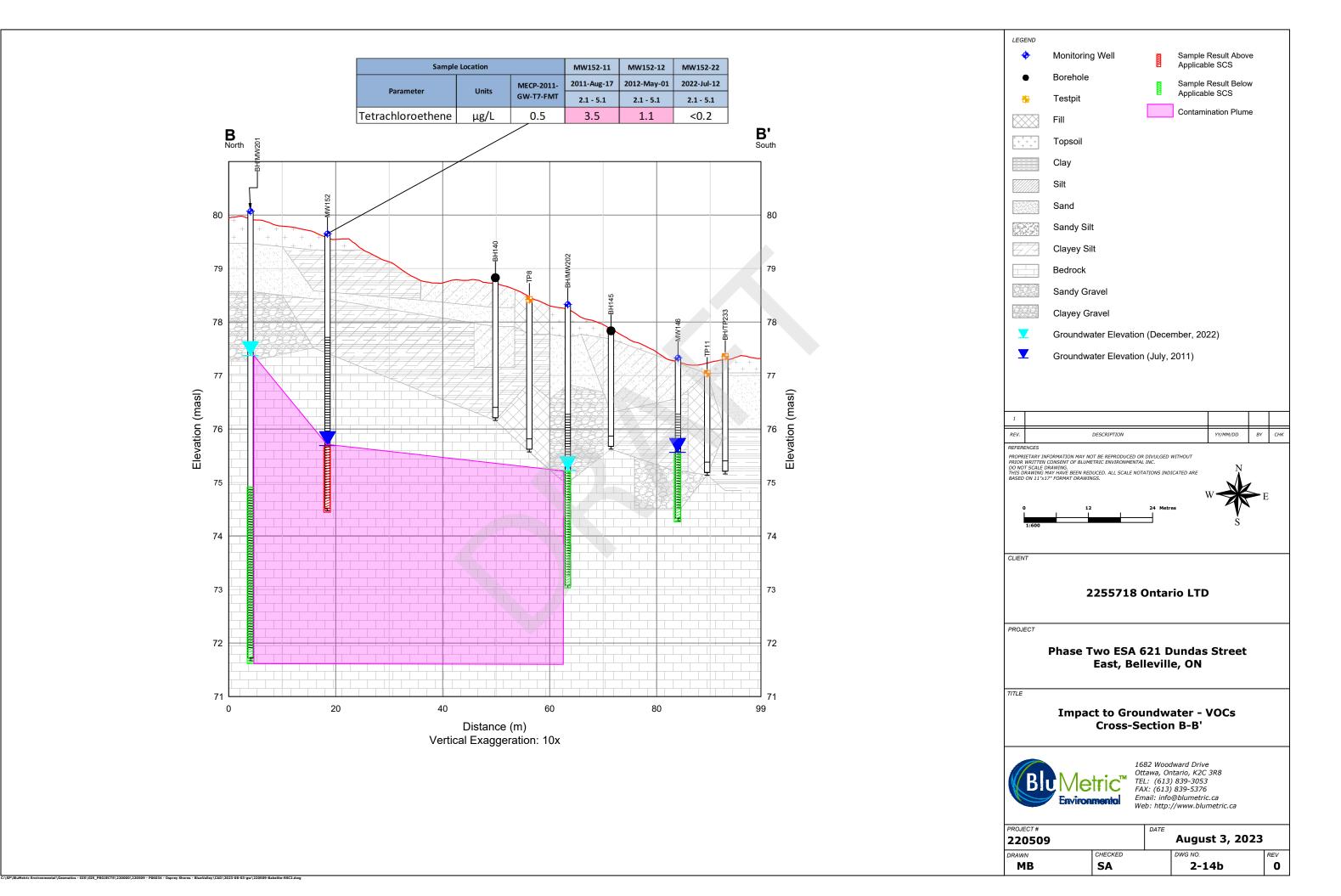
PROJECT

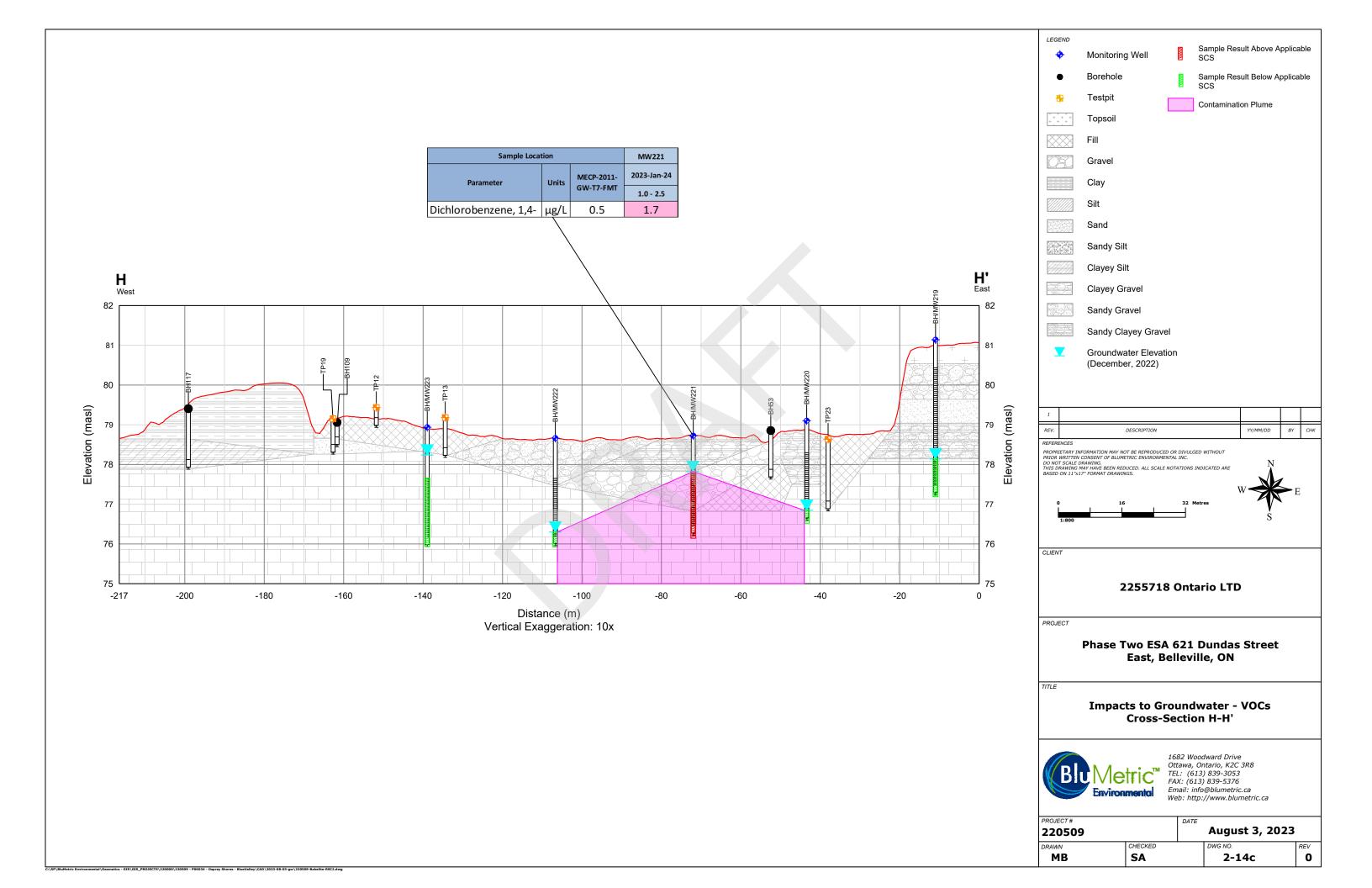
Phase Two ESA 621 Dundas Street East, Belleville, ON

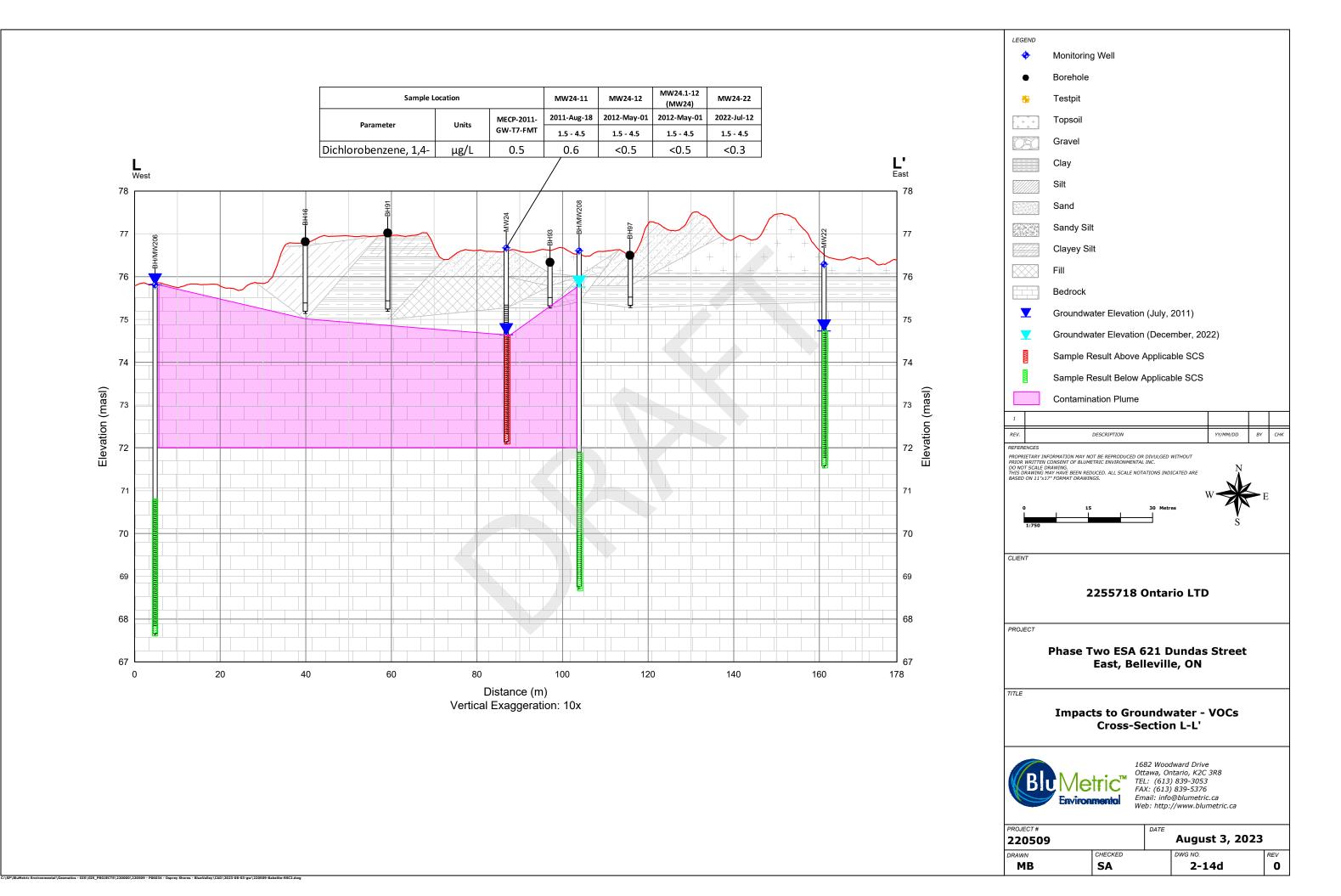

Impacts to Groundwater - Metals Cross-Section L-L'

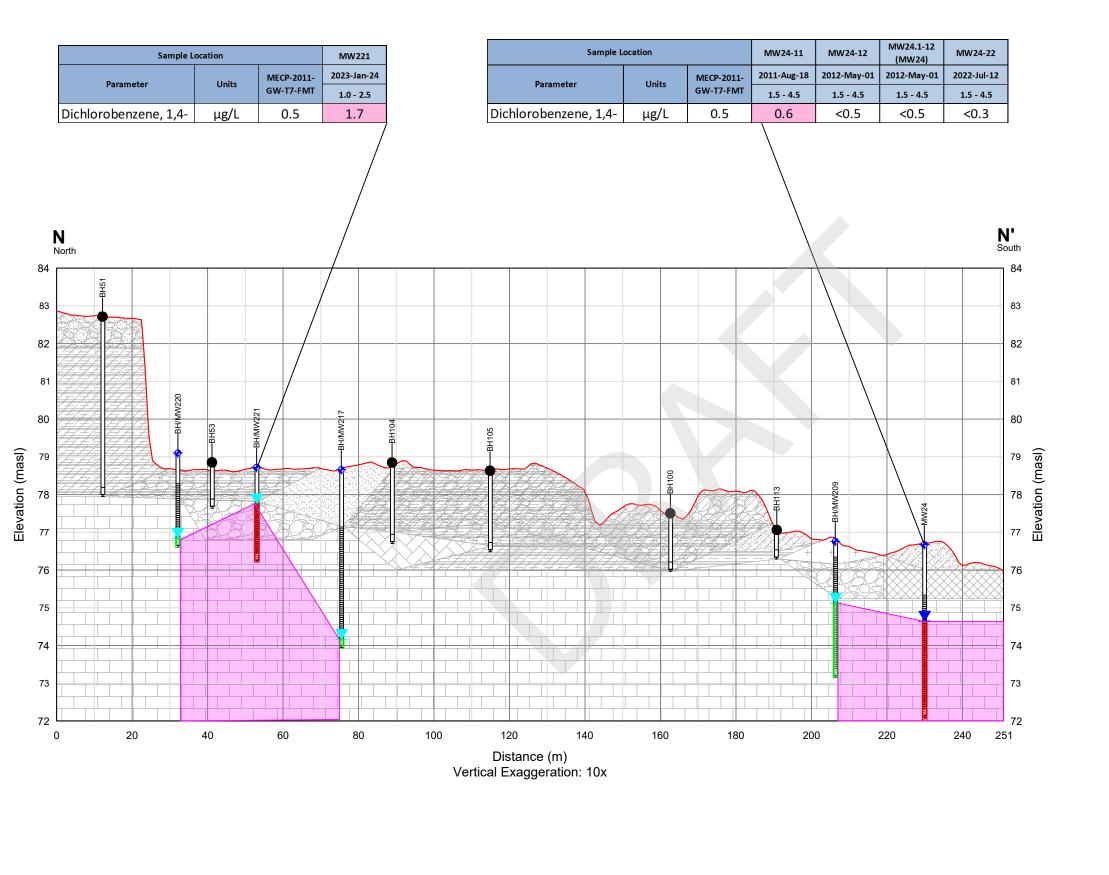


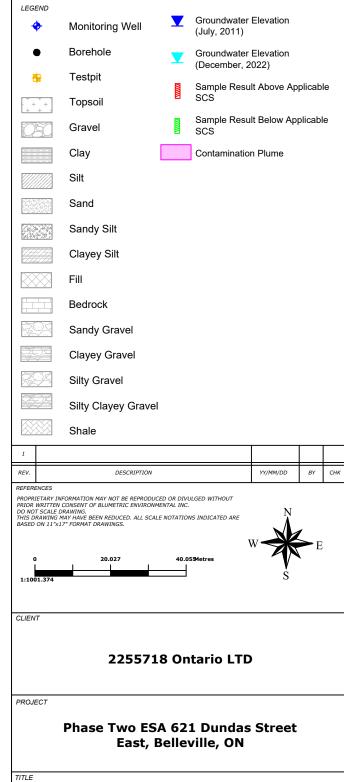

1682 Woodward Drive Ottawa, Ontario, K2C 3R8 TEL: (613) 839-3053 FAX: (613) 839-5376 Email: info@blumetric.ca Web: http://www.blumetric.ca

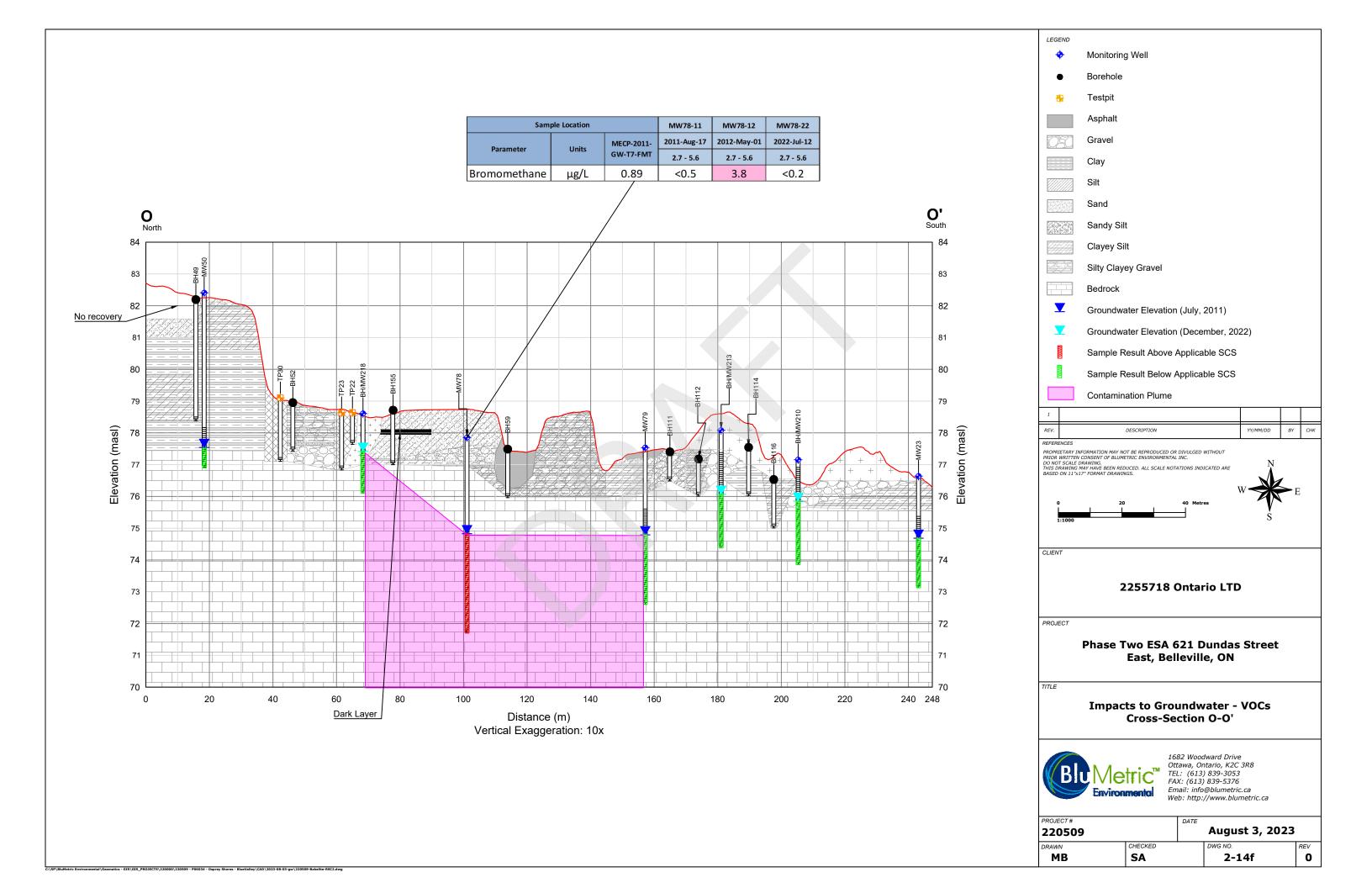

PROJECT#		DATE		
220509		August 3, 2023		
DRAWN	CHECKED	-	DWG NO.	REV
MB	SA		2-12b	0

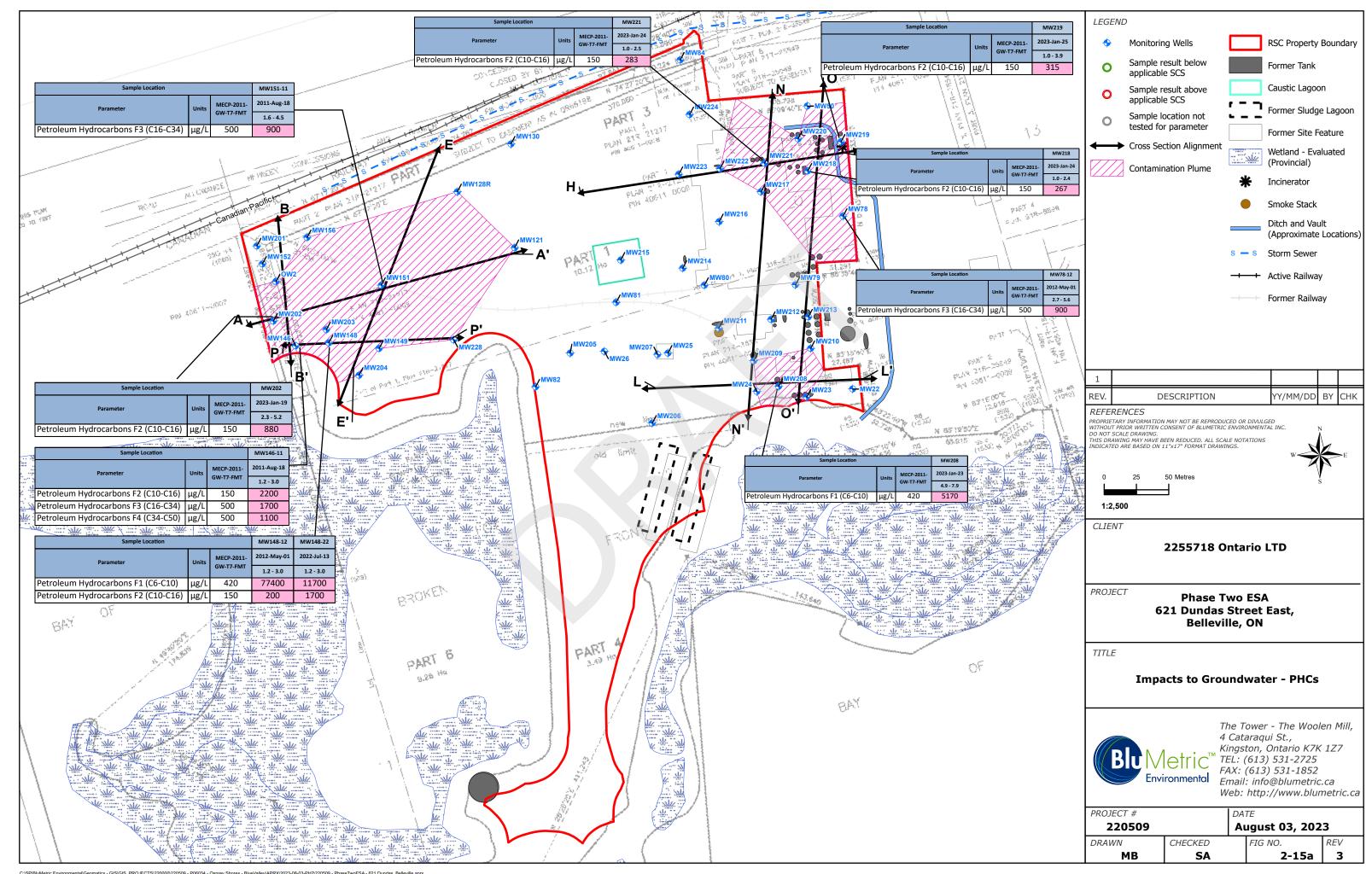

[...] SPIBIUMEtric Environmental\Geomatics - GIS\GIS PROJECTS\220000\220509 - P06034 - Osprey Shores - BlueValley\CAD\2023-08-03-ow\220509-Bakelite-RSC2.dwg

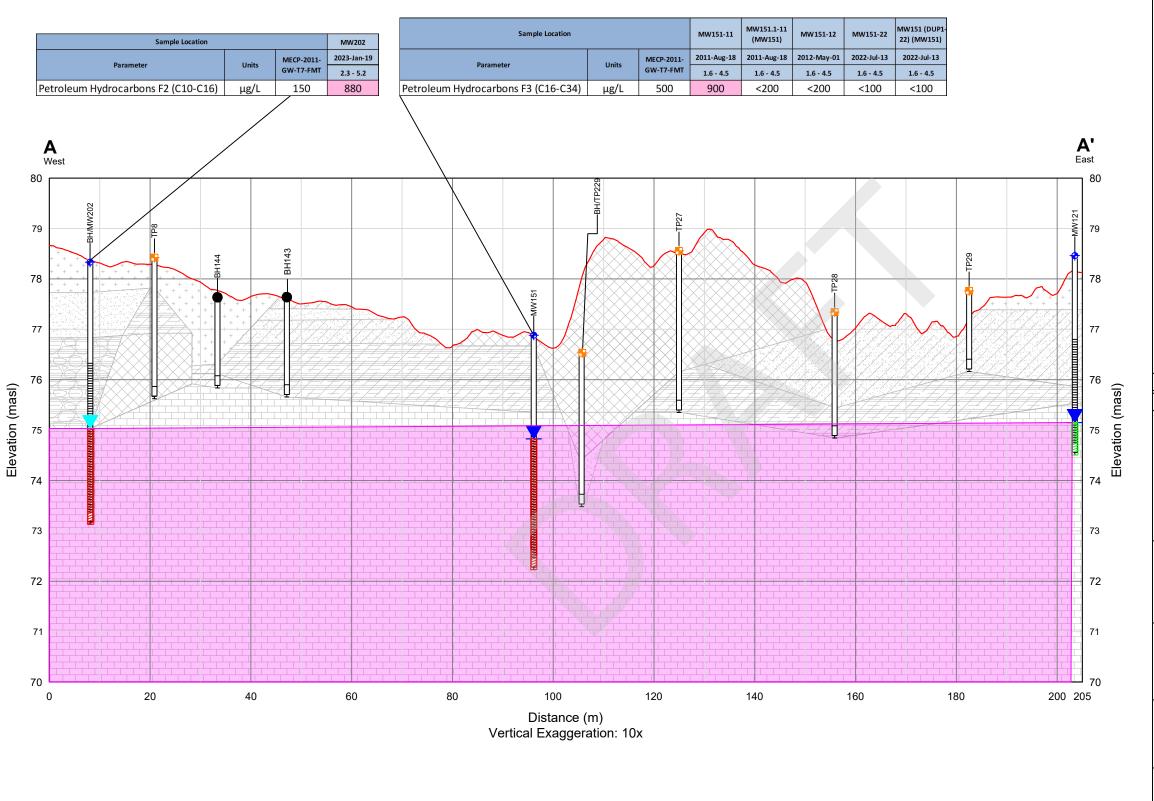


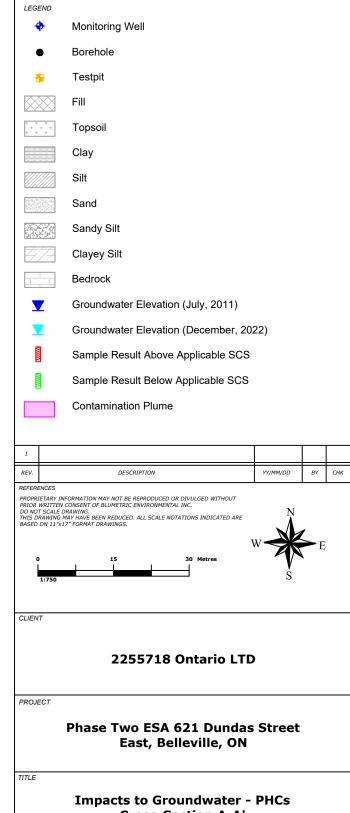





Impacts to Groundwater - VOCs Cross-Section N-N'

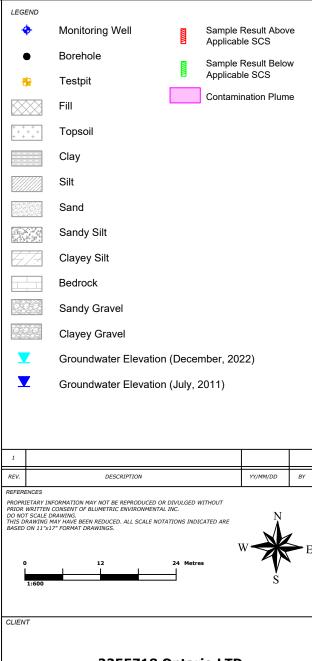



1682 Woodward Drive Ottawa, Ontario, K2C 3R8 TEL: (613) 839-3053 FAX: (613) 839-5376 Email: info@blumetric.ca Web: http://www.blumetric.ca


PROJECT#		DATE		
220509			August 3, 20	23
DRAWN	CHECKED	<u> </u>	DWG NO.	REV
МВ	SA		2-14e	0

C\SP\BluMetric Environmental\Geomatics - GIS\GIS PROJECTS\220000\220509 - P06034 - Osorey Shores - BlueValley\CAD\2023-08-03-ow\220509-Bakelite-RSC2.dwa

Cross-Section A-A'



1682 Woodward Drive Ottawa, Ontario, K2C 3R8 TEL: (613) 839-3053 FAX: (613) 839-5376 Email: info@blumetric.ca Web: http://www.blumetric.ca

PROJECT#		DATE		
220509			August 3, 2023	
DRAWN	CHECKED		DWG NO.	REV
МВ	SA		2-15b	0

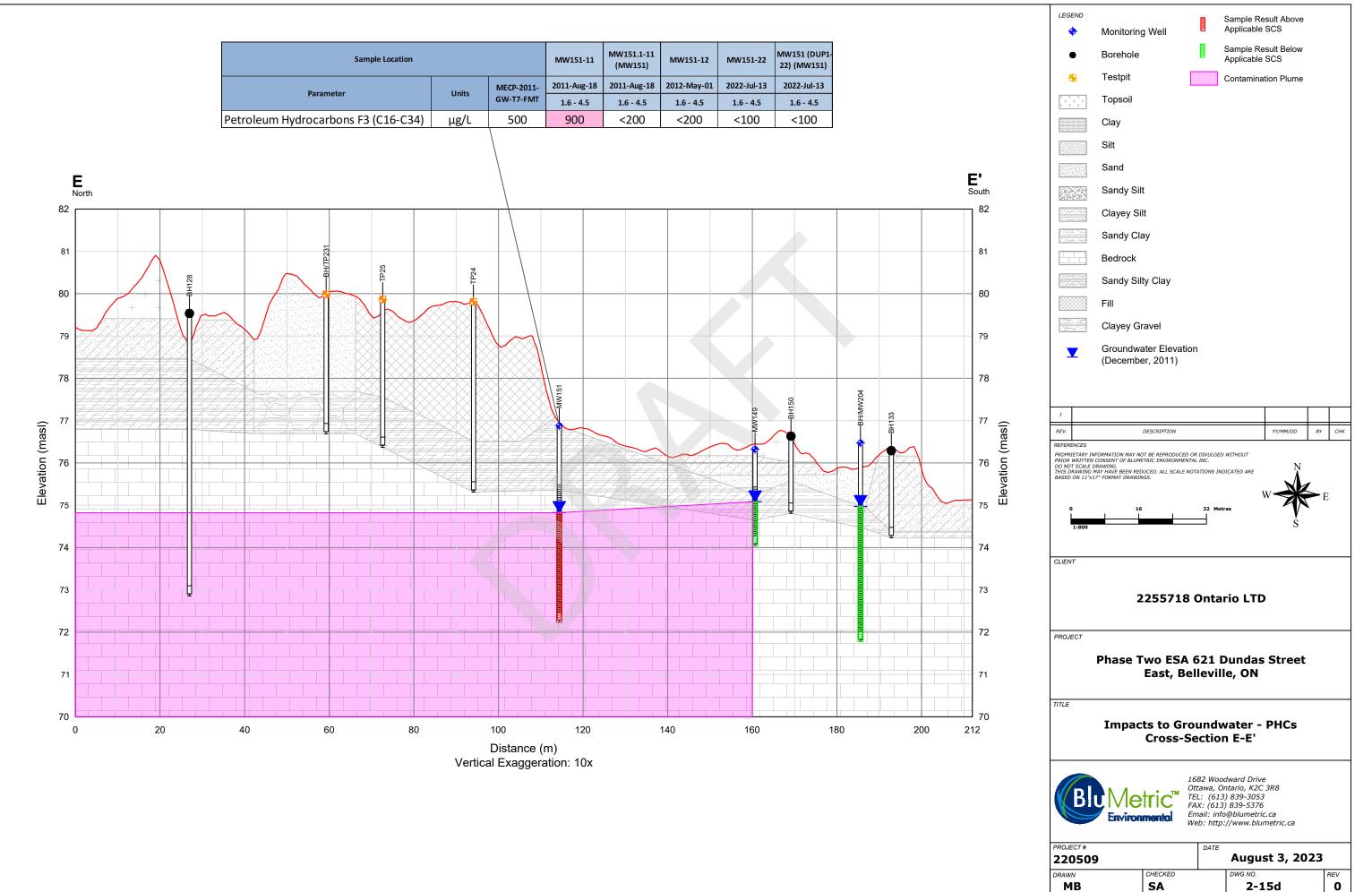
[...] SPIBIUMEtric Environmental\Geomatics - GIS\GIS PROJECTS\220000\220509 - P06034 - Osprey Shores - BlueValley\CAD\2023-08-03-ow\220509-Bakelite-RSC2.dwg

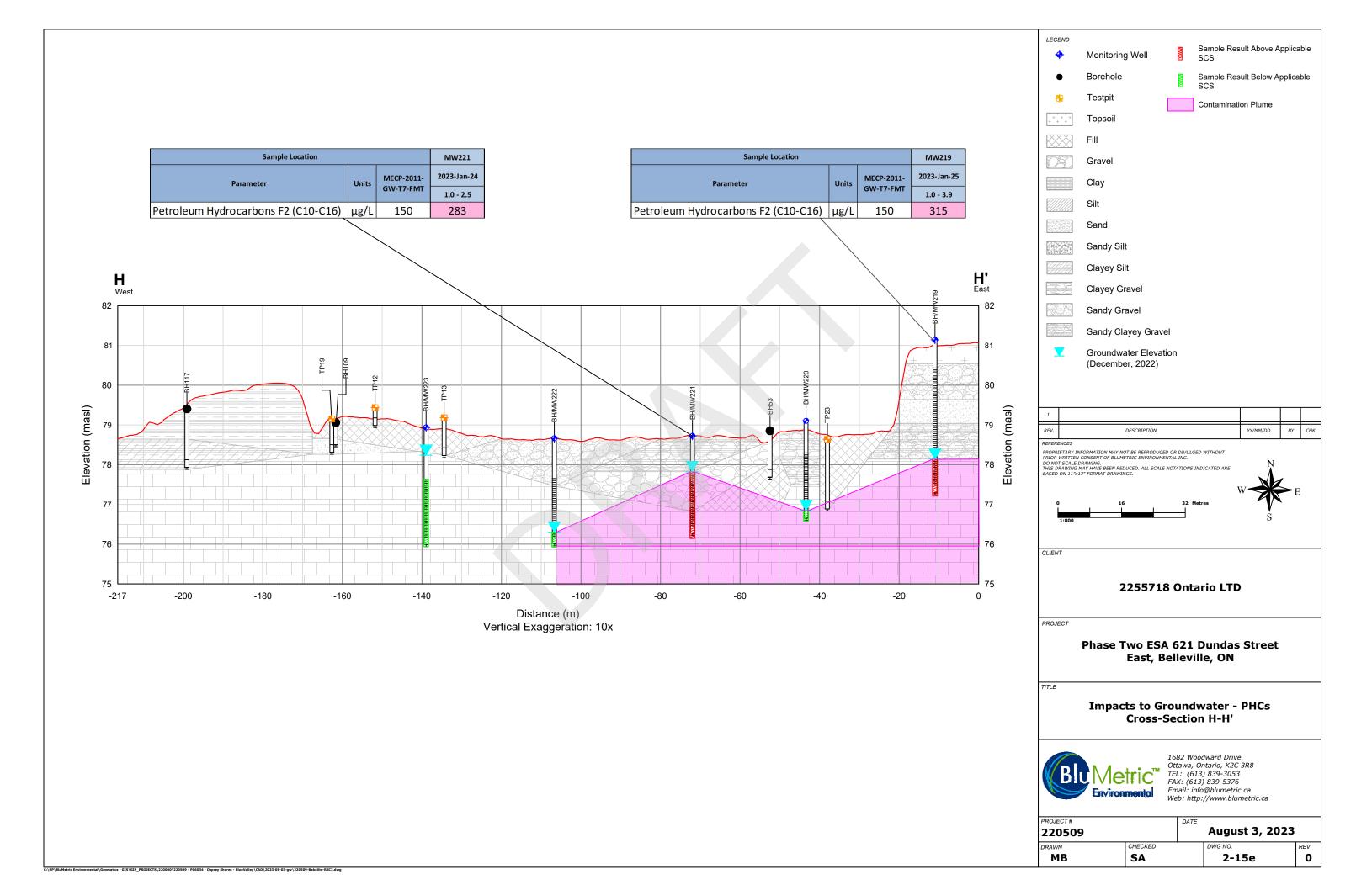
2255718 Ontario LTD

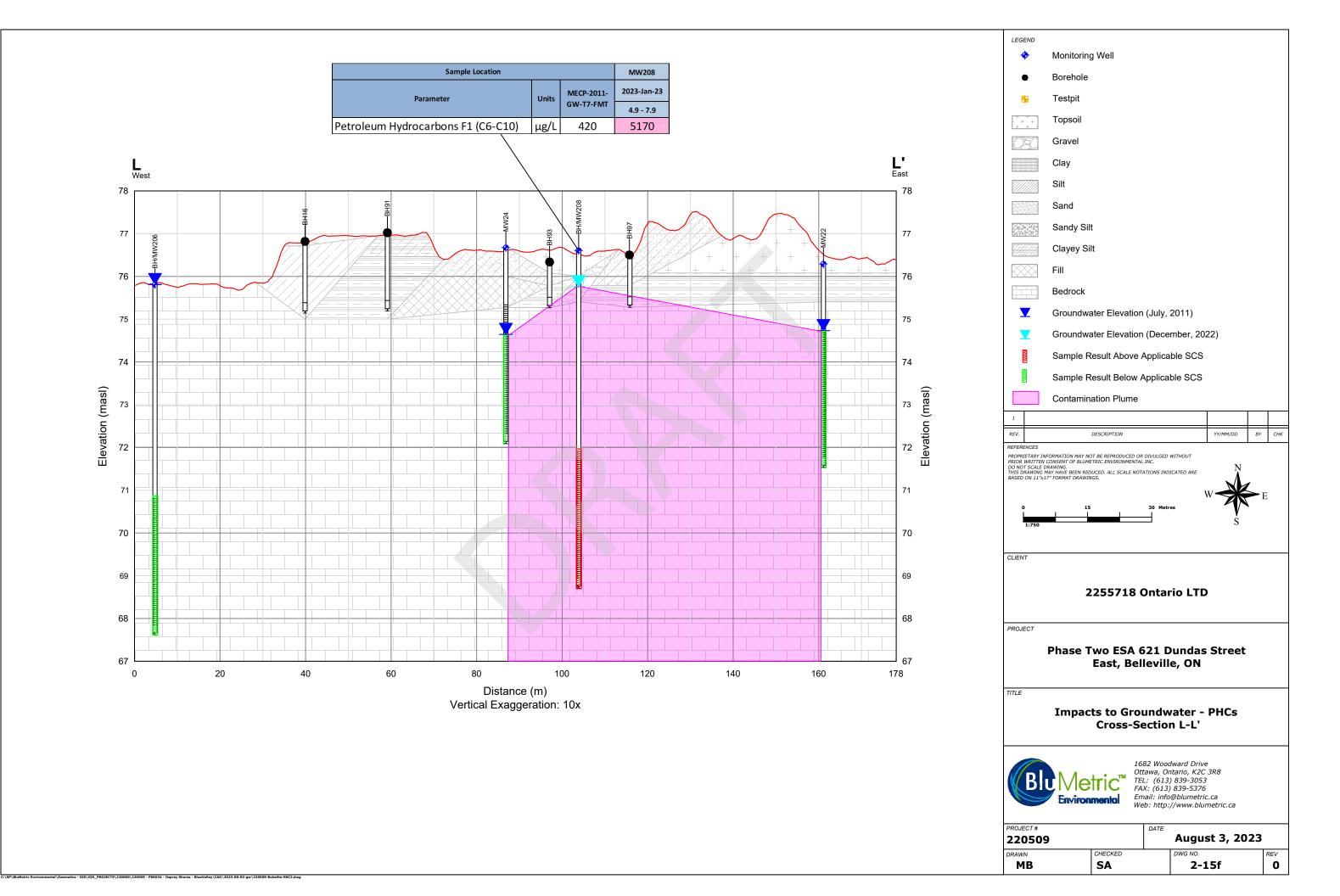
PROJECT

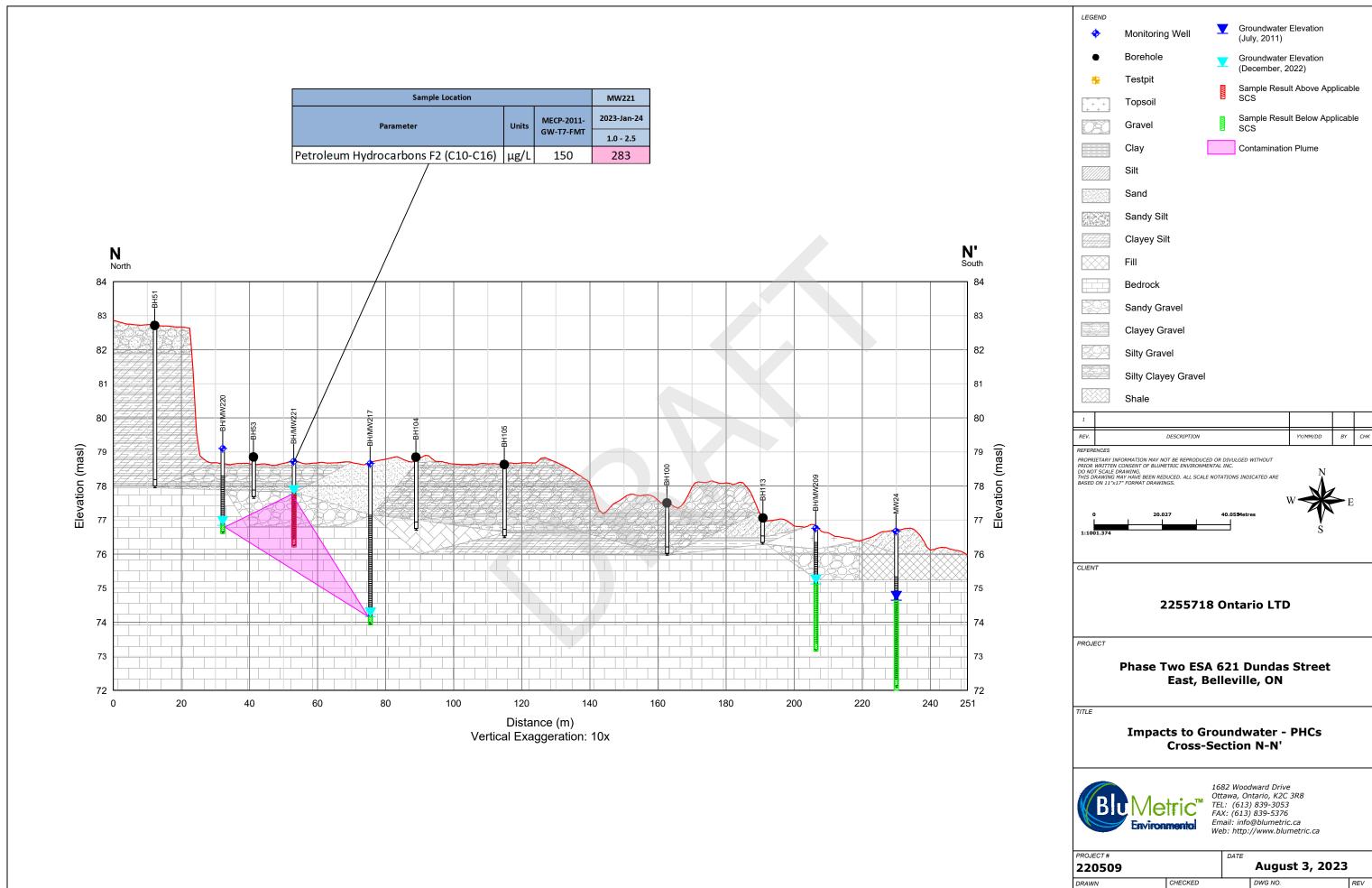
Phase Two ESA 621 Dundas Street East, Belleville, ON

TITL

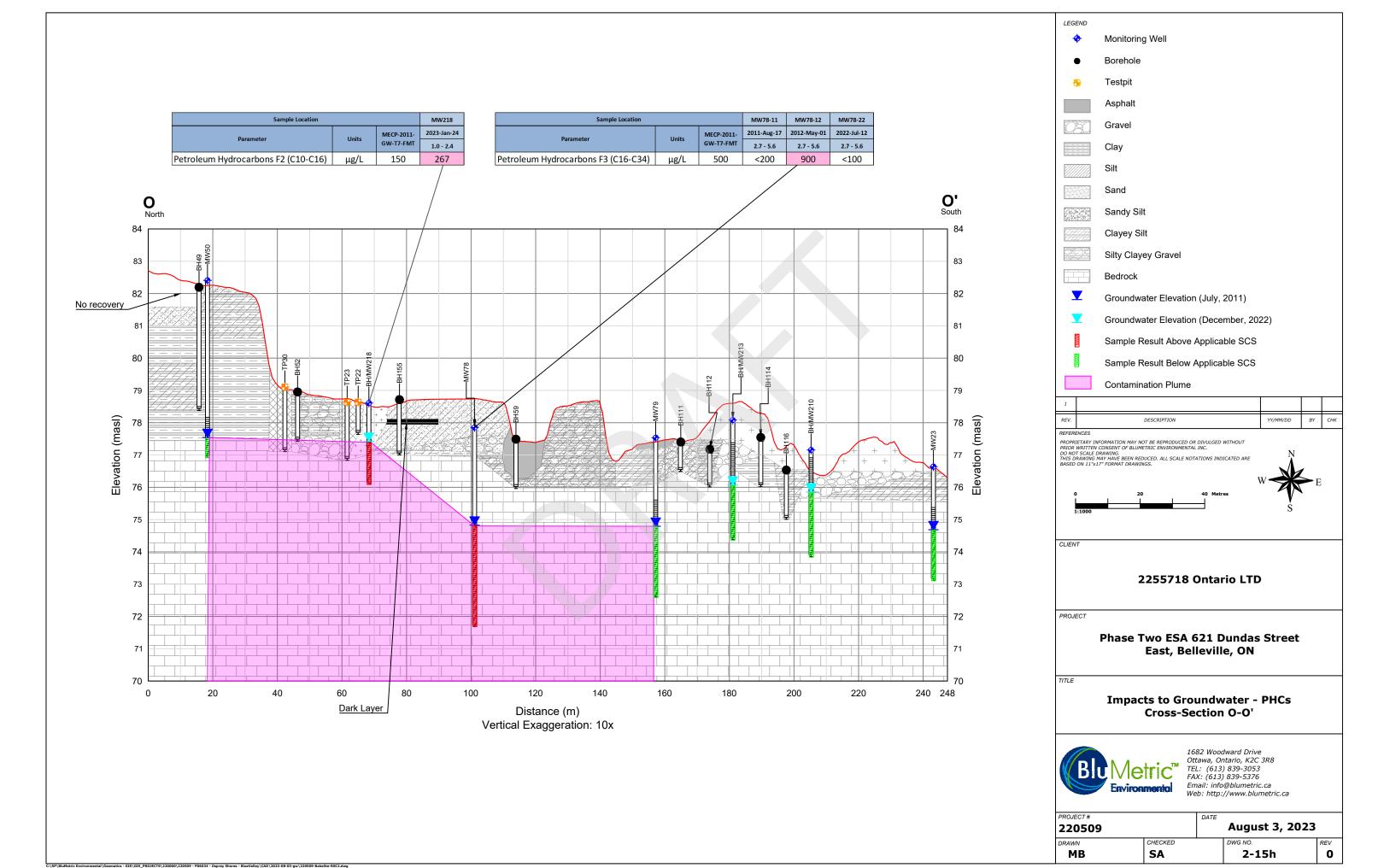

Impact to Groundwater - PHCs Cross-Section B-B'


1682 Woodward Drive Ottawa, Ontario, K2C 3R8 TEL: (613) 839-3053 FAX: (613) 839-5376 Email: info@blumetric.ca Web: http://www.blumetric.ca


220509		DATE	August 3, 20	23
DRAWN	CHECKED	-	DWG NO.	REV
MB	SA		2-15c	0

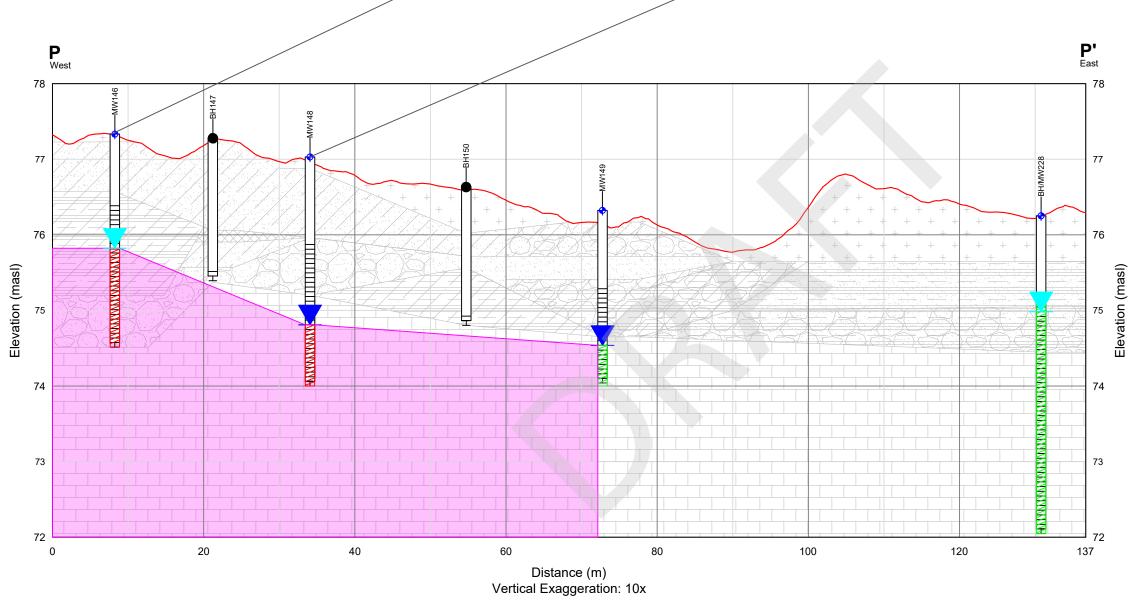

C:\SP\BluMetric Environmental\Geomatics - GIS\GIS_PROJECTS\220000\220509 - P06034 - Osprey Shores - BlueValley\CAD\2023-08-03-gw\220509-Bakelite-RSC2.dwg

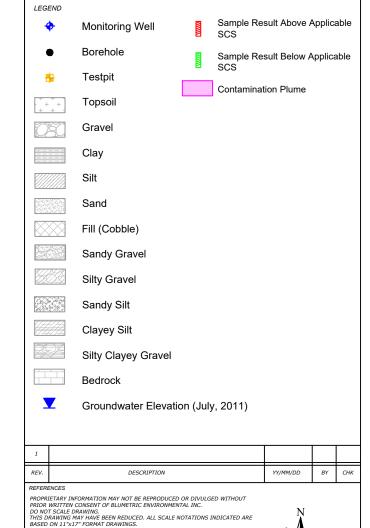
C:\SP\BluMetric Environmental\Geomatics - GIS\GIS_PROJECTS\220000\220509 - P06034 - Osprey Shores - BlueValley\CAD\2023-08-03-gw\220509-Bakelite-RSC2.dwg


C:\SP\BluMetric Environmental\Geomatics - GIS\GIS PROJECTS\220000\220509 - P06034 - Osprey Shores - BlueValley\CAD\2023-08-03-ow\220509-Bakelite-RSC2.dwg

MB

SA


0


2-15g

Sample Location				MW148-22
Parameter	Units	MECP-2011-	2012-May-01	2022-Jul-13
Parameter	Units	GW-T7-FMT	1.2 - 3.0	1.2 - 3.0
Petroleum Hydrocarbons F1 (C6-C10)	μg/L	420	77400	11700
Petroleum Hydrocarbons F2 (C10-C16)	μg/L	150	200	1700

0 10 20 Metres

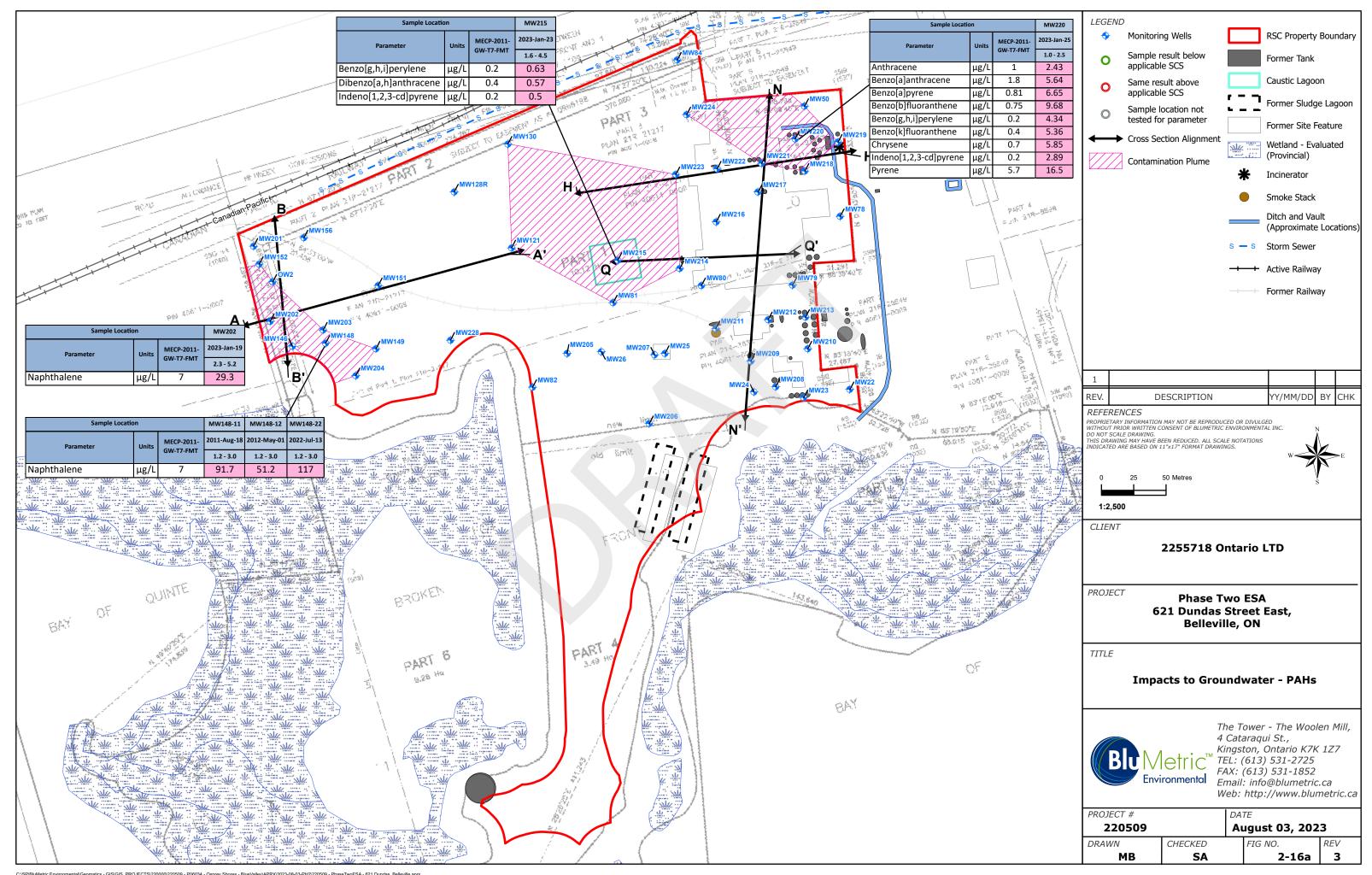
CLIENT

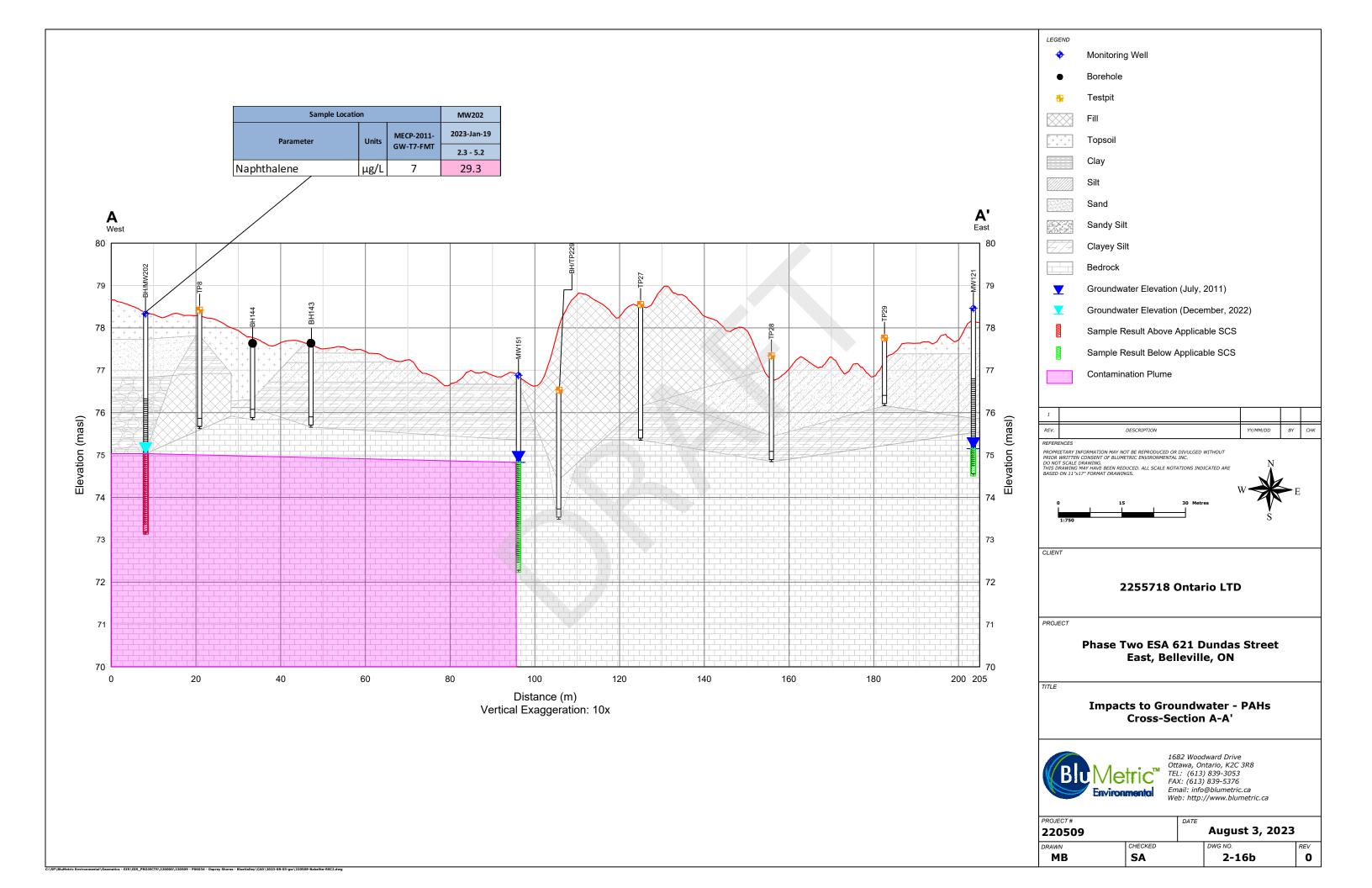
2255718 Ontario LTD

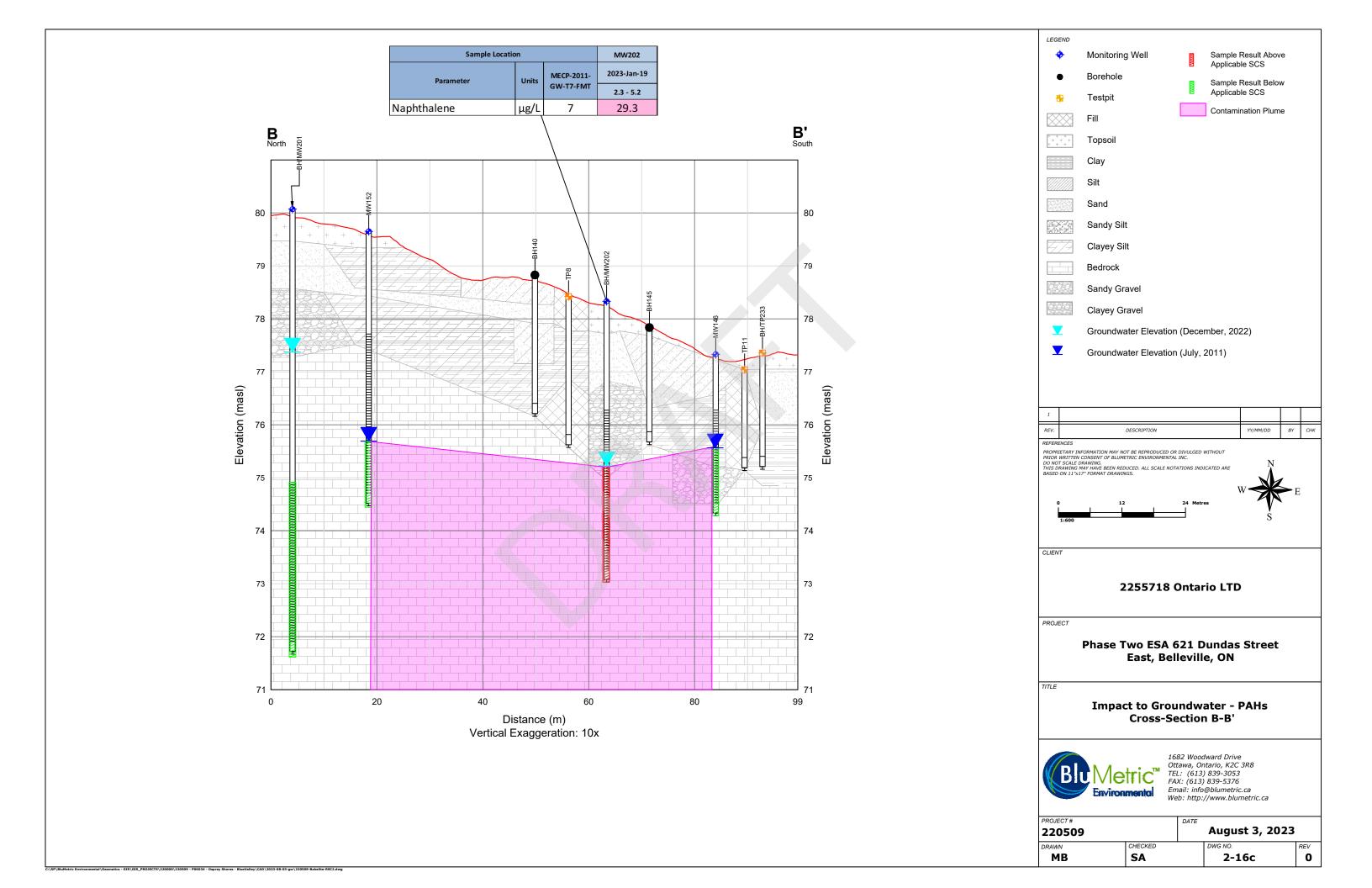
PROJECT

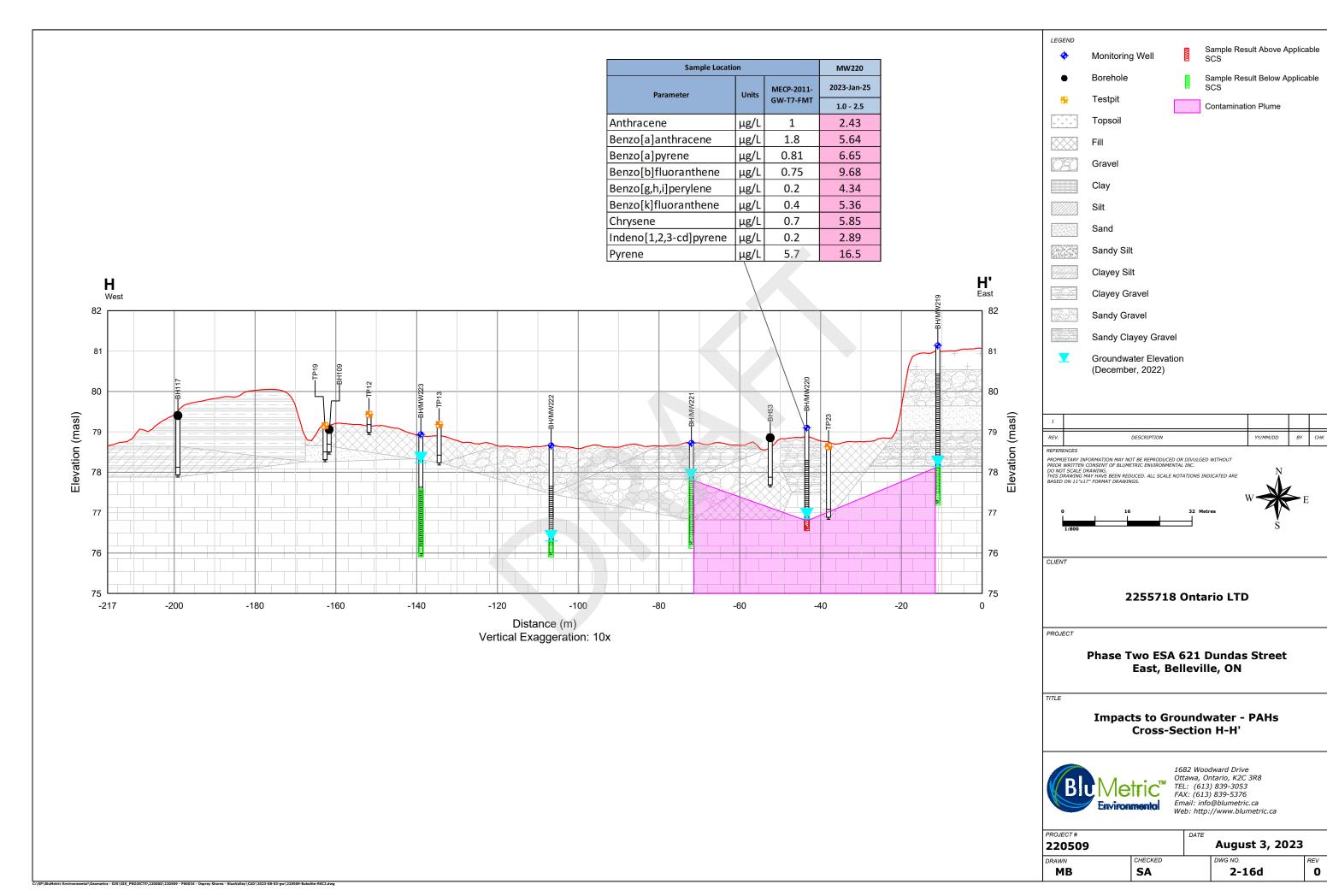
Phase Two ESA 621 Dundas Street East, Belleville, ON

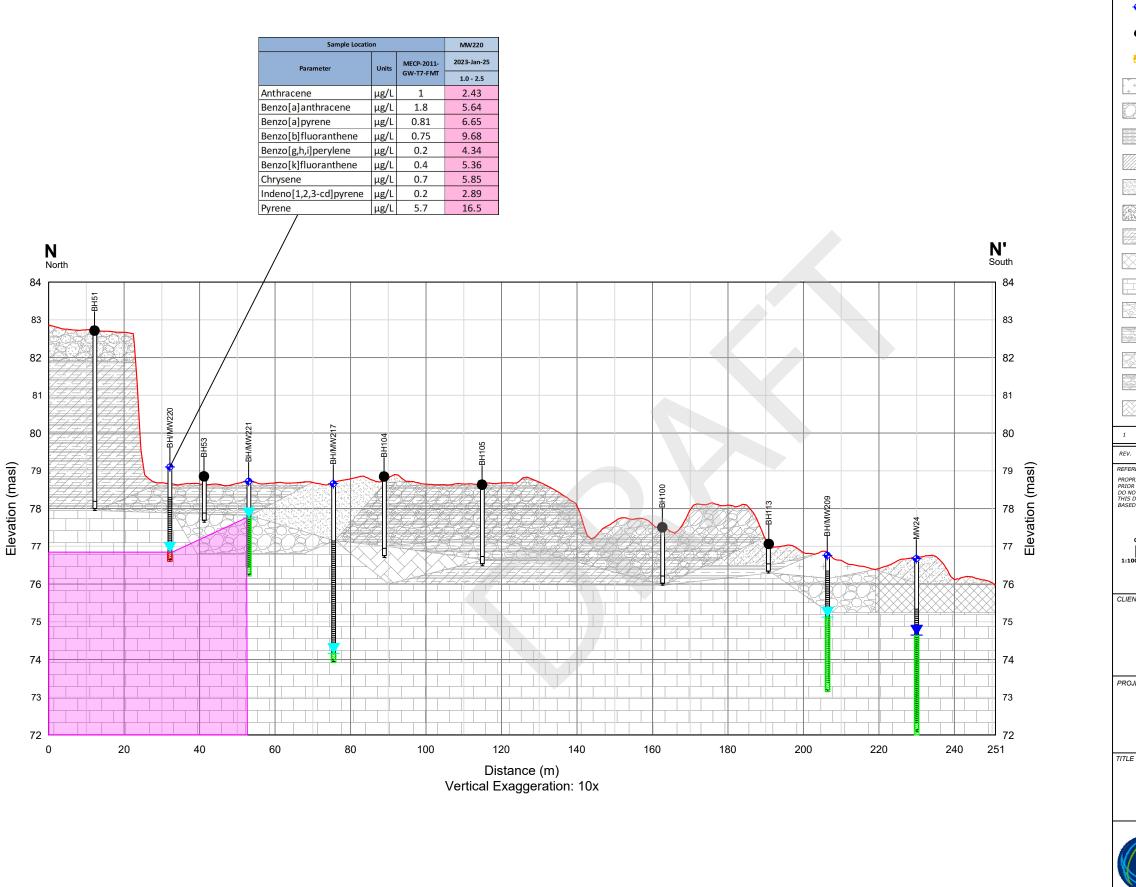
TITLE

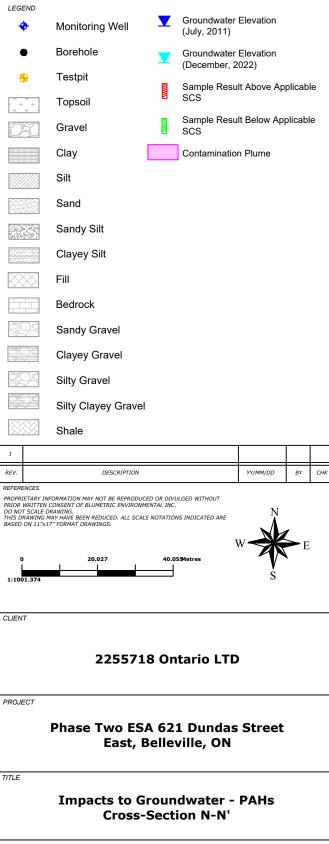

Impacts to Groundwater - PHCs Cross-Section P-P'




1682 Woodward Drive Ottawa, Ontario, K2C 3R8 TEL: (613) 839-3053 FAX: (613) 839-5376 Email: info@blumetric.ca Web: http://www.blumetric.ca


PROJECT# DATE 220509		August 3, 2023		
DRAWN	CHECKED		DWG NO.	REV
МВ	SA		2-15i	0


C\SP\BluMetric Environmental\Geomatics - GIS\GIS PROJECTS\220000\220509 - P06034 - Osprev Shores - BlueVallev\CAD\2023-08-03-ow\220509-Bakelite-RSC2.dwa



C:\SP\BluMetric Environmental\Geomatics - GIS\GIS PROJECTS\220000\220509 - P06034 - Osprey Shores - BlueValley\CAD\2023-08-03-ow\220509-Bakelite-RSC2.dwg

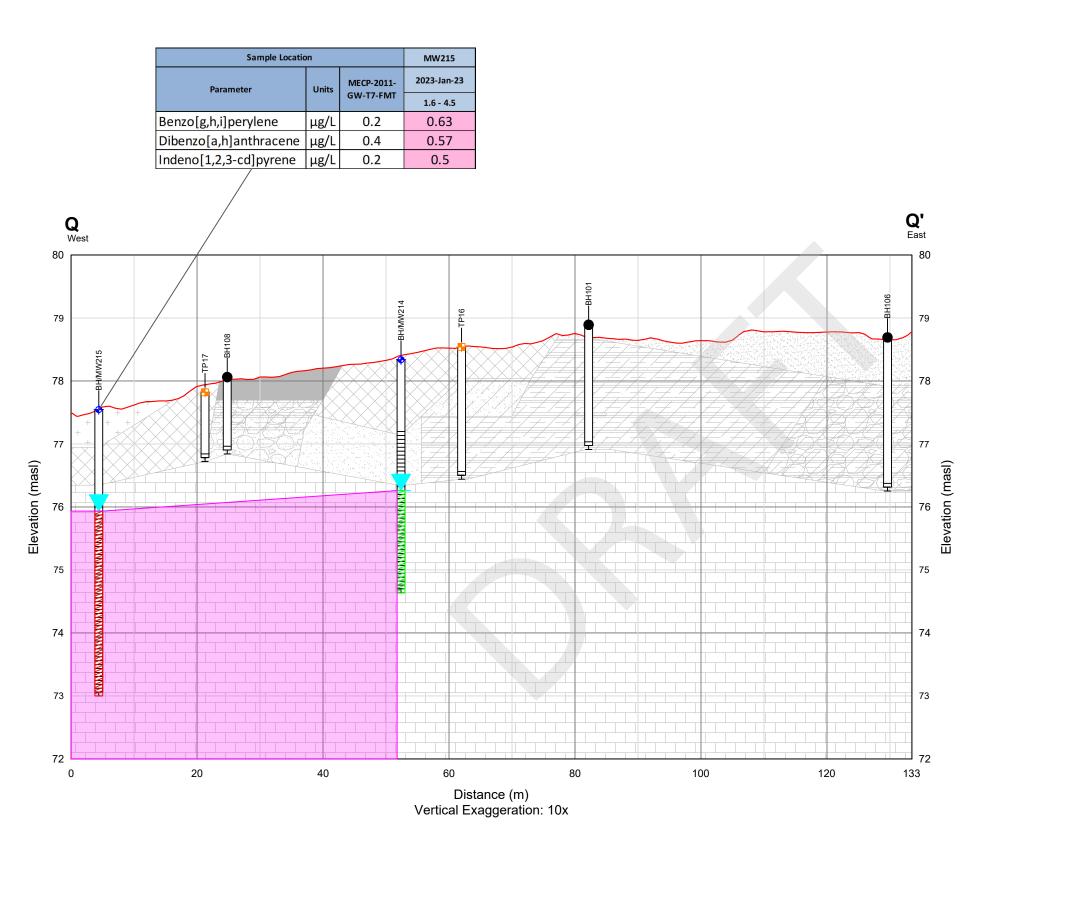
1682 Woodward Drive Ottawa, Ontario, K2C 3R8 TEL: (613) 839-3053 FAX: (613) 839-5376 Email: info@blumetric.ca Web: http://www.blumetric.ca

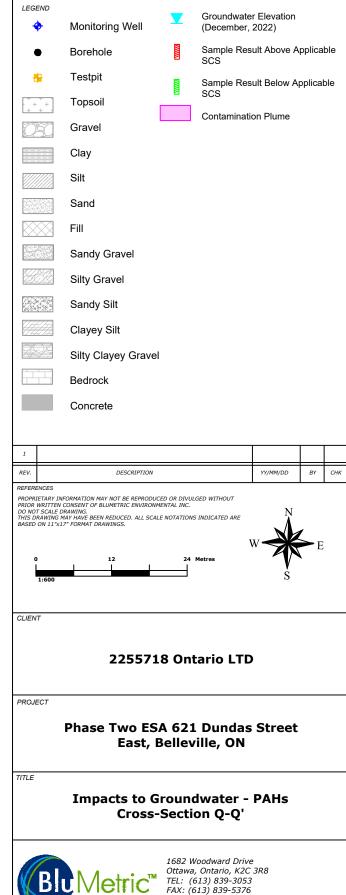
August 3, 2023

2-16e

0

Environmental


CHECKED


SA

PROJECT#

MB

220509

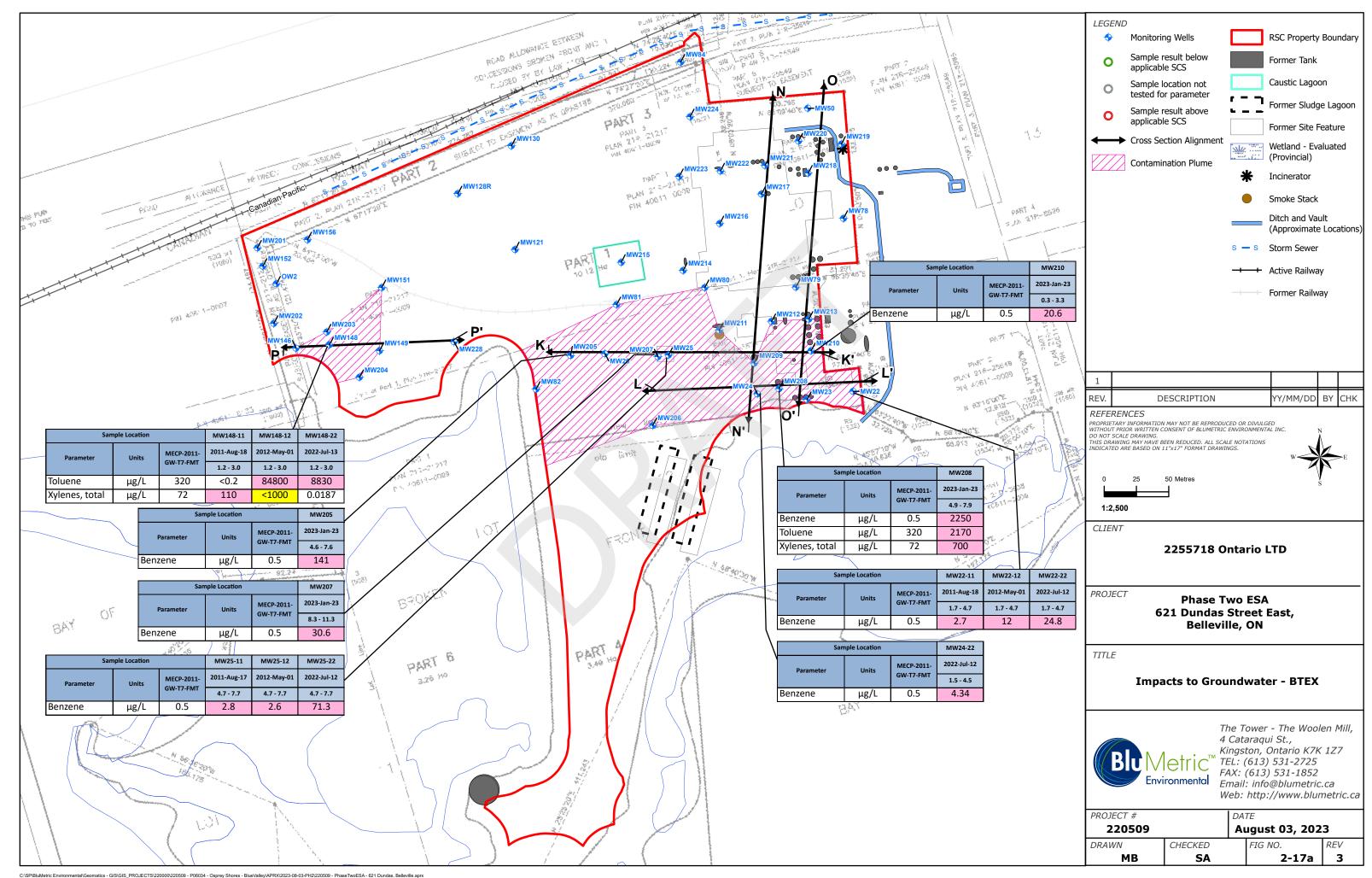
Email: info@blumetric.ca Web: http://www.blumetric.ca

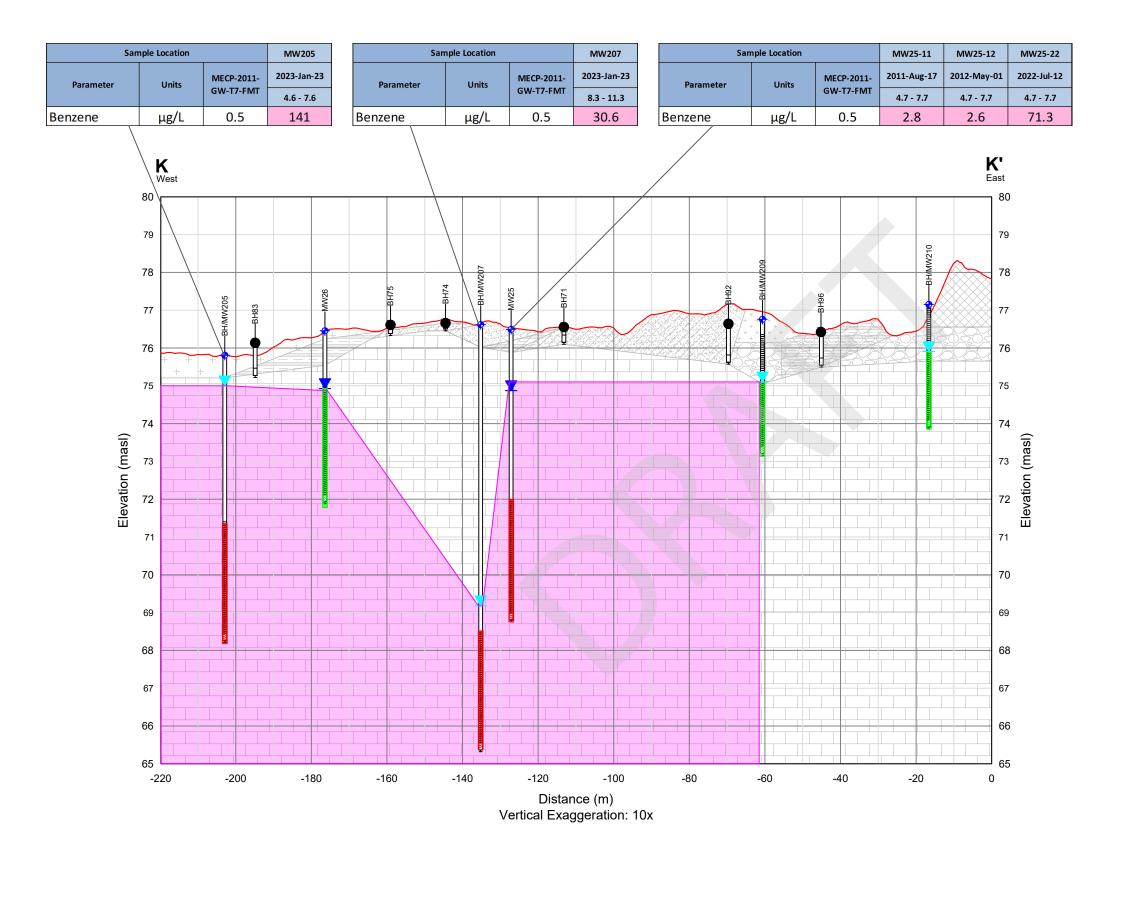
August 3, 2023

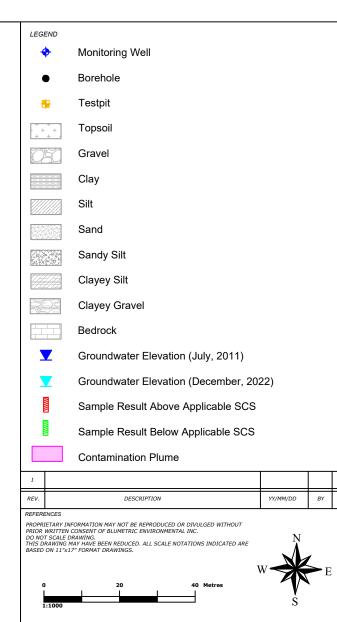
0

02-16g

PROJECT#


MB


220509


CHECKED

SA

C\SP\BluMetric Environmental\Geomatics - GIS\GIS PROJECTS\220000\22059 - P06034 - Osorey Shores - BlueValley\CAD\2023-08-03-ow\220509-Bakelite-RSC2.dwa

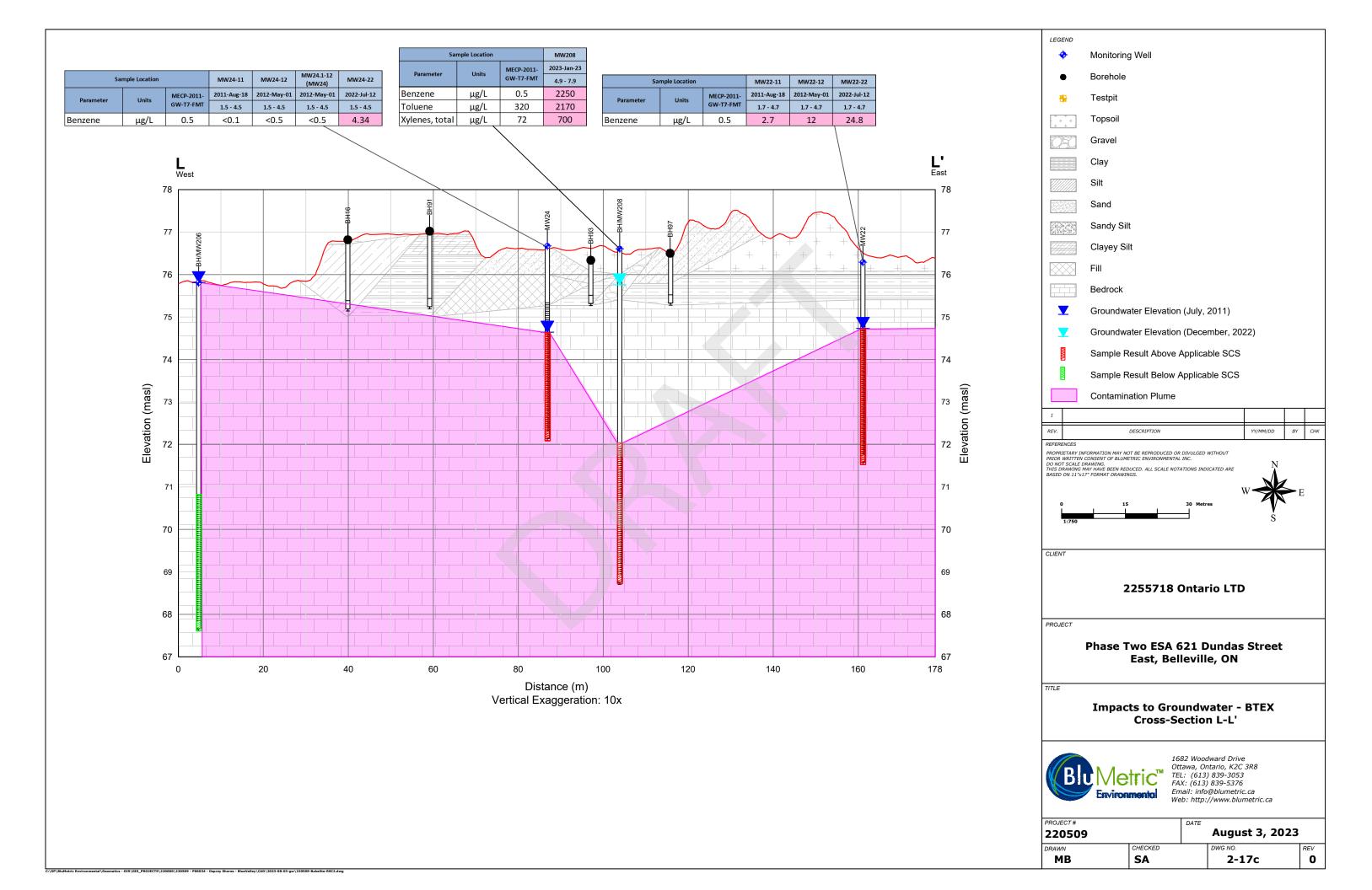
CLIENT

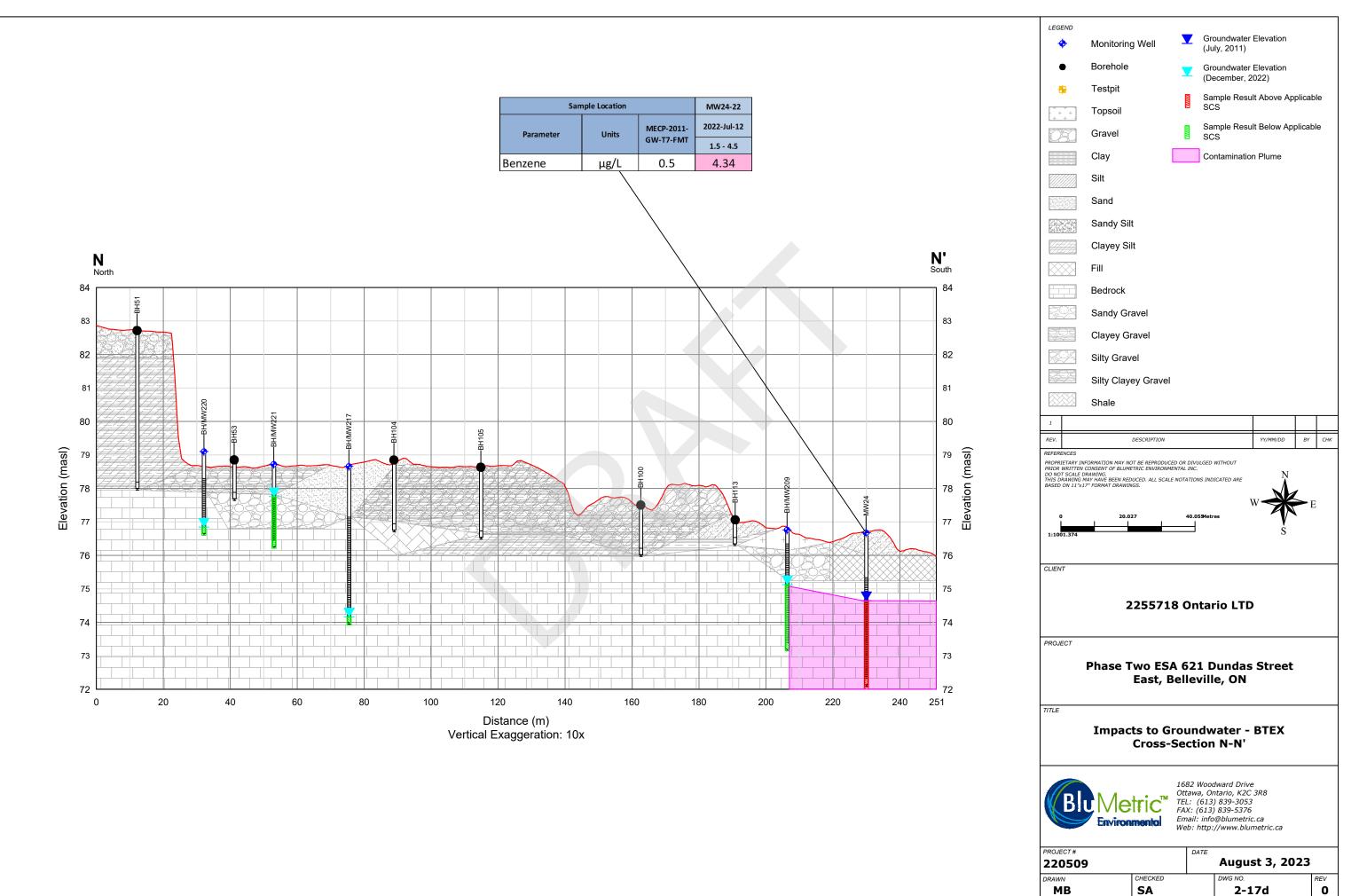
2255718 Ontario LTD

PROJECT

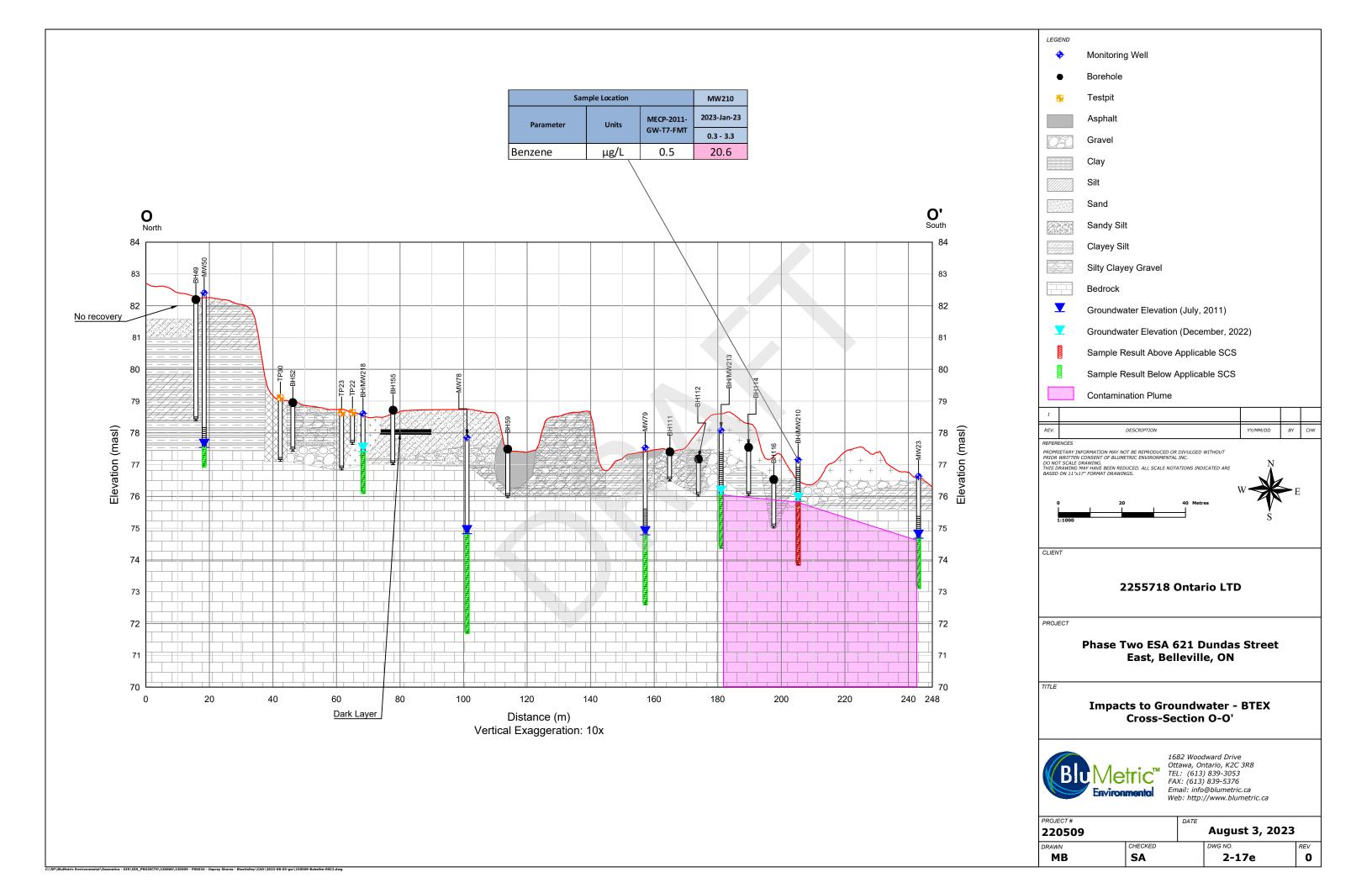
Phase Two ESA 621 Dundas Street East, Belleville, ON

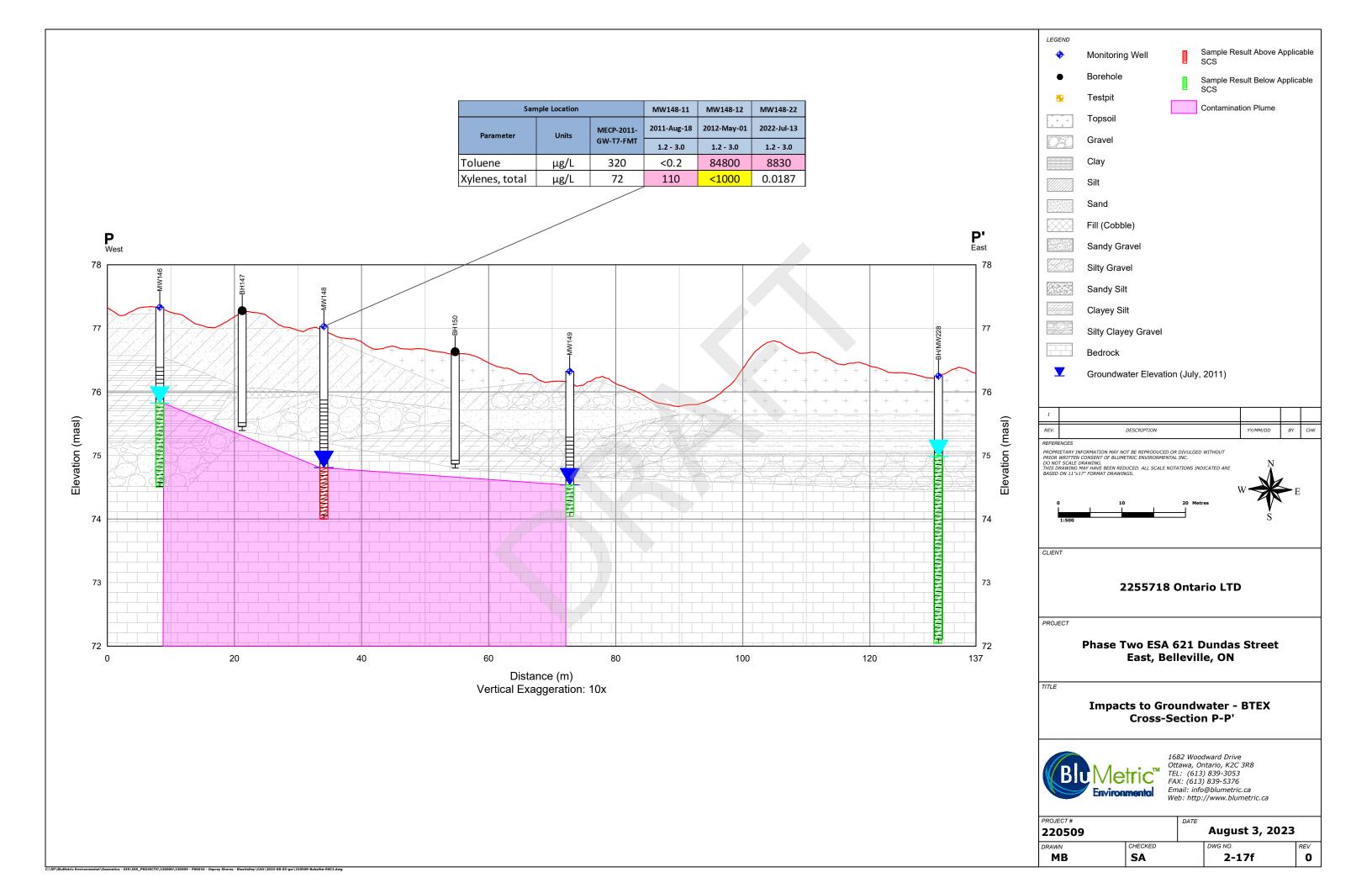
TITL

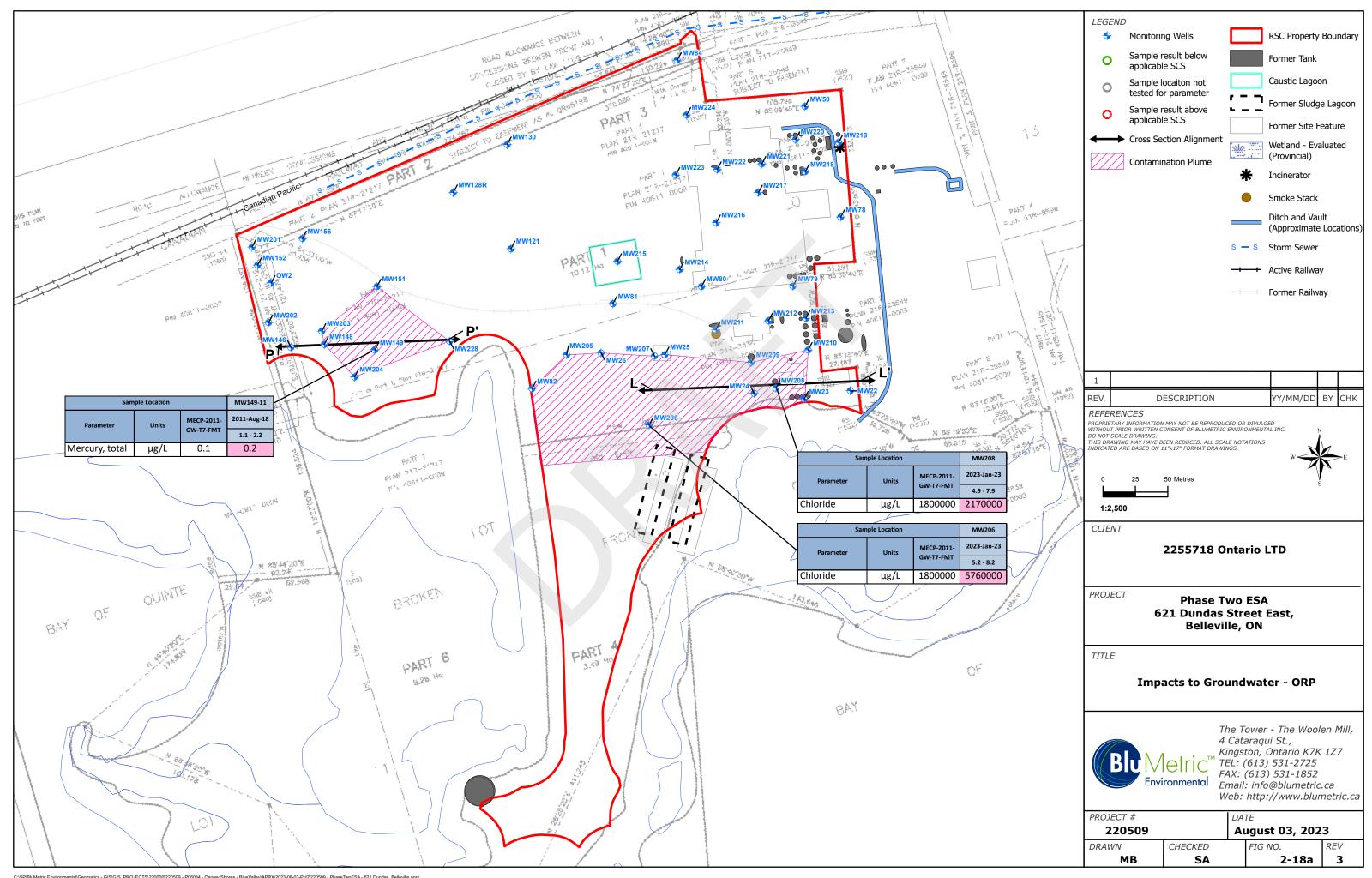

Impacts to Groundwater - BTEX Cross-Section K-K'

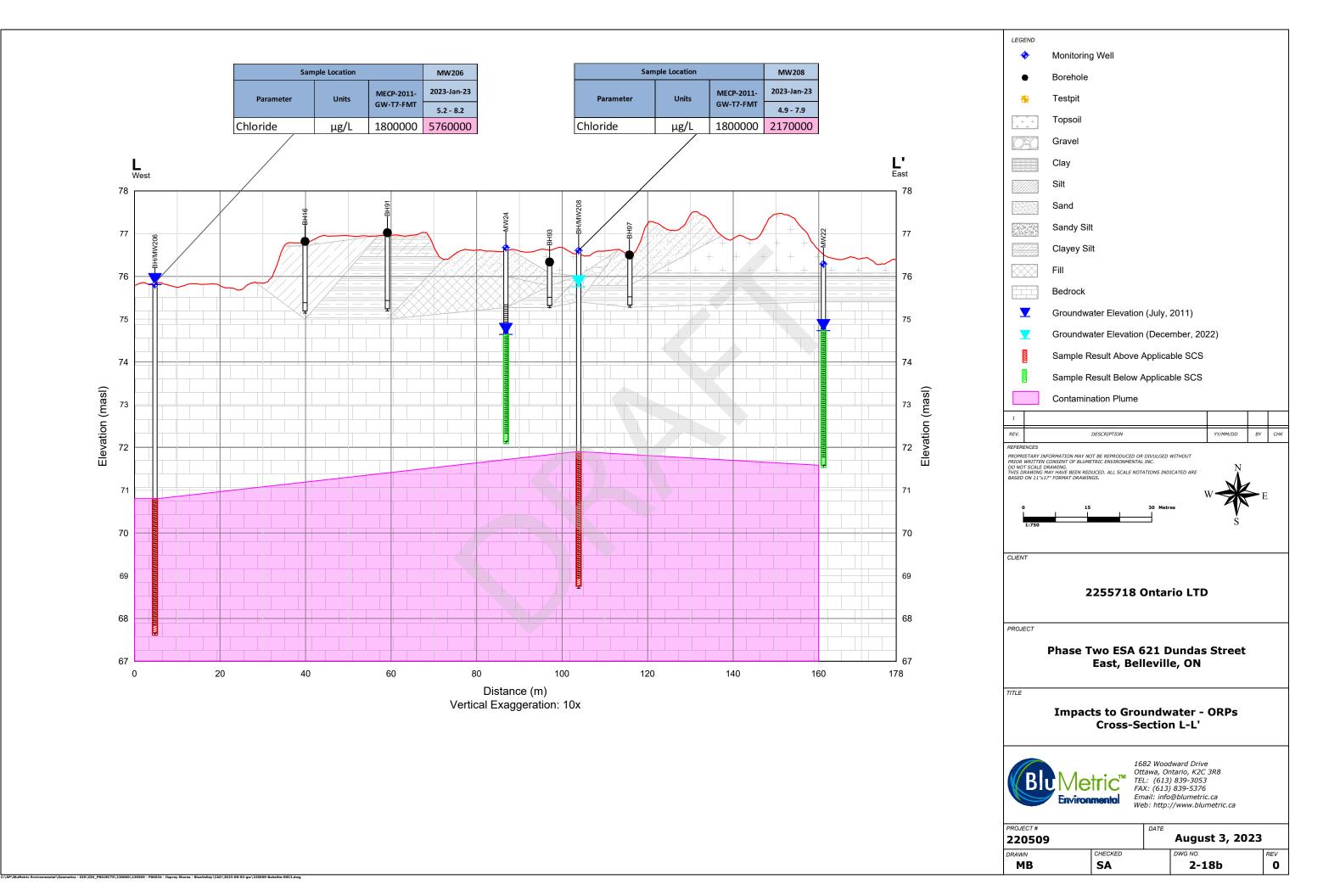


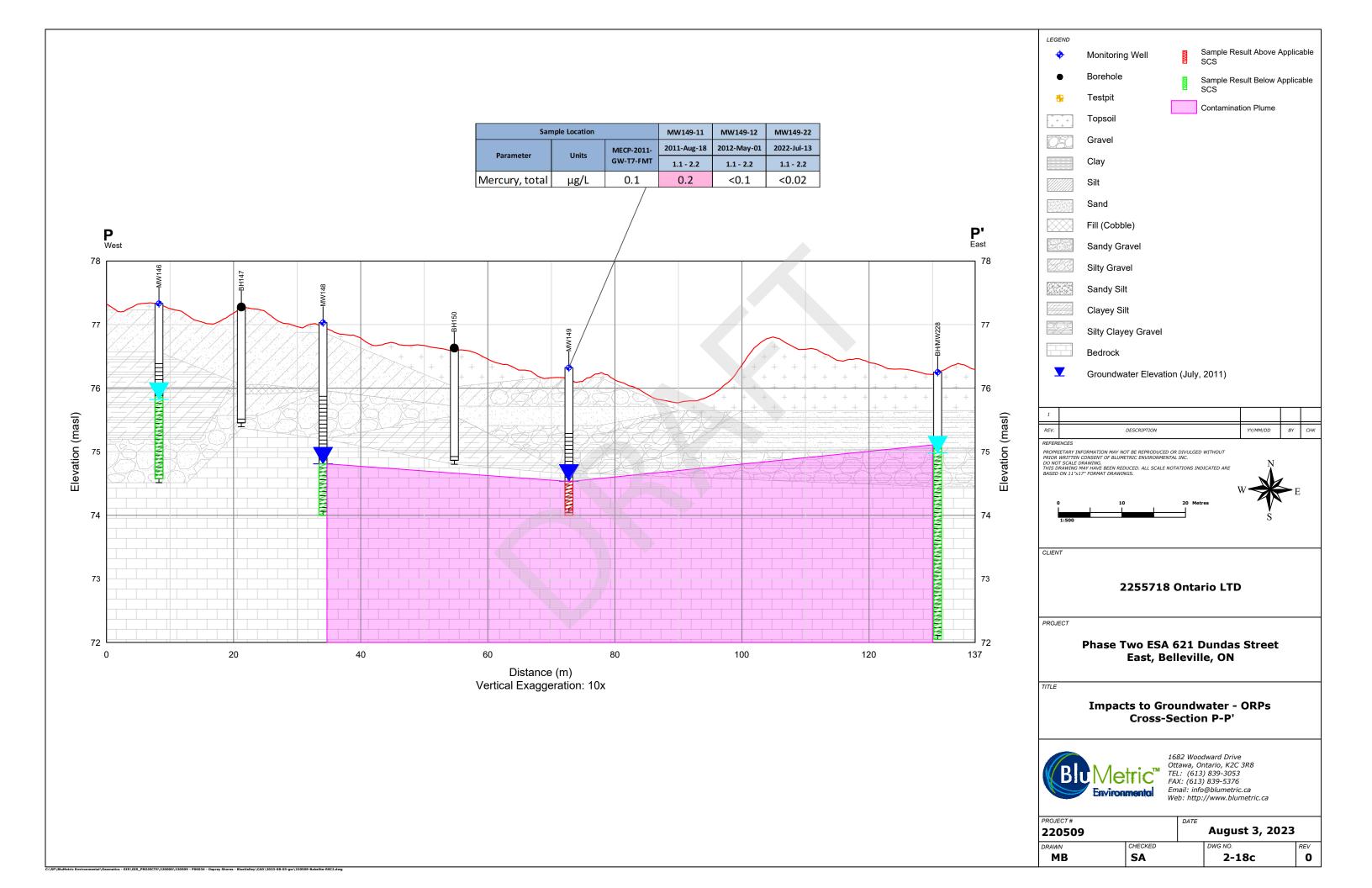
1682 Woodward Drive Ottawa, Ontario, K2C 3R8 TEL: (613) 839-3053 FAX: (613) 839-5376 Email: info@blumetric.ca Web: http://www.blumetric.ca

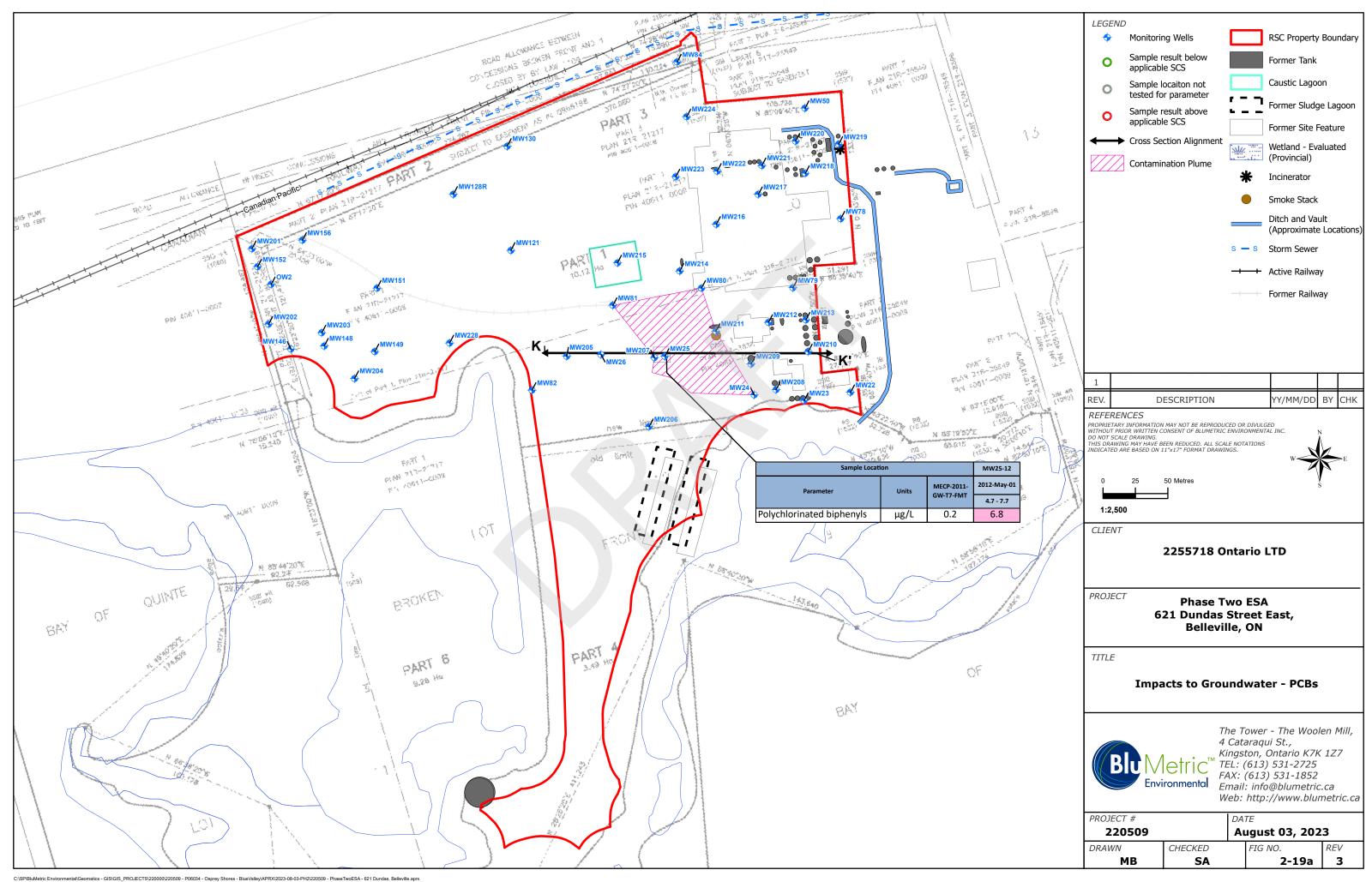

PROJECT # 220509		DATE	August 3, 2023	
DRAWN	CHECKED		DWG NO.	REV
MB	SA		2-17b	0

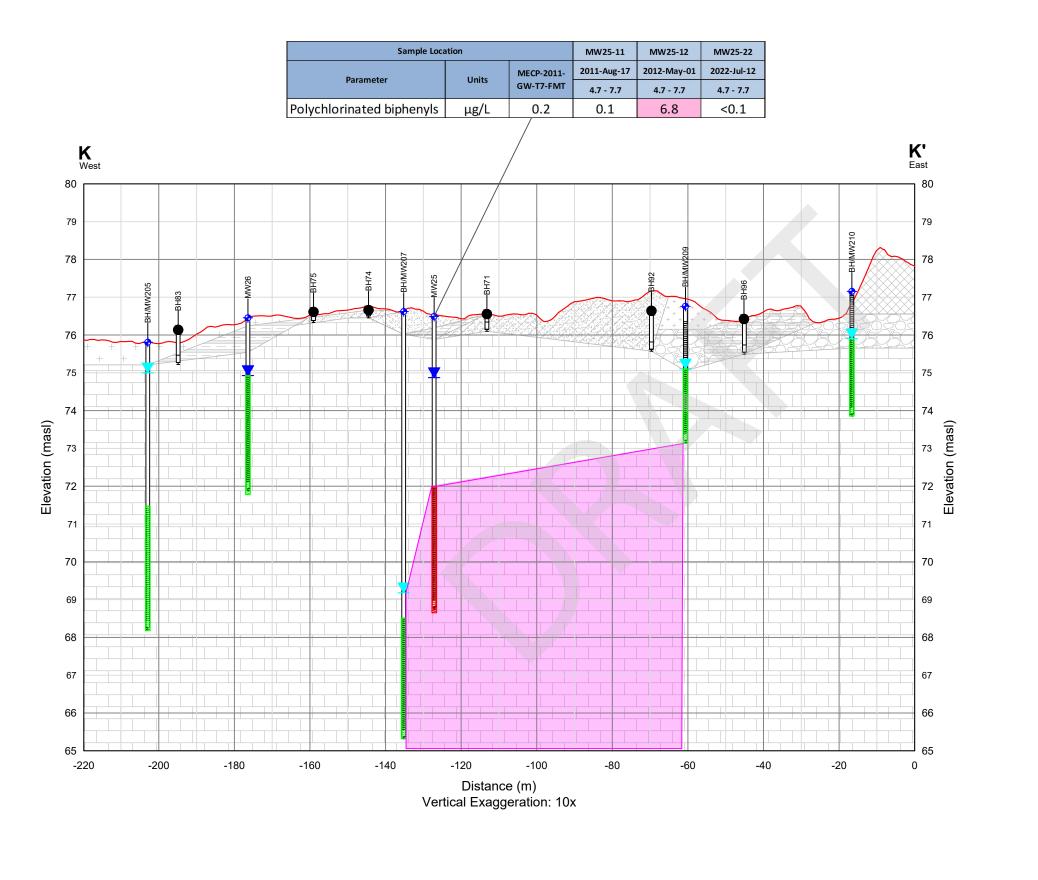

C\SP\BluMetric Environmental\Geomatics - GIS\GIS PROJECTS\220000\220509 - P06034 - Osprey Shores - BlueValley\CAD\2023-08-03-ray\220509-Bakelite-RSC2.dwg

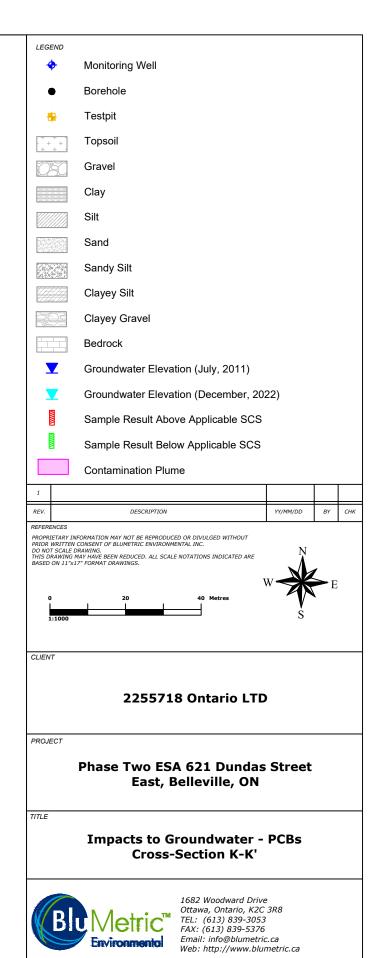





C:\SP\BluMetric Environmental\Geomatics - GIS\GIS_PROJECTS\2200000\220509 - P06034 - Osprey Shores - BlueValley\CAD\2023-08-03-gw\220509-Bakelite-RSC2.dwg





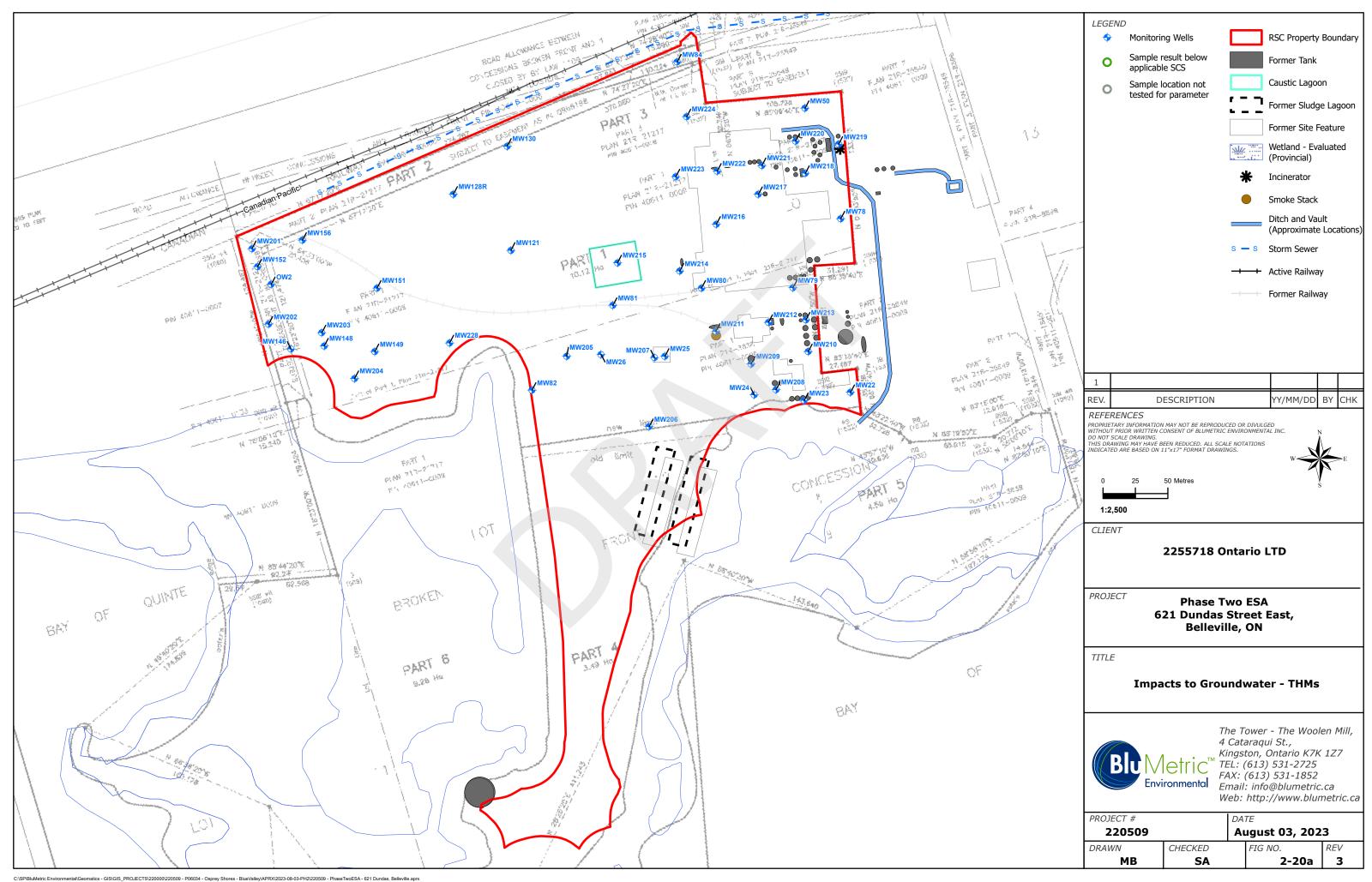


[...] SPIBIUMEtric Environmental\Geomatics - GIS\GIS PROJECTS\220000\220509 - P06034 - Osprey Shores - BlueValley\CAD\2023-08-03-ow\220509-Bakelite-RSC2.dwg

August 3, 2023

0

2-19b


PROJECT#

MB

220509

CHECKED

SA

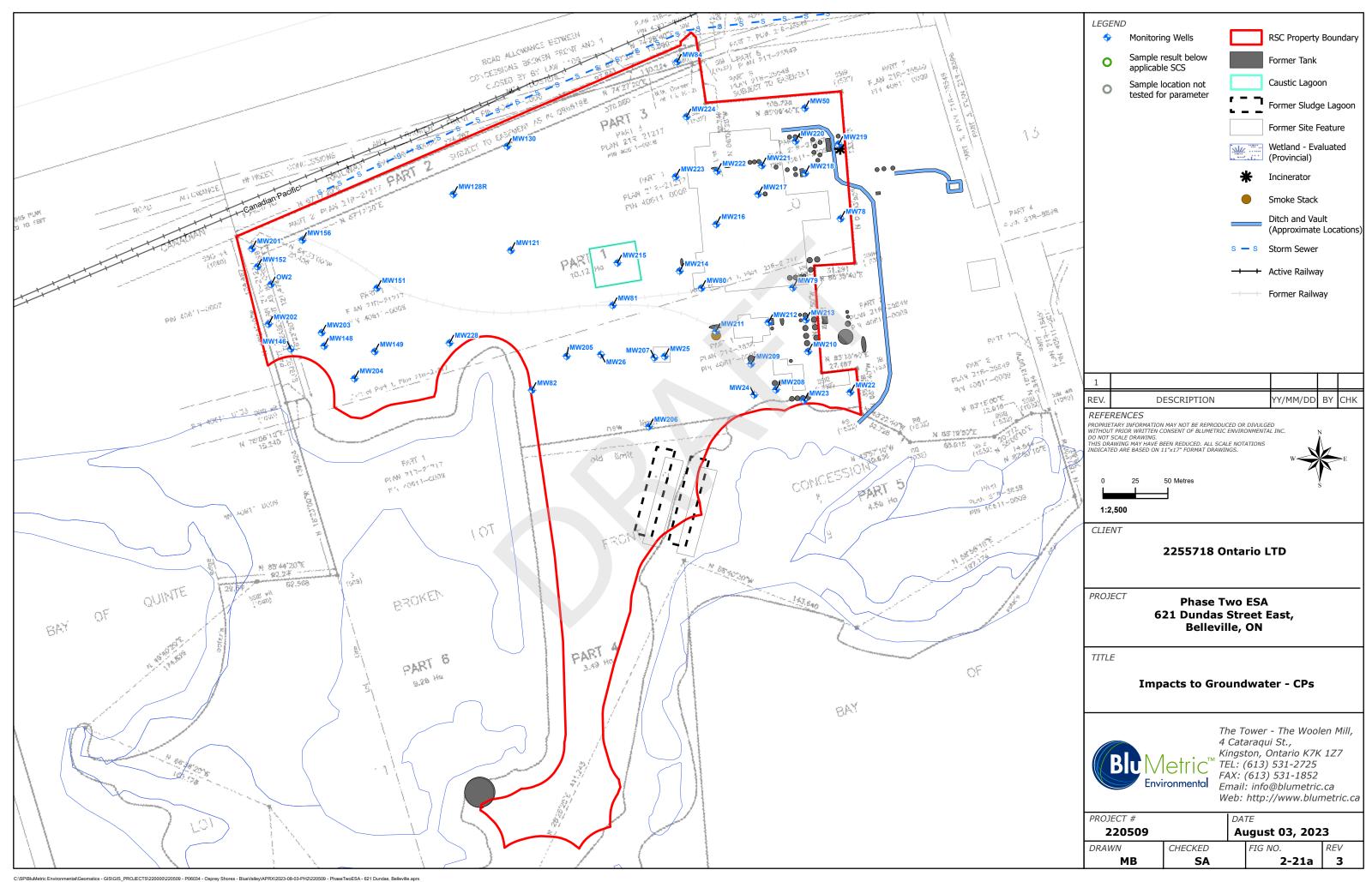
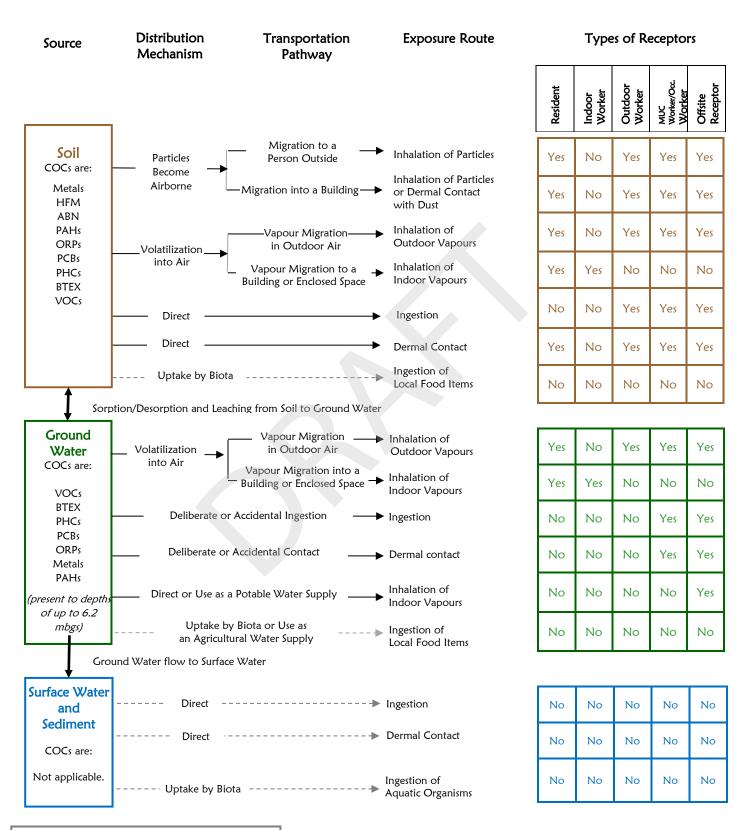
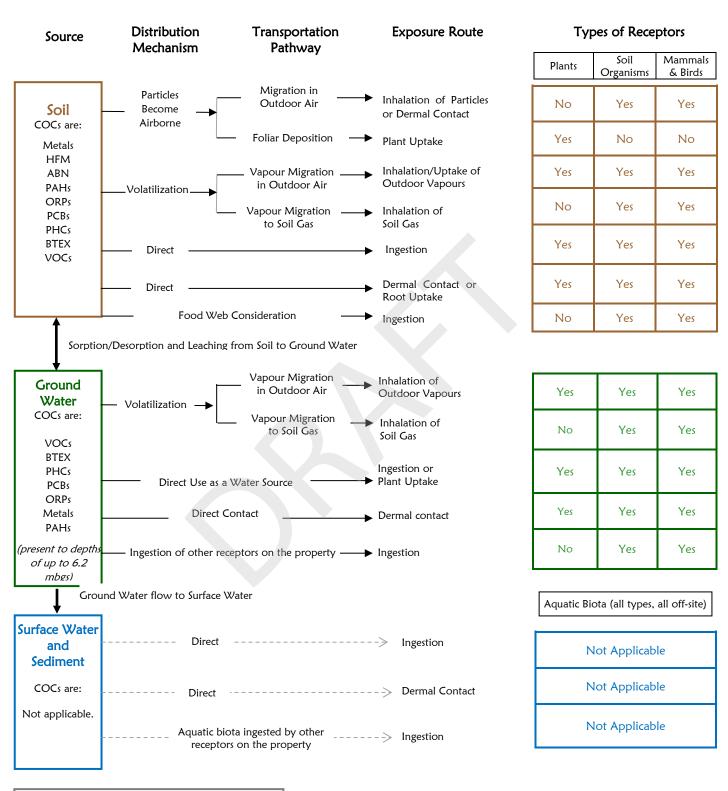



Figure 3-01A POTENTIALLY COMPLETE EXPOSURE ROUTES FOR HUMAN RECEPTORS PRIOR REMEDIATION


Legend:

Solid Black Line: Potentially complete pathway.

Dashed Gray Line: Incomplete pathway.

Yes & No indicate if an exposure pathway is complete for a receptor

Figure 3-02B POTENTIALLY COMPLETE EXPOSURE ROUTES FOR ECOLOGICAL RECEPTORS PRIOR TO REMEDIATION

Legend:

Solid Black Line: Potentially complete pathway.

Dashed Gray Line: Incomplete pathway.

Yes & No indicate if an exposure pathway is complete for a receptor

Figure 3-01C
POTENTIALLY COMPLETE EXPOSURE ROUTES FOR HUMAN RECEPTORS AFTER REMEDIATION OR
WITH RISK MANAGEMENT MEASURES

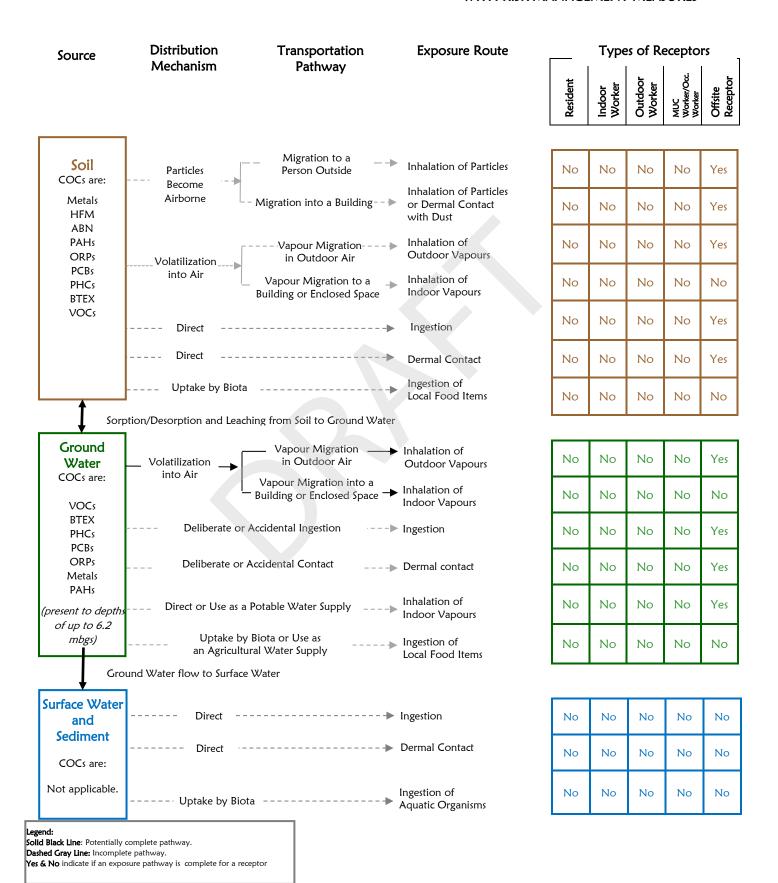
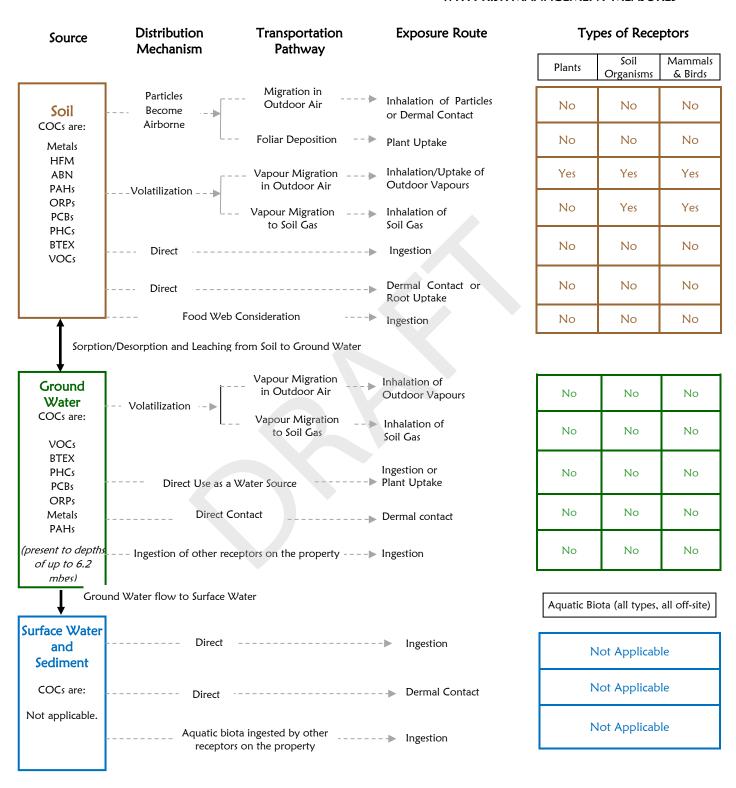



Figure 3-01D POTENTIALLY COMPLETE EXPOSURE ROUTES FOR ECOLOGICAL RECEPTORS AFTER REMEDIATION OR WITH RISK MANAGEMENT MEASURES

Legend:

Solid Black Line: Potentially complete pathway.

Dashed Gray Line: Incomplete pathway.

Yes & No indicate if an exposure pathway is complete for a receptor

APPENDIX A

Sampling Analysis Plan

A1.0 Sampling and Analysis Plan for the Initial Site Investigation

A Sampling and Analysis Plan was prepared prior to commencement of the fieldwork program at the Phase Two Property. The Sampling and Analysis Plan includes: the proposed scope of work, a quality assurance and quality control (QA/QC) program, data quality objectives, standard operating procedures, and a description of physical impediments that may limit the ability to conduct sampling and analysis.

A2.0 Objectives

The Phase One Environmental Site Assessment (ESA) Conceptual Site Model (CSM) for the Phase Two Property identified the presence of on-site Potentially Contaminating Activities (PCAs) that may have affected the soil and groundwater beneath the Phase Two Property. The Phase One CSM described pertinent Areas of Environmental Concern (APECs) associated with the PCAs that require further investigation, as described in Table 4 "Table of Areas of Potential Environmental Concern" (Section 3.2).

Based on the APEC table, the Phase Two ESA is therefore required to:

- Investigate the APECs identified during the Phase One ESA, through the drilling of boreholes, and collection of soil and groundwater samples; and
- Identify maximum concentrations of any contaminants and delineate the contaminants of concern, if present, for the purpose of calculating a volume estimate for a remediation plan or informing an adequate Risk Assessment.

All work should meet the requirements of O. Reg. 153/04, as amended.

A3.0 Work Proposed

To meet the objectives noted above, the Phase Two ESA fieldwork program will generally consist of the following:

- 1. Prepare Health and Safety Plan (HASP) detailing hazards and precautions necessary to complete the fieldwork safely.
- 2. Advance up to 40 boreholes and/or test pits to anticipated depths of up to 15 metres (49 feet) bgs to penetrate native soils and intercept the shallow groundwater table in bedrock.
- 3. Complete some of the above boreholes with groundwater monitoring wells, designed to intercept the groundwater table.
- 4. Collect and submit soil samples for analysis of contaminants of concern.
- 5. Develop the groundwater monitoring wells by removal of at least 10 well volumes of water, or removal all water at least 3 times where recharge is particularly slow.

Page 1 of 3 BluMetric

6. Collect and submit groundwater samples for analysis of contaminants of concern, after the wells have been adequately developed.

Additional locations may be added if the proposed locations do not provide enough information to meet the objectives.

The proposed borehole and monitoring well and sampling locations described above were positioned within the Phase Two Property to collect soil and groundwater samples to address potential impacts associated with the on-site APECs identified in the Phase One ESA.

The potential contaminants of concern identified in the Phase One ESA comprise:

- Metals and Inorganics
- Petroleum Hydrocarbons (PHCs)
- Benzene, Toluene, Ethylbenzene, Xylene (collectively, BTEX)
- Polycyclic Aromatic Hydrocarbons (PAHs)
- Volatile Organic Compounds (VOCs)
- Polychlorinated Biphenyls (PCBs)
- Acid, Base, Neutral Extractables (ABNs)
- Chlorophenols (CPs)

A4.0 Sampling Methods

Boreholes will be advanced using split spoon methods to collect samples of the overburden materials. Soil samples for screening and sampling purposes will be collected from the core tubes. Samples retrieved from the core tubes will be placed in bags for field screening purposes or jarred accordingly for lab analysis. Nitrile gloves will be worn during sampling to prevent cross-contamination between samples.

Soil samples are to be logged and screened with a portable organic vapour monitor that will be examined daily for calibration and defects. In the event of any non-compliant calibration or any notable defects, the monitor will not be utilized and returned to the supplier.

Soil samples for analytical submission will be jarred in laboratory-supplied containers as soon as possible after sampling, labelled, and kept cold until transported to the laboratory. Soil samples submitted for PHC F_1 and/or VOC analyses will be field-preserved using the laboratory-supplied vials precharged with methanol.

Page 2 of 3 BluMetric

A5.0 Sample Handling and Custody

Sample handling will be conducted in accordance with **BluMetric** Standard Work Instructions. In general, samples will be collected in laboratory-supplied sample containers, containing preservatives as required. Samples will be stored on ice until transported to the laboratory, ideally within 24 hours of sample collection.

Samples will be labelled with the sample number, sample date, project location, and project number. Sample shipment to the laboratory will be arranged as required. **BluMetric** will complete the Chain of Custody as per laboratory requirements and retain a copy on file.

A6.0 Quality Assurance & Quality Control

BluMetric will conduct the following quality control as part of this sampling work program:

- All non-dedicated sampling and monitoring equipment will be cleaned following each
 use.
- One duplicate sample will be collected for every ten samples of soil tested per parameter group.
- Sufficient volume will be collected from a second sample for the laboratory to complete a laboratory duplicate analysis.

The laboratory will complete additional quality control testing (i.e., duplicates and method spikes) as required by its certification.

Analytical data from this work program will be verified and validated by **BluMetric** by determining the relative percent difference (RPD) for duplicate samples collected in the field. **BluMetric** will also review the analysis of field and trip blanks, laboratory-completed duplicates, and matrix spikes to verify that these are within laboratory-specified acceptable ranges.

Where the target RPD is exceeded, **BluMetric** will investigate to assess whether the cause can be determined and whether the RPD exceedance affects the use of the data.

Where detectable concentrations are found in a trip blank or field blank, **BluMetric** will evaluate the possible causes of the result and impacts on data.

Where laboratory QA/QC results indicate issues with data quality, **BluMetric** will also evaluate the impacts of this information and report on our findings and conclusions.

Page 3 of 3 BluMetric

APPENDIX B

Borehole Logs

BOREHOLE ID: BH128R

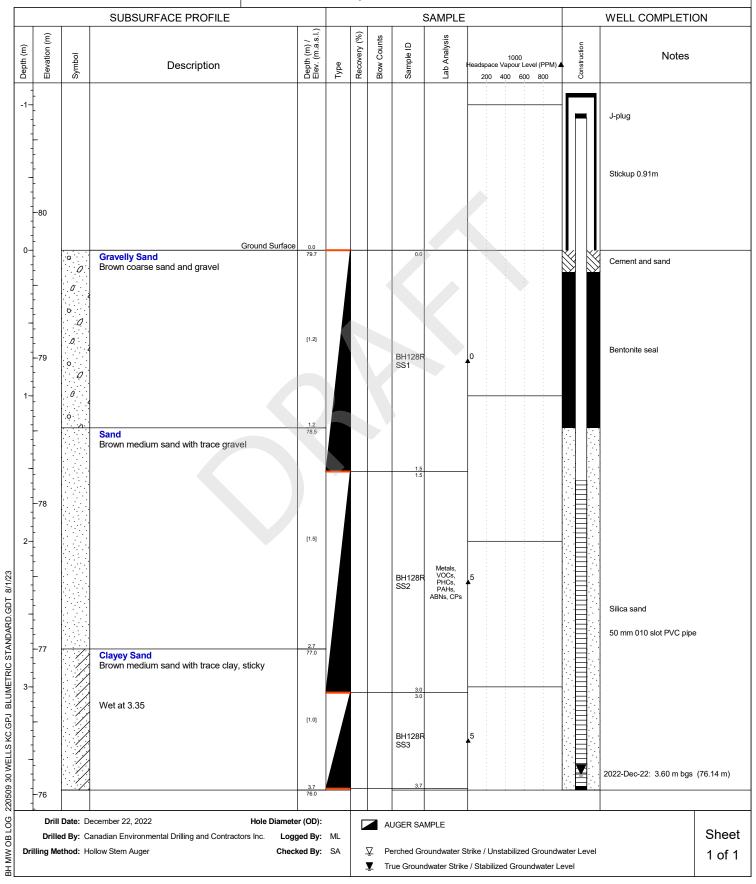
TOP:

Elevation Ground:

Project No.: 220509

Client: 2255718 Ontario Inc.

Report: RSC Osprey Shores Belleville


Site Address: 621 Dundas St. E

UTM (Zone): 4893141.559 N Belleville, Ontario

312602.447 E

79.74 m

80.65 m

Elevation Ground:

80.07 m

TOP:

80.98 m

Report: RSC Osprey Shores Belleville

Site Address: 621 Dundas St. E

Client: 2255718 Ontario Inc.

Project No.: 220509

Belleville, Ontario

UTM (Zone): 4893099.588 N 312447.156 E

SUBSURFACE PROFILE SAMPLE WELL COMPLETION Depth (m) / Elev. (m.a.s.l.) Elevation (m) Recovery (%) Lab Analysis Blow Counts ₽ Construction Depth (m) Sample I Notes Symbol 1000 adspace Vapour Level (PPM) **4** Description 200 400 600 800 J-plug Stickup 0.91m Ground Surface **Topsoil** Brown medium sand, moist Concrete and sand BH201 Brown/gray coarse sand with some clay BH201 [0.9] **Gravelley Clay**Clay with gravel, some cobles between 2.44m and 2.77m Metals, VOCs, PHCs, PAHs BH201 SS3 BH201 Bentonite seal SS4 2022-Dec-23: 2.70 m bgs (77.37 m) Bedrock Weathered Limestone wet at 4.88 [5.6] 220509 30 WELLS KC.GPJ BLUMETRIC STANDARD.GDT 8/1/23 Silica sand 50 mm 010 slot PVC pipe BH MW OB LOG Drill Date: December 23, 2022 Hole Diameter (OD): SPLIT SPOON Sheet Drilled By: Canadian Environmental Drilling and Contractors Inc. Logged By: ML Drilling Method: Hollow Stem Auger /Air Hammer Checked By: SA Perched Groundwater Strike / Unstabilized Groundwater Level 1 of 1 ▼ True Groundwater Strike / Stabilized Groundwater Level

Elevation Ground:

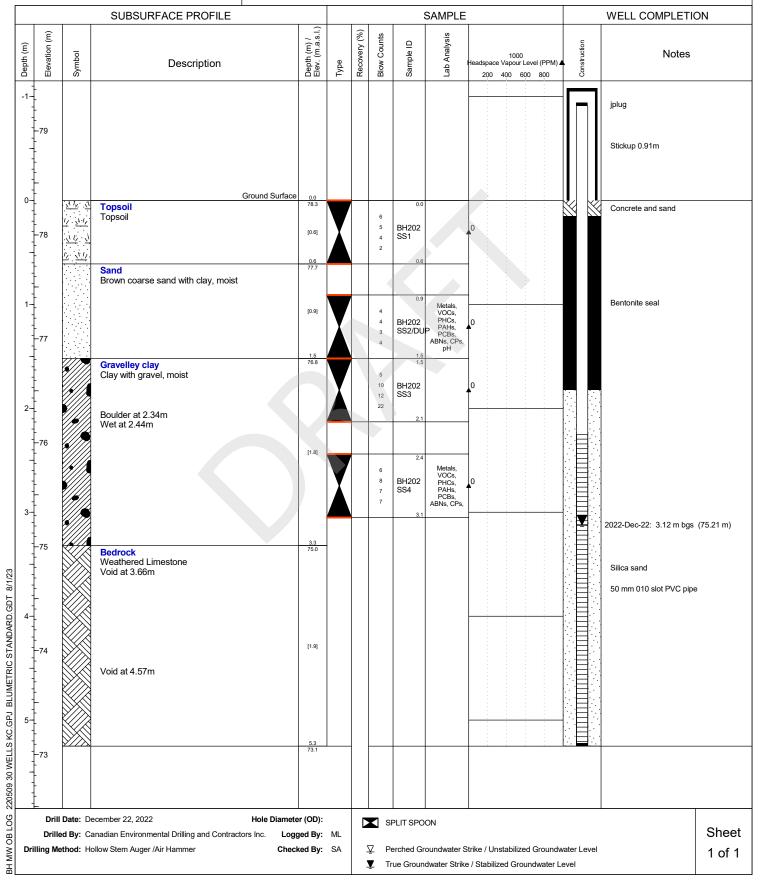
Ground: 78.33 *m*

UTM (Zone): 4893041.184 N

TOP:

79.24 m

Report: RSC Osprey Shores Belleville


Client: 2255718 Ontario Inc.

Project No.: 220509

Site Address: 621 Dundas St. E

Belleville, Ontario

312459.907 E

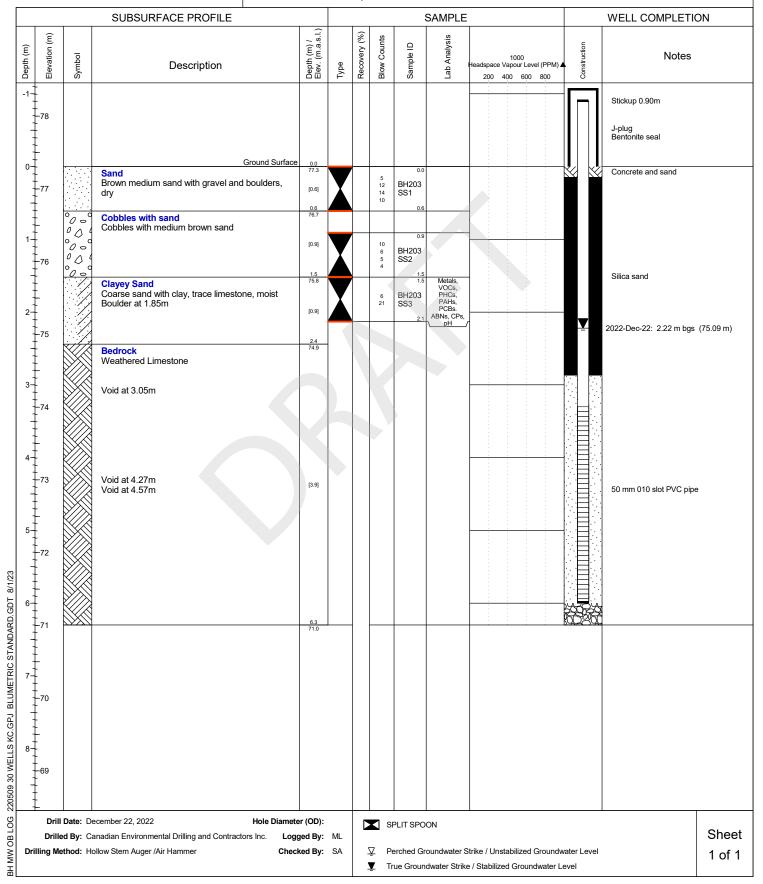
Elevation Ground:

77.31 m

TOP:

78.21 m

Report: RSC Osprey Shores Belleville


Client: 2255718 Ontario Inc.

Project No.: 220509

Site Address: 621 Dundas St. E

UTM (Zone): 4893034.611 N Belleville, Ontario

312500.970 E

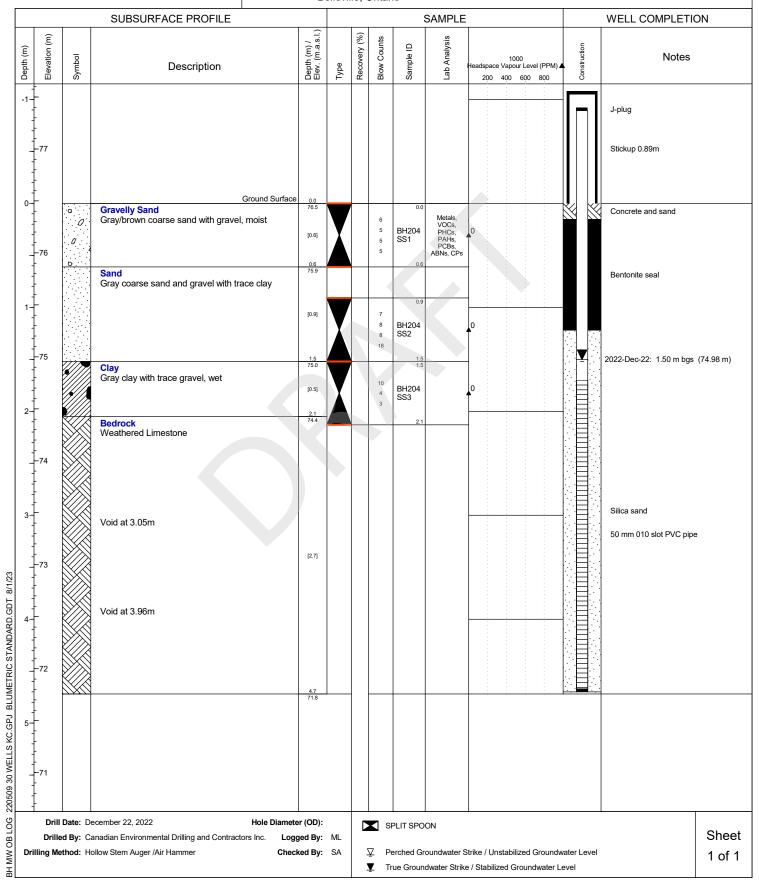
TOP:

Elevation Ground:

Project No.: 220509

Client: 2255718 Ontario Inc.

Report: RSC Osprey Shores Belleville


Site Address: 621 Dundas St. E

UTM (Zone): 4892999.359 N Belleville, Ontario

312526.260 E

76.48 m

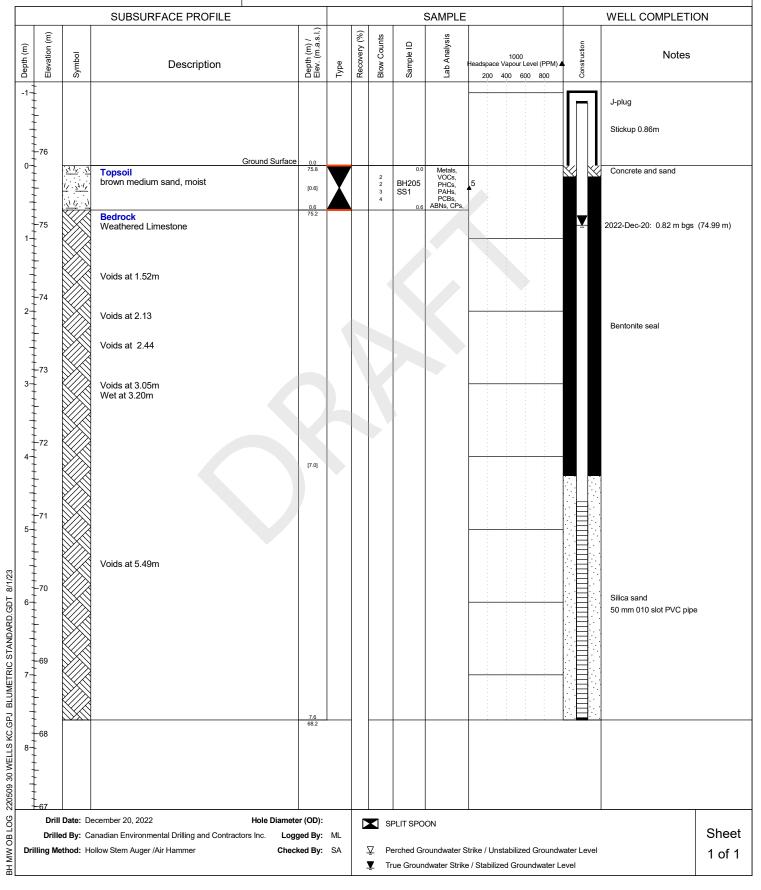
77.37 m

Elevation Ground:

75.81 m

TOP:

76.67 m


Report: RSC Osprey Shores Belleville

Client: 2255718 Ontario Inc.

Project No.: 220509

Site Address: 621 Dundas St. E UTM (Zone): 4893016.291 N Belleville, Ontario

312689.877 E

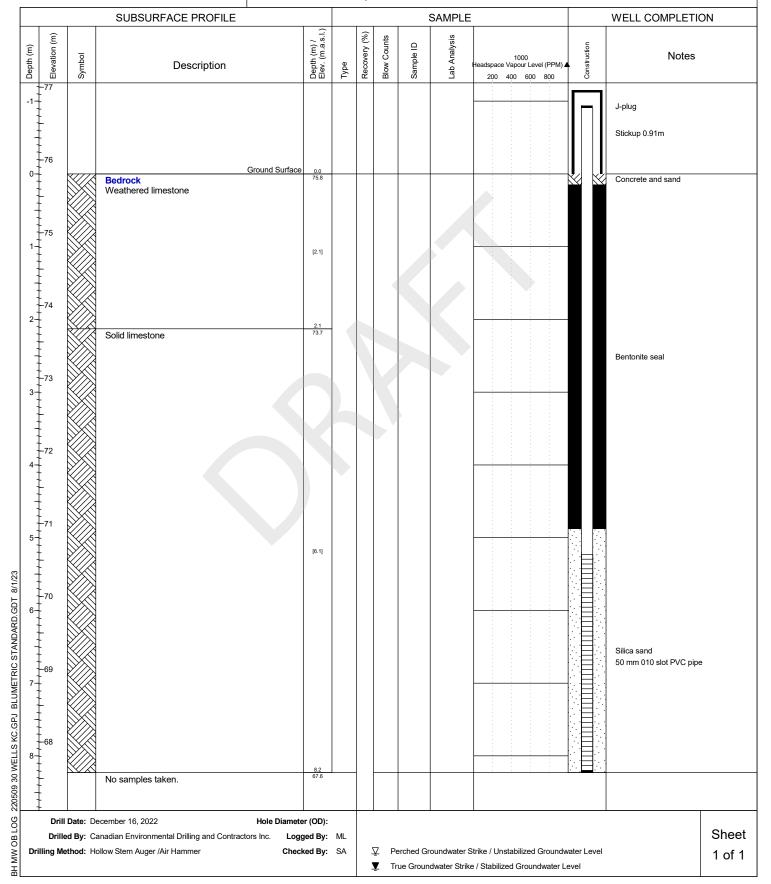
Elevation Ground:

TOP:

75.81 m 76.72 m

Report: RSC Osprey Shores Belleville

Client: 2255718 Ontario Inc.


Site Address: 621 Dundas St. E

Project No.: 220509

UTM (Zone): 4892962.113 N

Belleville, Ontario

312753.422 E

Elevation Ground:

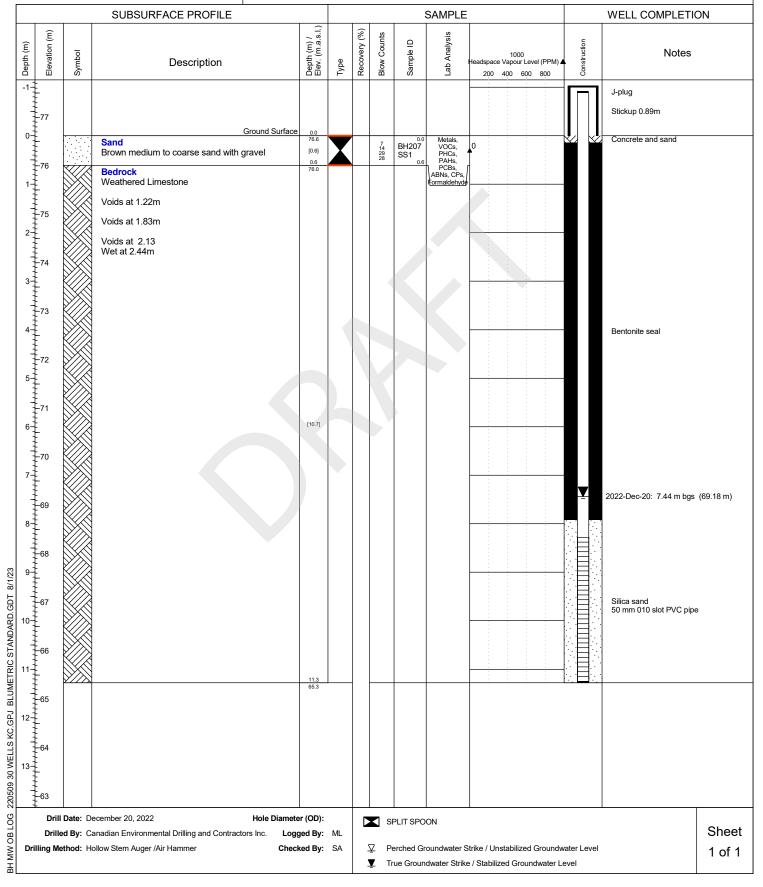
76.62 m

TOP:

UTM (Zone): 4893015.332 N

77.51 m

Report: RSC Osprey Shores Belleville


Site Address: 621 Dundas St. E

Client: 2255718 Ontario Inc.

Project No.: 220509

Belleville, Ontario

312757.586 E

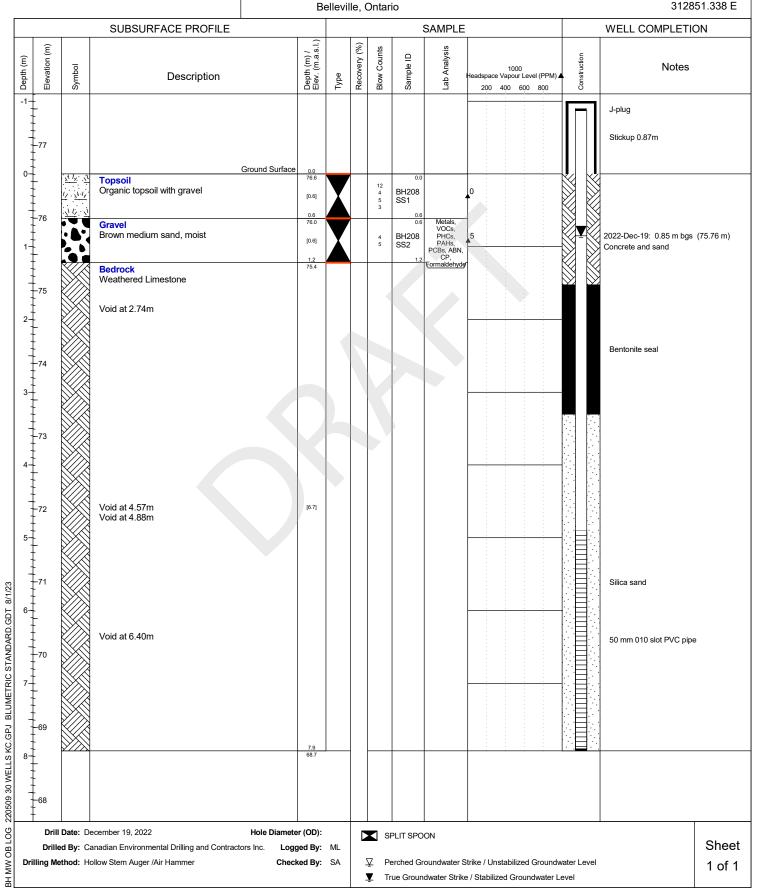
Elevation Ground:

76.61 m

TOP:

77.48 m

Report: RSC Osprey Shores Belleville


Client: 2255718 Ontario Inc.

Project No.: 220509

Site Address: 621 Dundas St. E

UTM (Zone): 4892990.666 N

312851.338 E

Elevation Ground:

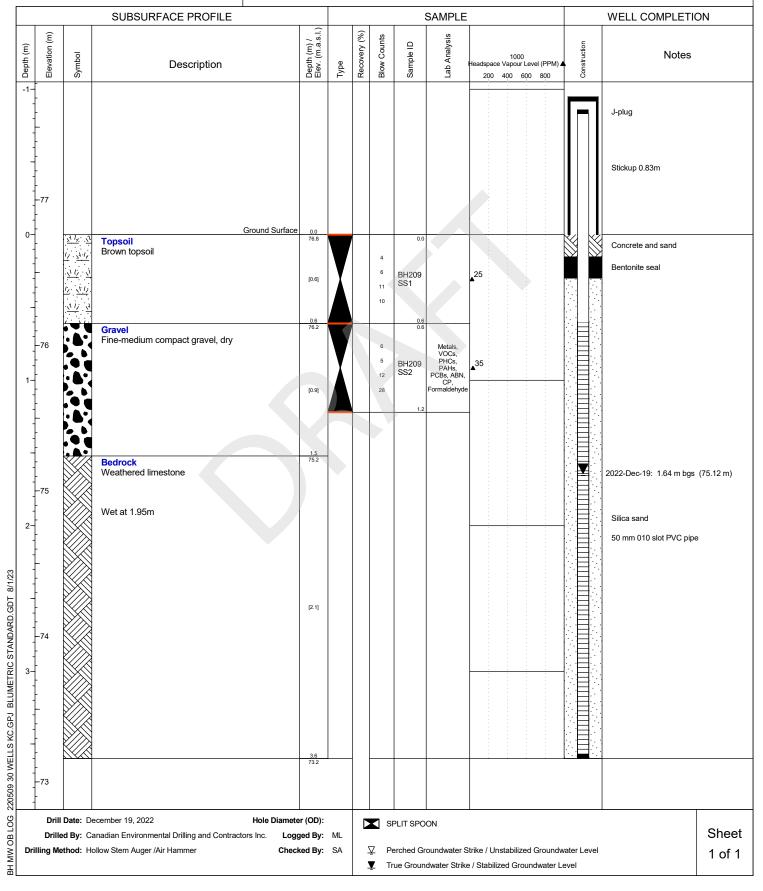
ound: 76.76 m

TOP:

UTM (Zone): 4893010.469 N

77.59 m

Report: RSC Osprey Shores Belleville


Site Address: 621 Dundas St. E

Client: 2255718 Ontario Inc.

Project No.: 220509

Belleville, Ontario

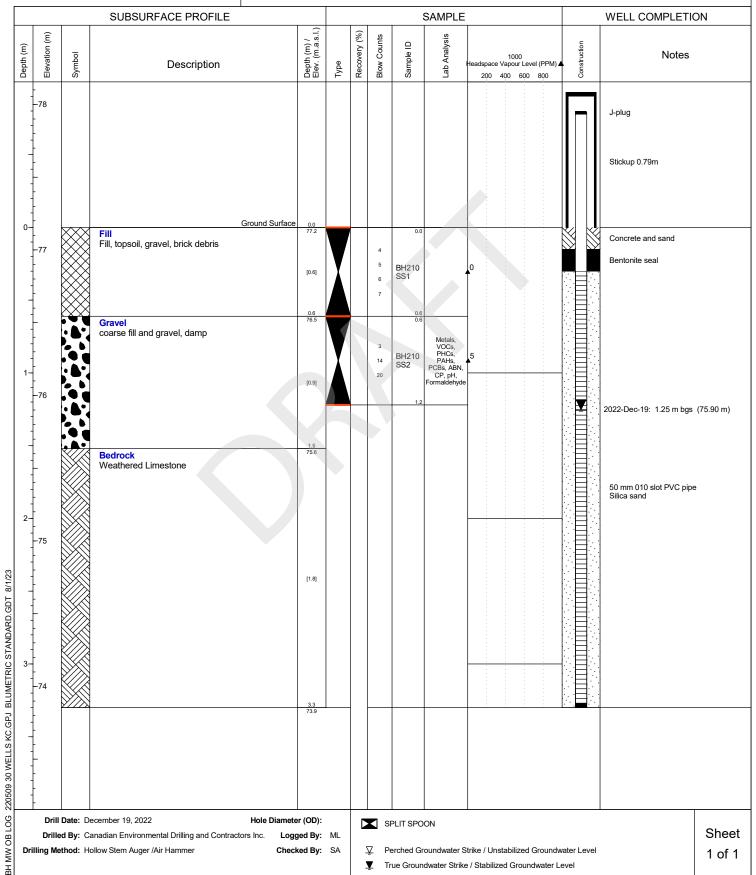
312832.130 E

Elevation Ground: 77.15 m

TOP:

77.94 m

Report: RSC Osprey Shores Belleville


Site Address: 621 Dundas St. E Belleville, Ontario

Client: 2255718 Ontario Inc.

Project No.: 220509

UTM (Zone): 4893020.027 N

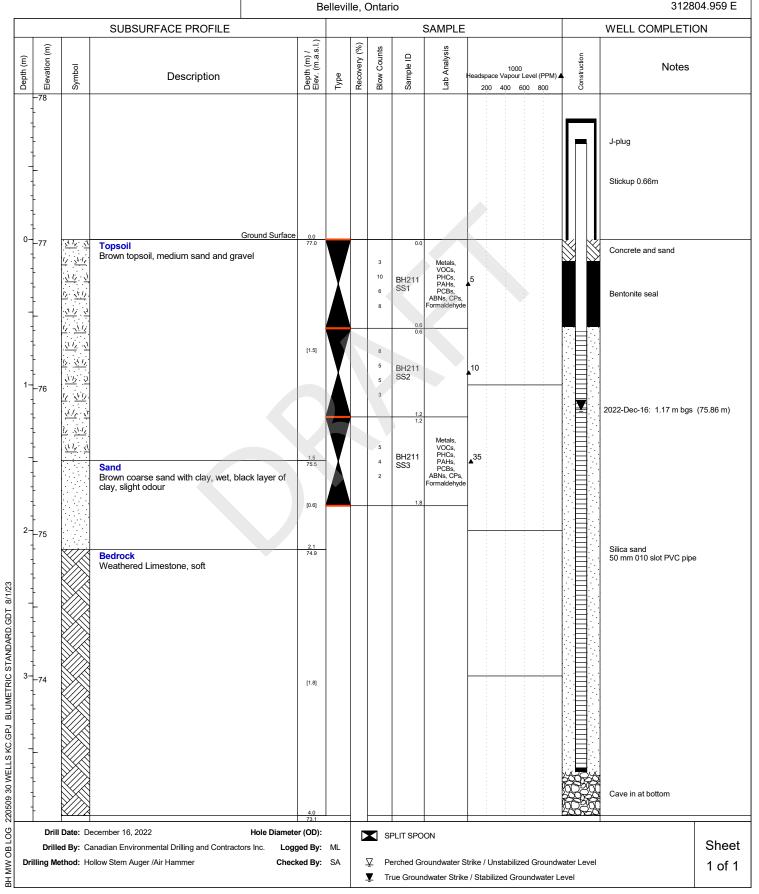
312876.175 E

Elevation Ground:

Project No.: 220509

Site Address: 621 Dundas St. E

Client: 2255718 Ontario Inc.


TOP:

77.03 m 77.69 m

Report: RSC Osprey Shores Belleville

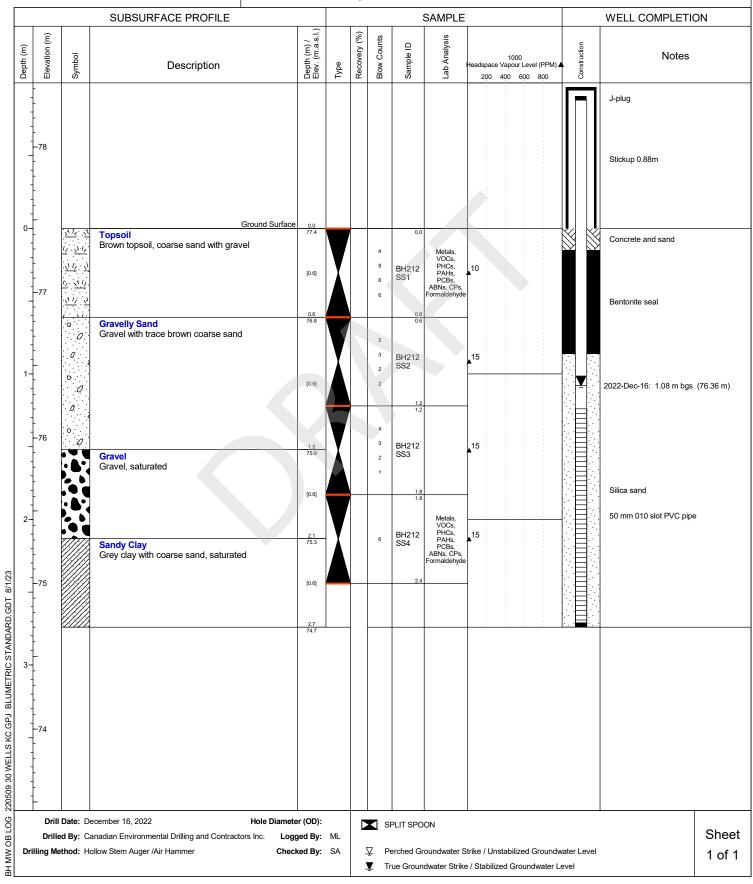
UTM (Zone): 4893035.726 N

312804.959 E

TOP:

Elevation Ground:

Project No.: 220509


Client: 2255718 Ontario Inc.

Report: RSC Osprey Shores Belleville

Site Address: 621 Dundas St. E UTM (Zone): 4893042.662 N Belleville, Ontario

312845.507 E

78.32 m

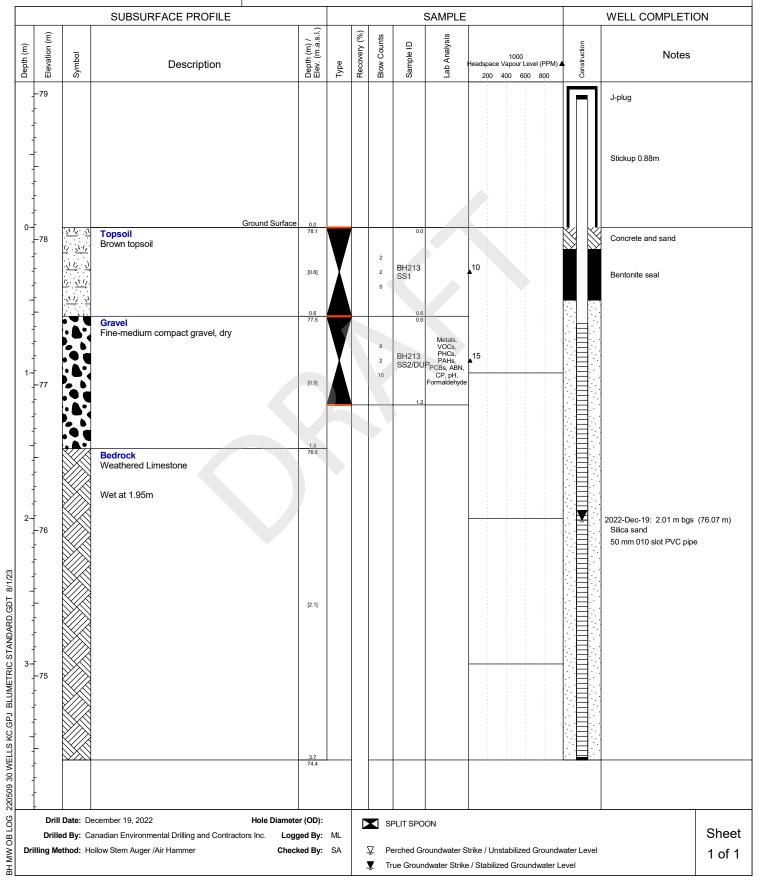
Project No.: 220509

Client: 2255718 Ontario Inc.

Elevation Ground:

78.08 m

TOP:


78.96 m

Report: RSC Osprey Shores Belleville **Site Address:** 621 Dundas St. E

Belleville, Ontario

UTM (Zone): 4893044.491 N

312874.402 E

TOP:

78.34 m

79.09 m

Elevation Ground:

Project No.: 220509

Client: 2255718 Ontario Inc.

Report: RSC Osprey Shores Belleville

 Site Address:
 621 Dundas St. E
 UTM (Zone):
 4893082.129 N

Belleville, Ontario 312777.034 E

			SUBSURFACE PROFILE						SAMPLE			WELL COMPLETION
Depth (m)	Elevation (m)	Symbol	Description	Depth (m) / Elev. (m.a.s.l.)	Type	Recovery (%)	Blow Counts	Sample ID	Lab Analysis	1000 Headspace Vapour Level (PPM) 4 200 400 600 800	Construction	Notes
-1-			Ground	Surface 0.0								J-plug Stickup 0.75m
0-	-78		Fill Gravel, brick, brown medium sand	78.3	X		7 14 29 28	0.0 BH214 SS1		5		Concrete and sand Bentonite seal
1-	-			[1.2]	X		12 10 6 6	0.6 BH214 SS2	VOCs, PHCs, PAHs, ABNs, CPs	5		
-	-77 77 		Sand Brown sticky coarse sand, moist, slight odo	77.1 [0.8]			3 3 5 4	BH214 SS3	VOCs, PHCs, PAHs, ABNs, CPs			
2-	- - - - - - - -76		Bedrock Weathered Limestone	2.0 76.4	X			BH21 ¹ / ₄ ⁸ SS4			¥	2022-Dec-20: 2.08 m bgs (76.26 m) Silica sand
TRIC STANDARD.GD			Wet at 2.44m Void at 2.59m	[1.7]								50 mm 010 slot PVC pipe
BH MW OB LOG 220509 30 WELLS KC.GPJ BLUMETRIC STANDARD.GDT 8/1/23	-75		Void at 3.05m	3.7 74.7								
BH MW OB LOG 220508	Drill	led By: Ca	ecember 20, 2022 Hole anadian Environmental Drilling and Contractors Inc. ollow Stem Auger /Air Hammer	Diameter (OD): Logged By: Checked By:	ML		<u></u> ₽		oundwater S	Strike / Unstabilized Groundw e / Stabilized Groundwater Le		Sheet 1 of 1

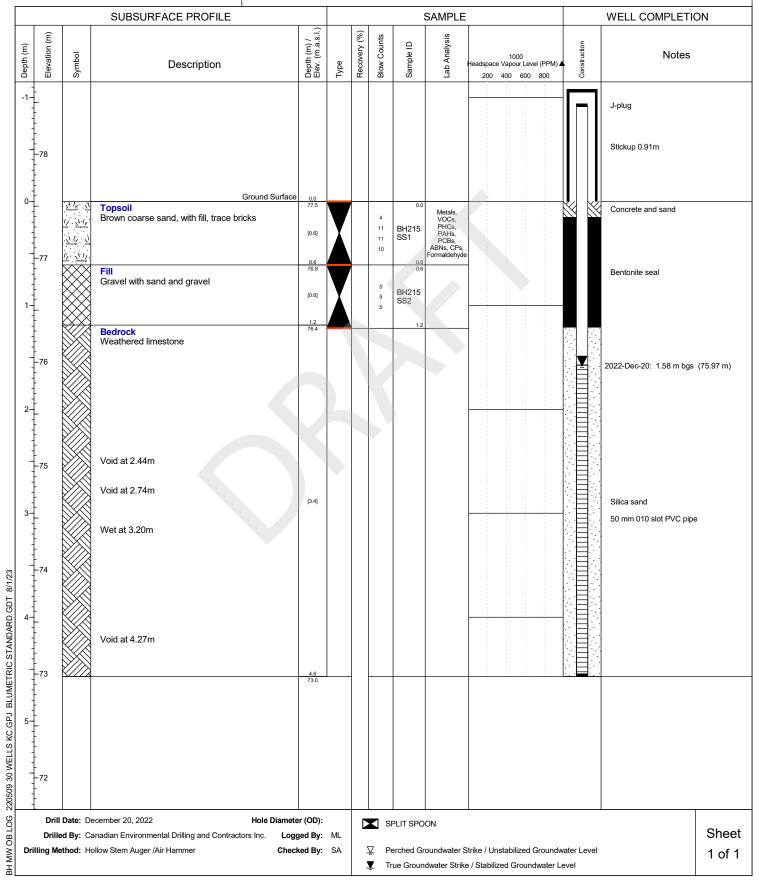
Elevation Ground:

77.55 m

TOP:

78.46 m

Report: RSC Osprey Shores Belleville


Site Address: 621 Dundas St. E Belleville, Ontario

Client: 2255718 Ontario Inc.

Project No.: 220509

UTM (Zone): 4893088.551 N

312729.072 E

Elevation Ground:

Project No.: 220509

Client: 2255718 Ontario Inc.

Site Address: 621 Dundas St. E

TOP:

78.68 m 79.59 m

Report: RSC Osprey Shores Belleville

UTM (Zone): 4893118.431 N

Belleville, Ontario

312805.347 E

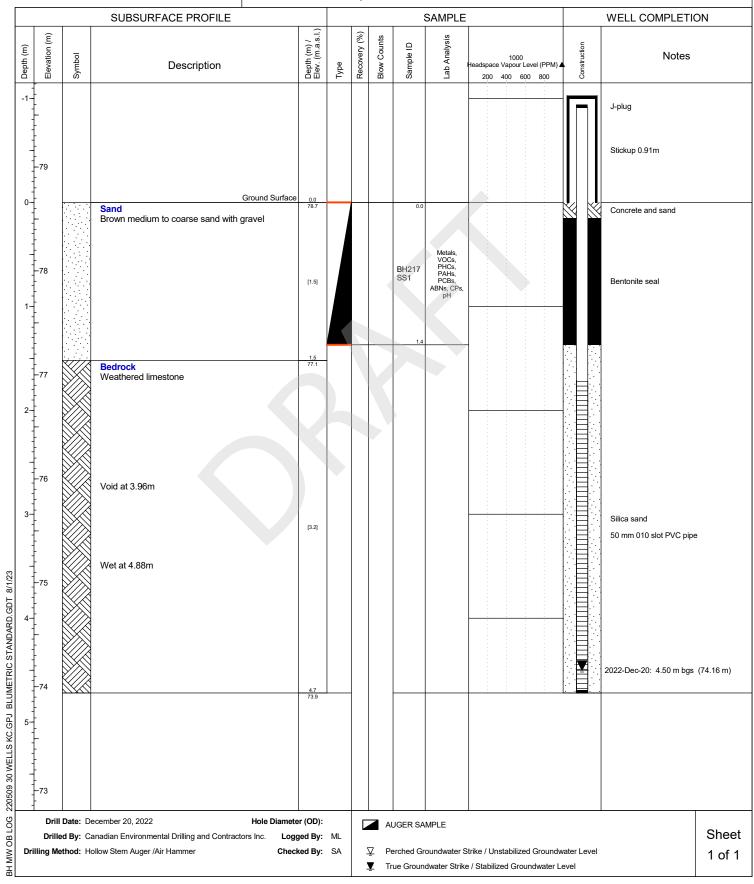
SUBSURFACE PROFILE SAMPLE WELL COMPLETION Depth (m) / Elev. (m.a.s.l.) Recovery (%) Elevation (m) Lab Analysis Blow Counts Sample ID Construction Depth (m) Notes Symbol 1000 adspace Vapour Level (PPM) Description 200 400 600 800 J-plug Stickup 0.91m Ground Surface Topsoil Concrete and sand Topsoil, organics, fill with brick BH216 15 2022-Dec-21: 0.53 m bgs (78.15 m) Fill Fill with brick Bentonite seal BH216 SS2 Bedrock Weathered limestone Voids at 1.83m Void and wet at 2.13m Silica sand 220509 30 WELLS KC.GPJ BLUMETRIC STANDARD.GDT 8/1/23 50 mm 010 slot PVC pipe Void at 2.74m -75 BH MW OB LOG Drill Date: December 21, 2022 Hole Diameter (OD): SPLIT SPOON Sheet **Drilled By:** Canadian Environmental Drilling and Contractors Inc. Logged By: ML Drilling Method: Hollow Stem Auger /Air Hammer Checked By: SA Perched Groundwater Strike / Unstabilized Groundwater Level 1 of 1 ▼ True Groundwater Strike / Stabilized Groundwater Level

TOP:

Elevation Ground:

Project No.: 220509

Client: 2255718 Ontario Inc.


Report: RSC Osprey Shores Belleville

Site Address: 621 Dundas St. E **UTM (Zone):** 4893141.301 N Belleville, Ontario

312837.649 E

78.66 m

79.57 m

TOP:

Elevation Ground:

Project No.: 220509

Client: 2255718 Ontario Inc.

Report: RSC Osprey Shores Belleville

Site Address: 621 Dundas St. E **UTM (Zone)**: 4893157.602 N

78.61 m

79.51 m

					Ве	llevil	le, C	Ontar	io				312873.896 E
			SUBSURFACE PROFILE							SAMPLE			WELL COMPLETION
Depth (m)	Elevation (m)	Symbol	Description		Depth (m) / Elev. (m.a.s.l.)	Туре	Recovery (%)	Blow Counts	Sample ID	Lab Analysis	1000 Headspace Vapour Level (PPM) 4 200 400 600 800	Construction	Notes
-1- - -	- - - -												jplug
	- - -79 -												Stickup 0.90m
- 0-	-	: \1 1 ₂ · \1	Topsoil	Ground Surface	0.0 78.6				0.0				
-	-	1/ · 1/ · 1/	Brown medium sand										Concrete and sand
	-	1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2											Bentonite seal
	–78 -	7/1							BH218 SS1	Metals, VOCs, PHCs, PAHs, ABNs, CPs, pH	0		
	-	1/2 · 1/2 · 1/2			[1.6]				331	ABNs, CPs, pH			
1-	-	1/ 1//											
-	-	<u> </u>	Wet at 1.22										2022-Dec-20: 1.19 m bgs (77.42 m)
-	- 77	11 11/2 11/2 12 12/2			1.6 77.0				1.5				Silica sand
	-		Bedrock Weathered limestone		77.0								50 mm 010 slot PVC pipe
2-	- - -		Void at 2.13		[0.9]								
-	-				2.5 76.1								<u> </u>
-	–76 - -												
3-	- -												
-	-												
-	- - -75												
-													
			ecember 20, 2022 anadian Environmental Drilling and Contrac	Hole Diameter stors Inc. Logge	(OD): ed By:	ML		Al	JGER SA	MPLE			Shee
Эri	lling Me	ethod: Ho	ollow Stem Auger /Air Hammer	Checke	d By:	SA					Strike / Unstabilized Groundw e / Stabilized Groundwater Le		1 of

Elevation Ground:

Project No.: 220509

Site Address: 621 Dundas St. E

Client: 2255718 Ontario Inc.

TOP:

81.14 m 82.00 m

Report: RSC Osprey Shores Belleville

Belleville, Ontario

UTM (Zone): 4893180.102 N

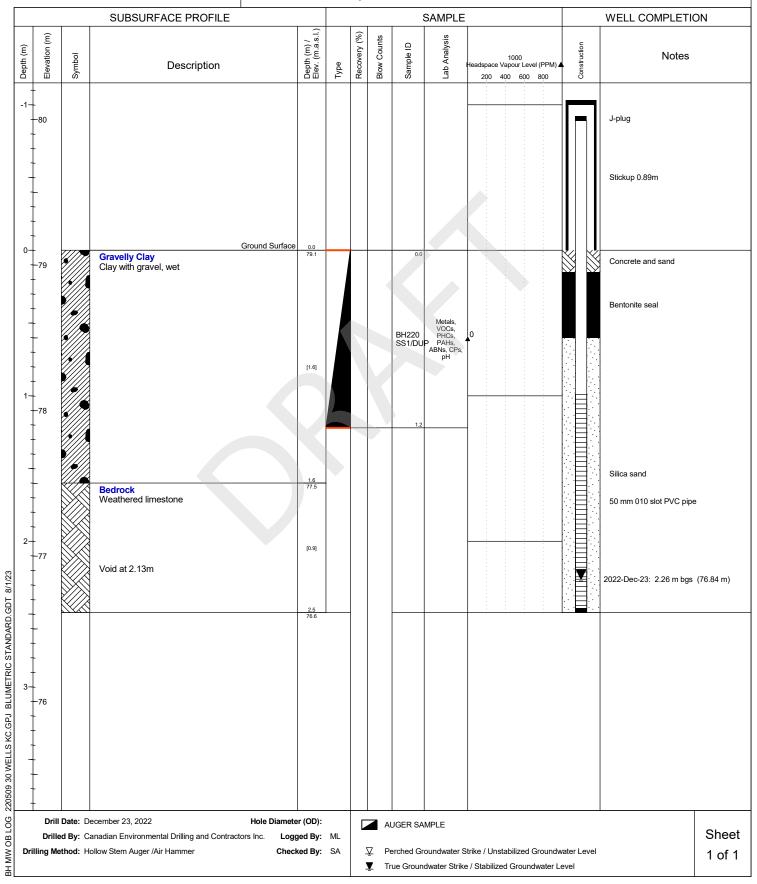
312899.632 E

					- II-VII	,						00.002 L
	1		SUBSURFACE PROFILE	T ~		I _ I			SAMPLE		WELL COMPLETION	ON
Depth (m)	Elevation (m)	Symbol	Description	Depth (m) / Elev. (m.a.s.l.)	Type	Recovery (%)	Blow Counts	Sample ID	9 1000 Headspace Vapour Level (PPM) ■ 200 400 600 800	Construction	Notes	
-	- -82 - - - - - - - - - - -										J-plug Stickup 0.86m	
0-	- - -81	777	Ground Surface Topsoil Brown topsoil, medium sand and gravel, moist	e 0.0 81.1	V		4 5	0.0 BH210	5		Concrete and sand	
-	- - - - -		Gravelly Sand	0.6 80.5			4	BH219 SS1			Bentonite seal	
1-	-80	0	Brown medium sand with gravel, moist	[0.9]	X A		5 4 4 3	BH219 SS2	Metals, VOCs, PHCs, PAHs, ABN, CP, Dioxins Furans			
-	-	0 0	Sand Brown coarse sand, moist	1.5	Y		4 4 5	1.2 1.2 BH219 SS3	_5			
2-	- - - - - -79	0 0	Sand with Gravel and Clay Grey to brown coarse sand, gravel and clay, wet	[0.6]	Y		17 20 29 3	1.8 1.8 BH219 SS4	0		Silica sand	
	-	0 0		[0.9]				2.4			50 mm 010 slot PVC pipe	9
3-	- - -78 -	0	Bedrock Weathered limestone	3.0 78.1						Y	2022-Dec-15: 3.11 m bgs	(78.03 m)
	-			[0.9]								
DI MW OB LOG ZZOGOS 30 WELLS NC.OF3 BLOME INC. STANDAND. OD L	Drill	led By: C		77.2		Ž Ž	 Z Pe		ON oundwater Strike / Unstabilized Groundw dwater Strike / Stabilized Groundwater Le			Sheet 1 of 1

Elevation Ground:

79.10 m TOP: 79.99 m

Report: RSC Osprey Shores Belleville


Site Address: 621 Dundas St. E

Client: 2255718 Ontario Inc.

Project No.: 220509

UTM (Zone): 4893182.534 N Belleville, Ontario

312866.445 E

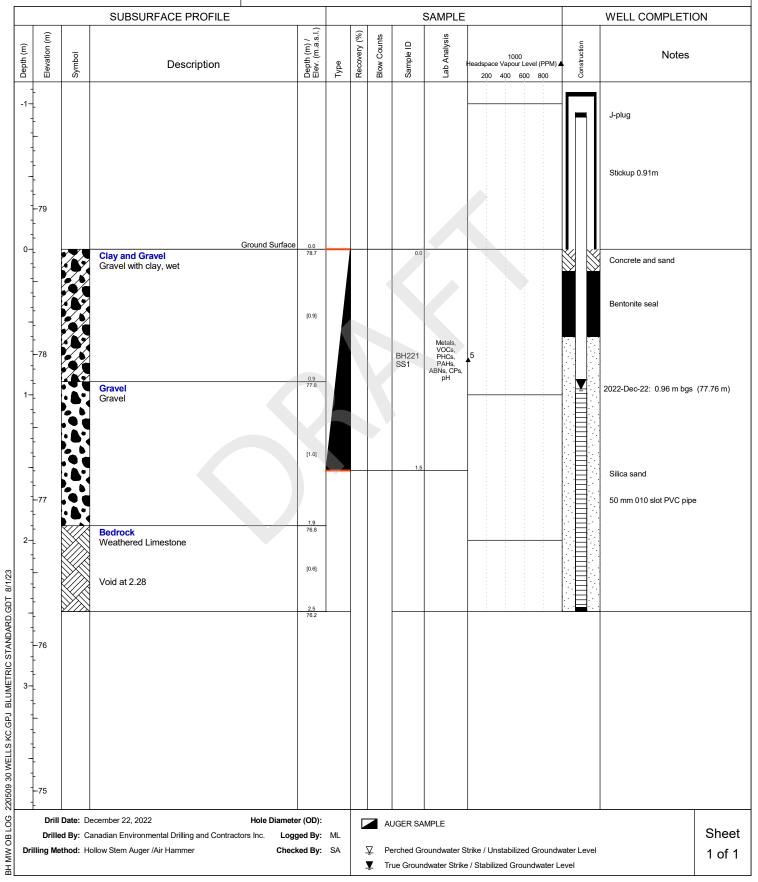
Elevation Ground:

78.72 m

TOP:

79.63 m

Report: RSC Osprey Shores Belleville


Client: 2255718 Ontario Inc.

Project No.: 220509

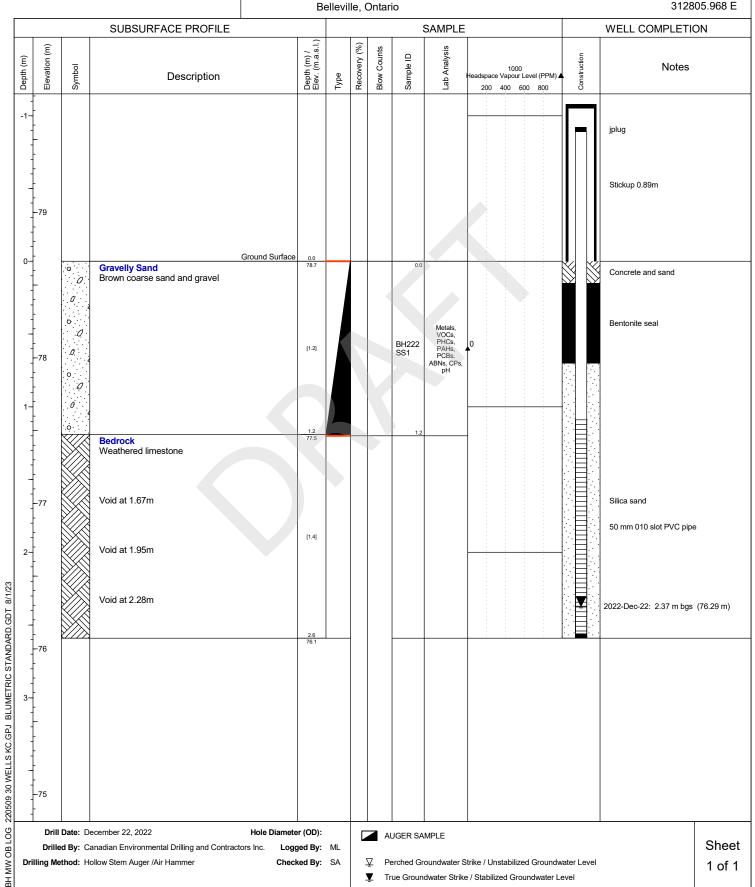
Site Address: 621 Dundas St. E

UTM (Zone): 4893163.597 N Belleville, Ontario

312840.456 E

Project No.: 220509

Client: 2255718 Ontario Inc.


Site Address: 621 Dundas St. E

Elevation Ground: TOP: 78.66 m 79.55 m

Report: RSC Osprey Shores Belleville

UTM (Zone): 4893159.354 N

312805.968 E

Elevation Ground:

78.94 m

TOP:

79.64 m

Client: 2255718 Ontario Inc.

Report: RSC Osprey Shores Belleville

Site Address: 621 Dundas St. E

Project No.: 220509

Belleville, Ontario

UTM (Zone): 4893155.016 N 312774.006 E

SUBSURFACE PROFILE SAMPLE WELL COMPLETION Depth (m) / Elev. (m.a.s.l.) Recovery (%) Elevation (m) Lab Analysis Blow Counts Sample ID Construction Depth (m) Notes Symbol 1000 dspace Vapour Level (PPM) **4** Description 200 400 600 800 -80 J-plug Stickup 0.91m Ground Surface Concrete and sand Brick fill, gray clay with gravel BH223 SS1/DU Bentonite seal Bedrock 2022-Dec-21: 0.70 m bgs (78.24 m) Weathered Limestone Silica sand Wet at 1.52m 220509 30 WELLS KC.GPJ BLUMETRIC STANDARD.GDT 8/1/23 50 mm 010 slot PVC pipe BH MW OB LOG Drill Date: December 21, 2022 Hole Diameter (OD): SPLIT SPOON Sheet **Drilled By:** Canadian Environmental Drilling and Contractors Inc. Logged By: ML Drilling Method: Hollow Stem Auger /Air Hammer Checked By: SA Perched Groundwater Strike / Unstabilized Groundwater Level 1 of 1 ▼ True Groundwater Strike / Stabilized Groundwater Level

TOP:

Elevation Ground:

Project No.: 220509

Client: 2255718 Ontario Inc.

Report: RSC Osprey Shores Belleville

Site Address: 621 Dundas St. E **UTM (Zone):** 4893201.319 N Belleville, Ontario

312782.410 E

82.48 m

83.39 m

					B6	ellevil	ie, C	ntar	10				312782.410 E
			SUBSURFACE PROFILE							SAMPLE			WELL COMPLETION
Depth (m)	Elevation (m)	Symbol	Description		Depth (m) / Elev. (m.a.s.l.)	Туре	Recovery (%)	Blow Counts	Sample ID	Lab Analysis	1000 Headspace Vapour Level (PPM) 4 200 400 600 800	Construction	Notes
-1- -1- 	- - - - -83												J-plug Stickup 0.91m
- 0- - -	- - - - - - -82	1 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/	Gro Topsoil Brown medium topsoil, damp		0.0 82.5 [0.6]	Y		3 5 6	0.0 BH224 SS1		5		Concrete and sand Bentonite seal
1-	- - - - -	0 0	Gravelly Sand Brown medium sand with gravel, moist		0.6 81.9	X		4 3 7 10	0.6 0.6 BH224 SS2	Metals, BTEX, PHCs, PAHs, pH	5		Deficience sear
- - - - - 2-	- -81 - - -	0 0	Sand with Gravel and Clay Gray and brown coarse sand with grave clay, moist	el and	1.5 81.0 [0.6]	¥		7 8 9 9	BH224 SS3 1.8 BH224				
	- - -80 - -		Gravelly Clay Clay with gravel and limestone, moist		[1.2]	A		20 25	2.4 2.4 BH224 SS5		0		Silica sand 50 mm 010 slot PVC pipe
-	- - - -79 - -		Bedrock Weathered limestone		3.4 79.1				3.1				2022-Dec-18: 3.82 m bgs (78.66 m)
5	- - - -78 -				4.3 78.2								
5	 - - - -77												
Dri	Drill	ed By: Ca	ecember 18, 2022 Anadian Environmental Drilling and Contractors Blow Stem Auger /Air Hammer	Hole Diameter (Inc. Logged Checked	d By:		Ž	<u>Z</u> P€		oundwater S	Strike / Unstabilized Groundw e / Stabilized Groundwater Le		Sheet 1 of 1

Elevation Ground:

76.25 m TOP: 77.14 m

Report: RSC Osprey Shores Belleville

Client: 2255718 Ontario Inc.

Project No.: 220509

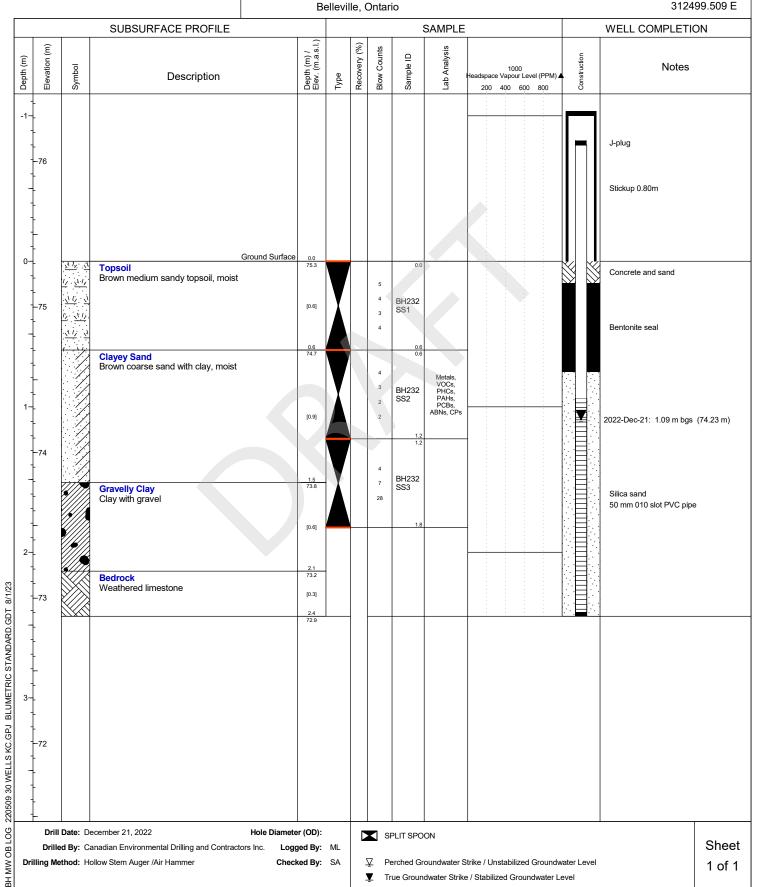
Site Address: 621 Dundas St. E **UTM (Zone):** 4893026.819 N Belleville, Ontario

312599.583 E

			SUBSURFACE PROFILE						SAMPLE	I		WELL COMPLETION
Depth (m)	Elevation (m)	Symbol	Description	Depth (m) / Elev. (m.a.s.l.)	Туре	Recovery (%)	Blow Counts	Sample ID	Lab Analysis	1000 Headspace Vapour Level (PPM) 4 200 400 600 800	Construction	Notes
-1-	- - -77 -											J-plug Stickup 0.89m Bentonite seal
0-	- - - - -76	11/2 1/2 12 1/2 1/2 12 1/2 1/2	Ground Surface Topsoil Brown coarse sandy topsoil, moist	0.0 76.3 [0.6]	Y		2 3 2 2	0.0 BH228 SS1	Metals, VOCs, PHCs, PAHs, PCBs, ABNs, CPs			Concrete and sand
1-	- - - - - - - - - -		Clayey Sand Brown medium sand with trace clay, moist Sand with Gravel and Clay	0.6 75.6 [0.6]	Y		2 2 3 4	0.6 0.6 BH228 SS2	ALINO, OFS			Silica sand
2-	-	0	Brown medium sand with clay and gravel Wet at 1.72 m Bedrock Weathered Limestone	[0.6] 1.8 74.4	X		3 3 3 7	BH228 SS3 1.8 BH228 SS4 2.1		_		
3-	-74 			[2.4]								50 mm 010 slot PVC pipe
1.1.1.1.1.1.1.1.1.1.1	-73 - - - - -		Void at 3.35m Void at 3.66m Void at 3.96m									
4-	-72 -			4.3 72.0		_						
5-	 - - -71 -											
Dri	Drille	ed By: C		er (OD): ged By: ked By:		Ž	<u></u> ₽		oundwater S	strike / Unstabilized Groundw		Sheet 1 of 1

Project No.: 220509

Site Address: 621 Dundas St. E


Client: 2255718 Ontario Inc.

Elevation Ground: TOP: 75.32 m 76.12 m

Report: RSC Osprey Shores Belleville

UTM (Zone): 4892947.260 N

312499.509 E

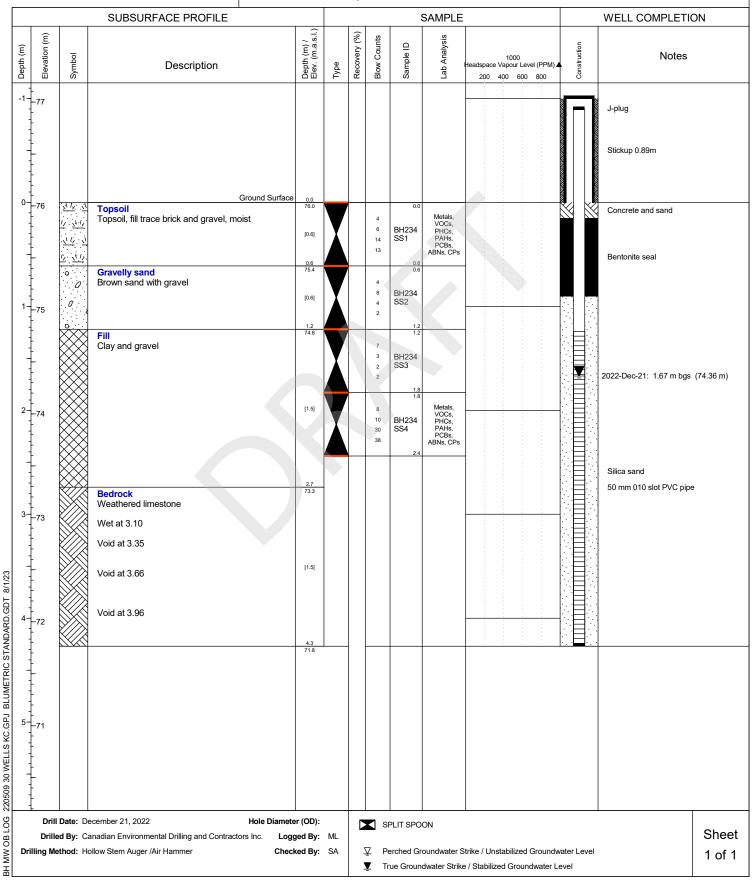
TOP:

Elevation Ground:

Project No.: 220509

Client: 2255718 Ontario Inc.

Report: RSC Osprey Shores Belleville


Belleville, Ontario

 Site Address:
 621 Dundas St. E
 UTM (Zone):
 4892972.463 N

312566.143 E

76.03 m

76.92 m

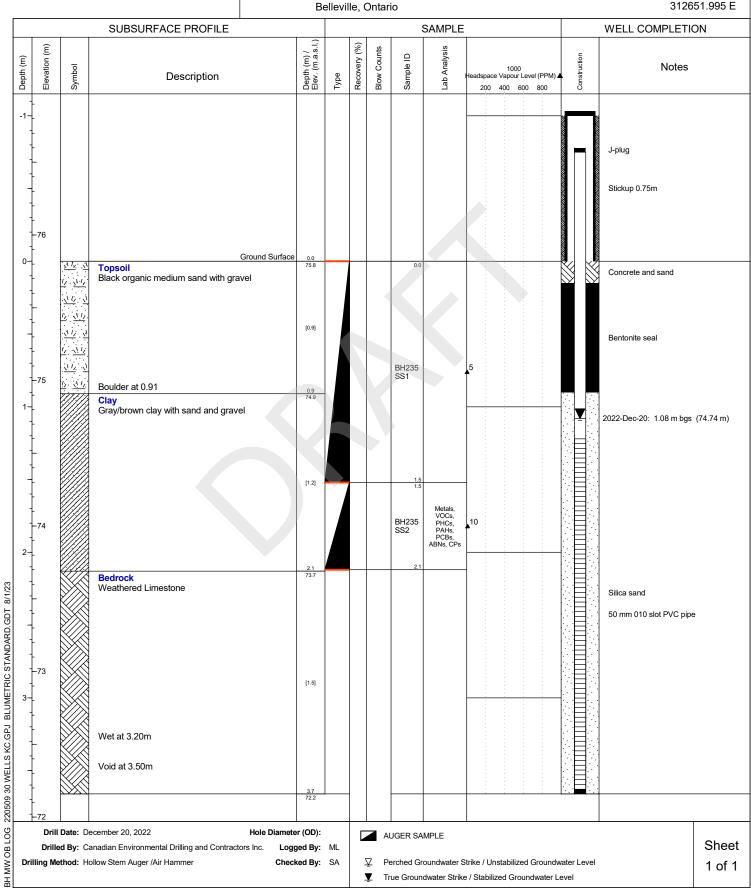
TOP:

Elevation Ground:

Project No.: 220509

Client: 2255718 Ontario Inc.

Report: RSC Osprey Shores Belleville


Site Address: 621 Dundas St. E

UTM (Zone): 4892996.909 N

312651.995 E

75.82 m

76.57 m

Appendix B: Summary of Test Pit Observations

Test Pit	Interval	
I.D.	Depth	Soils Description and Comments
	(mbgs)	
TP1	0 - 1.0	FILL(brick, ston, silt, clay, cinder block) brown
	1.0 - 1.15	ORGANICS(roots, peaty) dark brown to black, wet
	0 - 0.55	FILL(brick, stone, silt, clay) wet at 0.55m
TP2	0.55 - 0.60	ORGANIC layer (old cattails)
	0.60 - 0.95	Black to brown clayey SILT trace of gravel
	0 - 0.45	FILL(silt, charcoal, gravel) dark brown to black
TP3		FILL(brick, stone, concrete, silt) light brown to grey, dense
	0.75 - 1.05	FILL(brick, silt, clay, stone) dark brown to black
	0 - 0.55	FILL(red brick, granular, silty clay) grey/brown
	0.55 - 0.70	black ash/charcoal
TP4		
		grey/brown clayey SILT with gravel/stone
	0.95 - 1.20	red/brown clayey SILT with organics
TP5	0 - 1.8 1.8 - 2.4	FILL(glass, brick, stone, silty clay) brown to dark brown grey clayey SILT with gravel
	0 - 1.1	FILL(silt, clay, stone) light brown
TP6	1.1 - 2.0	grey clayey SILT with gravel, wet at bedrock interface
	1.1 2.0	FILL(silt, clay, gravel, stone) grey brown to black, black at 1.10-1.30
TP7	0 - 1.30	woody debris
177	1.30 - 1.55	grey clayey SILT with gravel, water at bedrock interface
	1.30 - 1.33	
	0 - 0.65	FILL (silt, clay, gravel) Brown to light brown, geosynthetic cloth barrier at
TDO	0.60 1.5	0.65m. TP8-1 collected
TP8	0.60 - 1.5	Grey silty CLAY, moist TP8-2 collected
	1.5 - 2.8	FILL (silt, clay, stone, gravel) grey/brown, strong odour, moist, TP8-3
		collected FILL (silt, clay, gravel) Brown to light brown, geosynthetic cloth barrier at
	0 - 0.4	0.4m. TP9-1 collected
TP9	•••••	FILL(silt, clay, gravel) Brown to light brown, coarse sand seam at 2.0m,
117	0.4 - 2.8	FILL material black at bedrock, PHC odour, coarse sand in FILL at bedrock
	0.4 - 2.0	interface
	0 - 1.3	FILL(silt, sand, gravel, boulders) TP10-1 collected
TP10	1.3 - 1.5	Black leyer, saturated water flowing in at 1.5m TP10-2 collected
	1.5 - 2.5	FILL(silt, sand, gravel, boulders) saturated TP10-3 collected
		· · · · · · · · · · · · · · · · · · ·
TP11	0 - 1.4	Fill (boulders, sand, gravel, clay) wires and geosynthetic cloth near surface
	1.4 - 1.9	Black layer boulders, fine stone material, saturated
TP12	0 - 0.5	FILL(brick, concrete, cinder block, tile, silt, clay)
TP13	0 - 1.0	FILL(brick, wood, concrete, sand, silt)
TP14	0 - 1.15	FILL(brick, scrap metal, concrete, sand, silt)
	1.15 - 2.3	Clayey SILT light grey with stones
TP15	0 - 2.5	FILL(brick, coulders, concrete, silt, clay) odour at 1.75m
	0 - 0.5	FILL(brick, concrete, gravel, sand)
TP16	0.5 - 1.10	Brown sandy SILT fill with stones
	1.10 - 2.10	black clayey SILT, moist
TP17	0 - 1.10	crushed stone, grey, damp, bedrock
TP18	0 - 0.7	FILL(brick, concrete, stone, silt) damp
	0.7 - 1.2	Brown silty CLAY with grey seams
TP19	0 - 0.5	FILL(brick, concrete, stone, silt) damp
	0.5 - 0.9	Brown fine SAND, damp

Appendix B: Summary of Test Pit Observations

Test Pit I.D.	Interval Depth (mbgs)	Soils Description and Comments
TP20	0 - 0.4 0.4 - 1.6	GRAVEL FILL(gravel, silt, boulders) black seam at 0.6m
TP21	0 - 0.8 0.8 - 1.1	Grey silty CLAY with gravel Black silty CLAY
TP22	0 - 1.0	FILL(silt, gravel, sand) just below surface brown staining followed by black staining strong odour. Bedrock at 1.0m
TP23	0 - 1.8	FILL(silt, gravel, stone, sand) Black staining just below surface
TD0.4	0 - 3.3	FILL(boulders, sand, silt, black stringy material) black stains 3.0-3.3
TP24	3.3 - 4.5	Grey clayey SILT with boulders damp
TDOE	0 - 2.3	FILL(wood, boulders, brick, silt, sand)
TP25	2.3 - 3.5	Grey clayey SILTwith boulders. Black staining at 2.5m
TDO	0 - 2.7	FILL(wood, boulders, silt, sand, brick)
TP26	2.7 - 3.8	Grey/brown clayey SILT with boulders damp/dry
TD07	0 - 2.4	FILL(wood, brick, boulders, silt, sand)
TP27	2.4 - 3.2	Grey/brown clayey SILT with layer of fine sand
TDOG	0 - 1.9	Sandy SILT with organic layer and boulders
TP28	1.9 - 2.5	Grey clayey SILT water at 1.9m
TDOG	0 - 1.6	Silty SAND with boulders thin layer of grey clay ontop of bedrock
TP29	0.7 - 1.0	Brown sand with stones , moist- sampled between 0.5 - 0.8mbgs
TP30	0 - 2.0	FILL(brick, wood, concrete, asphalt) black staining at 1.0m
	0 - 0.8	FILL(silt, sand, boulders, brick)
TP31	0.8 - 1.6	Silty CLAY black underneath asphalt layer
	0.1-1.0	Brown, medium coarse with gravel and cobble, no odour, dry
TP225	1.0-2.0	Dark brown, fine to medium coarse, compacted, moist, no odour
	2 - 2.85	Brown to grey clay with limestone shards
	0-0.9	Brown, medium coarse, moist, no odour
TP227	0.9-1.7	Brown, medium coarse, sticky with some clay, limestone shards, and gravel. Wet. No odour
	0 - 1	Brown medium coarse, fill, railroad tie, damp, no odour
TP229	1 - 2	Brown medium coarse, mixed fill, damp, no odour
	2 - 3.05	Brown, fine to medium coarse, moist
	0 - 1.1	Light brown, medium coarse mixed fill, trace brick. Damp and no odour
TP230	1.1 - 2.2	Grey/brown medium coarse with clay and cobbles, damp and no odour
	2.2 - 3.3	Grey clay with gravel and limestone shards, wet
	0.2-1.2	Light brown, mottled, damp, no odour
TP231	1.2-2.2	Brown medium course fill, trace brick, damp, no odour
	2.2-3.2	Grey clay with gravel
TDOOS	0 - 1.1	Brown medium to coarse, moist, no odour
TP233	1.1 - 2.2	Grey and brown clay. Saturated at bottom. No odour
	0.1-1.1	Medium brown with fill, some rotted wood, debris, dry, no odour
TP236	1.1-2.1	Medium dark brown, with fill, dry, no odour
	2.1-3.3	Grey/brown clay, damp

APPENDIX C

Certificates of Analysis

The following laboratory reports have been received from AGAT Laboratories:

Phase Two ESA Analyses:

- AGAT Work Order #22P980724, Project #220509, dated December 23, 2022, presents the results of 20 soil samples collected on December 13, 2023.
- AGAT Work Order #22P983244, Project #220509, dated January 9, 2023, presents the results of 8 soil samples collected on December 13, 2023.
- AGAT Work Order #22P983391, Project #220509, dated January 16, 2023, presents the results of 17 soil samples collected on December 22, 2023.
- AGAT Work Order #22T982756, Project #220509, dated January 17, 2023, presents the results of 7 soil samples collected on December 19, 2023.
- AGAT Work Order #22T983450, Project #220509, dated January 17, 2023, presents the result of 1 soil sample collected on December 15, 2023.
- AGAT Work Order #22T000256, Project #220509, dated March 24, 2023, presents the results of 7 soil samples collected on December 19, 2023.
- AGAT Work Order #22P919873, Project #220509, dated July 20, 2022, presents the results of 9 groundwater samples collected on July 12, 2023.
- AGAT Work Order #2P920496, Project #220509, dated July 25, 2022, presents the results of 9 groundwater samples collected on July 13, 2022.
- AGAT Work Order #22P921159, Project #220509, dated July 25, 2022, presents the results of 7 groundwater samples collected on July 14, 2023.
- AGAT Work Order #23P990075, Project #220509, dated January 31, 2023, presents the results of 8 groundwater samples collected on January 19, 2023.
- AGAT Work Order #23P990590, Project #220509, dated February 2, 2023, presents the results of 8 groundwater samples collected on January 23, 2023.
- AGAT Work Order #23P990757, Project #220509, dated February 2, 2023, presents the results of 8 groundwater samples collected on January 23, 2023.
- AGAT Work Order #23P991368, Project #220509, dated February 17, 2023, presents the results of 10 groundwater samples collected on January 24, 2023.

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

CLIENT NAME: BLUMETRIC ENVIRONMENTAL INC.

4 Cataraqui Street Kingston, ON K7K1Z7 (613) 531-2725

ATTENTION TO: Paul Bandler

PROJECT: 220509-00 AGAT WORK ORDER: 22P919873

TRACE ORGANICS REVIEWED BY: Neli Popnikolova, Senior Chemist WATER ANALYSIS REVIEWED BY: Nivine Basily, Inorganics Report Writer

DATE REPORTED: Jul 20, 2022

PAGES (INCLUDING COVER): 29 VERSION*: 1

Should you require any information regarding this analysis please contact your client services representative at (905) 712-5100

*Notes	

Disclaimer:

- All work conducted herein has been done using accepted standard protocols, and generally accepted practices and methods. AGAT test methods may
 incorporate modifications from the specified reference methods to improve performance.
- All samples will be disposed of within 30 days after receipt unless a Long Term Storage Agreement is signed and returned. Some specialty analysis may
 be exempt, please contact your Client Project Manager for details.
- AGAT's liability in connection with any delay, performance or non-performance of these services is only to the Client and does not extend to any other
 third party. Unless expressly agreed otherwise in writing, AGAT's liability is limited to the actual cost of the specific analysis or analyses included in the
 services.
- This Certificate shall not be reproduced except in full, without the written approval of the laboratory.
- The test results reported herewith relate only to the samples as received by the laboratory.
- Application of guidelines is provided "as is" without warranty of any kind, either expressed or implied, including, but not limited to, warranties of
 merchantability, fitness for a particular purpose, or non-infringement. AGAT assumes no responsibility for any errors or omissions in the guidelines
 contained in this document.
- All reportable information as specified by ISO/IEC 17025:2017 is available from AGAT Laboratories upon request.

AGAT Laboratories (V1)

Page 1 of 29

Member of: Association of Professional Engineers and Geoscientists of Alberta (APEGA)

Western Enviro-Agricultural Laboratory Association (WEALA) Environmental Services Association of Alberta (ESAA) AGAT Laboratories is accredited to ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA) and/or Standards Council of Canada (SCC) for specific tests listed on the scope of accreditation. AGAT Laboratories (Mississauga) is also accredited by the Canadian Association for Laboratory Accreditation Inc. (CALA) for specific drinking water tests. Accreditations are location and parameter specific. A complete listing of parameters for each location is available from www.cala.ca and/or www.scc.ca. The tests in this report may not necessarily be included in the scope of accreditation. Measurement Uncertainty is not taken into consideration when stating conformity with a specified requirement.

SAMPLING SITE:

Certificate of Analysis

AGAT WORK ORDER: 22P919873

PROJECT: 220509-00

ATTENTION TO: Paul Bandler

SAMPLED BY:

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

O. Reg. 153(511) - BNA (full) + PAHs (Water)

DATE RECEIVED: 2022-07-13								[DATE REPORTE	ED: 2022-07-20	
		DATE S	PLE TYPE: SAMPLED:	MW146 Water 2022-07-12 16:21	MW152 Water 2022-07-12 16:28	MW82 Water 2022-07-12 14:42	MW136 Water 2022-07-12 15:10	MW80 Water 2022-07-12 09:30	MW78 Water 2022-07-12 10:36	MW22 Water 2022-07-12 12:00	MW25 Water 2022-07-12 11:21
Parameter	Unit	G/S 7	RDL 0.20	4091810 <0.20	4091836 <0.20	4091837 <0.20	4091838 <0.20	4091839 <0.20	4091840 <0.20	4091841 <0.20	4091842 <0.20
Naphthalene	μg/L	1		<0.20							
Acenaphthona	μg/L	17	0.20 0.20	<0.20	<0.20 <0.20	<0.20 <0.20	<0.20 <0.20	<0.20 <0.20	<0.20 <0.20	<0.20 <0.20	<0.20 <0.20
Acenaphthene	μg/L										
Fluorene	μg/L	290	0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20
Phenanthrene	μg/L	380	0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
Anthracene	μg/L	1	0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
Fluoranthene	μg/L	44	0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20
Pyrene	μg/L	5.7	0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20
Benzo(a)anthracene	μg/L	1.8	0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20
Chrysene	μg/L	0.7	0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
Benzo(b)fluoranthene	μg/L	0.75	0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
Benzo(k)fluoranthene	μg/L	0.4	0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
Benzo(a)pyrene	μg/L	0.81	0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Indeno(1,2,3-cd)pyrene	μg/L	0.2	0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20
Dibenz(a,h)anthracene	μg/L	0.4	0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20
Benzo(g,h,i)perylene	μg/L	0.2	0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20
Phenol	μg/L	9600	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Bis(2-chloroethyl)ether	μg/L	240000	0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
2-Chlorophenol	μg/L	2600	0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
o-Cresol	μg/L		0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Bis(2-chloroisopropyl)ether	μg/L	20000	0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
m&p-Cresol	μg/L		0.6	<0.6	<0.6	<0.6	<0.6	<0.6	<0.6	<0.6	<0.6
2,4-Dimethylphenol	μg/L	31000	0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
2,4-Dichlorophenol	μg/L	3700	0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3
1,2,4-Trichlorobenzene	μg/L		0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
p-Chloroaniline	μg/L	320	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
2-and 1-methyl Naphthalene	μg/L	1500	0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20
2,4,6-Trichlorophenol	μg/L	180	0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20
2,4,5-Trichlorophenol	μg/L	1300	0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20

Certified By:

NPoprukolof

Certificate of Analysis

AGAT WORK ORDER: 22P919873

PROJECT: 220509-00

ATTENTION TO: Paul Bandler

SAMPLED BY:

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

SAMPLING SITE:

O. Reg. 153(511) - BNA (full) + PAHs (Water)

DATE RECEIVED: 2022-07-13								[DATE REPORTE	D: 2022-07-20	
		SAMPLE DES	CRIPTION:	MW146	MW152	MW82	MW136	MW80	MW78	MW22	MW25
		SAMI	PLE TYPE:	Water							
		DATES	SAMPLED:	2022-07-12 16:21	2022-07-12 16:28	2022-07-12 14:42	2022-07-12 15:10	2022-07-12 09:30	2022-07-12 10:36	2022-07-12 12:00	2022-07-12 11:21
Parameter	Unit	G/S	RDL	4091810	4091836	4091837	4091838	4091839	4091840	4091841	4091842
1,1'-Biphenyl	μg/L	1000	0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50
Dimethyl phthalate	μg/L	30	0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	< 0.50
2,4 and 2,6-Dinitrotoluene	μg/L	2300	0.50	< 0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	< 0.50
Diethyl phthalate	μg/L	30	0.50	< 0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	< 0.50
Pentachlorophenol	μg/L	50	0.50	<0.50	<0.50	< 0.50	< 0.50	<0.50	< 0.50	< 0.50	< 0.50
3,3'-dichlorobenzidine	μg/L	500	0.50	<0.50	< 0.50	<0.50	<0.50	<0.50	<0.50	<0.50	< 0.50
Bis(2-Ethylhexyl)phthalate	μg/L	30	0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	< 0.50
2,4-Dinitrophenol	μg/L	9000	10	<10	<10	<10	<10	<10	<10	<10	<10
Sediment				TRACE							
Surrogate	Unit	Acceptab	le Limits								
2-Fluorophenol	%	50-1	140	85	85	74	96	74	74	74	74
phenol-d6 surrogate	%	50-1	40	79	79	79	85	96	76	79	84
2,4,6-Tribromophenol	%	50-1	140	85	85	85	84	85	85	85	79
Chrysene-d12	%	50-1	40	84	84	84	67	84	98	84	84

Certified By:

Certificate of Analysis

AGAT WORK ORDER: 22P919873

PROJECT: 220509-00

ATTENTION TO: Paul Bandler

SAMPLED BY:

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

SAMPLING SITE:

O Reg 153(511) - RNA (full) + PAHs (Water)

			O.	Reg. 153(511) - BNA (full) + PAHs (Water)	
DATE RECEIVED: 2022-07-13					DATE RE	EPORTED: 2022-07
			CRIPTION: PLE TYPE: SAMPLED:	MW24 Water 2022-07-12 10:30		
Parameter	Unit	G/S	RDL	4091843		
Naphthalene	μg/L	7	0.20	<0.20		
Acenaphthylene	μg/L	1	0.20	<0.20		
Acenaphthene	μg/L	17	0.20	<0.20		
Fluorene	μg/L	290	0.20	<0.20		
Phenanthrene	μg/L	380	0.10	<0.10		
Anthracene	μg/L	1	0.10	<0.10		
-luoranthene	μg/L	44	0.20	<0.20		
Pyrene	μg/L	5.7	0.20	<0.20		
Benzo(a)anthracene	μg/L	1.8	0.20	<0.20		
Chrysene	μg/L	0.7	0.10	<0.10		
enzo(b)fluoranthene	μg/L	0.75	0.10	<0.10		
Benzo(k)fluoranthene	μg/L	0.4	0.10	<0.10		
Benzo(a)pyrene	μg/L	0.81	0.01	<0.01		
ndeno(1,2,3-cd)pyrene	μg/L	0.2	0.20	<0.20		
Dibenz(a,h)anthracene	μg/L	0.4	0.20	<0.20		
Benzo(g,h,i)perylene	μg/L	0.2	0.20	<0.20		
Phenol	μg/L	9600	1.0	<1.0		
Bis(2-chloroethyl)ether	μg/L	240000	0.5	<0.5		
2-Chlorophenol	μg/L	2600	0.5	<0.5		
-Cresol	μg/L		0.5	<0.5		
Bis(2-chloroisopropyl)ether	μg/L	20000	0.5	<0.5		
n&p-Cresol	μg/L		0.6	<0.6		
,4-Dimethylphenol	μg/L	31000	0.5	<0.5		
2,4-Dichlorophenol	μg/L	3700	0.3	< 0.3		
,2,4-Trichlorobenzene	μg/L		0.5	<0.5		
o-Chloroaniline	μg/L	320	1.0	<1.0		
2-and 1-methyl Naphthalene	μg/L	1500	0.20	<0.20		
2,4,6-Trichlorophenol	μg/L	180	0.20	<0.20		
2,4,5-Trichlorophenol	μg/L	1300	0.20	<0.20		

Certified By:

Certificate of Analysis

AGAT WORK ORDER: 22P919873

PROJECT: 220509-00

ATTENTION TO: Paul Bandler

SAMPLED BY:

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

O. Reg. 153(511) - BNA (full) + PAHs (Water)

			O.	Reg. 153(3	orr) - BNA (full) + PARS (water)	
DATE RECEIVED: 2022-07-13						DATE REPORTED: 2022-07-2
		SAMPLE DES	CRIPTION:	MW24		
		SAM	PLE TYPE:	Water		
		DATE	SAMPLED:	2022-07-12 10:30		
Parameter	Unit	G/S	RDL	4091843		
1,1'-Biphenyl	μg/L	1000	0.50	<0.50		
Dimethyl phthalate	μg/L	30	0.50	< 0.50		
2,4 and 2,6-Dinitrotoluene	μg/L	2300	0.50	< 0.50		
Diethyl phthalate	μg/L	30	0.50	< 0.50		
Pentachlorophenol	μg/L	50	0.50	<0.50		
3,3'-dichlorobenzidine	μg/L	500	0.50	< 0.50		
Bis(2-Ethylhexyl)phthalate	μg/L	30	0.50	<0.50		
2,4-Dinitrophenol	μg/L	9000	10	<10		
Sediment				TRACE		
Surrogate	Unit	Acceptab	le Limits			
2-Fluorophenol	%	50-	140	74		
phenol-d6 surrogate	%	50-	140	69		
2,4,6-Tribromophenol	%	50-	140	85		
Chrysene-d12	%	50-	140	84		

Comments:

SAMPLING SITE:

RDL - Reported Detection Limit; G / S - Guideline / Standard: Refers to Table 7: Generic Site Condition Standards for Shallow Soils in a Non-Potable Ground Water Condition - Non-Potable Ground Water - All Types of Property Uses - Coarse Textured Soils

Guideline values are for general reference only. The guidelines provided may or may not be relevant for the intended use. Refer directly to the applicable standard for regulatory interpretation.

4091810-4091843 To meet the MOE Reporting limits the sample extract was analysed using two separate GC/MS methods. The full scan BNA method is capable of detecting most of the compounds at the RDLs except for several PAHs. The PAHs were analysed using a SIM mode GC/MS method.

Note: The result for Benzo(b)Fluoranthene is the total of the Benzo(b)&(j)Fluoranthene isomers because the isomers co-elute on the GC column.

Sediment parameter is comment only based on visual inspection of the sample prior to extraction and is not an accredited test.

Analysis performed at AGAT Toronto (unless marked by *)

Certified By:

NPoprukolof

Certificate of Analysis

AGAT WORK ORDER: 22P919873

PROJECT: 220509-00

ATTENTION TO: Paul Bandler

SAMPLED BY:

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

SAMPLING SITE:

				O. Reg	. 153(511) -	PCBs (Wat	ter)				
DATE RECEIVED: 2022-07-13								ı	DATE REPORTI	ED: 2022-07-20	
_		DATE	PLE TYPE: SAMPLED:	MW146 Water 2022-07-12 16:21	MW152 Water 2022-07-12 16:28	MW82 Water 2022-07-12 14:42	MW136 Water 2022-07-12 15:10	MW80 Water 2022-07-12 09:30	MW78 Water 2022-07-12 10:36	MW22 Water 2022-07-12 12:00	MW25 Water 2022-07-12 11:21
Parameter	Unit	G/S	RDL	4091810	4091836	4091837	4091838	4091839	4091840	4091841	4091842
Polychlorinated Biphenyls	μg/L	0.2	0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Surrogate	Unit	Acceptab	le Limits								
Decachlorobiphenyl	%	60-	40	97	101	81	76	77	104	74	88
		_	CRIPTION: PLE TYPE: SAMPLED:	MW24 Water 2022-07-12 10:30							
Parameter	Unit	G/S	RDL	4091843							
Polychlorinated Biphenyls	μg/L	0.2	0.1	<0.1							
Surrogate	Unit	Acceptab	le Limits								
Decachlorobiphenyl	%	60-	40	89							

Comments:

RDL - Reported Detection Limit; G / S - Guideline / Standard: Refers to Table 7: Generic Site Condition Standards for Shallow Soils in a Non-Potable Ground Water Condition - Non-Potable Ground

Water - All Types of Property Uses - Coarse Textured Soils

Guideline values are for general reference only. The guidelines provided may or may not be relevant for the intended use. Refer directly to the applicable standard for regulatory interpretation.

4091810-4091843 PCB total is a calculated parameter. The calculated value is the sum of Aroclor 1242, Aroclor 1248, Aroclor 1254 and Aroclor 1260.

The calculated parameter is non-accredited. The parameters that are components of the calculation are accredited.

Analysis performed at AGAT Toronto (unless marked by *)

Certified By:

SAMPLING SITE:

Certificate of Analysis

AGAT WORK ORDER: 22P919873

PROJECT: 220509-00

ATTENTION TO: Paul Bandler

SAMPLED BY:

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

O. Reg. 153(511) - PHCs F1 - F4 (with PAHs and VOC) (Water)

DATE RECEIVED: 2022-07-13									DATE REPORTI	ED: 2022-07-20	
	S	SAMPLE DESCRII SAMPLE DATE SAM	TYPE:	MW146 Water 2022-07-12 16:21	MW152 Water 2022-07-12 16:28	MW82 Water 2022-07-12 14:42	MW136 Water 2022-07-12 15:10	MW80 Water 2022-07-12 09:30	MW78 Water 2022-07-12 10:36	MW22 Water 2022-07-12 12:00	MW25 Water 2022-07-12 11:21
Parameter	Unit	G/S I	RDL	4091810	4091836	4091837	4091838	4091839	4091840	4091841	4091842
F1 (C6-C10)	μg/L		25	<25	<25	<25	<25	<25	<25	86	218
F1 (C6 to C10) minus BTEX	μg/L	420	25	<25	<25	<25	<25	<25	<25	56	128
F2 (C10 to C16)	μg/L	150	100	100	<100	<100	<100	<100	<100	<100	<100
F2 (C10 to C16) minus Naphthalene	μg/L		100	100	<100	<100	<100	<100	<100	<100	<100
F3 (C16 to C34)	μg/L	500	100	<100	<100	<100	<100	<100	<100	<100	<100
F3 (C16 to C34) minus PAHs	μg/L		100	<100	<100	<100	<100	<100	<100	<100	<100
F4 (C34 to C50)	μg/L	500	100	<100	<100	<100	<100	<100	<100	<100	<100
Gravimetric Heavy Hydrocarbons	μg/L		500	NA	NA	NA	NA	NA	NA	NA	NA
Sediment				NO	NO	NO	NO	NO	NO	NO	NO
Surrogate	Unit	Acceptable L	imits								
Toluene-d8	%	50-140		106	99	104	105	100	101	108	99
Terphenyl	% Recovery	60-140		69	94	81	74	88	93	77	87

Certified By:

MPoprukolof

Certificate of Analysis

AGAT WORK ORDER: 22P919873

PROJECT: 220509-00

ATTENTION TO: Paul Bandler

SAMPLED BY:

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

O. Reg. 153(511) - PHCs F1 - F4 (with PAHs and VOC) (Water)

			- (- /	(
DATE RECEIVED: 2022-07-13				DATE REPORTED: 2022-07-20
	S	AMPLE DESCRIPTION:		
		SAMPLE TYPE: DATE SAMPLED:	Water 2022-07-12 10:30	
Parameter	Unit	G/S RDL	4091843	
F1 (C6-C10)	μg/L	25	33	
F1 (C6 to C10) minus BTEX	μg/L	420 25	<25	
F2 (C10 to C16)	μg/L	150 100	<100	
F2 (C10 to C16) minus Naphthalene	μg/L	100	<100	
F3 (C16 to C34)	μg/L	500 100	<100	
F3 (C16 to C34) minus PAHs	μg/L	100	<100	
F4 (C34 to C50)	μg/L	500 100	<100	
Gravimetric Heavy Hydrocarbons	μg/L	500	NA	
Sediment			NO	
Surrogate	Unit	Acceptable Limits		
Toluene-d8	%	50-140	102	
Terphenyl	% Recovery	60-140	94	

Comments:

RDL - Reported Detection Limit: G / S - Guideline / Standard: Refers to Table 7: Generic Site Condition Standards for Shallow Soils in a Non-Potable Ground Water Condition - Non-Potable Ground Water - All Types of Property Uses - Coarse Textured Soils

Guideline values are for general reference only. The guidelines provided may or may not be relevant for the intended use. Refer directly to the applicable standard for regulatory interpretation.

SAMPLING SITE:

4091810-4091843 The C6-C10 fraction is calculated using toluene response factor.

C6-C10 (F1 minus BTEX) is a calculated parameter. The calculated value is F1 minus BTEX. The calculated parameter is non-accredited. The parameters that are components of the calculation are accredited.

The C10 - C16, C16 - C34, and C34 - C50 fractions are calculated using the average response factor for n-C10, n-C16, and n-C34.

Gravimetric Heavy Hydrocarbons are not included in the Total C16-C50 and are only determined if the chromatogram of the C34 - C50 hydrocarbons indicates that hydrocarbons >C50 are present. The chromatogram has returned to baseline by the retention time of nC50.

Total C6 - C50 results are corrected for BTEX and PAH contributions.

C>10 – C16 (F2- Naphthalene) is a calculated parameter. The calculated value is F2 - Naphthalene.

C>16 - C34 (F3-PAH) is a calculated parameter. The calculated value is F3-PAH (PAH: sum of Phenanthrene, Benzo(a)anthracene, Benzo(b)fluoranthene, Benzo(k)fluoranthene, Benzo(a)pyrene, Fluoranthene, Dibenzo(a,h)anthracene, Indeno(1,2,3-c,d)pyrene and Pyrene).

This method complies with the Reference Method for the CWS PHC and is validated for use in the laboratory.

nC10, nC16 and nC34 response factors are within 10% of their average.

C50 response factor is within 70% of nC10 + nC16 + nC34 average.

Linearity is within 15%.

Extraction and holding times were met for this sample.

Sediment parameter is comment only based on visual inspection of the sample prior to extraction and is not an accredited test.

Analysis performed at AGAT Toronto (unless marked by *)

Certified By:

SAMPLING SITE:

Certificate of Analysis

AGAT WORK ORDER: 22P919873

PROJECT: 220509-00

ATTENTION TO: Paul Bandler

SAMPLED BY:

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

O. Reg. 153(511) - VOCs (with PHC) (Water)

DATE RECEIVED: 2022-07-13								[DATE REPORTE	ED: 2022-07-20	
		SAMPLE DESC	CRIPTION:	MW146	MW152	MW82	MW136	MW80	MW78	MW22	MW25
		_	PLE TYPE: SAMPLED:	Water 2022-07-12	Water 2022-07-12	Water 2022-07-12	Water 2022-07-12	Water 2022-07-12	Water 2022-07-12	Water 2022-07-12	Water 2022-07-12
Parameter	Unit	G/S	RDL	16:21 4091810	16:28 4091836	14:42 4091837	15:10 4091838	09:30 4091839	10:36 4091840	12:00 4091841	11:21 4091842
Dichlorodifluoromethane	µg/L	3500	0.40	<0.40	<0.40	<0.40	<0.40	<0.40	<0.40	<0.40	<0.40
Vinyl Chloride	μg/L	0.5	0.17	<0.17	<0.17	<0.17	<0.17	<0.17	<0.17	<0.17	<0.17
Bromomethane	μg/L	0.89	0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20
Trichlorofluoromethane	μg/L	2000	0.40	< 0.40	<0.40	<0.40	<0.40	< 0.40	<0.40	<0.40	<0.40
Acetone	μg/L	100000	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
1,1-Dichloroethylene	μg/L	0.5	0.30	< 0.30	< 0.30	<0.30	< 0.30	< 0.30	< 0.30	< 0.30	< 0.30
Methylene Chloride	μg/L	26	0.30	<0.30	< 0.30	<0.30	<0.30	<0.30	<0.30	<0.30	< 0.30
trans- 1,2-Dichloroethylene	μg/L	1.6	0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20
Methyl tert-butyl ether	μg/L	15	0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20
1,1-Dichloroethane	μg/L	11	0.30	<0.30	<0.30	<0.30	<0.30	< 0.30	< 0.30	< 0.30	< 0.30
Methyl Ethyl Ketone	μg/L	21000	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
cis- 1,2-Dichloroethylene	μg/L	1.6	0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20
Chloroform	μg/L	2	0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20
1,2-Dichloroethane	μg/L	0.5	0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20
1,1,1-Trichloroethane	μg/L	23	0.30	<0.30	<0.30	<0.30	< 0.30	< 0.30	<0.30	< 0.30	< 0.30
Carbon Tetrachloride	μg/L	0.2	0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20
Benzene	μg/L	0.5	0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	24.8	71.3
1,2-Dichloropropane	μg/L	0.58	0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20
Trichloroethylene	μg/L	0.5	0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20
Bromodichloromethane	μg/L	67000	0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20
Methyl Isobutyl Ketone	μg/L	5200	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
1,1,2-Trichloroethane	μg/L	0.5	0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20
Toluene	μg/L	320	0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	1.31	4.51
Dibromochloromethane	μg/L	65000	0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
Ethylene Dibromide	μg/L	0.2	0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
Tetrachloroethylene	μg/L	0.5	0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20
1,1,1,2-Tetrachloroethane	μg/L	1.1	0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
Chlorobenzene	μg/L	140	0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
Ethylbenzene	μg/L	54	0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	0.31	1.65

Certified By:

NPopukolof

Certificate of Analysis

AGAT WORK ORDER: 22P919873

PROJECT: 220509-00

ATTENTION TO: Paul Bandler

SAMPLED BY:

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

CLIENT NAME: BLUMETRIC ENVIRONMENTAL INC.

SAMPLING SITE:

O. Reg. 153(511) - VOCs (with PHC) (Water)

DATE RECEIVED: 2022-07-13								DATE REPORTED: 2022-07-20			
	S	AMPLE DES	CRIPTION:	MW146	MW152	MW82	MW136	MW80	MW78	MW22	MW25
		SAM	PLE TYPE:	Water	Water	Water	Water	Water	Water	Water	Water
		DATE	SAMPLED:	2022-07-12 16:21	2022-07-12 16:28	2022-07-12 14:42	2022-07-12 15:10	2022-07-12 09:30	2022-07-12 10:36	2022-07-12 12:00	2022-07-12 11:21
Parameter	Unit	G/S	RDL	4091810	4091836	4091837	4091838	4091839	4091840	4091841	4091842
m & p-Xylene	μg/L		0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	3.08	10.8
Bromoform	μg/L	5	0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
Styrene	μg/L	43	0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
1,1,2,2-Tetrachloroethane	μg/L	0.5	0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
o-Xylene	μg/L		0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	0.24	2.02
1,3-Dichlorobenzene	μg/L	7600	0.10	<0.10	<0.10	< 0.10	<0.10	<0.10	<0.10	<0.10	<0.10
1,4-Dichlorobenzene	μg/L	0.5	0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
1,2-Dichlorobenzene	μg/L	150	0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
1,3-Dichloropropene	μg/L	0.5	0.30	< 0.30	<0.30	< 0.30	< 0.30	< 0.30	< 0.30	< 0.30	< 0.30
Xylenes (Total)	μg/L	72	0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	3.32	12.8
n-Hexane	μg/L	5	0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20
Surrogate	Unit	Acceptab	le Limits								
Toluene-d8	% Recovery	50-	140	106	99	104	105	100	101	108	99
4-Bromofluorobenzene	% Recovery	50-	140	80	78	82	82	79	77	80	86

Certified By:

MPoprukolof

Certificate of Analysis

AGAT WORK ORDER: 22P919873

PROJECT: 220509-00

ATTENTION TO: Paul Bandler

SAMPLED BY:

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

SAMPLING SITE:

O Reg. 153(511) - VOCs (with PHC) (Water)

O. Reg. 153(511) - VOCs (with PHC) (water)										
DATE RECEIVED: 2022-07-13						DATE REPORTED: 2022-07-20				
			CRIPTION: PLE TYPE: SAMPLED:	MW24 Water 2022-07-12 10:30						
Parameter	Unit	G/S	RDL	4091843						
Dichlorodifluoromethane	μg/L	3500	0.40	<0.40						
Vinyl Chloride	μg/L	0.5	0.17	<0.17						
Bromomethane	μg/L	0.89	0.20	<0.20						
Trichlorofluoromethane	μg/L	2000	0.40	< 0.40						
Acetone	μg/L	100000	1.0	<1.0						
1,1-Dichloroethylene	μg/L	0.5	0.30	< 0.30						
Methylene Chloride	μg/L	26	0.30	<0.30						
trans- 1,2-Dichloroethylene	μg/L	1.6	0.20	<0.20						
Methyl tert-butyl ether	μg/L	15	0.20	<0.20						
1,1-Dichloroethane	μg/L	11	0.30	<0.30						
Methyl Ethyl Ketone	μg/L	21000	1.0	<1.0						
cis- 1,2-Dichloroethylene	μg/L	1.6	0.20	<0.20						
Chloroform	μg/L	2	0.20	<0.20						
1,2-Dichloroethane	μg/L	0.5	0.20	<0.20						
1,1,1-Trichloroethane	μg/L	23	0.30	< 0.30						
Carbon Tetrachloride	μg/L	0.2	0.20	<0.20						
Benzene	μg/L	0.5	0.20	4.34						
1,2-Dichloropropane	μg/L	0.58	0.20	<0.20						
Trichloroethylene	μg/L	0.5	0.20	<0.20						
Bromodichloromethane	μg/L	67000	0.20	<0.20						
Methyl Isobutyl Ketone	μg/L	5200	1.0	<1.0						
1,1,2-Trichloroethane	μg/L	0.5	0.20	<0.20						
Toluene	μg/L	320	0.20	0.52						
Dibromochloromethane	μg/L	65000	0.10	<0.10						
Ethylene Dibromide	μg/L	0.2	0.10	<0.10						
Tetrachloroethylene	μg/L	0.5	0.20	<0.20						
1,1,1,2-Tetrachloroethane	μg/L	1.1	0.10	<0.10						
Chlorobenzene	μg/L	140	0.10	0.99						
Ethylbenzene	μg/L	54	0.10	0.39						

Certified By:

Certificate of Analysis

AGAT WORK ORDER: 22P919873

PROJECT: 220509-00

ATTENTION TO: Paul Bandler

SAMPLED BY:

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

O.	Rea	153(511)	- VOCs	(with PHC)	(Water)
Ο.	IXCU.	1000111	- 1003		(v v alci /

			U	. neg. 155(511) - VOCS (WILLI PHC) (Waler)	
DATE RECEIVED: 2022-07-13					DAT	E REPORTED: 2022-07-20
	SA	AMPLE DES	CRIPTION: PLE TYPE:	MW24 Water		
			SAMPLED:	2022-07-12 10:30		
Parameter	Unit	G/S	RDL	4091843		
n & p-Xylene	μg/L		0.20	3.70		
Bromoform	μg/L	5	0.10	<0.10		
Styrene	μg/L	43	0.10	<0.10		
1,1,2,2-Tetrachloroethane	μg/L	0.5	0.10	<0.10		
o-Xylene	μg/L		0.10	1.20		
1,3-Dichlorobenzene	μg/L	7600	0.10	<0.10		
1,4-Dichlorobenzene	μg/L	0.5	0.10	<0.10		
1,2-Dichlorobenzene	μg/L	150	0.10	<0.10		
1,3-Dichloropropene	μg/L	0.5	0.30	< 0.30		
Kylenes (Total)	μg/L	72	0.20	4.90		
n-Hexane	μg/L	5	0.20	<0.20		
Surrogate	Unit	Acceptab	ole Limits			
Foluene-d8	% Recovery	50-	140	102		
1-Bromofluorobenzene	% Recovery	50-	140	90		

Comments:

SAMPLING SITE:

RDL - Reported Detection Limit; G / S - Guideline / Standard: Refers to Table 7: Generic Site Condition Standards for Shallow Soils in a Non-Potable Ground Water Condition - Non-Potable Ground Water - All Types of Property Uses - Coarse Textured Soils

Guideline values are for general reference only. The guidelines provided may or may not be relevant for the intended use. Refer directly to the applicable standard for regulatory interpretation.

4091810-4091843 Xylenes total is a calculated parameter. The calculated value is the sum of m&p-Xylene and o-Xylene.

1,3-Dichloropropene total is a calculated parameter. The calculated value is the sum of Cis-1,3-Dichloropropene and Trans-1,3-Dichloropropene.

The calculated parameter is non-accredited. The parameters that are components of the calculation are accredited.

Analysis performed at AGAT Toronto (unless marked by *)

Certified By:

NPopukolof

AGAT WORK ORDER: 22P919873

PROJECT: 220509-00

ATTENTION TO: Paul Bandler

SAMPLED BY:

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

CLIENT NAME: BLUMETRIC ENVIRONMENTAL INC.

SAMPLING SITE:

O. Reg. 153(511) - Metals & Inorganics (Water)

DATE RECEIVED: 2022-07-13									DATE REPORTI	ED: 2022-07-20	
	;	_	RIPTION: LE TYPE: AMPLED:	MW146 Water 2022-07-12 16:21	MW152 Water 2022-07-12 16:28	MW82 Water 2022-07-12 14:42	MW136 Water 2022-07-12 15:10	MW80 Water 2022-07-12 09:30	MW78 Water 2022-07-12 10:36	MW22 Water 2022-07-12 12:00	
Parameter	Unit	G/S	RDL	4091810	4091836	4091837	4091838	4091839	4091840	4091841	
Dissolved Antimony	μg/L	16000	1.0	<1.0	<1.0	<1.0	<1.0	2.1	<1.0	<1.0	
Dissolved Arsenic	μg/L	1500	1.0	2.2	<1.0	3.5	<1.0	<1.0	<1.0	1.5	
Dissolved Barium	μg/L	23000	2.0	107	107	208	159	72.8	108	92.6	
Dissolved Beryllium	μg/L	53	0.50	< 0.50	< 0.50	<0.50	< 0.50	< 0.50	<0.50	<0.50	
Dissolved Boron	μg/L	36000	10.0	79.5	60.6	81.2	61.5	772	113	319	
Dissolved Cadmium	μg/L	2.1	0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	
Dissolved Chromium	μg/L	640	2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	5.3	
Dissolved Cobalt	μg/L	52	0.50	< 0.50	< 0.50	<0.50	0.55	1.08	<0.50	<0.50	
Dissolved Copper	μg/L	69	1.0	2.7	1.9	<1.0	<1.0	2.7	<1.0	<1.0	
Dissolved Lead	μg/L	20	0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	
Dissolved Molybdenum	μg/L	7300	0.50	1.23	0.72	1.23	4.89	20.0	<0.50	50.5	
Dissolved Nickel	μg/L	390	1.0	1.3	2.1	<1.0	1.4	2.4	<1.0	2.4	
Dissolved Selenium	μg/L	50	1.0	<1.0	1.6	<1.0	<1.0	<1.0	<1.0	<1.0	
Dissolved Silver	μg/L	1.2	0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	
Dissolved Thallium	μg/L	400	0.30	<0.30	<0.30	< 0.30	< 0.30	< 0.30	< 0.30	< 0.30	
Dissolved Uranium	μg/L	330	0.50	< 0.50	0.74	<0.50	0.64	<0.50	<0.50	<0.50	
Dissolved Vanadium	μg/L	200	0.40	<0.40	<0.40	< 0.40	< 0.40	< 0.40	0.43	0.43	
Dissolved Zinc	μg/L	890	5.0	<5.0	<5.0	<5.0	<5.0	6.7	<5.0	<5.0	
Mercury	μg/L	0.1	0.02	<0.02	<0.02	<0.02	<0.02	<0.02	< 0.02	<0.02	
Chromium VI	μg/L	110	2	<2	<2	<2	<2	<2	<2	<2	
Cyanide, WAD	μg/L	52	2	<2	<2	<2	<2	<2	<2	<2	
Dissolved Sodium	μg/L	1800000	500	210000	328000	150000	67700	41900	51900	84900	
Chloride	μg/L	1800000	100	400000	581000	362000	116000	48400	30000	275000	
Electrical Conductivity	uS/cm	NA	2	1870	2230	1830	1380	961	1120	1710	
рН	pH Units		NA	7.51	7.61	7.32	7.38	7.53	7.43	7.55	

AGAT WORK ORDER: 22P919873

PROJECT: 220509-00

ATTENTION TO: Paul Bandler

SAMPLED BY:

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

CLIENT NAME: BLUMETRIC ENVIRONMENTAL INC.

SAMPLING SITE:

O. Reg. 153(511) - Metals & Inorganics (Water) **DATE RECEIVED: 2022-07-13 DATE REPORTED: 2022-07-20** SAMPLE DESCRIPTION: MW25 MW24 **SAMPLE TYPE:** Water Water DATE SAMPLED: 2022-07-12 2022-07-12 10:30 11:21 **Parameter** Unit G/S **RDL** 4091842 **RDL** 4091843 Dissolved Antimony μg/L 16000 1.0 <1.0 1.0 <1.0 Dissolved Arsenic μg/L 1500 1.0 1.1 1.0 1.1 Dissolved Barium μg/L 23000 2.0 307 2.0 627 Dissolved Beryllium μg/L 0.50 < 0.50 53 0.50 < 0.50 Dissolved Boron μg/L 36000 10.0 1860 10.0 2950 Dissolved Cadmium μg/L 2.1 0.20 <0.20 0.20 < 0.20 Dissolved Chromium 2.0 2.0 < 2.0 µg/L 640 2.0 Dissolved Cobalt μg/L 52 0.50 < 0.50 0.50 < 0.50 Dissolved Copper μg/L 69 1.0 1.2 1.0 <1.0 < 0.50 Dissolved Lead μg/L 20 0.50 < 0.50 0.50 µg/L Dissolved Molybdenum 7300 0.50 6.45 0.50 1.33 Dissolved Nickel 390 μg/L 1.0 1.1 1.0 <1.0 Dissolved Selenium μg/L 50 1.0 2.2 1.0 4.5 Dissolved Silver μg/L 1.2 0.20 < 0.20 0.20 <0.20 Dissolved Thallium µg/L 400 0.30 < 0.30 0.30 < 0.30 Dissolved Uranium μg/L 330 0.50 < 0.50 0.50 < 0.50 Dissolved Vanadium μg/L 200 0.40 1.13 0.40 0.69 Dissolved Zinc 5.0 < 5.0 μg/L 890 < 5.0 5.0 Mercury μg/L 0.1 0.02 < 0.02 0.02 < 0.02 2 <2 Chromium VI μg/L 110 2 <2 52 <2 <2 Cyanide, WAD µg/L Dissolved Sodium 1800000 2500 1420000 10000 3360000 μg/L 1800000 122 Chloride μg/L 1210000 100 659000 Electrical Conductivity uS/cm NA 2 4160 2 2640 Ha pH Units NA 7.90 NA 7.54

AGAT WORK ORDER: 22P919873

PROJECT: 220509-00

ATTENTION TO: Paul Bandler

SAMPLED BY:

5835 COOPERS AVENUE

MISSISSAUGA, ONTARIO CANADA L4Z 1Y2

http://www.agatlabs.com

TEL (905)712-5100 FAX (905)712-5122

O. Reg. 153(511) - Metals & Inorganics (Water)

DATE RECEIVED: 2022-07-13 DATE REPORTED: 2022-07-20

Comments:

SAMPLING SITE:

RDL - Reported Detection Limit; G / S - Guideline / Standard: Refers to Table 7: Generic Site Condition Standards for Shallow Soils in a Non-Potable Ground Water Condition - Non-Potable Ground Water - All Types of Property Uses - Coarse Textured Soils

Guideline values are for general reference only. The guidelines provided may or may not be relevant for the intended use. Refer directly to the applicable standard for regulatory interpretation.

4091810-4091843 Metals analysis completed on a filtered sample.

CLIENT NAME: BLUMETRIC ENVIRONMENTAL INC.

Dilution required, RDL has been increased accordingly.

Analysis performed at AGAT Toronto (unless marked by *)

CHARTERED STORM CALE PROPERTY OF CHARTER DO CHARMST OF CHARMST OF CHARMST OF CHARMST OF CHARMST OF CHARLES OF

Exceedance Summary

AGAT WORK ORDER: 22P919873

PROJECT: 220509-00

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

CLIENT NAME: BLUMETRIC ENVIRONMENTAL INC.

ATTENTION TO: P	Paul Bandler
-----------------	--------------

SAMPLEID	SAMPLE TITLE	GUIDELINE	ANALYSIS PACKAGE	PARAMETER	UNIT	GUIDEVALUE	RESULT
4091841	MW22	ON T7 NPGW CT	O. Reg. 153(511) - PHCs F1 - F4 (with PAHs and VOC) (Water)	Benzene	μg/L	0.5	24.8
4091841	MW22	ON T7 NPGW CT	O. Reg. 153(511) - VOCs (with PHC) (Water)	Benzene	μg/L	0.5	24.8
4091842	MW25	ON T7 NPGW CT	O. Reg. 153(511) - PHCs F1 - F4 (with PAHs and VOC) (Water)	Benzene	μg/L	0.5	71.3
4091842	MW25	ON T7 NPGW CT	O. Reg. 153(511) - VOCs (with PHC) (Water)	Benzene	μg/L	0.5	71.3
4091843	MW24	ON T7 NPGW CT	O. Reg. 153(511) - Metals & Inorganics (Water)	Dissolved Sodium	μg/L	1800000	3360000
4091843	MW24	ON T7 NPGW CT	O. Reg. 153(511) - PHCs F1 - F4 (with PAHs and VOC) (Water)	Benzene	μg/L	0.5	4.34
4091843	MW24	ON T7 NPGW CT	O. Reg. 153(511) - VOCs (with PHC) (Water)	Benzene	μg/L	0.5	4.34

Quality Assurance

CLIENT NAME: BLUMETRIC ENVIRONMENTAL INC.

AGAT WORK ORDER: 22P919873

PROJECT: 220509-00

ATTENTION TO: Paul Bandler

SAMPLING SITE: SAMPLED BY:

			Trac	e Or	gani	cs Ar	nalys	IS							
RPT Date: Jul 20, 2022				UPLICATI	E		REFERE	NCE MA	TERIAL	METHOD	BLANK	SPIKE	MAT	RIX SPI	KE
PARAMETER	Batch S	ample	Dup #1	Dup #2	RPD	Method Blank	Measured		ptable nits	Acceptable Limits			Recovery		ptable nits
TANAMETER	Baton	ld	Бар "Т	Dup #2	5		Value	Lower	Upper		Lower	Upper	11000 VCI y	Lower	Uppe
O. Reg. 153(511) - PHCs F1 - F	4 (with PAHs and	VOC)	(Water)	,		•	•								
F1 (C6-C10)	4092747		<25	<25	NA	< 25	66%	60%	140%	116%	60%	140%	92%	60%	140%
F2 (C10 to C16)	4091841 409	1841	< 100	< 100	NA	< 100	113%	60%	140%	64%	60%	140%	61%	60%	140%
F3 (C16 to C34)	4091841 409	1841	< 100	< 100	NA	< 100	108%	60%	140%	73%	60%	140%	70%	60%	140%
F4 (C34 to C50)	4091841 409	1841	< 100	< 100	NA	< 100	85%	60%	140%	89%	60%	140%	81%	60%	140%
O. Reg. 153(511) - BNA (full) +	PAHs (Water)														
Naphthalene	4075790		< 0.20	< 0.20	NA	< 0.20	74%	50%	140%	74%	50%	140%	96%	50%	140%
Acenaphthylene	4075790		< 0.20	< 0.20	NA	< 0.20	69%	50%	140%	85%	50%	140%	85%	50%	140%
Acenaphthene	4075790		< 0.20	< 0.20	NA	< 0.20	85%	50%	140%	79%	50%	140%	84%	50%	140%
Fluorene	4075790		< 0.20	< 0.20	NA	< 0.20	84%	50%	140%	83%	50%	140%	79%	50%	140%
Phenanthrene	4075790		< 0.10	< 0.10	NA	< 0.10	79%	50%	140%	82%	50%	140%	82%	50%	140%
Anthracene	4075790		< 0.10	< 0.10	NA	< 0.10	85%	50%	140%	84%	50%	140%	85%	50%	140%
Fluoranthene	4075790		< 0.20	< 0.20	NA	< 0.20	86%	50%	140%	79%	50%	140%	84%	50%	140%
Pyrene	4075790		< 0.20	< 0.20	NA	< 0.20	82%	50%	140%	85%	50%	140%	79%	50%	140%
Benzo(a)anthracene	4075790		< 0.20	< 0.20	NA	< 0.20	84%	50%	140%	82%	50%	140%	85%	50%	140%
Chrysene	4075790		< 0.10	< 0.10	NA	< 0.10	79%	50%	140%	85%	50%	140%	79%	50%	140%
Benzo(b)fluoranthene	4075790		< 0.10	< 0.10	NA	< 0.10	85%	50%	140%	84%	50%	140%	86%	50%	140%
Benzo(k)fluoranthene	4075790		< 0.10	< 0.10	NA	< 0.10	89%	50%	140%	79%	50%	140%	85%	50%	140%
Benzo(a)pyrene	4075790		< 0.01	< 0.01	NA	< 0.01	85%	50%	140%	85%	50%	140%	81%	50%	140%
Indeno(1,2,3-cd)pyrene	4075790		< 0.20	< 0.20	NA	< 0.20	85%	50%	140%	89%	50%	140%	79%	50%	140%
Dibenz(a,h)anthracene	4075790		< 0.20	< 0.20	NA	< 0.20	84%	50%	140%	86%	50%	140%	85%	50%	140%
Benzo(g,h,i)perylene	4075790		< 0.20	< 0.20	NA	< 0.20	79%	50%	140%	105%	50%	140%	81%	50%	140%
Phenol	4075790		< 1.0	< 1.0	NA	< 1.0	86%	30%	130%	79%	30%	130%	75%	30%	130%
Bis(2-chloroethyl)ether	4075790		< 0.5	< 0.5	NA	< 0.5	85%	50%	140%	85%	50%	140%	89%	50%	140%
2-Chlorophenol	4075790		< 0.5	< 0.5	NA	< 0.5	82%	50%	140%	84%	50%	140%	86%	50%	140%
o-Cresol	4075790		< 0.5	< 0.5	NA	< 0.5	84%	50%	140%	77%	50%	140%	82%	50%	140%
Bis(2-chloroisopropyl)ether	4075790		< 0.5	< 0.5	NA	< 0.5	79%	50%	140%	69%	50%	140%	85%	50%	140%
m&p-Cresol	4075790		< 0.6	< 0.6	NA	< 0.6	86%	50%	140%	82%	50%	140%	84%	50%	140%
2,4-Dimethylphenol	4075790		< 0.5	< 0.5	NA	< 0.5	85%	30%	130%	84%	30%	130%	79%	30%	130%
2,4-Dichlorophenol	4075790		< 0.3	< 0.3	NA	< 0.3	84%	50%	140%	78%	50%	140%	86%	50%	140%
1,2,4-Trichlorobenzene	4075790		< 0.5	< 0.5	NA	< 0.5	79%	50%	140%	85%	50%	140%	85%	50%	140%
p-Chloroaniline	4075790		< 1.0	< 1.0	NA	< 1.0	86%		130%	84%	30%	130%	84%	30%	130%
2,4,6-Trichlorophenol	4075790		< 0.20	< 0.20	NA	< 0.20	79%	50%	140%	79%	50%	140%	105%		140%
2,4,5-Trichlorophenol	4075790		< 0.20	< 0.20	NA	< 0.20	85%		140%	85%	50%		79%		140%
1,1'-Biphenyl	4075790		< 0.50	< 0.50	NA	< 0.50	79%		140%	84%		140%	85%		140%
Dimethyl phthalate	4075790		< 0.50	< 0.50	NA	< 0.50	86%	50%	140%	79%	50%	140%	69%	50%	140%
Diethyl phthalate	4075790		< 0.50	< 0.50	NA	< 0.50	79%		140%	79%	50%		85%	50%	140%
Pentachlorophenol	4075790		< 0.50	< 0.50	NA	< 0.50	86%	50%	140%	85%	50%	140%	89%		140%
3,3'-dichlorobenzidine	4075790		< 0.50	< 0.50	NA	< 0.50	85%		130%	89%		130%	86%		130%
Bis(2-Ethylhexyl)phthalate	4075790		< 0.50	< 0.50	NA	< 0.50	85%	50%	140%	88%	50%	140%	82%	50%	140%

AGAT QUALITY ASSURANCE REPORT (V1)

Page 17 of 29

AGAT Laboratories is accredited to ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA) and/or Standards Council of Canada (SCC) for specific tests listed on the scope of accreditation. AGAT Laboratories (Mississauga) is also accredited by the Canadian Association for Laboratory Accreditation Inc. (CALA) for specific drinking water tests. Accreditations are location and parameter specific. A complete listing of parameters for each location is available from www.cala.ca and/or www.scc.ca. The tests in this report may not necessarily be included in the scope of accreditation. RPDs calculated using raw data. The RPD may not be reflective of duplicate values shown, due to rounding of final results.

Quality Assurance

CLIENT NAME: BLUMETRIC ENVIRONMENTAL INC.

AGAT WORK ORDER: 22P919873

PROJECT: 220509-00

ATTENTION TO: Paul Bandler

SAMPLING SITE: SAMPLED BY:

	7	Trace	Org	anics	Ana	alysis	(Coi	ntin	ued	l)					
RPT Date: Jul 20, 2022			[UPLICAT	E		REFERE	REFERENCE MATERIAL		METHOD BLANK SPIKE			MATRIX SPIKE		KE
PARAMETER	Batch	Sample	Dup #1	Dup #2	RPD	Method Blank	Measured		eptable mits	Recovery	1 1 11	eptable mits	Recovery	Lie	ptable nits
FANAMETER	Batch	ld	Dup#1	Dup #2	KFD		Value	Lower	Upper	Recovery	Lower	Upper	Recovery	Lower	Upper
2,4-Dinitrophenol	4075790		< 10	< 10	NA	< 10	84%	30%	130%	89%	30%	130%	84%	30%	130%
O. Reg. 153(511) - VOCs (with	PHC) (Water)														
Dichlorodifluoromethane	4092747		< 0.40	< 0.40	NA	< 0.40	77%	50%	140%	80%	50%	140%	84%	50%	140%
Vinyl Chloride	4092747		<0.17	< 0.17	NA	< 0.17	102%	50%	140%	94%	50%	140%	108%	50%	140%
Bromomethane	4092747		<0.20	< 0.20	NA	< 0.20	95%	50%	140%	75%	50%	140%	97%	50%	140%
Trichlorofluoromethane	4092747		< 0.40	< 0.40	NA	< 0.40	108%	50%	140%	102%	50%	140%	113%	50%	140%
Acetone	4092747		<1.0	<1.0	NA	< 1.0	101%	50%	140%	106%	50%	140%	86%	50%	140%
1,1-Dichloroethylene	4092747		<0.30	<0.30	NA	< 0.30	75%	50%	140%	88%	60%	130%	71%	50%	140%
Methylene Chloride	4092747		< 0.30	< 0.30	NA	< 0.30	108%	50%	140%	92%	60%	130%	117%	50%	140%
trans- 1,2-Dichloroethylene	4092747		<0.20	<0.20	NA	< 0.20	76%	50%	140%	91%	60%	130%	84%	50%	140%
Methyl tert-butyl ether	4092747		<0.20	<0.20	NA	< 0.20	81%	50%	140%	118%	60%	130%	99%	50%	140%
1,1-Dichloroethane	4092747		<0.30	<0.30	NA	< 0.30	76%	50%	140%	96%	60%	130%	84%	50%	140%
Methyl Ethyl Ketone	4092747		<1.0	<1.0	NA	< 1.0	86%	50%	140%	109%	50%	140%	88%	50%	140%
cis- 1,2-Dichloroethylene	4092747		<0.20	<0.20	NA	< 0.20	78%	50%	140%	95%	60%	130%	76%	50%	140%
Chloroform	4092747		<0.20	<0.20	NA	< 0.20	75%	50%	140%	95%	60%	130%	75%	50%	140%
1,2-Dichloroethane	4092747		< 0.20	< 0.20	NA	< 0.20	86%	50%	140%	105%	60%	130%	102%	50%	140%
1,1,1-Trichloroethane	4092747		<0.30	<0.30	NA	< 0.30	78%	50%	140%	84%	60%	130%	97%	50%	140%
Carbon Tetrachloride	4092747		<0.20	<0.20	NA	< 0.20	77%	50%	140%	86%	60%	130%	88%	50%	140%
Benzene	4092747		<0.20	<0.20	NA	< 0.20	72%	50%	140%	93%	60%	130%	72%	50%	140%
1,2-Dichloropropane	4092747		<0.20	<0.20	NA	< 0.20	83%	50%	140%	95%	60%	130%	78%	50%	140%
Trichloroethylene	4092747		<0.20	<0.20	NA	< 0.20	73%	50%	140%	94%	60%	130%	76%	50%	140%
Bromodichloromethane	4092747		<0.20	<0.20	NA	< 0.20	78%	50%	140%	99%	60%	130%	86%	50%	140%
Methyl Isobutyl Ketone	4092747		<1.0	<1.0	NA	< 1.0	100%	50%	140%	108%	50%	140%	101%	50%	140%
1,1,2-Trichloroethane	4092747		<0.20	<0.20	NA	< 0.20	103%	50%	140%	117%	60%	130%	107%	50%	140%
Toluene	4092747		<0.20	< 0.20	NA	< 0.20	77%	50%	140%	92%	60%	130%	79%	50%	140%
Dibromochloromethane	4092747		<0.10	<0.10	NA	< 0.10	94%	50%	140%	112%	60%	130%	119%	50%	140%
Ethylene Dibromide	4092747		<0.10	<0.10	NA	< 0.10	93%	50%	140%	112%	60%	130%	117%	50%	140%
Tetrachloroethylene	4092747		<0.20	<0.20	NA	< 0.20	73%	50%	140%	89%	60%	130%	74%	50%	140%
1,1,1,2-Tetrachloroethane	4092747		<0.10	<0.10	NA	< 0.10	76%	50%	140%	88%	60%	130%	71%	50%	140%
Chlorobenzene	4092747		<0.10	<0.10	NA	< 0.10	77%	50%	140%	95%	60%	130%	87%	50%	140%
Ethylbenzene	4092747		<0.10	<0.10	NA	< 0.10	90%	50%	140%	82%	60%	130%	73%	50%	140%
m & p-Xylene	4092747		<0.20	<0.20	NA	< 0.20	92%	50%	140%	88%	60%	130%	114%	50%	140%
Bromoform	4092747		<0.10	<0.10	NA	< 0.10	98%	50%	140%	111%	60%	130%	117%	50%	140%
Styrene	4092747		<0.10	<0.10	NA	< 0.10	79%	50%	140%	80%	60%	130%	89%	50%	140%
1,1,2,2-Tetrachloroethane	4092747		<0.10	<0.10	NA	< 0.10	116%	50%	140%	104%	60%	130%	108%	50%	140%
o-Xylene	4092747		<0.10	<0.10	NA	< 0.10	75%	50%	140%	90%	60%	130%	81%	50%	140%
1,3-Dichlorobenzene	4092747		<0.10	<0.10	NA	< 0.10	81%	50%	140%	93%	60%	130%	95%	50%	140%
1,4-Dichlorobenzene	4092747		<0.10	<0.10	NA	< 0.10	80%	50%	140%	92%		130%	94%		140%
1,2-Dichlorobenzene	4092747		< 0.10	<0.10	NA	< 0.10	80%	50%	140%	91%	60%	130%	98%	50%	140%

AGAT QUALITY ASSURANCE REPORT (V1)

Page 18 of 29

AGAT Laboratories is accredited to ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA) and/or Standards Council of Canada (SCC) for specific tests listed on the scope of accreditation. AGAT Laboratories (Mississauga) is also accredited by the Canadian Association for Laboratory Accreditation Inc. (CALA) for specific drinking water tests. Accreditations are location and parameter specific. A complete listing of parameters for each location is available from www.cala.ca and/or www.scc.ca. The tests in this report may not necessarily be included in the scope of accreditation. RPDs calculated using raw data. The RPD may not be reflective of duplicate values shown, due to rounding of final results.

Quality Assurance

CLIENT NAME: BLUMETRIC ENVIRONMENTAL INC.

AGAT WORK ORDER: 22P919873

PROJECT: 220509-00

ATTENTION TO: Paul Bandler

SAMPLING SITE: SAMPLED BY:

Trace Organics Analysis (Continued)															
RPT Date: Jul 20, 2022 DUPLICATE REFERENCE MATERIAL METHOD BLANK SPIKE MATRIX SPIKE															
PARAMETER	ETER Batch Sample Dup #1 Dup #2		RPD	Method Blank	Measured	Acceptable Limits		Recovery	Acceptable Limits		Recovery	Acceptable Limits			
		ld		·			Value	Lower	Upper		Lower	Upper	,	Lower	Upper
n-Hexane	4092747		<0.20	<0.20	NA	< 0.20	107%	50%	140%	110%	60%	130%	115%	50%	140%

O. Reg. 153(511) - PCBs (Water)

Polychlorinated Biphenyls 4087706 < 0.1 < 0.1 NA < 0.1 104% 50% 140% 87% 50% 140% 97% 50% 140%

Comments: When the average of the sample and duplicate results is less than 5x the RDL, the Relative Percent Difference (RPD) will be indicated as Not Applicable (NA).

Quality Assurance

CLIENT NAME: BLUMETRIC ENVIRONMENTAL INC.

AGAT WORK ORDER: 22P919873

PROJECT: 220509-00

ATTENTION TO: Paul Bandler

SAMPLING SITE: SAMPLED BY:

SAMPLING SITE.							MIVIE	LED B	1.					
			Wate	er Ar	nalys	is								
RPT Date: Jul 20, 2022			UPLICATI	E		REFEREN	NCE MA	TERIAL	METHOD	BLANK	SPIKE	MAT	RIX SPI	KE
PARAMETER	Batch Sample	Dup #1	Dup #2	RPD	Method Blank	Measured	Acceptable Limits	Recovery	Lie	ptable nits	Recovery	Lie	ptable nits	
	ld ld					Value	Lower	Upper	,	Lower	Upper	,	Lower	Upper
O. Reg. 153(511) - Metals & Ir	norganics (Water)													
Dissolved Antimony	4070053	<1.0	<1.0	NA	< 1.0	107%	70%	130%	104%	80%	120%	102%	70%	130%
Dissolved Arsenic	4070053	3.6	2.1	NA	< 1.0	89%	70%	130%	92%	80%	120%	93%	70%	130%
Dissolved Barium	4070053	699	687	1.7%	< 2.0	99%	70%	130%	100%	80%	120%	97%	70%	130%
Dissolved Beryllium	4070053	< 0.50	< 0.50	NA	< 0.50	102%	70%	130%	107%	80%	120%	107%	70%	130%
Dissolved Boron	4070053	357	365	2.2%	< 10.0	101%	70%	130%	102%	80%	120%	98%	70%	130%
Dissolved Cadmium	4070053	<0.20	<0.20	NA	< 0.20	104%	70%	130%	103%	80%	120%	100%	70%	130%
Dissolved Chromium	4070053	<2.0	<2.0	NA	< 2.0	101%	70%	130%	104%	80%	120%	101%	70%	130%
Dissolved Cobalt	4070053	0.68	0.82	NA	< 0.50	99%	70%	130%	101%	80%	120%	99%	70%	130%
Dissolved Copper	4070053	<1.0	<1.0	NA	< 1.0	101%	70%	130%	100%	80%	120%	95%	70%	130%
Dissolved Lead	4070053	<0.50	<0.50	NA	< 0.50	96%	70%	130%	96%	80%	120%	87%	70%	130%
Dissolved Molybdenum	4070053	<0.50	<0.50	NA	< 0.50	103%	70%	130%	104%	80%	120%	106%	70%	130%
Dissolved Nickel	4070053	1.7	2.1	NA	< 1.0	100%	70%	130%	101%	80%	120%	98%	70%	130%
Dissolved Selenium	4070053	2.2	3.0	NA	< 1.0	98%	70%	130%	93%	80%	120%	99%	70%	130%
Dissolved Silver	4070053	<0.20	< 0.20	NA	< 0.20	103%	70%	130%	108%	80%	120%	94%	70%	130%
Dissolved Thallium	4070053	<0.30	< 0.30	NA	< 0.30	100%	70%	130%	101%	80%	120%	99%	70%	130%
Dissolved Uranium	4070053	<0.50	<0.50	NA	< 0.50	97%	70%	130%	100%	80%	120%	99%	70%	130%
Dissolved Vanadium	4070053	0.49	0.44	NA	< 0.40	100%	70%	130%	105%	80%	120%	103%	70%	130%
Dissolved Zinc	4070053	<5.0	<5.0	NA	< 5.0	100%	70%	130%	102%	80%	120%	103%	70%	130%
Mercury	4079901	< 0.02	< 0.02	NA	< 0.02	100%	70%	130%	99%	80%	120%	101%	70%	130%
Chromium VI	4091810 4091810	<2	<2	NA	< 2	101%	70%	130%	99%	80%	120%	108%	70%	130%
Cyanide, WAD	4075638	<2	<2	NA	< 2	93%	70%	130%	104%	80%	120%	97%	70%	130%
Dissolved Sodium	4070053	28600	29800	4.1%	< 50	106%	70%	130%	110%	80%	120%	103%	70%	130%
Chloride	4092212	9030	8980	0.6%	< 100	101%	70%	130%	107%	80%	120%	106%	70%	130%
Electrical Conductivity	4093967	303	304	0.3%	< 2	98%	90%	110%						
рН	4093967	7.59	7.72	1.7%	NA	101%	90%	110%						

Comments: NA signifies Not Applicable.

Duplicate NA: results are under 5X the RDL and will not be calculated.

Method Summary

CLIENT NAME: BLUMETRIC ENVIRONMENTAL INC.

AGAT WORK ORDER: 22P919873

PROJECT: 220509-00

ATTENTION TO: Paul Bandler

	T -	1			
PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE		
Trace Organics Analysis					
Naphthalene	ORG-91-5114	modified from EPA 3510C, 8270E & ON MOECC E3265	GC/MS		
Acenaphthylene	ORG-91-5114	modified from EPA 3510C, 8270E & ON MOECC E3265	GC/MS		
Acenaphthene	ORG-91-5114	modified from EPA 3510C, 8270E & ON MOECC E3265	GC/MS		
Fluorene	ORG-91-5114	modified from EPA 3510C, 8270E & ON MOECC E3265	GC/MS		
Phenanthrene	ORG-91-5114	modified from EPA 3510C, 8270E & ON MOECC E3265	GC/MS		
Anthracene	ORG-91-5114	modified from EPA 3510C, 8270E & ON MOECC E3265	GC/MS		
Fluoranthene	ORG-91-5114	modified from EPA 3510C, 8270E & ON MOECC E3265	GC/MS		
Pyrene	ORG-91-5114	modified from EPA 3510C, 8270E & ON MOECC E3265	GC/MS		
Benzo(a)anthracene	ORG-91-5114	modified from EPA 3510C, 8270E & ON MOECC E3265	GC/MS		
Chrysene	ORG-91-5114	modified from EPA 3510C, 8270E & ON MOECC E3265	GC/MS		
Benzo(b)fluoranthene	ORG-91-5114	modified from EPA 3510C, 8270E & ON MOECC E3265	GC/MS		
Benzo(k)fluoranthene	ORG-91-5114	modified from EPA 3510C, 8270E & ON MOECC E3265	GC/MS		
Benzo(a)pyrene	ORG-91-5114	modified from EPA 3510C, 8270E & ON MOECC E3265	GC/MS		
Indeno(1,2,3-cd)pyrene	ORG-91-5114	modified from EPA 3510C, 8270E & ON MOECC E3265	GC/MS		
Dibenz(a,h)anthracene	ORG-91-5114	modified from EPA 3510C and EPA 8270E	GC/MS		
Benzo(g,h,i)perylene	ORG-91-5114	modified from EPA 3510C, 8270E & ON MOECC E3265	GC/MS		
Phenol	ORG-91-5114	modified from EPA 3510C, 8270E & ON MOECC E3265	GC/MS		
Bis(2-chloroethyl)ether	ORG-91-5114	modified from EPA 3510C, 8270E & ON MOECC E3265	GC/MS		
2-Chlorophenol	ORG-91-5114	modified from EPA 3510C, 8270E & ON MOECC E3265	GC/MS		
o-Cresol	ORG-91-5114	modified from EPA 3510C, 8270E & ON MOECC E3265	GC/MS		
Bis(2-chloroisopropyl)ether	ORG-91-5114	modified from EPA 3510C, 8270E & ON MOECC E3265	GC/MS		
m&p-Cresol	ORG-91-5114	modified from EPA 3510C, 8270E & ON MOECC E3265	GC/MS		
2,4-Dimethylphenol	ORG-91-5114	modified from EPA 3510C, 8270E & ON MOECC E3265	GC/MS		
2,4-Dichlorophenol	ORG-91-5114	modified from EPA 3510C, 8270E & ON MOECC E3265	GC/MS		
1,2,4-Trichlorobenzene	ORG-91-5114	modified from EPA 3510C, 8270E & ON MOECC E3265	GC/MS		
p-Chloroaniline	ORG-91-5114	modified from EPA 3510C, 8270E & ON MOECC E3265	GC/MS		
2-and 1-methyl Naphthalene	ORG-91-5114	modified from EPA 3510C, 8270E & ON MOECC E3265	CALCULATION		

Method Summary

CLIENT NAME: BLUMETRIC ENVIRONMENTAL INC. AGAT WORK ORDER: 22P919873
PROJECT: 220509-00 ATTENTION TO: Paul Bandler

SAMPLING SITE:	_	SAMPLED BT:	
PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE
2,4,6-Trichlorophenol	ORG-91-5114	modified from EPA 3510C, 8270E & ON MOECC E3265	GC/MS
2,4,5-Trichlorophenol	ORG-91-5114	modified from EPA 3510C, 8270E & ON MOECC E3265	GC/MS
1,1'-Biphenyl	ORG-91-5114	modified from EPA 3510C, 8270E & ON MOECC E3265	GC/MS
Dimethyl phthalate	ORG-91-5114	modified from EPA 3510C, 8270E & ON MOECC E3265	GC/MS
2,4 and 2,6-Dinitrotoluene	ORG-91-5114	modified from EPA 3510C, 8270E & ON MOECC E3265	CALCULATION
Diethyl phthalate	ORG-91-5114	modified from EPA 3510C, 8270E & ON MOECC E3265	GC/MS
Pentachlorophenol	ORG-91-5114	modified from EPA 3510C, 8270E & ON MOECC E3265	GC/MS
3,3'-dichlorobenzidine	ORG-91-5114	modified from EPA 3510C, 8270E & ON MOECC E3265	GC/MS
Bis(2-Ethylhexyl)phthalate	ORG-91-5114	modified from EPA 3510C, 8270E & ON MOECC E3265	GC/MS
2,4-Dinitrophenol	ORG-91-5114	modified from EPA 3510C, 8270E & ON MOECC E3265	GC/MS
2-Fluorophenol	ORG-91-5114	modified from EPA 3510C, 8270E & ON MOECC E3265	GC/MS
phenol-d6 surrogate	ORG-91-5114	modified from EPA 3510C, 8270E & ON MOECC E3265	GC/MS
2,4,6-Tribromophenol	ORG-91-5114	modified from EPA 3510C, 8270E & ON MOECC E3265	GC/MS
Chrysene-d12	ORG-91-5114	modified from EPA 3510C, 8270E & ON MOECC E3265	GC/MS
Sediment			
Polychlorinated Biphenyls	ORG-91-5112	modified from EPA SW-846 3510 & 8082A	GC/ECD
Decachlorobiphenyl	ORG-91-5112	modified from EPA SW-846 3510 & 8082A	GC/ECD
F1 (C6-C10)	VOL-91-5010	modified from MOE PHC-E3421	(P&T)GC/FID
F1 (C6 to C10) minus BTEX	VOL-91-5010	modified from MOE PHC-E3421	P&T GC/FID
Toluene-d8	VOL-91- 5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
F2 (C10 to C16)	VOL-91-5010	modified from MOE PHC-E3421	GC/FID
F2 (C10 to C16) minus Naphthalene	VOL-91-5010	modified from MOE PHC-E3421	GC/FID
F3 (C16 to C34)	VOL-91-5010	modified from MOE PHC-E3421	GC/FID
F3 (C16 to C34) minus PAHs	VOL-91-5010	modified from MOE PHC-E3421	GC/FID
F4 (C34 to C50)	VOL-91-5010	modified from MOE PHC-E3421	GC/FID
Gravimetric Heavy Hydrocarbons	VOL-91-5010	modified from MOE PHC-E3421	BALANCE
Terphenyl	VOL-91-5010	modified from MOE PHC-E3421	GC/FID
Dichlorodifluoromethane	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
Vinyl Chloride	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
Bromomethane	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
Trichlorofluoromethane	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
Acetone	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS

Method Summary

CLIENT NAME: BLUMETRIC ENVIRONMENTAL INC.

AGAT WORK ORDER: 22P919873

PROJECT: 220509-00

ATTENTION TO: Paul Bandler

DAD AMETER	A C A T S O D	LITEDATURE REFERENCE	ANALYTICAL TECHNICHE
PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE
1,1-Dichloroethylene	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
Methylene Chloride	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
trans- 1,2-Dichloroethylene	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
Methyl tert-butyl ether	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
1,1-Dichloroethane	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
Methyl Ethyl Ketone	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
cis- 1,2-Dichloroethylene	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
Chloroform	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
1,2-Dichloroethane	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
1,1,1-Trichloroethane	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
Carbon Tetrachloride	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
Benzene	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
1,2-Dichloropropane	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
Trichloroethylene	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
Bromodichloromethane	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
Methyl Isobutyl Ketone	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
1,1,2-Trichloroethane	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
Toluene	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
Dibromochloromethane	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
Ethylene Dibromide	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
Tetrachloroethylene	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
1,1,1,2-Tetrachloroethane	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
Chlorobenzene	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
Ethylbenzene	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
m & p-Xylene	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
Bromoform	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
Styrene	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
1,1,2,2-Tetrachloroethane	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS

Method Summary

CLIENT NAME: BLUMETRIC ENVIRONMENTAL INC.

AGAT WORK ORDER: 22P919873

PROJECT: 220509-00

ATTENTION TO: Paul Bandler

O 2		•/ <u></u>	
PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE
o-Xylene	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
1,3-Dichlorobenzene	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
1,4-Dichlorobenzene	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
1,2-Dichlorobenzene	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
1,3-Dichloropropene	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
Xylenes (Total)	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
n-Hexane	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
Toluene-d8	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
4-Bromofluorobenzene	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS

Method Summary

CLIENT NAME: BLUMETRIC ENVIRONMENTAL INC. AGAT WORK ORDER: 22P919873
PROJECT: 220509-00 ATTENTION TO: Paul Bandler

PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE
Water Analysis			,
Dissolved Antimony	MET-93-6103	modified from EPA 200.8 and EPA 3005A	ICP-MS
Dissolved Arsenic	MET-93-6103	modified from EPA 200.8 and EPA 3005A	ICP-MS
Dissolved Barium	MET-93-6103	modified from EPA 200.8 and EPA 3005A	ICP-MS
Dissolved Beryllium	MET-93-6103	modified from EPA 200.8 and EPA 3005A	ICP-MS
Dissolved Boron	MET-93-6103	modified from EPA 200.8 and EPA 3005A	ICP-MS
Dissolved Cadmium	MET-93-6103	modified from EPA 200.8 and EPA 3005A	ICP-MS
Dissolved Chromium	MET-93-6103	modified from EPA 200.8 and EPA 3005A	ICP-MS
Dissolved Cobalt	MET-93-6103	modified from EPA 200.8 and EPA 3005A	ICP-MS
Dissolved Copper	MET-93-6103	modified from EPA 200.8 and EPA 3005A	ICP-MS
Dissolved Lead	MET-93-6103	modified from EPA 200.8 and EPA 3005A	ICP-MS
Dissolved Molybdenum	MET-93-6103	modified from EPA 200.8 and EPA 3005A	ICP-MS
Dissolved Nickel	MET-93-6103	modified from EPA 200.8 and EPA 3005A	ICP-MS
Dissolved Selenium	MET-93-6103	modified from EPA 200.8 and EPA 3005A	ICP-MS
Dissolved Silver	MET-93-6103	modified from EPA 200.8 and EPA 3005A	ICP-MS
Dissolved Thallium	MET-93-6103	modified from EPA 200.8 and EPA 3005A	ICP-MS
Dissolved Uranium	MET-93-6103	modified from EPA 200.8 and EPA 3005A	ICP-MS
Dissolved Vanadium	MET-93-6103	modified from EPA 200.8 and EPA 3005A	ICP-MS
Dissolved Zinc	MET-93-6103	modified from EPA 200.8 and EPA 3005A	ICP-MS
Mercury	MET-93-6100	modified from EPA 245.2 and SM 3112 B	CVAAS
Chromium VI	INOR-93-6073	modified from SM 3500-CR B	LACHAT FIA
Cyanide, WAD	INOR-93-6052	modified from ON MOECC E3015, SM 4500-CN- I, G-387	TECHNICON AUTO ANALYZER
Dissolved Sodium	MET-93-6103	modified from EPA 200.8 and EPA 3005A	ICP/MS
Chloride	INOR-93-6004	modified from SM 4110 B	ION CHROMATOGRAPH
Electrical Conductivity	INOR-93-6000	SM 2510 B	PC TITRATE
рН	INOR-93-6000	modified from SM 4500-H+ B	PC TITRATE

Mississauga, Ontario L4Z 1 Ph: 905.712.5100 Fax: 905.712.513 webearth.agatlabs.co

Laboratory Use Only 5835 Coopers Avenue

LY2	2	W	/ork Ord	ler#	2	21) (119	79	37	3	<u>. </u>
om	-	A	cooler Q rrival Te custody lotes:	emperat L Seal Int	cures:		2. Ce Yes	11	11	S touch	and 11	9/2 1.7 0N/A
		Tt	ırnar	ound	Tlme	(TA	T) F	tequ	ılre	d:		0
		Re	egular	TAT		X	5 to 7	7 Bus	iness	Days	i	
		Rı	ısh TA	T (Rush S	Surcharge	S Apply)					
			1 1	Busine ays	ss		2 Bus Days	sines	S		Next I Day	Business
	-			-	Require			urcha	arges			:
			-			_						_
			*T		e provid clusive							lays
				me Da	y' analy	sis, p	leas	е соп	tact	your /	AGAT	СРМ
			0. Reg 558	O. Re	g 406	de						(N/N)
2002	voc	Aroclors	Landfill Disposal Characterization TCLP: TCLP: □M&i □VoCs □ABNs □B(a)P□PCBs	Excess Soils SPLP Rainwater Leach SPLP: □ Metals □ VOCs □ SVOCs	Excess Soils Characterization Package pH, ICPMS Metals, BTEX, F1-F4	Corrosivity: Include Moisture ☐ Sulphide	BNAEs	Cholophenols				Potentially Hazardous or High Concentration (Y/N)
7	V						V	V				
7	V						N	Ø	-			
	V						-	2				
7												
												-
									-			
7		1			-							
						->						
7	\sqrt{\sq}\}}\sqrt{\sq}}}}}}}\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sq}}}}}}}\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sq}}}}}}}}\sqrt{\sq}}\sqrt{\sqrt{\sqrt{\sqrt{\sq}}}}}}\sqrt{\sqrt{\sqrt{\sqrt{\sq}}}}}}\sqrt{\sqrt{\sq}}}}}}\sqrt{\sqrt{\sq}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}											
7							✓					
Dat	e	,	Tim	ie (1)				tan	-15		5 5	0.1240
Ú.	11:	3/0	2.2	e Ga	n		Pa	age _		_ of _		9:87
Flat	n		Tier	10								

Report Inform Company Contact: Address:	Acataraqui St, Kingston, ON	Regulatory Requirements: (Please check all applicable boxes) Regulation 153/04	Custody Seal Intact: Yes Notes: Control Turnaround Time (TAT) Requirements To to 7 Bus
Phone: Reports to be sent to: 1. Email: 2. Email:	Fax:	□ Res/Park □ Agriculture Soil Texture (Check One) □ Coarse □ Fine □ Regulation 558 □ Prov. Water Quality Objectives (PWQO) □ Other □ Indicate One	Rush TAT (Rush Surcharges Apply) 3 Business 2 Busines Days OR Date Required (Rush Surch
Project Inform Project: Site Location: Sampled By:	nation: 	Is this submission for a Record of Site Condition? Record of Site Condition? Yes No Yes No	*TAT is exclusive of weekends at For 'Same Day' analysis, please con
AGAT Quote #: Invoice Inform Company: Contact: Address: Email:	BluMetric 2022 SO PO: Please note: If quotation numbs* is not provided, client will be billed full price for analysis, Bill To Same: Yes No ap@blumetric.ca	Sample Matrix Legend B Biota GW Ground Water O Oil P Paint S Soil SD Sediment SW Surface Water	clors diffil Disposal Characterization TCLP. which I Disposal Characterization TCLP. ess Solis SPLP Rainwater Leach P. I Dwetals Dvocs Dsvocs ess Solis Characterization Package p. ICPMS Metals, BTEX, F1-F4 rosivity: Include Moisture D Sulphide D NAES holophenols
C	Date Time # of	Sample Comments/	c c c c c c c c c c c c c c c c c c c

If this is a Drinking Water sample, please use Drinking Water Chain of Custody Form (potable water consumed by humans)

Sample Identification	Sampled	Sampled	Containers	Matrix	Special Instructions	1714	≥ ≤	≥	BTI	PA	2	9	Aro lar		및 된	S	B	0		Pot
MW146	July 12/20	16:21 AM	2218	GW		Y	Ø			\square	100						V	V		
MW1487		- AM	2018	GW			<u> </u>		-12			V					V			
PALIMA		AM PM	7218	GW			7		7	V	V	V					1	2		
MW152	July 12/22	16 25 AM	3218	GW		Y			Ø	V	Ø	7					V	Ø		
MW82	July/2/20	14.42 AM	2/2/8	GW		Y				Ø	V	V					\square	Ø		
MW136	July 12/22	15:10 AM	2218	GW		Y				V	V	7						Ø		
MW138		AM	2218	GW			1		Ø	V	V	V	1	-	1		V	V		
MW157		AN PM	2/18	GW /		/			M		Ø					/	V			
MW26	/	AM PM	P218	GW/								0					V			
-MW81		AM PM	12 18	GW			Ø		Ø	10	0	7					V	1		
MW121		AM PM	2218	GW			V		Ø		V	7					V	Ø		
Famalas Bellaguienad Bu Waley Name and Stens		Insta	ITimo		I Susselled Benedited By (Breat Majors and Side)	13	Л			-	Date		-	Time		1		200	450 - 7 - F	_

5835 Coopers Avenue Mississauga, Ontario L4Z 1Y2 Ph: 905,712 5100 Fax: 905,712,5122

Laboratory Use 0	nly
Work Order #: 2	29919873
Cooler Quantitus	21

Chain of C	Custody Record	If this is a D	Orinking Water s	ample, pleas	e use Drini	king Water Chain of Custody Form (poi	able water o	onsumed	by hum	ans)		_ A	rrival T	emperat	ures:	-		1	
Report Information Company:	mation: BluMetric Environmental					Sulatory Requirements:						11	Custody	Seal Int	act:	□Y€	es []No	□N/A
Contact: Address:	4 Cataraqui St, Kingston, ON	1			- Tai	egulation 153/04 Excess Soils ble Indicate Circ Indicate Circ		Sewer		☐ Stor	m		ırnar egula				T) Require		
Phone: Reports to be sent to: 1. Email:	sanderson@blumetric.ca	Fax:			Soil Te	Res/Park Agriculture Regulation 5		Prov. \ Object				R	3	AT (Rush s 3 Busine Days	iurcharges	s Apply)	: Business		xt Business
2. Email:	pbandler@blumetric.ca				- 11	Coarse GOIVIL	-		dicate Oi	ie.				,	Requir		sh Surcharge	Du.	•
Project Information Project: Site Location:	mation: _220509-00				Red	this submission for a cord of Site Condition? Yes No	Cer	port G tificate Yes	of A		sis			TAT is ex	clusive	of wee	r notification ekends and st ease contact	atutory ho	olidays
Sampled By: AGAT Quote #:	BluMetric 2022 SO Please note: If quotation number is no				≓ в	nple Matrix Legend Biota	HELLER DOC		eg 153				O. Reg 558 10 DCBs		ackage as	Sulphide			ntration (Y/N)
Invoice Information Company: Contact: Address: Email:	ap@blumetric.ca	Bi	ill To Same: Yes	s 🗹 No Li	GW O P S SD SW	Ground Water Oil Paint Soil Sediment Surface Water	Field Filtered Metals (48	o⊗	s - Li CrVI, II Hg, II HWSB	4		হ	Landfill Disposal Characterization TCLP:	s SPLP	ess Soils Characterization Package ICPMS Metals, BTEX, F1-F4	Corrosivity: Include Moisture	BNAEs Cholophenols		iially Hazardous or High Concel
Samp	ple Identification	Date Sampled	Time Sampled	# of Containers	Sample Matrix	Comments/ Special Instructions	Y/N	Metals	Metals -	PAHs	PCBs	Aroclors	Landf	Exces	Excess pH, ICP	-			Poten
-MW130			AM PM		GW			2	_							-			
MINIO4	\triangle		AM PM AM PM		GW GW	1/1	1	包包			1		-			1		++	+
-MW84 -MW128		/	PM AM PX	2218	GW	//	/		_		10 0	-11			/				
MW151 /	/ \	-	AM PM		GW /				-			1	1	1	1	1			
NIW22			AM		GW				_	10		_	1	/		1	Q D		
MW25		1	AM		/GW			2	1			-					V		
-MW24		1	AM PM		GW						-						7 7		
MW80		July 12/12			GW		V												
MW156		00.912	AM	-	GW		-	Ø	_	n Z	-	_	(1)						
MW78		3-1-12/22	1,141		GW		Y		1		1								
Samples Relinquished By (P	Print Name and Sign)	144.6	Date	Time	200m	Bumples Received By (Print Name and Sign)	1/-	1	1	1	Date	-	122	Ime SO	livi		14		
Samples Palinquished By (P Samples Palinquished By (P	WI II		Date 13	Ja Time	1(000)	Samples Received By (Print Name and Sign) Samples Received By (Print Name and Sign)		()	/		Date ,	J	7	ime ime		NIO-	Page 2	of 3	

5835 Coopers Avenue Mississauga, Ontario L4Z 1Y2 Ph: 905.712.5100 Fax: 905.712.5122

Laboratory Use Only 221919873 Work Order #:

Chain of C	custody Record			ora		King Water Chain of Custody Form (potab	ole water (ebeart			.com	Ī		Quantity Tempera		_		4	*	1	
Report Inform	nation: BluMetric Environmental				Reg (Please	gulatory Requirements: e check all applicable boxes)								Custoo Notes:	y Seal II	itact:		Yes		□No	[□N/A
Contact: Address:	4 Cataraqui St, Kingston, ON	N				egulation 153/04 Excess Soils R4 able		☐ Sev ☐S	ver Use anitary Region		Storm	1	- 11	Turna		Time		1	Requir 7 Busine			
Phone: Reports to be sent to: 1. Email:	sanderson@blumetric.ca	Fax:			Soil T	Regulation 558 [Agriculture Regulation 558 [Exture (Check One)] [Coarse CCME		Pro Obj	ectives					Rush	AT (Rush 3 Busin Days				siness		Next Bu Day	usines
2. Email:	pbandler@blumetric.ca]Fine		_=	Indicate	One			-		OR Dat	e Requi	ired (R	ush S	Surcharge	es May	Apply):	
Project Information Project: Site Location:	mation: 220509-00				Re	s this submission for a cord of Site Condition? Yes No	Cei	eport rtifica	te of	Ana		is			*TAT is e	xclusive	e of we	eeken	tification ds and s	statutor	y holida <u>y</u>	
Sampled By: AGAT Quote #:	BluMetric 2022 SO Please note: If quotation number is n	PO: not provided, client will	be billed full price for a	analysis.	San	nple Matrix Legend Biota	HECTAL DOC	0.	Reg 15	53				O. R 55:	3	eg 406	Sulphide □					ration (Y/N)
Invoice Information Company: Contact: Address: Email:	ap@blumetric.ca	Bi	II To Same: Ye	s ☑ No □	GW O P S SD SW	Ground Water Oil Paint Soil Sediment Surface Water	Field Filtered (Metals, Hg	s & Inorganics	s - 🗆 CrVI, 🗆 Hg, 🗆 HWSB	F1-F4 PHCs				Aroclors Landfill Disposal Characterization TCLP.	Excess Soils SPLP Rainwater Leach	aracterizals. BTE	Include Moisture	BNAEs	Cholophenols			ially Hazardous or High Concent
Samp	ole Identification	Date Sampled	Time Sampled	# of Containers	Sample Matrix	Comments/ Special Instructions	IJ∕ N	Metals	Metals	втех,	PAHS	_	_	Arociors Landfill [Exces	Exces	Corro	-				Potent
MW130			AM PM	18	GW			Ø		Ø	Ø		7					Ø	Ø			
MW50			AM PM	18	-GW			V		V	1	-E	7					Ø	Ø			
10TW-84			AM PM	18	GW			Z			Ø		7			-		V	Ø			
*W128-/			AM PM	18	GW			V		\square		 	7									
MW151			AM PM	18	GW					$ \overline{\mathbf{A}} $	V		7									
MW22		July 12/23	12:00 AM	18	GW		V			☑	Ø	1	7					V				
MW25			11:21 AM	18	GW		4			7	Ø		7					V	V			
MW24		V	10:30 AM	18	GW		4	Ø		Ø	Ø	V	7					Ø	Ø			
MW80			AM	18	GW			Ø		U	V	D	7					Ø				
MW156			AM	18	GW			7		V	V		_			-	1	1	V			
MV 78			AM		GW					7	-		7					V				
Samples Relinquished By (Pr		1	Date Date	Time	30pm	Samples Received By (Print Name and Sign) Samples Received By (Print Name and Sign)	7	Λ	1		<	Date	113	102	Time	n'			age 23	of _	3	
Samples Fiellinguished By IPr	int Name and Sign)	(Date 13	Time	600	Samples Received By (Print Name and Sign)	1/		_		_	Date		-	Time		-					

Sample Temperature Log

Client:	BLUMETR	IC .	0 28.13	= = COC# o	r Work Order#:-	- Pris 1870 - 3000 800 80	6	4.2	T I W TO SHAW
4 of Coolers:	4	4			# of Submissions:			***************************************	
	Arrival Tem	peratures -	Branch/Driver	,		Temperatures - La	oratony		š
	Cooler #1	6/2-	3,3.3	p	Cooler #1:		/		
	Cooler #2 6.6	1 7-6	177		Cooler #2	/	1		
	Cooler #3 5-	8 16-3	317-3		Cooler #3	1			er er
	Cooler #4 2	6 13.6	1 3.7		Cooler #4:	/	/		a)
	Cooler #5:	/	/		Cooler #5:	/	/		1 10 14 42 31
	Cooler #6:	/	/		Cooler #6:		/		
	Cooler #7:	/	_ /		Cooler #7:	- 4 /			
	Cooler #8	/		yi n	Cooler#8	/	/	i k	,80
	Cooler #9:	/	V	a II	Cooler #9:	//	1-1-	a de la composición dela composición de la composición de la composición dela composición dela composición dela composición de la composición dela composición de la composición dela comp	=" ,,
	Cooler #10:				Cooler #10:		_/		
IR Gun I	D:			IR Gun ID:			*		
Taken E	Ву:		u sad	Faken By:	The second secon		1	rafilm.	Miles Sand Sees 10
D. 1		71		Date					
Date (yyy/mm/)	d d } Ţ	ı.me;	:AM /	PM (yyyy/mm/dd);		Time: AM./	P.M		

Instructions for use of this form: 1) complete all fields of info including total # of coolers and # of superission prior to giving a WO#, 3) Proceed as normal, write the WO# and scan (please highest rescans for will a be cool)

Occument ID SR-78-9511.003 Date Issued: 2017-2-23

CLIENT NAME: BLUMETRIC ENVIRONMENTAL INC. 4 Cataraqui Street

> Kingston, ON K7K1Z7 (613) 531-2725

ATTENTION TO: Paul Bandler PROJECT: 220509-00

AGAT WORK ORDER: 22P920496

TRACE ORGANICS REVIEWED BY: Neli Popnikolova, Senior Chemist WATER ANALYSIS REVIEWED BY: Amanjot Bhela, Inorganic Lab Manager

DATE REPORTED: Jul 25, 2022

PAGES (INCLUDING COVER): 30 VERSION*: 1

Should you require any information regarding this analysis please contact your client services representative at (905) 712-5100

-	<u>Notes</u>

Disclaimer:

- All work conducted herein has been done using accepted standard protocols, and generally accepted practices and methods. AGAT test methods may
 incorporate modifications from the specified reference methods to improve performance.
- All samples will be disposed of within 30 days after receipt unless a Long Term Storage Agreement is signed and returned. Some specialty analysis may
 be exempt, please contact your Client Project Manager for details.
- AGAT's liability in connection with any delay, performance or non-performance of these services is only to the Client and does not extend to any other
 third party. Unless expressly agreed otherwise in writing, AGAT's liability is limited to the actual cost of the specific analysis or analyses included in the
 services.
- This Certificate shall not be reproduced except in full, without the written approval of the laboratory.
- The test results reported herewith relate only to the samples as received by the laboratory.
- Application of guidelines is provided "as is" without warranty of any kind, either expressed or implied, including, but not limited to, warranties of
 merchantability, fitness for a particular purpose, or non-infringement. AGAT assumes no responsibility for any errors or omissions in the guidelines
 contained in this document.
- All reportable information as specified by ISO/IEC 17025:2017 is available from AGAT Laboratories upon request.

AGAT Laboratories (V1)

Page 1 of 30

Member of: Association of Professional Engineers and Geoscientists of Alberta (APEGA)

Western Enviro-Agricultural Laboratory Association (WEALA) Environmental Services Association of Alberta (ESAA) AGAT Laboratories is accredited to ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA) and/or Standards Council of Canada (SCC) for specific tests listed on the scope of accreditation. AGAT Laboratories (Mississauga) is also accredited by the Canadian Association for Laboratory Accreditation Inc. (CALA) for specific drinking water tests. Accreditations are location and parameter specific. A complete listing of parameters for each location is available from www.cala.ca and/or www.scc.ca. The tests in this report may not necessarily be included in the scope of accreditation. Measurement Uncertainty is not taken into consideration when stating conformity with a specified requirement.

SAMPLING SITE:

Certificate of Analysis

AGAT WORK ORDER: 22P920496

PROJECT: 220509-00

ATTENTION TO: Paul Bandler

SAMPLED BY:

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

O. Reg. 153(511) - BNA (full) + PAHs (Water)

DATE RECEIVED: 2022-07-14								[DATE REPORTE	ED: 2022-07-25	
			CRIPTION: PLE TYPE: SAMPLED:	MW148 Water 2022-07-13 11:33	MW149 Water 2022-07-13 12:41	MW157 Water 2022-07-13 10:41	MW130 Water 2022-07-13 14:44	MW50 Water 2022-07-13 11:54	MW84 Water 2022-07-13 10:44	MW151 Water 2022-07-13 15:51	MW156 Water 2022-07-13 09:45
Parameter	Unit	G/S	RDL	4097326	4097329	4097341	4097342	4097343	4097344	4097345	4097346
Naphthalene	μg/L	7	0.20	117	2.97	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20
Acenaphthylene	μg/L	1	0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20
Acenaphthene	μg/L	17	0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	< 0.20
Fluorene	μg/L	290	0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20
Phenanthrene	μg/L	380	0.10	0.31	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
Anthracene	μg/L	1	0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
Fluoranthene	μg/L	44	0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20
Pyrene	μg/L	5.7	0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20
Benzo(a)anthracene	μg/L	1.8	0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20
Chrysene	μg/L	0.7	0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
Benzo(b)fluoranthene	μg/L	0.75	0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
Benzo(k)fluoranthene	μg/L	0.4	0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
Benzo(a)pyrene	μg/L	0.81	0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Indeno(1,2,3-cd)pyrene	μg/L	0.2	0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20
Dibenz(a,h)anthracene	μg/L	0.4	0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20
Benzo(g,h,i)perylene	μg/L	0.2	0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20
Phenol	μg/L	9600	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Bis(2-chloroethyl)ether	μg/L	240000	0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
2-Chlorophenol	μg/L	2600	0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
o-Cresol	μg/L		0.5	32.1	31.4	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Bis(2-chloroisopropyl)ether	μg/L	20000	0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
m&p-Cresol	μg/L		0.6	8.0	8.4	<0.6	<0.6	<0.6	<0.6	<0.6	<0.6
2,4-Dimethylphenol	μg/L	31000	0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
2,4-Dichlorophenol	μg/L	3700	0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3
1,2,4-Trichlorobenzene	μg/L		0.5	1.2	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
p-Chloroaniline	μg/L	320	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
2-and 1-methyl Naphthalene	μg/L	1500	0.20	0.99	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20
2,4,6-Trichlorophenol	μg/L	180	0.20	0.99	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20
2,4,5-Trichlorophenol	μg/L	1300	0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20

Certificate of Analysis

AGAT WORK ORDER: 22P920496

PROJECT: 220509-00

ATTENTION TO: Paul Bandler

SAMPLED BY:

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

SAMPLING SITE:

O. Reg. 153(511) - BNA (full) + PAHs (Water)

				<u> </u>		` '	,				
DATE RECEIVED: 2022-07-14								Ι	DATE REPORTI	ED: 2022-07-25	
		SAMPLE DES	CRIPTION:	MW148	MW149	MW157	MW130	MW50	MW84	MW151	MW156
		SAM	PLE TYPE:	Water							
		DATE	SAMPLED:	2022-07-13 11:33	2022-07-13 12:41	2022-07-13 10:41	2022-07-13 14:44	2022-07-13 11:54	2022-07-13 10:44	2022-07-13 15:51	2022-07-13 09:45
Parameter	Unit	G/S	RDL	4097326	4097329	4097341	4097342	4097343	4097344	4097345	4097346
1,1'-Biphenyl	μg/L	1000	0.50	<0.50	<0.50	< 0.50	<0.50	<0.50	<0.50	<0.50	<0.50
Dimethyl phthalate	μg/L	30	0.50	<0.50	< 0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50
2,4 and 2,6-Dinitrotoluene	μg/L	2300	0.50	<0.50	<0.50	<0.50	<0.50	<0.50	< 0.50	<0.50	< 0.50
Diethyl phthalate	μg/L	30	0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	< 0.50
Pentachlorophenol	μg/L	50	0.50	<0.50	<0.50	<0.50	<0.50	<0.50	< 0.50	<0.50	< 0.50
3,3'-dichlorobenzidine	μg/L	500	0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	< 0.50
Bis(2-Ethylhexyl)phthalate	μg/L	30	0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	<0.50	< 0.50
2,4-Dinitrophenol	μg/L	9000	10	<10	<10	<10	<10	<10	<10	<10	<10
Sediment				TRACE	TRACE	NO	NO	NO	NO	NO	NO
Surrogate	Unit	Acceptab	le Limits								
2-Fluorophenol	%	50-	140	84	80	62	73	70	69	63	70
phenol-d6 surrogate	%	50-	140	70	66	71	61	73	71	67	70
2,4,6-Tribromophenol	%	50-	140	83	110	105	97	97	106	105	98
Chrysene-d12	%	50-	140	86	80	88	98	117	79	90	100

SAMPLING SITE:

Certificate of Analysis

AGAT WORK ORDER: 22P920496

PROJECT: 220509-00

ATTENTION TO: Paul Bandler

SAMPLED BY:

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

O Rea	153/511	- RNA	full') + PAHs (Water)
O. Reg.	100(011	- DINA	(IUII)) + FADS (Water)

			<u> </u>	11 e g. 155(5	ori) - DIVA (IUII) + FALIS (Water)
DATE RECEIVED: 2022-07-14					DATE REPORTED: 2022-07-
		SAMPLE DES	CRIPTION:	Dup 1	
		SAMI	PLE TYPE:	Water	
		DATE S	SAMPLED:	2022-07-13	
Parameter	Unit	G/S	RDL	15:51 4097422	
Naphthalene		7	0.20	<0.20	
•	μg/L	1	0.20	<0.20	
Acenaphthone	μg/L	17	0.20	<0.20	
Acenaphthene Fluorene	μg/L	290	0.20	<0.20	
Phenanthrene	μg/L	380	0.20	<0.20	
Anthracene	μg/L	300	0.10	<0.10	
Fluoranthene	μg/L		0.10	<0.10	
	μg/L	44 5.7	0.20	<0.20	
Pyrene Ponzo(a)anthrocono	μg/L		0.20	<0.20	
Benzo(a)anthracene	μg/L	1.8			
Chrysene	μg/L	0.7	0.10	<0.10	
Senzo(b)fluoranthene	μg/L	0.75	0.10	<0.10	
Benzo(k)fluoranthene	μg/L	0.4	0.10	<0.10	
enzo(a)pyrene	μg/L	0.81	0.01	<0.01	
ndeno(1,2,3-cd)pyrene	μg/L	0.2	0.20	<0.20	
Dibenz(a,h)anthracene	μg/L	0.4	0.20	<0.20	
Benzo(g,h,i)perylene	μg/L	0.2	0.20	<0.20	
Phenol	μg/L	9600	1.0	<1.0	
Bis(2-chloroethyl)ether	μg/L	240000	0.5	<0.5	
2-Chlorophenol	μg/L	2600	0.5	<0.5	
o-Cresol	μg/L	00000	0.5	<0.5	
Bis(2-chloroisopropyl)ether	μg/L	20000	0.5	<0.5	
m&p-Cresol	μg/L	24000	0.6	<0.6	
,4-Dimethylphenol	μg/L	31000	0.5	<0.5	
,4-Dichlorophenol	μg/L	3700	0.3	<0.3	
1,2,4-Trichlorobenzene	μg/L		0.5	<0.5	
p-Chloroaniline	μg/L	320	1.0	<1.0	
2-and 1-methyl Naphthalene	μg/L	1500	0.20	<0.20	
2,4,6-Trichlorophenol	μg/L	180	0.20	<0.20	
2,4,5-Trichlorophenol	μg/L	1300	0.20	<0.20	

Certificate of Analysis

AGAT WORK ORDER: 22P920496

PROJECT: 220509-00

ATTENTION TO: Paul Bandler

SAMPLED BY:

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

O. Reg. 153(511) - BN/	(full) + PAHs (Water)
------------------------	-----------------------

				1109. 100(0	11) Bitt (lall) 1 1 tillo (Water)	
DATE RECEIVED: 2022-07-14						DATE REPORTED: 2022-07-
		SAMPLE DES	CRIPTION:	Dup 1		
		SAMI	PLE TYPE:	Water		
		DATES	SAMPLED:	2022-07-13 15:51		
Parameter	Unit	G/S	RDL	4097422		
1,1'-Biphenyl	μg/L	1000	0.50	<0.50		
Dimethyl phthalate	μg/L	30	0.50	<0.50		
2,4 and 2,6-Dinitrotoluene	μg/L	2300	0.50	< 0.50		
Diethyl phthalate	μg/L	30	0.50	<0.50		
Pentachlorophenol	μg/L	50	0.50	< 0.50		
3,3'-dichlorobenzidine	μg/L	500	0.50	<0.50		
Bis(2-Ethylhexyl)phthalate	μg/L	30	0.50	< 0.50		
2,4-Dinitrophenol	μg/L	9000	10	<10		
Sediment				NO		
Surrogate	Unit	Acceptab	le Limits			
2-Fluorophenol	%	50-1	140	75		
ohenol-d6 surrogate	%	50-1	140	73		
2,4,6-Tribromophenol	%	50-1	140	99		
Chrysene-d12	%	50-1	140	95		

Comments:

SAMPLING SITE:

RDL - Reported Detection Limit; G / S - Guideline / Standard: Refers to Table 7: Generic Site Condition Standards for Shallow Soils in a Non-Potable Ground Water Condition - Non-Potable Ground Water - All Types of Property Uses - Coarse Textured Soils

Guideline values are for general reference only. The guidelines provided may or may not be relevant for the intended use. Refer directly to the applicable standard for regulatory interpretation.

4097326-4097422 To meet the MOE Reporting limits the sample extract was analysed using two separate GC/MS methods. The full scan BNA method is capable of detecting most of the compounds at the RDLs except for several PAHs. The PAHs were analysed using a SIM mode GC/MS method.

Note: The result for Benzo(b)Fluoranthene is the total of the Benzo(b)&(j)Fluoranthene isomers because the isomers co-elute on the GC column.

Sediment parameter is comment only based on visual inspection of the sample prior to extraction and is not an accredited test.

Analysis performed at AGAT Toronto (unless marked by *)

Certified By:

NPoprukolof

SAMPLING SITE:

Certificate of Analysis

AGAT WORK ORDER: 22P920496

PROJECT: 220509-00

ATTENTION TO: Paul Bandler

SAMPLED BY:

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

\sim	_	450/544	D0D	///////////////////////////////////////
O.	Rea.	153(511)	- PCBS	(vvater)

				3	(- /	(- /				
DATE RECEIVED: 2022-07-14								[DATE REPORTI	ED: 2022-07-25	
		SAMPLE DES	CRIPTION:	MW148	MW149	MW157	MW130	MW50	MW84	MW151	MW156
		SAM	PLE TYPE:	Water							
		DATE	SAMPLED:	2022-07-13 11:33	2022-07-13 12:41	2022-07-13 10:41	2022-07-13 14:44	2022-07-13 11:54	2022-07-13 10:44	2022-07-13 15:51	2022-07-13 09:45
Parameter	Unit	G/S	RDL	4097326	4097329	4097341	4097342	4097343	4097344	4097345	4097346
Polychlorinated Biphenyls	μg/L	0.2	0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Surrogate	Unit	Acceptab	ole Limits								
Decachlorobiphenyl	%	60-	140	82	94	71	98	75	96	81	98
		SAMPLE DES	CRIPTION: PLE TYPE:	Dup 1 Water							
		DATE	SAMPLED:	2022-07-13 15:51							
Parameter	Unit	G/S	RDL	4097422							
Polychlorinated Biphenyls	μg/L	0.2	0.1	<0.1							
Surrogate	Unit	Acceptab	ole Limits								
Decachlorobiphenyl	%	60-	140	90							

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard: Refers to Table 7: Generic Site Condition Standards for Shallow Soils in a Non-Potable Ground Water Condition - Non-Potable Ground Water - All Types of Property Uses - Coarse Textured Soils

Guideline values are for general reference only. The guidelines provided may or may not be relevant for the intended use. Refer directly to the applicable standard for regulatory interpretation.

4097326-4097422 PCB total is a calculated parameter. The calculated value is the sum of Aroclor 1242, Aroclor 1248, Aroclor 1254 and Aroclor 1260.

The calculated parameter is non-accredited. The parameters that are components of the calculation are accredited.

Analysis performed at AGAT Toronto (unless marked by *)

AGAT WORK ORDER: 22P920496

PROJECT: 220509-00

ATTENTION TO: Paul Bandler

SAMPLED BY:

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

CLIENT NAME: BLUMETRIC ENVIRONMENTAL INC.

SAMPLING SITE:

O. Reg. 153(511) - PHCs F1 - F4 (with PAHs and VOC) (Water) DATE RECEIVED: 2022-07-14 **DATE REPORTED: 2022-07-25** SAMPLE DESCRIPTION: MW148 MW149 MW157 MW130 MW50 MW84 MW151 MW156 SAMPLE TYPE: Water Water Water Water Water Water Water Water DATE SAMPLED: 2022-07-13 2022-07-13 2022-07-13 2022-07-13 2022-07-13 2022-07-13 2022-07-13 2022-07-13 11:33 12:41 10:41 14:44 11:54 10:44 15:51 09:45 Parameter Unit G/S **RDL** 4097326 4097329 4097341 4097342 4097343 4097344 4097345 4097346 F1 (C6-C10) 25 <25 μg/L 11700 <25 <25 <25 <25 <25 <25 F1 (C6 to C10) minus BTEX 25 <25 <25 <25 μg/L 420 2840 <25 <25 <25 <25 F2 (C10 to C16) μg/L 150 100 1700 <100 <100 <100 <100 <100 <100 110 F2 (C10 to C16) minus Naphthalene 107 <100 <100 μg/L 100 1580 <100 <100 <100 <100 F3 (C16 to C34) μg/L 500 100 240 <100 <100 <100 <100 <100 <100 <100 F3 (C16 to C34) minus PAHs μg/L 100 240 <100 <100 <100 <100 <100 <100 <100 F4 (C34 to C50) μg/L <100 <100 500 100 <100 <100 <100 <100 <100 <100 Gravimetric Heavy Hydrocarbons µg/L 500 NA NA NA NA NA NA NA NA Sediment NO NO NO NO NO NO NO NO Unit Acceptable Limits Surrogate 50-140 102 97 95 98 95 Toluene-d8 100 103 104 60-140 66 76 84 63 65 63 67 Terphenyl % Recovery 64

SAMPLING SITE:

Certificate of Analysis

AGAT WORK ORDER: 22P920496

PROJECT: 220509-00

ATTENTION TO: Paul Bandler

SAMPLED BY:

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

O. Reg. 153(511) - PHCs F1 - F4 (with PAHs and VOC) (Water)

		O. Reg. 13	D3(311) - PH	CS F1 - F4 (WITH FAITS and VOC) (Water)
DATE RECEIVED: 2022-07-14				DATE REPORTED: 2022-07-25
	SA	AMPLE DESCRIPTION: SAMPLE TYPE: DATE SAMPLED:	Water 2022-07-13	
Parameter	Unit	G/S RDL	15:51 4097422	
F1 (C6-C10)	μg/L	25	<25	
F1 (C6 to C10) minus BTEX	μg/L	420 25	<25	
F2 (C10 to C16)	μg/L	150 100	<100	
F2 (C10 to C16) minus Naphthalene	μg/L	100	<100	
F3 (C16 to C34)	μg/L	500 100	<100	
F3 (C16 to C34) minus PAHs	μg/L	100	<100	
F4 (C34 to C50)	μg/L	500 100	<100	
Gravimetric Heavy Hydrocarbons	μg/L	500	NA	
Sediment			NO	
Surrogate	Unit	Acceptable Limits		
Toluene-d8	%	50-140	98	
Terphenyl	% Recovery	60-140	61	

AGAT WORK ORDER: 22P920496

PROJECT: 220509-00

ATTENTION TO: Paul Bandler

SAMPLED BY:

O. Reg. 153(511) - PHCs F1 - F4 (with PAHs and VOC) (Water)

DATE RECEIVED: 2022-07-14 DATE REPORTED: 2022-07-25

Comments:

SAMPLING SITE:

RDL - Reported Detection Limit; G / S - Guideline / Standard: Refers to Table 7: Generic Site Condition Standards for Shallow Soils in a Non-Potable Ground Water Condition - Non-Potable Ground

Water - All Types of Property Uses - Coarse Textured Soils

Guideline values are for general reference only. The guidelines provided may or may not be relevant for the intended use. Refer directly to the applicable standard for regulatory interpretation.

4097326

Dilution factor=20

VOC- The sample was diluted to keep the target compounds in the calibration range of the instrument and avoid contaminating the Purge and Trap system. The reporting detection limit has been corrected

for the dilution factor used.

CLIENT NAME: BLUMETRIC ENVIRONMENTAL INC.

The C6-C10 fraction is calculated using toluene response factor.

C6-C10 (F1 minus BTEX) is a calculated parameter. The calculated value is F1 minus BTEX. The calculated parameter is non-accredited. The parameters that are components of the calculation are

accredited.

The C10 - C16, C16 - C34, and C34 - C50 fractions are calculated using the average response factor for n-C10, n-C16, and n-C34.

Gravimetric Heavy Hydrocarbons are not included in the Total C16-C50 and are only determined if the chromatogram of the C34 - C50 hydrocarbons indicates that hydrocarbons > C50 are present.

The chromatogram has returned to baseline by the retention time of nC50.

Total C6 - C50 results are corrected for BTEX and PAH contributions.

C>10 - C16 (F2- Naphthalene) is a calculated parameter. The calculated value is F2 - Naphthalene.

C>16 - C34 (F3-PAH) is a calculated parameter. The calculated value is F3-PAH (PAH: sum of Phenanthrene, Benzo(a)anthracene, Benzo(b)fluoranthene, Benzo(k)fluoranthene, Benzo(a)pyrene,

Fluoranthene, Dibenzo(a,h)anthracene, Indeno(1,2,3-c,d)pyrene and Pyrene).

This method complies with the Reference Method for the CWS PHC and is validated for use in the laboratory.

nC10, nC16 and nC34 response factors are within 10% of their average.

C50 response factor is within 70% of nC10 + nC16 + nC34 average.

Linearity is within 15%.

Extraction and holding times were met for this sample.

Sediment parameter is comment only based on visual inspection of the sample prior to extraction and is not an accredited test.

4097329-4097422 The C6-C10 fraction is calculated using toluene response factor.

C6-C10 (F1 minus BTEX) is a calculated parameter. The calculated value is F1 minus BTEX. The calculated parameter is non-accredited. The parameters that are components of the calculation are

accredited.

The C10 - C16, C16 - C34, and C34 - C50 fractions are calculated using the average response factor for n-C10, n-C16, and n-C34.

Gravimetric Heavy Hydrocarbons are not included in the Total C16-C50 and are only determined if the chromatogram of the C34 - C50 hydrocarbons indicates that hydrocarbons > C50 are present.

The chromatogram has returned to baseline by the retention time of nC50.

Total C6 - C50 results are corrected for BTEX and PAH contributions.

C>10 - C16 (F2- Naphthalene) is a calculated parameter. The calculated value is F2 - Naphthalene.

C>16 - C34 (F3-PAH) is a calculated parameter. The calculated value is F3-PAH (PAH: sum of Phenanthrene, Benzo(a)anthracene, Benzo(b)fluoranthene, Benzo(k)fluoranthene, Benzo(a)pyrene,

Fluoranthene, Dibenzo(a,h)anthracene, Indeno(1,2,3-c,d)pyrene and Pyrene).

This method complies with the Reference Method for the CWS PHC and is validated for use in the laboratory.

nC10, nC16 and nC34 response factors are within 10% of their average.

C50 response factor is within 70% of nC10 + nC16 + nC34 average.

Linearity is within 15%.

Extraction and holding times were met for this sample.

Sediment parameter is comment only based on visual inspection of the sample prior to extraction and is not an accredited test.

Analysis performed at AGAT Toronto (unless marked by *)

Certified By:

NPoprukolef

5835 COOPERS AVENUE

MISSISSAUGA, ONTARIO CANADA L4Z 1Y2

http://www.agatlabs.com

TEL (905)712-5100 FAX (905)712-5122

SAMPLING SITE:

Certificate of Analysis

AGAT WORK ORDER: 22P920496

PROJECT: 220509-00

ATTENTION TO: Paul Bandler

SAMPLED BY:

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

O. Reg. 153(511) - VOCs (with PHC) (Water)

DATE RECEIVED: 2022-07-14								[DATE REPORTE	ED: 2022-07-25	
			CRIPTION: PLE TYPE: SAMPLED:	MW148 Water 2022-07-13 11:33		MW149 Water 2022-07-13 12:41	MW157 Water 2022-07-13 10:41	MW130 Water 2022-07-13 14:44	MW50 Water 2022-07-13 11:54	MW84 Water 2022-07-13 10:44	MW151 Water 2022-07-13 15:51
Parameter	Unit	G/S	RDL	4097326	RDL	4097329	4097341	4097342	4097343	4097344	4097345
Dichlorodifluoromethane	μg/L	3500	4.00	<4.00	0.40	< 0.40	<0.40	< 0.40	<0.40	<0.40	<0.40
Vinyl Chloride	μg/L	0.5	1.70	<1.70	0.17	<0.17	<0.17	<0.17	<0.17	<0.17	<0.17
Bromomethane	μg/L	0.89	2.00	<2.00	0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20
Trichlorofluoromethane	μg/L	2000	4.00	<4.00	0.40	<0.40	< 0.40	< 0.40	< 0.40	< 0.40	< 0.40
Acetone	μg/L	100000	10.0	<10.0	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
1,1-Dichloroethylene	μg/L	0.5	3.00	<3.00	0.30	< 0.30	< 0.30	< 0.30	< 0.30	< 0.30	< 0.30
Methylene Chloride	μg/L	26	3.00	<3.00	0.30	<0.30	< 0.30	< 0.30	< 0.30	< 0.30	< 0.30
trans- 1,2-Dichloroethylene	μg/L	1.6	2.00	<2.00	0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20
Methyl tert-butyl ether	μg/L	15	2.00	<2.00	0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20
1,1-Dichloroethane	μg/L	11	3.00	<3.00	0.30	<0.30	< 0.30	< 0.30	< 0.30	< 0.30	< 0.30
Methyl Ethyl Ketone	μg/L	21000	10.0	<10.0	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
cis- 1,2-Dichloroethylene	μg/L	1.6	2.00	<2.00	0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20
Chloroform	μg/L	2	2.00	<2.00	0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20
1,2-Dichloroethane	μg/L	0.5	2.00	<2.00	0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20
1,1,1-Trichloroethane	μg/L	23	3.00	<3.00	0.30	< 0.30	< 0.30	< 0.30	< 0.30	< 0.30	< 0.30
Carbon Tetrachloride	μg/L	0.2	2.00	<2.00	0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20
Benzene	μg/L	0.5	2.00	<2.00	0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20
1,2-Dichloropropane	μg/L	0.58	2.00	<2.00	0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20
Trichloroethylene	μg/L	0.5	2.00	<2.00	0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20
Bromodichloromethane	μg/L	67000	2.00	<2.00	0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20
Methyl Isobutyl Ketone	μg/L	5200	10.0	<10.0	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
1,1,2-Trichloroethane	μg/L	0.5	2.00	<2.00	0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20
Toluene	μg/L	320	2.00	8830	0.20	<0.20	0.31	<0.20	<0.20	<0.20	<0.20
Dibromochloromethane	μg/L	65000	1.00	<1.00	0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
Ethylene Dibromide	μg/L	0.2	1.00	<1.00	0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
Tetrachloroethylene	μg/L	0.5	2.00	<2.00	0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20
1,1,1,2-Tetrachloroethane	μg/L	1.1	1.00	<1.00	0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
Chlorobenzene	μg/L	140	1.00	<1.00	0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
Ethylbenzene	μg/L	54	1.00	7.10	0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10

% Recovery

50-140

88

Certificate of Analysis

AGAT WORK ORDER: 22P920496

PROJECT: 220509-00

ATTENTION TO: Paul Bandler

83

81

82

SAMPLED BY:

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

CLIENT NAME: BLUMETRIC ENVIRONMENTAL INC.

SAMPLING SITE:

O. Reg. 153(511) - VOCs (with PHC) (Water) DATE RECEIVED: 2022-07-14 **DATE REPORTED: 2022-07-25** SAMPLE DESCRIPTION: MW148 MW149 MW157 MW130 MW50 MW84 MW151 SAMPLE TYPE: Water Water Water Water Water Water Water DATE SAMPLED: 2022-07-13 2022-07-13 2022-07-13 2022-07-13 2022-07-13 2022-07-13 2022-07-13 11:33 12:41 10:41 14:44 11:54 10:44 15:51 Parameter Unit G/S RDL 4097326 **RDL** 4097329 4097341 4097342 4097343 4097344 4097345 2.00 m & p-Xylene μg/L 16.4 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 Bromoform μg/L 5 1.00 <1.00 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 43 <1.00 0.10 <0.10 < 0.10 Styrene μg/L 1.00 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 1,1,2,2-Tetrachloroethane μg/L 0.5 1.00 0.10 < 0.10 < 0.10 < 0.10 < 0.10 <1.00 < 0.10 μg/L 1.00 2.31 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 o-Xylene 1,3-Dichlorobenzene μg/L 7600 1.00 <1.00 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 0.10 <0.10 1,4-Dichlorobenzene μg/L 0.5 1.00 <1.00 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 1.2-Dichlorobenzene μg/L 150 1.00 <1.00 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 1,3-Dichloropropene μg/L 0.5 0.30 < 0.30 0.30 < 0.30 < 0.30 < 0.30 < 0.30 < 0.30 < 0.30 Xylenes (Total) μg/L 72 0.20 18.7 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 n-Hexane μg/L 5 2.00 < 2.00 0.20 <0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 Surrogate Unit Acceptable Limits Toluene-d8 % Recovery 50-140 100 102 97 95 103 98 95

Certified By:

78

83

NPoprukolof

4-Bromofluorobenzene

87

AGAT WORK ORDER: 22P920496

PROJECT: 220509-00

ATTENTION TO: Paul Bandler

TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

5835 COOPERS AVENUE

MISSISSAUGA, ONTARIO CANADA L4Z 1Y2

CLIENT NAME: BLUMETRIC ENVIRONMENTAL INC.

SAMPLING SITE: SAMPLED BY:

O. Reg. 153(511) - VOCs (with PHC) (Water)											
DATE RECEIVED: 2022-07-14							DATE REPORTED: 20				
		SAMPLE DESC		MW156	Dup 1						
			LE TYPE:	Water	Water						
		DATE S	AMPLED:	2022-07-13 09:45	2022-07-13 15:51						
Parameter	Unit	G/S	RDL	4097346	4097422						
Dichlorodifluoromethane	μg/L	3500	0.40	<0.40	<0.40						
Vinyl Chloride	μg/L	0.5	0.17	<0.17	<0.17						
Bromomethane	μg/L	0.89	0.20	<0.20	<0.20						
Trichlorofluoromethane	μg/L	2000	0.40	<0.40	<0.40						
Acetone	μg/L	100000	1.0	<1.0	<1.0						
1,1-Dichloroethylene	μg/L	0.5	0.30	<0.30	<0.30						
Methylene Chloride	μg/L	26	0.30	<0.30	<0.30						
trans- 1,2-Dichloroethylene	μg/L	1.6	0.20	<0.20	<0.20						
Methyl tert-butyl ether	μg/L	15	0.20	<0.20	<0.20						
1,1-Dichloroethane	μg/L	11	0.30	<0.30	<0.30						
Methyl Ethyl Ketone	μg/L	21000	1.0	<1.0	<1.0						
cis- 1,2-Dichloroethylene	μg/L	1.6	0.20	<0.20	<0.20						
Chloroform	μg/L	2	0.20	<0.20	<0.20						
1,2-Dichloroethane	μg/L	0.5	0.20	<0.20	<0.20						
1,1,1-Trichloroethane	μg/L	23	0.30	<0.30	<0.30						
Carbon Tetrachloride	μg/L	0.2	0.20	<0.20	<0.20						
Benzene	μg/L	0.5	0.20	<0.20	<0.20						
1,2-Dichloropropane	μg/L	0.58	0.20	<0.20	<0.20						
Trichloroethylene	μg/L	0.5	0.20	<0.20	<0.20						
Bromodichloromethane	μg/L	67000	0.20	<0.20	<0.20						
Methyl Isobutyl Ketone	μg/L	5200	1.0	<1.0	<1.0						
1,1,2-Trichloroethane	μg/L	0.5	0.20	<0.20	<0.20						
Toluene	μg/L	320	0.20	<0.20	<0.20						
Dibromochloromethane	μg/L	65000	0.10	<0.10	<0.10						
Ethylene Dibromide	μg/L	0.2	0.10	<0.10	<0.10						
Tetrachloroethylene	μg/L	0.5	0.20	<0.20	<0.20						
1,1,1,2-Tetrachloroethane	μg/L	1.1	0.10	<0.10	<0.10						
Chlorobenzene	μg/L	140	0.10	<0.10	<0.10						
Ethylbenzene	μg/L	54	0.10	<0.10	<0.10						

SAMPLING SITE:

Certificate of Analysis

AGAT WORK ORDER: 22P920496

PROJECT: 220509-00

ATTENTION TO: Paul Bandler

SAMPLED BY:

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

\cap	Rag	153(511)	- V/OCs	(with	PHC)	(Mater)
O.	neu.	1000011	- ۷005	LVVILII	T TIO	(vval e i)

			_		,	oo (man 110) (water)
DATE RECEIVED: 2022-07-14						DATE REPORTED: 2022-07-25
	S/	AMPLE DES	CRIPTION:	MW156	Dup 1	
		SAME	PLE TYPE:	Water	Water	
		DATE S	SAMPLED:	2022-07-13 09:45	2022-07-13 15:51	
Parameter	Unit	G/S	RDL	4097346	4097422	
m & p-Xylene	μg/L		0.20	<0.20	<0.20	
Bromoform	μg/L	5	0.10	<0.10	<0.10	
Styrene	μg/L	43	0.10	<0.10	<0.10	
1,1,2,2-Tetrachloroethane	μg/L	0.5	0.10	<0.10	<0.10	
o-Xylene	μg/L		0.10	<0.10	<0.10	
1,3-Dichlorobenzene	μg/L	7600	0.10	<0.10	< 0.10	
1,4-Dichlorobenzene	μg/L	0.5	0.10	<0.10	< 0.10	
1,2-Dichlorobenzene	μg/L	150	0.10	<0.10	<0.10	
1,3-Dichloropropene	μg/L	0.5	0.30	< 0.30	< 0.30	
Xylenes (Total)	μg/L	72	0.20	<0.20	<0.20	
n-Hexane	μg/L	5	0.20	<0.20	<0.20	
Surrogate	Unit	Acceptab	le Limits			
Toluene-d8	% Recovery	50-1	140	104	98	
4-Bromofluorobenzene	% Recovery	50-1	40	77	84	

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard: Refers to Table 7: Generic Site Condition Standards for Shallow Soils in a Non-Potable Ground Water Condition - Non-Potable Ground

Water - All Types of Property Uses - Coarse Textured Soils

Guideline values are for general reference only. The guidelines provided may or may not be relevant for the intended use. Refer directly to the applicable standard for regulatory interpretation.

4097326 Dilution factor=1

VOC- The sample was diluted to keep the target compounds in the calibration range of the instrument and avoid contaminating the Purge and Trap system. The reporting detection limit has been corrected for the dilution factor used.

Xylenes total is a calculated parameter. The calculated value is the sum of m&p-Xylene and o-Xylene.

1,3-Dichloropropene total is a calculated parameter. The calculated value is the sum of Cis-1,3-Dichloropropene and Trans-1,3-Dichloropropene.

The calculated parameter is non-accredited. The parameters that are components of the calculation are accredited.

4097329-4097422 Xylenes total is a calculated parameter. The calculated value is the sum of m&p-Xylene and o-Xylene.

1,3-Dichloropropene total is a calculated parameter. The calculated value is the sum of Cis-1,3-Dichloropropene and Trans-1,3-Dichloropropene.

The calculated parameter is non-accredited. The parameters that are components of the calculation are accredited.

Analysis performed at AGAT Toronto (unless marked by *)

SAMPLING SITE:

Certificate of Analysis

AGAT WORK ORDER: 22P920496

PROJECT: 220509-00

ATTENTION TO: Paul Bandler

SAMPLED BY:

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

O. Reg. 153(511) - Metals & Inorganics (Water)

				• •	•		` ,				
DATE RECEIVED: 2022-07-14									DATE REPORT	ED: 2022-07-25	
	;	SAMPLE DESC	_	MW148	MW149	MW157	MW130	MW50		MW84	
			PLE TYPE: SAMPLED:	Water 2022-07-13	Water 2022-07-13	Water 2022-07-13	Water 2022-07-13	Water 2022-07-13		Water 2022-07-13	
		5,112	, LLD.	11:33	12:41	10:41	14:44	11:54		10:44	
Parameter	Unit	G/S	RDL	4097326	4097329	4097341	4097342	4097343	RDL	4097344	
Dissolved Antimony	μg/L	16000	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	1.0	<1.0	
Dissolved Arsenic	μg/L	1500	1.0	1.1	<1.0	<1.0	<1.0	<1.0	1.0	<1.0	
Dissolved Barium	μg/L	23000	2.0	54.9	53.3	229	66.2	53.1	2.0	380	
Dissolved Beryllium	μg/L	53	0.50	< 0.50	<0.50	<0.50	< 0.50	< 0.50	0.50	< 0.50	
Dissolved Boron	μg/L	36000	10.0	<10.0	19.4	338	<10.0	31.6	10.0	90.0	
Dissolved Cadmium	μg/L	2.1	0.20	<0.20	<0.20	<0.20	<0.20	<0.20	0.20	<0.20	
Dissolved Chromium	μg/L	640	2.0	<2.0	<2.0	<2.0	<2.0	2.5	2.0	<2.0	
Dissolved Cobalt	μg/L	52	0.50	< 0.50	0.89	<0.50	<0.50	<0.50	0.50	<0.50	
Dissolved Copper	μg/L	69	1.0	<1.0	1.0	<1.0	1.4	1.8	1.0	1.2	
Dissolved Lead	μg/L	20	0.50	0.90	<0.50	< 0.50	<0.50	<0.50	0.50	<0.50	
Dissolved Molybdenum	μg/L	7300	0.50	<0.50	0.69	<0.50	<0.50	<0.50	0.50	0.52	
Dissolved Nickel	μg/L	390	1.0	<1.0	1.7	<1.0	<1.0	1.5	1.0	1.2	
Dissolved Selenium	μg/L	50	1.0	<1.0	1.2	<1.0	<1.0	<1.0	1.0	1.8	
Dissolved Silver	μg/L	1.2	0.20	<0.20	<0.20	<0.20	<0.20	<0.20	0.20	<0.20	
Dissolved Thallium	μg/L	400	0.30	<0.30	<0.30	< 0.30	< 0.30	< 0.30	0.30	< 0.30	
Dissolved Uranium	μg/L	330	0.50	<0.50	< 0.50	< 0.50	<0.50	1.76	0.50	1.93	
Dissolved Vanadium	μg/L	200	0.40	<0.40	<0.40	<0.40	<0.40	<0.40	0.40	0.90	
Dissolved Zinc	μg/L	890	5.0	<5.0	<5.0	<5.0	<5.0	<5.0	5.0	<5.0	
Mercury	μg/L	0.1	0.02	<0.02	<0.02	<0.02	<0.02	<0.02	0.02	<0.02	
Chromium VI	μg/L	110	2.000	<2.000	<2.000	<2.000	<2.000	<2.000	2.000	<2.000	
Cyanide, WAD	μg/L	52	2	<2	<2	<2	<2	<2	2	<2	
Dissolved Sodium	μg/L	1800000	500	3240	30900	118000	15600	63200	250	890000	
Chloride	μg/L	1800000	100	3090	53300	198000	9680	5220	122	1680000	
Electrical Conductivity	uS/cm	NA	2	673	841	1360	816	1120	2	5360	
pH	pH Units		NA	7.32	7.62	7.50	7.68	7.62	NA	7.59	

Certificate of Analysis

AGAT WORK ORDER: 22P920496

PROJECT: 220509-00

ATTENTION TO: Paul Bandler

SAMPLED BY:

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

SAMPLING SITE: O Reg. 153(511) - Metals & Ingraphics (Water)

DATE RECEIVED: 2022-07-14							DATE REPORTED: 2022-07-25
	5	SAMPLE DESC	CRIPTION:	MW151	MW156	Dup 1	
_		DATE S	AMPLED:	Water 2022-07-13 15:51	Water 2022-07-13 09:45	Water 2022-07-13 15:51	
Parameter	Unit	G/S	RDL	4097345	4097346	4097422	
Dissolved Antimony	μg/L	16000	1.0	<1.0	<1.0	<1.0	
Dissolved Arsenic	μg/L	1500	1.0	<1.0	<1.0	<1.0	
Dissolved Barium	μg/L	23000	2.0	85.6	115	85.8	
Dissolved Beryllium	μg/L	53	0.50	<0.50	<0.50	<0.50	
Dissolved Boron	μg/L	36000	10.0	40.8	22.2	42.0	
Dissolved Cadmium	μg/L	2.1	0.20	<0.20	<0.20	<0.20	
Dissolved Chromium	μg/L	640	2.0	2.0	<2.0	4.1	
Dissolved Cobalt	μg/L	52	0.50	<0.50	<0.50	<0.50	
Dissolved Copper	μg/L	69	1.0	1.0	4.4	1.9	
Dissolved Lead	μg/L	20	0.50	<0.50	<0.50	<0.50	
Dissolved Molybdenum	μg/L	7300	0.50	1.13	0.89	1.19	
Dissolved Nickel	μg/L	390	1.0	2.5	1.8	3.1	
Dissolved Selenium	μg/L	50	1.0	<1.0	<1.0	<1.0	
Dissolved Silver	μg/L	1.2	0.20	<0.20	<0.20	<0.20	
Dissolved Thallium	μg/L	400	0.30	< 0.30	<0.30	< 0.30	
Dissolved Uranium	μg/L	330	0.50	6.24	0.84	6.26	
Dissolved Vanadium	μg/L	200	0.40	<0.40	<0.40	< 0.40	
Dissolved Zinc	μg/L	890	5.0	<5.0	<5.0	<5.0	
Mercury	μg/L	0.1	0.02	<0.02	<0.02	< 0.02	
Chromium VI	μg/L	110	2.000	<2.000	<2.000	<2.000	
Cyanide, WAD	μg/L	52	2	<2	<2	<2	
Dissolved Sodium	μg/L	1800000	500	25900	80300	25400	
Chloride	μg/L	1800000	100	100000	182000	102000	
Electrical Conductivity	uS/cm	NA	2	1360	1210	1360	
Н	pH Units		NA	7.38	7.50	7.56	

AGAT WORK ORDER: 22P920496

PROJECT: 220509-00

ATTENTION TO: Paul Bandler

SAMPLED BY:

MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

5835 COOPERS AVENUE

O. Reg. 153(511) - Metals & Inorganics (Water)

DATE RECEIVED: 2022-07-14 DATE REPORTED: 2022-07-25

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard: Refers to Table 7: Generic Site Condition Standards for Shallow Soils in a Non-Potable Ground Water Condition - Non-Potable Ground Water - All Types of Property Uses - Coarse Textured Soils

Guideline values are for general reference only. The guidelines provided may or may not be relevant for the intended use. Refer directly to the applicable standard for regulatory interpretation.

4097326-4097422 Metals analysis completed on a filtered sample.

CLIENT NAME: BLUMETRIC ENVIRONMENTAL INC.

Dilution required, RDL has been increased accordingly.

Analysis performed at AGAT Toronto (unless marked by *)

SAMPLING SITE:

AMANJOT BELLIE AMANJOT BELLIE OF CHEMIST OF

Exceedance Summary

AGAT WORK ORDER: 22P920496

PROJECT: 220509-00

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

CLIENT NAME: BLUMETRIC ENVIRONMENTAL INC.

SAMPLEID	SAMPLE TITLE	GUIDELINE	ANALYSIS PACKAGE	PARAMETER	UNIT	GUIDEVALUE	RESULT
4097326	MW148	ON T7 NPGW CT	O. Reg. 153(511) - BNA (full) + PAHs (Water)	Naphthalene	μg/L	7	117
4097326	MW148	ON T7 NPGW CT	O. Reg. 153(511) - PHCs F1 - F4 (with PAHs and VOC) (Water)	F1 (C6 to C10) minus BTEX	μg/L	420	2840
4097326	MW148	ON T7 NPGW CT	O. Reg. 153(511) - PHCs F1 - F4 (with PAHs and VOC) (Water)	F2 (C10 to C16)	μg/L	150	1700
4097326	MW148	ON T7 NPGW CT	O. Reg. 153(511) - PHCs F1 - F4 (with PAHs and VOC) (Water)	Naphthalene	μg/L	7	117
4097326	MW148	ON T7 NPGW CT	O. Reg. 153(511) - PHCs F1 - F4 (with PAHs and VOC) (Water)	Toluene	μg/L	320	8830
4097326	MW148	ON T7 NPGW CT	O. Reg. 153(511) - VOCs (with PHC) (Water)	Toluene	μg/L	320	8830

Quality Assurance

CLIENT NAME: BLUMETRIC ENVIRONMENTAL INC.

AGAT WORK ORDER: 22P920496
PROJECT: 220509-00

ATTENTION TO: Paul Bandler

SAMPLING SITE: SAMPLED BY:

			Trac	e Org	gani	cs Ar	nalys	İS							
RPT Date: Jul 25, 2022			DUPLICATE			REFERENCE MATERIAL			METHOD BLANK SPIKE			MAT	RIX SPI	KE	
PARAMETER	Batch S	ample Id	Dup #1	Dup #2	RPD	Method Blank	Measured Value	Liı	eptable mits	Recovery	Lir	ptable nits	Recovery	Lin	ptable nits
								Lower	Upper		Lower	Upper		Lower	Uppei
O. Reg. 153(511) - BNA (full) +	PAHs (Water)														
Naphthalene	4075790		< 0.20	< 0.20	NA	< 0.20	112%	50%	140%	101%	50%	140%	85%	50%	140%
Acenaphthylene	4075790		< 0.20	< 0.20	NA	< 0.20	102%	50%	140%	72%	50%	140%	75%	50%	140%
Acenaphthene	4075790		< 0.20	< 0.20	NA	< 0.20	107%	50%	140%	74%	50%	140%	79%	50%	140%
Fluorene	4075790		< 0.20	< 0.20	NA	< 0.20	95%	50%	140%	70%	50%	140%	85%	50%	140%
Phenanthrene	4075790		< 0.10	< 0.10	NA	< 0.10	105%	50%	140%	85%	50%	140%	85%	50%	140%
Anthracene	4075790		< 0.10	< 0.10	NA	< 0.10	102%	50%	140%	88%	50%	140%	84%	50%	140%
Fluoranthene	4075790		< 0.20	< 0.20	NA	< 0.20	92%	50%	140%	98%	50%	140%	79%	50%	140%
Pyrene	4075790		< 0.20	< 0.20	NA	< 0.20	99%	50%	140%	99%	50%	140%	86%	50%	140%
Benzo(a)anthracene	4075790		< 0.20	< 0.20	NA	< 0.20	108%	50%	140%	102%	50%	140%	85%	50%	140%
Chrysene	4075790		< 0.10	< 0.10	NA	< 0.10	93%	50%	140%	98%	50%	140%	82%	50%	140%
Benzo(b)fluoranthene	4075790		< 0.10	< 0.10	NA	< 0.10	95%	50%	140%	78%	50%	140%	84%	50%	140%
Benzo(k)fluoranthene	4075790		< 0.10		NA	< 0.10	102%	50%	140%	80%	50%	140%	79%	50%	140%
* *				< 0.10											140%
Benzo(a)pyrene	4075790 4075790		< 0.01 < 0.20	< 0.01	NA NA	< 0.01	104% 92%	50% 50%	140% 140%	80% 81%	50% 50%	140% 140%	86% 85%	50% 50%	140%
Indeno(1,2,3-cd)pyrene Dibenz(a,h)anthracene	4075790		< 0.20	< 0.20 < 0.20	NA	< 0.20 < 0.20	97%	50%	140%	80%	50%	140%	84%	50%	140%
, · · ·															
Benzo(g,h,i)perylene	4075790		< 0.20	< 0.20	NA	< 0.20	91%	50%	140%	81%	50%	140%	79%	50%	140%
Phenol	4075790		< 1.0	< 1.0	NA	< 1.0	77%	30%	130%	77%	30%	130%	85%	30%	130%
Bis(2-chloroethyl)ether	4075790		< 0.5	< 0.5	NA	< 0.5	104%	50%	140%	79%	50%	140%	86%	50%	140%
2-Chlorophenol	4075790		< 0.5	< 0.5	NA	< 0.5	70%	50%	140%	81%	50%	140%	89%	50%	140%
o-Cresol	4075790		< 0.5	< 0.5	NA	< 0.5	103%	50%	140%	70%	50%	140%	85%	50%	140%
Bis(2-chloroisopropyl)ether	4075790		< 0.5	< 0.5	NA	< 0.5	89%	50%	140%	69%	50%	140%	84%	50%	140%
m&p-Cresol	4075790		< 0.6	< 0.6	NA	< 0.6	96%	50%	140%	71%	50%	140%	79%	50%	140%
2,4-Dimethylphenol	4075790		< 0.5	< 0.5	NA	< 0.5	69%	30%	130%	69%	30%	130%	85%	30%	130%
2,4-Dichlorophenol	4075790		< 0.3	< 0.3	NA	< 0.3	109%	50%	140%	68%	50%	140%	85%	50%	140%
1,2,4-Trichlorobenzene	4075790		< 0.5	< 0.5	NA	< 0.5	108%	50%	140%	65%	50%	140%	81%	50%	140%
p-Chloroaniline	4075790		< 1.0	< 1.0	NA	< 1.0	91%	30%	130%	89%	30%	130%	79%	30%	130%
2,4,6-Trichlorophenol	4075790		< 0.20	< 0.20	NA	< 0.20	110%	50%	140%	83%	50%	140%	84%	50%	140%
2,4,5-Trichlorophenol	4075790		< 0.20	< 0.20	NA	< 0.20	87%	50%	140%	88%	50%	140%	79%	50%	140%
1,1'-Biphenyl	4075790		< 0.50	< 0.50	NA	< 0.50	81%	50%	140%	93%	50%	140%	82%	50%	140%
Dimethyl phthalate	4075790		< 0.50	< 0.50	NA	< 0.50	112%	50%	140%	88%	50%	140%	85%	50%	140%
Diath. dahthalate	4075700		. 0. 50	. 0. 50	N 1 A	. 0.50	4040/	F00/	4.4007	070/	F00/	4.4007	050/	F00/	4.400
Diethyl phthalate	4075790		< 0.50	< 0.50	NA	< 0.50	101%		140%	97%		140%	85%		140%
Pentachlorophenol	4075790		< 0.50	< 0.50	NA	< 0.50	95%		140%	71%	50%	140%	84%		140%
3,3'-dichlorobenzidine	4075790		< 0.50	< 0.50	NA	< 0.50	85%	30%		89%	30%	130%	79%		130%
Bis(2-Ethylhexyl)phthalate 2,4-Dinitrophenol	4075790 4075790		< 0.50 < 10	< 0.50 < 10	NA NA	< 0.50 < 10	108% 100%	50% 30%	140% 130%	98% 86%	50% 30%	140% 130%	89% 99%		140% 130%
z, i zanaopriorioi	40/0/00		` 10	~ 10	14/1	~ 10	10070	00 /0	10070	0070	50 /0	10070	5576	30 /0	10070
O. Reg. 153(511) - PHCs F1 - F	•	,	` '												4.4
F1 (C6-C10)	4097422 409		<25	<25	NA	< 25	107%		140%	107%		140%	112%		140%
F2 (C10 to C16)	4097342 409		< 100	< 100	NA	< 100	88%	60%		70%		140%	76%	60%	140%
F3 (C16 to C34)	4097342 409	7342	< 100	< 100	NA	< 100	83%	60%	140%	70%	60%	140%	72%	60%	140%

AGAT QUALITY ASSURANCE REPORT (V1)

Page 18 of 30

AGAT Laboratories is accredited to ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA) and/or Standards Council of Canada (SCC) for specific tests listed on the scope of accreditation. AGAT Laboratories (Mississauga) is also accredited by the Canadian Association for Laboratory Accreditation Inc. (CALA) for specific drinking water tests. Accreditations are location and parameter specific. A complete listing of parameters for each location is available from www.cala.ca and/or www.scc.ca. The tests in this report may not necessarily be included in the scope of accreditation. RPDs calculated using raw data. The RPD may not be reflective of duplicate values shown, due to rounding of final results.

Quality Assurance

CLIENT NAME: BLUMETRIC ENVIRONMENTAL INC.

AGAT WORK ORDER: 22P920496
PROJECT: 220509-00

ATTENTION TO: Paul Bandler

SAMPLING SITE: SAMPLED BY:

SAMPLING SITE.									LED B						
	٦	race	Org	anics	Ana	alysis	(Cor	ntin	ued)					
RPT Date: Jul 25, 2022			DUPLICATE			REFERENCE MATERIAL		TERIAL	METHOD BLANK SPIKE			MAT	RIX SPI	KE	
PARAMETER	Batch	Sample Id	Dup #1	Dup #2	RPD	Method Blank	Measured		ptable nits	Recovery	l 1 is	ptable nits	Recovery	Lin	ptable nits
		Iu	·	·			Value	Lower	Upper		Lower	Upper		Lower	Uppe
F4 (C34 to C50)	4097342 4	1097342	< 100	< 100	NA	< 100	82%	60%	140%	83%	60%	140%	79%	60%	140%
O. Reg. 153(511) - VOCs (with	PHC) (Water)														
Dichlorodifluoromethane	4097422 4	1097422	<0.40	< 0.40	NA	< 0.40	94%	50%	140%	77%	50%	140%	77%	50%	140%
Vinyl Chloride	4097422 4	1097422	<0.17	<0.17	NA	< 0.17	104%	50%	140%	88%	50%	140%	83%	50%	140%
Bromomethane	4097422 4	1097422	<0.20	<0.20	NA	< 0.20	93%	50%	140%	73%	50%	140%	71%	50%	140%
Trichlorofluoromethane	4097422 4	1097422	< 0.40	< 0.40	NA	< 0.40	110%	50%	140%	94%	50%	140%	91%	50%	140%
Acetone	4097422 4	1097422	<1.0	<1.0	NA	< 1.0	105%	50%	140%	103%	50%	140%	101%	50%	140%
1,1-Dichloroethylene	4097422 4		<0.30	<0.30	NA	< 0.30	100%	50%	140%	100%	60%	130%	103%	50%	140%
Methylene Chloride	4097422 4		<0.30	<0.30	NA	< 0.30	109%	50%	140%	111%	60%	130%	108%	50%	140%
trans- 1,2-Dichloroethylene	4097422 4		<0.20	<0.20	NA	< 0.20	103%	50%	140%	111%	60%	130%	108%	50%	140%
Methyl tert-butyl ether	4097422 4	1097422	<0.20	<0.20	NA	< 0.20	108%	50%	140%	106%	60%	130%	109%	50%	140%
1,1-Dichloroethane	4097422 4	1097422	<0.30	<0.30	NA	< 0.30	103%	50%	140%	106%	60%	130%	101%	50%	140%
Methyl Ethyl Ketone	4097422 4	1097422	<1.0	<1.0	NA	< 1.0	84%	50%	140%	109%	50%	140%	103%	50%	140%
cis- 1,2-Dichloroethylene	4097422 4	1097422	<0.20	< 0.20	NA	< 0.20	114%	50%	140%	116%	60%	130%	111%	50%	140%
Chloroform	4097422 4	1097422	<0.20	<0.20	NA	< 0.20	107%	50%	140%	115%	60%	130%	111%	50%	140%
1,2-Dichloroethane	4097422 4	1097422	< 0.20	< 0.20	NA	< 0.20	118%	50%	140%	110%	60%	130%	117%	50%	140%
1,1,1-Trichloroethane	4097422 4	1097422	<0.30	<0.30	NA	< 0.30	96%	50%	140%	95%	60%	130%	98%	50%	140%
Carbon Tetrachloride	4097422 4	1097422	<0.20	<0.20	NA	< 0.20	100%	50%	140%	101%	60%	130%	102%	50%	140%
Benzene	4097422	1097422	<0.20	<0.20	NA	< 0.20	109%	50%	140%	114%	60%	130%	113%	50%	140%
1,2-Dichloropropane	4097422 4	1097422	<0.20	<0.20	NA	< 0.20	111%	50%	140%	117%	60%	130%	109%	50%	140%
Trichloroethylene	4097422 4	1097422	<0.20	<0.20	NA	< 0.20	117%	50%	140%	119%	60%	130%	113%	50%	140%
Bromodichloromethane	4097422 4	1097422	<0.20	<0.20	NA	< 0.20	114%	50%	140%	101%	60%	130%	110%	50%	140%
Methyl Isobutyl Ketone	4097422 4	1097422	<1.0	<1.0	NA	< 1.0	109%	50%	140%	109%	50%	140%	116%	50%	140%
1,1,2-Trichloroethane	4097422 4	1097422	<0.20	<0.20	NA	< 0.20	115%	50%	140%	104%	60%	130%	100%	50%	140%
Toluene	4097422 4	1097422	<0.20	<0.20	NA	< 0.20	100%	50%	140%	101%	60%	130%	113%	50%	140%
Dibromochloromethane	4097422 4	1097422	<0.10	<0.10	NA	< 0.10	111%	50%	140%	120%	60%	130%	114%	50%	140%
Ethylene Dibromide	4097422 4	1097422	<0.10	<0.10	NA	< 0.10	108%	50%	140%	120%	60%	130%	112%	50%	140%
Tetrachloroethylene	4097422 4	1097422	<0.20	<0.20	NA	< 0.20	94%	50%	140%	93%	60%	130%	109%	50%	140%
1,1,1,2-Tetrachloroethane	4097422 4		<0.10	<0.10	NA	< 0.10	95%	50%	140%	93%	60%	130%	108%	50%	140%
Chlorobenzene	4097422 4		<0.10	<0.10	NA	< 0.10	103%	50%	140%	105%	60%	130%	107%	50%	140%
Ethylbenzene	4097422 4		<0.10	<0.10	NA	< 0.10	92%		140%	91%		130%	99%		140%
m & p-Xylene	4097422 4	1097422	<0.20	<0.20	NA	< 0.20	99%	50%	140%	100%	60%	130%	102%	50%	140%
Bromoform	4097422 4		<0.10	<0.10	NA	< 0.10	114%		140%	111%		130%	107%		140%
Styrene	4097422 4		<0.10	<0.10	NA	< 0.10	89%		140%	90%		130%	91%		140%
1,1,2,2-Tetrachloroethane	4097422 4		<0.10	<0.10	NA	< 0.10	109%		140%	113%		130%	115%		140%
o-Xylene	4097422 4		<0.10	<0.10	NA	< 0.10	103%		140%	105%		130%	103%		140%
1,3-Dichlorobenzene	4097422 4	1097422	<0.10	<0.10	NA	< 0.10	114%	50%	140%	115%	60%	130%	104%	50%	140%
1,4-Dichlorobenzene	4097422 4		<0.10	<0.10	NA	< 0.10	112%		140%	114%		130%	102%		140%
1,2-Dichlorobenzene	4097422 4	1097422	<0.10	<0.10	NA	< 0.10	113%	50%	140%	113%	60%	130%	99%	50%	140%

AGAT QUALITY ASSURANCE REPORT (V1)

Page 19 of 30

AGAT Laboratories is accredited to ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA) and/or Standards Council of Canada (SCC) for specific tests listed on the scope of accreditation. AGAT Laboratories (Mississauga) is also accredited by the Canadian Association for Laboratory Accreditation Inc. (CALA) for specific drinking water tests. Accreditations are location and parameter specific. A complete listing of parameters for each location is available from www.cala.ca and/or www.scc.ca. The tests in this report may not necessarily be included in the scope of accreditation. RPDs calculated using raw data. The RPD may not be reflective of duplicate values shown, due to rounding of final results.

Quality Assurance

CLIENT NAME: BLUMETRIC ENVIRONMENTAL INC.

AGAT WORK ORDER: 22P920496
PROJECT: 220509-00

ATTENTION TO: Paul Bandler

SAMPLING SITE: SAMPLED BY:

Trace Organics Analysis (Continued)															
RPT Date: Jul 25, 2022				UPLICAT	Έ		REFEREN	ICE MA	TERIAL	METHOD	BLANK	SPIKE	MAT	RIX SPI	KE
PARAMETER	Batch	Sample	Dup #1	Dup #2	RPD	Method Blank	Measured		ptable nits	Recovery	Lin	ptable nits	Recovery	Lin	ptable nits
		Iu	·	·			Value	Lower	Upper		Lower	Upper	,	Lower	Upper
n-Hexane	4097422 4	1097422	<0.20	<0.20	NA	< 0.20	103%	50%	140%	83%	60%	130%	77%	50%	140%

O. Reg. 153(511) - PCBs (Water)

Polychlorinated Biphenyls 4097326 4097326 < 0.2 < 0.2 NA < 0.1 100% 50% 140% 103% 50% 140% 109% 50% 140%

Comments: When the average of the sample and duplicate results is less than 5x the RDL, the Relative Percent Difference (RPD) will be indicated as Not Applicable (NA).

Quality Assurance

CLIENT NAME: BLUMETRIC ENVIRONMENTAL INC.

AGAT WORK ORDER: 22P920496
PROJECT: 220509-00

ATTENTION TO: Paul Bandler

SAMPLING SITE: SAMPLED BY:

Water Analysis														
RPT Date: Jul 25, 2022		1	DUPLICAT	E		REFERE	NCE MA	TERIAL	METHOD	BLANK	SPIKE	MAT	RIX SPI	KE
PARAMETER	Batch Samp	e Dup #1	Dup #2	RPD	Method Blank	Measured Value		ptable nits	Recovery		ptable nits	Recovery		ptable nits
	lu lu					value	Lower	Upper		Lower	Upper		Lower	Upper
O. Reg. 153(511) - Metals & Inorga	anics (Water)													
Dissolved Antimony	4099925	<1.0	<1.0	NA	< 1.0	104%	70%	130%	107%	80%	120%	112%	70%	130%
Dissolved Arsenic	4099925	2.8	2.6	NA	< 1.0	97%	70%	130%	106%	80%	120%	107%	70%	130%
Dissolved Barium	4099925	110	110	0.0%	< 2.0	99%	70%	130%	98%	80%	120%	104%	70%	130%
Dissolved Beryllium	4099925	< 0.50	< 0.50	NA	< 0.50	106%	70%	130%	107%	80%	120%	117%	70%	130%
Dissolved Boron	4099925	<10.0	24.9	NA	< 10.0	105%	70%	130%	108%	80%	120%	112%	70%	130%
Dissolved Cadmium	4099925	<0.20	<0.20	NA	< 0.20	99%	70%	130%	96%	80%	120%	109%	70%	130%
Dissolved Chromium	4099925	<2.0	<2.0	NA	< 2.0	102%	70%	130%	108%	80%	120%	106%	70%	130%
Dissolved Cobalt	4099925	< 0.50	< 0.50	NA	< 0.50	102%	70%	130%	109%	80%	120%	107%	70%	130%
Dissolved Copper	4099925	1.6	1.2	NA	< 1.0	100%	70%	130%	104%	80%	120%	103%	70%	130%
Dissolved Lead	4099925	<0.50	<0.50	NA	< 0.50	100%	70%	130%	104%	80%	120%	98%	70%	130%
Dissolved Molybdenum	4099925	2.87	3.24	12.1%	< 0.50	104%	70%	130%	111%	80%	120%	110%	70%	130%
Dissolved Nickel	4099925	1.2	1.2	NA	< 1.0	102%	70%	130%	109%	80%	120%	107%	70%	130%
Dissolved Selenium	4099925	<1.0	<1.0	NA	< 1.0	101%	70%	130%	113%	80%	120%	112%	70%	130%
Dissolved Silver	4099925	<0.20	<0.20	NA	< 0.20	105%	70%	130%	101%	80%	120%	110%	70%	130%
Dissolved Thallium	4099925	<0.30	<0.30	NA	< 0.30	101%	70%	130%	101%	80%	120%	105%	70%	130%
Dissolved Uranium	4099925	0.50	0.53	NA	< 0.50	102%	70%	130%	114%	80%	120%	108%	70%	130%
Dissolved Vanadium	4099925	< 0.40	0.54	NA	< 0.40	103%	70%	130%	111%	80%	120%	110%	70%	130%
Dissolved Zinc	4099925	<5.0	<5.0	NA	< 5.0	99%	70%	130%	108%	80%	120%	105%	70%	130%
Mercury	4097326 4097326	< 0.02	< 0.02	NA	< 0.02	101%	70%	130%	99%	80%	120%	98%	70%	130%
Chromium VI	4108521	<2.000	<2.000	NA	< 2	101%	70%	130%	107%	80%	120%	115%	70%	130%
Cyanide, WAD	4091275	<2	<2	NA	< 2	92%	70%	130%	87%	80%	120%	100%	70%	130%
Dissolved Sodium	4099925	23300	22500	3.5%	< 50	99%	70%	130%	101%	80%	120%	104%	70%	130%
Chloride	4097343 4097343	5220	5160	1.2%	< 100	101%	70%	130%	107%	80%	120%	106%	70%	130%
Electrical Conductivity	4101058	1850	1850	0.0%	< 2	102%	90%	110%	NA			NA		
рН	4101058	7.42	7.49	0.9%	NA	101%	90%	110%	NA			NA		
Comments: NA signifies Not Applicable. Duplicate NA: results are under 5X the RDL and will not be calculated.														

O. Reg. 153(511) - Metals & Inorganics (Water)

Chromium VI 4097329 4097329 <2.000 <2.000 NA <2 102% 70% 130% 107% 80% 120% 110% 70% 130%

Comments: NA signifies Not Applicable

Duplicate NA: results are under 5X the RDL and will not be calculated.

Certified By:

Page 21 of 30

Method Summary

CLIENT NAME: BLUMETRIC ENVIRONMENTAL INC. AGAT WORK ORDER: 22P920496
PROJECT: 220509-00 ATTENTION TO: Paul Bandler

SAMPLING SITE:		SAMPLED BY:	
PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE
Trace Organics Analysis			
Naphthalene	ORG-91-5114	modified from EPA 3510C, 8270E & ON MOECC E3265	GC/MS
Acenaphthylene	ORG-91-5114	modified from EPA 3510C, 8270E & ON MOECC E3265	GC/MS
Acenaphthene	ORG-91-5114	modified from EPA 3510C, 8270E & ON MOECC E3265	GC/MS
Fluorene	ORG-91-5114	modified from EPA 3510C, 8270E & ON MOECC E3265	GC/MS
Phenanthrene	ORG-91-5114	modified from EPA 3510C, 8270E & ON MOECC E3265	GC/MS
Anthracene	ORG-91-5114	modified from EPA 3510C, 8270E & ON MOECC E3265	GC/MS
Fluoranthene	ORG-91-5114	modified from EPA 3510C, 8270E & ON MOECC E3265	GC/MS
Pyrene	ORG-91-5114	modified from EPA 3510C, 8270E & ON MOECC E3265	GC/MS
Benzo(a)anthracene	ORG-91-5114	modified from EPA 3510C, 8270E & ON MOECC E3265	GC/MS
Chrysene	ORG-91-5114	modified from EPA 3510C, 8270E & ON MOECC E3265	GC/MS
Benzo(b)fluoranthene	ORG-91-5114	modified from EPA 3510C, 8270E & ON MOECC E3265	GC/MS
Benzo(k)fluoranthene	ORG-91-5114	modified from EPA 3510C, 8270E & ON MOECC E3265	GC/MS
Benzo(a)pyrene	ORG-91-5114	modified from EPA 3510C, 8270E & ON MOECC E3265	GC/MS
Indeno(1,2,3-cd)pyrene	ORG-91-5114	modified from EPA 3510C, 8270E & ON MOECC E3265	GC/MS
Dibenz(a,h)anthracene	ORG-91-5114	modified from EPA 3510C and EPA 8270E	GC/MS
Benzo(g,h,i)perylene	ORG-91-5114	modified from EPA 3510C, 8270E & ON MOECC E3265	GC/MS
Phenol	ORG-91-5114	modified from EPA 3510C, 8270E & ON MOECC E3265	GC/MS
Bis(2-chloroethyl)ether	ORG-91-5114	modified from EPA 3510C, 8270E & ON MOECC E3265	GC/MS
2-Chlorophenol	ORG-91-5114	modified from EPA 3510C, 8270E & ON MOECC E3265	GC/MS
o-Cresol	ORG-91-5114	modified from EPA 3510C, 8270E & ON MOECC E3265	GC/MS
Bis(2-chloroisopropyl)ether	ORG-91-5114	modified from EPA 3510C, 8270E & ON MOECC E3265	GC/MS
m&p-Cresol	ORG-91-5114	modified from EPA 3510C, 8270E & ON MOECC E3265	GC/MS
2,4-Dimethylphenol	ORG-91-5114	modified from EPA 3510C, 8270E & ON MOECC E3265	GC/MS
2,4-Dichlorophenol	ORG-91-5114	modified from EPA 3510C, 8270E & ON MOECC E3265	GC/MS
1,2,4-Trichlorobenzene	ORG-91-5114	modified from EPA 3510C, 8270E & ON MOECC E3265	GC/MS
p-Chloroaniline	ORG-91-5114	modified from EPA 3510C, 8270E & ON MOECC E3265	GC/MS
2-and 1-methyl Naphthalene	ORG-91-5114	modified from EPA 3510C, 8270E & ON MOECC E3265	CALCULATION

Method Summary

CLIENT NAME: BLUMETRIC ENVIRONMENTAL INC. AGAT WORK ORDER: 22P920496
PROJECT: 220509-00 ATTENTION TO: Paul Bandler

PARAMETER	SAMPLING SITE.		SAMPLED BY.	
2-4,6-Trichlorophenol ORG-91-5114 ON MOECC E3265 GC/MS	PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE
2-4,3-Finitrophenol ORG-91-5114 ON MOECC E3285 GC/MS	2,4,6-Trichlorophenol	ORG-91-5114		GC/MS
1.1-sepheny	2,4,5-Trichlorophenol	ORG-91-5114	·	GC/MS
On MOECC 23265 CALCULATION	1,1'-Biphenyl	ORG-91-5114	·	GC/MS
Diethyl phthalate ORG-91-5114 ON MOECC E3285 GC/MS	Dimethyl phthalate	ORG-91-5114		GC/MS
Diemyl printalate	2,4 and 2,6-Dinitrotoluene	ORG-91-5114	·	CALCULATION
Sediment ORG-91-5114 ON MOECC E3265 GC/MS	Diethyl phthalate	ORG-91-5114		GC/MS
Sis (2-Ethylhexyl)phthalate	Pentachlorophenol	ORG-91-5114		GC/MS
2.4-Dinitrophenol ORG-91-5114 ON MOECC E3265 GC/MS 2.4-Dinitrophenol ORG-91-5114 ON MOECC E3265 Modified from EPA 3510C, 8270E & ON MOECC E3265 Modified from EPA 3510C, 8270E & ON MOECC E3265 Modified from EPA 3510C, 8270E & ON MOECC E3265 Modified from EPA 3510C, 8270E & ON MOECC E3265 Modified from EPA 3510C, 8270E & ON MOECC E3265 Modified from EPA 3510C, 8270E & ON MOECC E3265 Modified from EPA 3510C, 8270E & ON MOECC E3265 Modified from EPA 3510C, 8270E & ON MOECC E3265 Modified from EPA 3510C, 8270E & ON MOECC E3265 Modified from EPA 3510C, 8270E & ON MOECC E3265 Modified from EPA 3510C, 8270E & ON MOECC E3265 Modified from EPA 3510C, 8270E & ON MOECC E3265 Modified from EPA 3510C, 8270E & ON MOECC E3265 Modified from EPA 3510C, 8270E & ON MOECC E3265 Modified from EPA SW-846 3510 & GC/ECD MOECC E3265 MOE	3,3'-dichlorobenzidine	ORG-91-5114		GC/MS
2-Filuorophenol ORG-91-5114 ON MOECC E3265 GC/MS 2-Filuorophenol ORG-91-5114 modified from EPA 3510C, 8270E & OR MS ON MOECC E3265 phenol-d6 surrogate ORG-91-5114 modified from EPA 3510C, 8270E & ON MOECC E3265 phenol-d6 surrogate ORG-91-5114 modified from EPA 3510C, 8270E & OR MS ON MOECC E3265 modified from EPA 3510C, 8270E & OR MS ON MOECC E3265 modified from EPA 3510C, 8270E & OR MS ON MOECC E3265 modified from EPA 3510C, 8270E & OR MS ON MOECC E3265 modified from EPA 3510C, 8270E & OR MS ON MOECC E3265 modified from EPA S510C, 8270E & OR MS ON MOECC E3265 modified from EPA S510C, 8270E & OR MS ON MOECC E3265 modified from EPA S510C, 8270E & OR MS ON MOECC E3265 modified from EPA S510C, 8270E & OR MS ON MOECC E3265 modified from EPA S510C, 8270E & OR MS ON MOECC E3265 modified from EPA SW-846 3510 & GC/ECD MS ON MOECC E3265 modified from EPA SW-846 3510 & GC/ECD MS ON MOECC E3265 modified from EPA SW-846 3510 & GC/ECD MS ON MOECC E3265 modified from MOE PHC-E3421 P&T GC/FID MS ON	Bis(2-Ethylhexyl)phthalate	ORG-91-5114	ON MOECC E3265	GC/MS
DRG-91-5114 ON MOECC E3265 GC/MS	2,4-Dinitrophenol	ORG-91-5114		GC/MS
ORG-91-5114 ON MOECC E3265 GC/MS	2-Fluorophenol	ORG-91-5114		GC/MS
2.4,6-1 Inbromophenol ORG-91-5114 ON MOECC E3265 GC/MS	phenol-d6 surrogate	ORG-91-5114		GC/MS
OR MOECC E3265 Sc/MS	2,4,6-Tribromophenol	ORG-91-5114	·	GC/MS
Polychlorinated Biphenyls ORG-91-5112 modified from EPA SW-846 3510 & 8082A B082A GC/ECD	Chrysene-d12	ORG-91-5114		GC/MS
Decachlorobiphenyl	Sediment			
Decarloroolphenyl	Polychlorinated Biphenyls	ORG-91-5112		GC/ECD
F1 (C6 to C10) minus BTEX	Decachlorobiphenyl	ORG-91-5112		GC/ECD
Toluene-d8 VOL-91-5001 modified from EPA 5030B & EPA 8260D (P&T)GC/MS F2 (C10 to C16) VOL-91-5010 modified from MOE PHC-E3421 GC/FID F2 (C10 to C16) minus Naphthalene VOL-91-5010 modified from MOE PHC-E3421 GC/FID F3 (C16 to C34) VOL-91-5010 modified from MOE PHC-E3421 GC/FID F3 (C16 to C34) minus PAHs VOL-91-5010 modified from MOE PHC-E3421 GC/FID F4 (C34 to C50) VOL-91-5010 modified from MOE PHC-E3421 GC/FID Gravimetric Heavy Hydrocarbons VOL-91-5010 modified from MOE PHC-E3421 BALANCE Terphenyl VOL-91-5010 modified from MOE PHC-E3421 GC/FID Dichlorodifluoromethane VOL-91-5001 modified from EPA 5030B & EPA 8260D (P&T)GC/MS Vinyl Chloride VOL-91-5001 modified from EPA 5030B & EPA 8260D (P&T)GC/MS Bromomethane VOL-91-5001 modified from EPA 5030B & EPA 8260D (P&T)GC/MS Acetone VOL-91-5001 modified from EPA 5030B & EPA 8260D (P&T)GC/MS	F1 (C6-C10)	VOL-91-5010	modified from MOE PHC-E3421	(P&T)GC/FID
## Sections ## Vol91-5001 ## Vol91-5	F1 (C6 to C10) minus BTEX	VOL-91-5010	modified from MOE PHC-E3421	P&T GC/FID
F2 (C10 to C16) minus Naphthalene VOL-91-5010 modified from MOE PHC-E3421 GC/FID F3 (C16 to C34) VOL-91-5010 modified from MOE PHC-E3421 GC/FID F3 (C16 to C34) minus PAHs VOL-91-5010 modified from MOE PHC-E3421 GC/FID F4 (C34 to C50) VOL-91-5010 modified from MOE PHC-E3421 GC/FID Gravimetric Heavy Hydrocarbons VOL-91-5010 modified from MOE PHC-E3421 BALANCE Terphenyl VOL-91-5010 modified from MOE PHC-E3421 GC/FID Dichlorodifluoromethane VOL-91-5001 modified from EPA 5030B & EPA (P&T)GC/MS Vinyl Chloride VOL-91-5001 modified from EPA 5030B & EPA (P&T)GC/MS Bromomethane VOL-91-5001 modified from EPA 5030B & EPA (P&T)GC/MS Trichlorofluoromethane VOL-91-5001 modified from EPA 5030B & EPA (P&T)GC/MS	Toluene-d8	VOL-91- 5001		(P&T)GC/MS
F3 (C16 to C34) VOL-91-5010 modified from MOE PHC-E3421 GC/FID F3 (C16 to C34) minus PAHs VOL-91-5010 modified from MOE PHC-E3421 GC/FID F4 (C34 to C50) VOL-91-5010 modified from MOE PHC-E3421 GC/FID Gravimetric Heavy Hydrocarbons VOL-91-5010 modified from MOE PHC-E3421 BALANCE Terphenyl VOL-91-5010 modified from MOE PHC-E3421 GC/FID Dichlorodifluoromethane VOL-91-5001 modified from EPA 5030B & EPA (P&T)GC/MS Vinyl Chloride VOL-91-5001 modified from EPA 5030B & EPA (P&T)GC/MS Bromomethane VOL-91-5001 modified from EPA 5030B & EPA (P&T)GC/MS Trichlorofluoromethane VOL-91-5001 modified from EPA 5030B & EPA (P&T)GC/MS Acetone VOL-91-5001 modified from EPA 5030B & EPA (P&T)GC/MS	F2 (C10 to C16)	VOL-91-5010	modified from MOE PHC-E3421	GC/FID
F3 (C16 to C34) minus PAHs VOL-91-5010 modified from MOE PHC-E3421 GC/FID F4 (C34 to C50) VOL-91-5010 modified from MOE PHC-E3421 GC/FID Gravimetric Heavy Hydrocarbons VOL-91-5010 modified from MOE PHC-E3421 BALANCE Terphenyl VOL-91-5010 modified from MOE PHC-E3421 GC/FID Dichlorodifluoromethane VOL-91-5001 modified from EPA 5030B & EPA 8260D (P&T)GC/MS Vinyl Chloride VOL-91-5001 modified from EPA 5030B & EPA 8260D (P&T)GC/MS Bromomethane VOL-91-5001 modified from EPA 5030B & EPA 8260D (P&T)GC/MS Trichlorofluoromethane VOL-91-5001 modified from EPA 5030B & EPA 8260D (P&T)GC/MS	F2 (C10 to C16) minus Naphthalene	VOL-91-5010	modified from MOE PHC-E3421	GC/FID
F4 (C34 to C50) VOL-91-5010 modified from MOE PHC-E3421 GC/FID Gravimetric Heavy Hydrocarbons VOL-91-5010 modified from MOE PHC-E3421 BALANCE Terphenyl VOL-91-5010 modified from MOE PHC-E3421 GC/FID Dichlorodifluoromethane VOL-91-5001 modified from EPA 5030B & EPA 8260D (P&T)GC/MS Vinyl Chloride VOL-91-5001 modified from EPA 5030B & EPA 8260D (P&T)GC/MS Bromomethane VOL-91-5001 modified from EPA 5030B & EPA 8260D (P&T)GC/MS Trichlorofluoromethane VOL-91-5001 modified from EPA 5030B & EPA 8260D (P&T)GC/MS Acetone VOL-91-5001 modified from EPA 5030B & EPA 8260D (P&T)GC/MS	F3 (C16 to C34)	VOL-91-5010	modified from MOE PHC-E3421	GC/FID
Gravimetric Heavy Hydrocarbons VOL-91-5010 modified from MOE PHC-E3421 BALANCE Terphenyl VOL-91-5010 modified from MOE PHC-E3421 GC/FID Dichlorodifluoromethane VOL-91-5001 modified from EPA 5030B & EPA 8260D Vinyl Chloride VOL-91-5001 modified from EPA 5030B & EPA 8260D Bromomethane VOL-91-5001 modified from EPA 5030B & EPA 8260D Trichlorofluoromethane VOL-91-5001 modified from EPA 5030B & EPA 8260D Trichlorofluoromethane VOL-91-5001 modified from EPA 5030B & EPA 8260D Acetone VOL-91-5001 modified from EPA 5030B & EPA 8260D Modified from EPA 5030B & EPA (P&T)GC/MS Modified from EPA 5030B & EPA 8260D	F3 (C16 to C34) minus PAHs	VOL-91-5010	modified from MOE PHC-E3421	GC/FID
Terphenyl VOL-91-5010 modified from MOE PHC-E3421 GC/FID Dichlorodifluoromethane VOL-91-5001 modified from EPA 5030B & EPA 8260D (P&T)GC/MS Vinyl Chloride VOL-91-5001 modified from EPA 5030B & EPA 8260D (P&T)GC/MS Bromomethane VOL-91-5001 modified from EPA 5030B & EPA 8260D (P&T)GC/MS Trichlorofluoromethane VOL-91-5001 modified from EPA 5030B & EPA 8260D (P&T)GC/MS Acetone VOL-91-5001 modified from EPA 5030B & EPA 8260D (P&T)GC/MS	F4 (C34 to C50)	VOL-91-5010	modified from MOE PHC-E3421	GC/FID
Dichlorodifluoromethane VOL-91-5001 modified from EPA 5030B & EPA 8260D (P&T)GC/MS Vinyl Chloride VOL-91-5001 modified from EPA 5030B & EPA 8260D (P&T)GC/MS Bromomethane VOL-91-5001 modified from EPA 5030B & EPA 8260D (P&T)GC/MS Trichlorofluoromethane VOL-91-5001 modified from EPA 5030B & EPA 8260D (P&T)GC/MS Acetone VOL-91-5001 modified from EPA 5030B & EPA 8260D (P&T)GC/MS	Gravimetric Heavy Hydrocarbons	VOL-91-5010	modified from MOE PHC-E3421	BALANCE
Dictriorodiffuorometriane VOL-91-5001 8260D (P&T)GC/MS Vinyl Chloride VOL-91-5001 modified from EPA 5030B & EPA 8260D (P&T)GC/MS Bromomethane VOL-91-5001 modified from EPA 5030B & EPA 8260D (P&T)GC/MS Trichlorofluoromethane VOL-91-5001 modified from EPA 5030B & EPA 8260D (P&T)GC/MS Acetone VOL-91-5001 modified from EPA 5030B & EPA 8260D (P&T)GC/MS	Terphenyl	VOL-91-5010	modified from MOE PHC-E3421	GC/FID
## Sections Vol91-5001 8260D (P&T)GC/MS ## Sections Vol91-5001 8260D modified from EPA 5030B & EPA (P&T)GC/MS ## Sections Vol91-5001 modified from EPA 5030B & EPA (P&T)GC/MS ## Sections Vol91-5001 modified from EPA 5030B & EPA (P&T)GC/MS ## Sections Vol91-5001 modified from EPA 5030B & EPA (P&T)GC/MS ## Sections Vol91-5001 modified from EPA 5030B & EPA (P&T)GC/MS ## Sections Vol91-5001 modified from EPA 5030B & EPA (P&T)GC/MS ## Sections Vol91-5001 modified from EPA 5030B & EPA (P&T)GC/MS ## Sections Vol91-5001 modified from EPA 5030B & EPA (P&T)GC/MS ## Sections Vol91-5001 modified from EPA 5030B & EPA (P&T)GC/MS ## Sections Vol91-5001 modified from EPA 5030B & EPA (P&T)GC/MS ## Sections Vol91-5001 modified from EPA 5030B & EPA (P&T)GC/MS ## Sections Vol91-5001 modified from EPA 5030B & EPA (P&T)GC/MS ## Sections Vol91-5001 modified from EPA 5030B & EPA (P&T)GC/MS ## Sections Vol91-5001 modified from EPA 5030B & EPA (P&T)GC/MS ## Sections Vol91-5001 modified from EPA 5030B & EPA (P&T)GC/MS ## Sections Vol91-5001 modified from EPA 5030B & EPA (P&T)GC/MS ## Sections Vol91-5001 modified from EPA 5030B & EPA (P&T)GC/MS ## Sections Vol91-5001 modified from EPA 5030B & EPA (P&T)GC/MS ## Sections Vol91-5001 modified from EPA 5030B & EPA (P&T)GC/MS ## Sections Vol91-5001 modified from EPA 5030B & EPA (P&T)GC/MS ## Sections Vol91-5001 modified from EPA 5030B & EPA (P&T)GC/MS ## Sections Vol91-5001 modified from EPA 5030B & EPA (P&T)GC/MS ## Sections Vol91-5001 modified from EPA 5030B & EPA (P&T)GC/MS ## Sections Vol91-5001 modified from EPA 5030B & EPA (P&T)GC/MS ## Sections Vol91-5001 modified from EPA 5030B & EPA (P&T)GC/MS ## Sections Vol91-5001 modified from EPA 5030B & EPA (P&T)GC/MS ## Sections Vol91-5001 modified	Dichlorodifluoromethane	VOL-91-5001		(P&T)GC/MS
Bromomethane	Vinyl Chloride	VOL-91-5001		(P&T)GC/MS
Acetone VOL-91-5001 8260D (P&T)GC/MS WOL-91-5001 8260D (P&T)GC/MS Modified from EPA 5030B & EPA (P&T)GC/MS	Bromomethane	VOL-91-5001	8260D	(P&T)GC/MS
IACETONE	Trichlorofluoromethane	VOL-91-5001		(P&T)GC/MS
	Acetone	VOL-91-5001		(P&T)GC/MS

Method Summary

CLIENT NAME: BLUMETRIC ENVIRONMENTAL INC.

AGAT WORK ORDER: 22P920496
PROJECT: 220509-00

ATTENTION TO: Paul Bandler

SAMPLING SITE.		SAIVIPLED BY.	
PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE
1,1-Dichloroethylene	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
Methylene Chloride	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
trans- 1,2-Dichloroethylene	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
Methyl tert-butyl ether	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
1,1-Dichloroethane	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
Methyl Ethyl Ketone	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
cis- 1,2-Dichloroethylene	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
Chloroform	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
1,2-Dichloroethane	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
1,1,1-Trichloroethane	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
Carbon Tetrachloride	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
Benzene	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
1,2-Dichloropropane	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
Trichloroethylene	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
Bromodichloromethane	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
Methyl Isobutyl Ketone	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
1,1,2-Trichloroethane	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
Toluene	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
Dibromochloromethane	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
Ethylene Dibromide	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
Tetrachloroethylene	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
1,1,1,2-Tetrachloroethane	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
Chlorobenzene	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
Ethylbenzene	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
m & p-Xylene	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
Bromoform	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
Styrene	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
1,1,2,2-Tetrachloroethane	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS

Method Summary

CLIENT NAME: BLUMETRIC ENVIRONMENTAL INC.

AGAT WORK ORDER: 22P920496
PROJECT: 220509-00

ATTENTION TO: Paul Bandler

PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE
o-Xylene	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
1,3-Dichlorobenzene	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
1,4-Dichlorobenzene	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
1,2-Dichlorobenzene	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
1,3-Dichloropropene	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
Xylenes (Total)	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
n-Hexane	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
Toluene-d8	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
4-Bromofluorobenzene	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS

Method Summary

CLIENT NAME: BLUMETRIC ENVIRONMENTAL INC. AGAT WORK ORDER: 22P920496
PROJECT: 220509-00 ATTENTION TO: Paul Bandler

PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE
Water Analysis			
Dissolved Antimony	MET-93-6103	modified from EPA 200.8 and EPA 3005A	ICP-MS
Dissolved Arsenic	MET-93-6103	modified from EPA 200.8 and EPA 3005A	ICP-MS
Dissolved Barium	MET-93-6103	modified from EPA 200.8 and EPA 3005A	ICP-MS
Dissolved Beryllium	MET-93-6103	modified from EPA 200.8 and EPA 3005A	ICP-MS
Dissolved Boron	MET-93-6103	modified from EPA 200.8 and EPA 3005A	ICP-MS
Dissolved Cadmium	MET-93-6103	modified from EPA 200.8 and EPA 3005A	ICP-MS
Dissolved Chromium	MET-93-6103	modified from EPA 200.8 and EPA 3005A	ICP-MS
Dissolved Cobalt	MET-93-6103	modified from EPA 200.8 and EPA 3005A	ICP-MS
Dissolved Copper	MET-93-6103	modified from EPA 200.8 and EPA 3005A	ICP-MS
Dissolved Lead	MET-93-6103	modified from EPA 200.8 and EPA 3005A	ICP-MS
Dissolved Molybdenum	MET-93-6103	modified from EPA 200.8 and EPA 3005A	ICP-MS
Dissolved Nickel	MET-93-6103	modified from EPA 200.8 and EPA 3005A	ICP-MS
Dissolved Selenium	MET-93-6103	modified from EPA 200.8 and EPA 3005A	ICP-MS
Dissolved Silver	MET-93-6103	modified from EPA 200.8 and EPA 3005A	ICP-MS
Dissolved Thallium	MET-93-6103	modified from EPA 200.8 and EPA 3005A	ICP-MS
Dissolved Uranium	MET-93-6103	modified from EPA 200.8 and EPA 3005A	ICP-MS
Dissolved Vanadium	MET-93-6103	modified from EPA 200.8 and EPA 3005A	ICP-MS
Dissolved Zinc	MET-93-6103	modified from EPA 200.8 and EPA 3005A	ICP-MS
Mercury	MET-93-6100	modified from EPA 245.2 and SM 3112 B	CVAAS
Chromium VI	INOR-93-6073	modified from SM 3500-CR B	LACHAT FIA
Cyanide, WAD	INOR-93-6052	modified from ON MOECC E3015, SM 4500-CN- I, G-387	TECHNICON AUTO ANALYZER
Dissolved Sodium	MET-93-6103	modified from EPA 200.8 and EPA 3005A	ICP/MS
Chloride	INOR-93-6004	modified from SM 4110 B	ION CHROMATOGRAPH
Electrical Conductivity	INOR-93-6000	SM 2510 B	PC TITRATE
рН	INOR-93-6000	modified from SM 4500-H+ B	PC TITRATE

AGAT Laboratories

5835 Coopers Avenue Ph: 905.712 5100 Fax: 905.712 5122

Laboratory Use Only 22 P920496-Mississauga, Ontario L4Z 1Y2 weboarth agatlabe com Cooler Quantity:

Chain of C	ustody Recor	d If this is a D	rinking Water s	ample, pleas	se use Drink	ing Water Chain o	f Custody Form (po	table water o	consume	ed by hu	mans)			An	ival Ter	nperati	ures:	See	2 6	19.	hy	914	_
Report Inform	nation: BluMetric Environmental	Reg (Please	Julatory Requirements of the control	uirements:									Seal Int		□Yes		U+ i	No f	rid	N/A			
Contact: Address:	4 Cataraqui St, Kingston, (ON			Re	gulation 153/04	Excess Soils Table Indicate (☐ Sew ☐Sa		e □s	orm					Time	(TAT)) Re	quire	ed:		4
Phone: Reports to be sent to:		Fax:				Ind/Com Res/Park Agriculture	Regulation 5		☐ Prov						gular sh TA1		urcharges	_	to 7 B	Business	3 Days		
1. Email:	sanderson@blumetric.ca				- 11	exture (Check One) Coarse	ССМЕ		Oth	er				3 Business 2 Business Next Busines Days Days									iness
2. Email:	pbandler@blumetric.ca					Fine	l .			Indicate	One		-	OR Date Required (Rush Surcharges May Apply):									
Project Inform Project: Site Location:	nation: 220509-00				Rec	Is this submission for a Report Guideline on Certificate of Analysis Yes No Yes No								Please provide prior notification for rush TAT *TAT is exclusive of weekends and statutory holidays									
Sampled By: AGAT Quote #:	BluMetric 2022 SO Please note: If quotation number	PO:is not provided, client will i	pe billed full price for a	analysis	-	nple Matrix Le	gend			. Reg 15	i3	Ī		-	O. Reg 558	O. Re	g 406	Sniphide	ase c	ontact	your At	GAT CPN	tion (Y/N)
Invoice Inform Company: Contact: Address: Email:	ap@blumetric.ca	Bi	II To Same: Ye	s Ø No □	11	Ground Water Oil Paint Soil Sediment Surface Water		Field Filtered - Metals, Hg. Crvi) DOC	& Inorganics	- □ CrVI, □ Hg, □ HWSB	F1-F4 PHCs				fill Disposal Characterization TCIP: □ M& □ VOCs □ ABNs □ B(a)P□ P	Soils SPLP Rainwater Leach □ M∋tals □ vocs □ svocs	Excess Soils Characterization Package pH, ICPMS Metals, BTEX, F1-F4	Include Moisture □	BNAEs	Cholophenols			ally Fazardous or High Concentra
Samp	le Identification	Date Sampled	Time Sampled	# of Containers	Sample Matrix		nments/ Instructions	(V) N	Metals	Metals - I		PCBs	VOC	Aroclors	Top:	Excess Soil SPLP: □ M	Excess Soils pH, ICPMS N			-			Potenti
MW 146			AM PM		GW							7 7							_	7			1
MW148		07/13/22	11:33 AM		GW			Y		-		7 Z								7	+	-	+
MW149		07//3/22	12:41 AM		GW			Y				7 2									+ +		-
MW152			AM PM	the second secon	GW	1					1000	7 7	-		-							-	+
MW82			AN PN		GW	1						7 7	-						_	7	1	+	+
MIVV 136			AN PN		GW							7 7	_				-				1	-	+
-MW138			AN PN		GW					-	-	7 7	_		-						1	-	+
MW157		07/13/22			GW			4	Ø			7 7							-		+-	-	+
MW26			AN PN		GW				1		-	V						_	-				+
MW81			AN PN AN PN		GW								_						-				
MW 121	V. Allin Toolii Milata		Inato	Time	GW	Samples Received By	(Print Name and Sign)		V A	1	(A)	10	ate		Tim	16.0			- 10	=1_		0	-10
Samples Relinquished By (Pr Shere Ander			07/13	Time	130	Karlu Samples Regelegit Pv	DORE (X	16	7.	1		ate /	4/0	7.2 Tim	8a	m	-	Dos	ge <u>l</u>	of 3	P 3	ME
Samulos helimuolated By (Pr	1/1/		Jun 141	20 Time	400-	A cotto	Pyrof Floring and Tager)	Chal	[X	lan	llv.	1.	ato		Tim	19		No:	rag	c	_ 01 _		

5835 Coopers Avanue Ph: 905 712 5100 Fax: 905 712.5122

Laboratory Use Only Work Order #: 22P920496 Mississauga, Ontario L4Z 1Y2 webearth agatlabs.com

Chain of C	custody Record	If this is a D	rinking Water s	ample, pleas	se use Drink	ding Water Chain o	f Custody Form (pote	ble water	consume	d by hu	ımans)		-			uantity: mperat	ures:			1			_
Report Inform		Reg (Please	ulatory Requ	uirements:								ustody : otes:	Seal Int	act:	Y∈	es	1]No	1	N/A			
Contact: Address:	4 Cataraqui St, Kingston, Ol	N			- Tai	gulation 153/04 ole	Table Indicate Or	.400	Sew		s	Storm			rnaro gular					equir Busines			=
Phone: Reports to be sent to:	sanderson@blumetric.ca	Fax:			- -	Res/Park Agriculture exture (Check One)	Regulation 55			ctives	r Qua (PWÇ			Ru		T (Rush s	Surcharge		2 Busi	iness	_ ^	lext Busii	ness
1. Email: 2. Email:	pbandler@blumetric.ca					Coarse	CCME		Othe	er Indicate	One		_	Days Days Days OR Date Required (Rush Surcharges May Apply):									
Project Information Project: Site Location: Sampled By:	nation: 220509-00 BluMetric 2022 SO				Red	this submission of Site Co		Cei	eport rtifica Yes	te of	Ana					AT is ex	clusive	of wee	ekend	is and s		TAT holidays GAT CPM	
Invoice Inforr Company: Contact: Address: Email:	Please note: If quotation number is n		e billed full price for a		San B GW O P S SD SW	Biota Ground Water Oil Paint Soil Sediment Surface Water	gend	Field Filtered - Metals, Hg, Cry), DOC	& Inorganics	- □ CrVI, □ Hg, □ HWSB	F1-F4 PHCs				Disposal Characterization TCLP: M&I □VOCs □ABNs □ B(a)P□PCBs	Excess Soils SPLP Rainwater Leach SPLP: ☐ metals ☐ vocs ☐ svocs	Excess Soils Characterization Package pH, ICPMS Metals, BTEX, F1-F4	Corrosivity: Include Moisture ☐ Sulphide	AEs	Cholophenols			Illy Hazardous or High Concentration (Y/
Samp	ole Identification	Date Sampled	Time Sampled	# of Containers	Sample Matrix		nments/ Instructions	Y/N	Metals	Metals		PAHS	200	Aroclors	Landfill [TCLP:	Excess SPLP: C	Excess pH, ICF	Corros	BN	S. Cho			Potentia
MW130		07/13/22	14:44 AM	18	GW			Y			1	7							V	7			
MW50		07/13/22	11.54 AM	18	GW			Y	Ø		V								$ \overline{\mathbf{A}} $				
MW84		07/3/22	10.44 AM	18	GW			4	Ø		7	I											
MW128 🗸	ell Dry		AM PM	18	GW						V	V											
MW151		177//3/22	15:51 AM	18	GW			1	7		V	√ [V				
MW22			AM PM	18	GW			1	7			V							V				
MW25	-		AM PM	18	GW				V		V	Ø (V				
-MW24			AM PM	18	GW				Ø		1	V					1		Ø	I			
MW80			AM PM	18	GW						V	7							Ø	2			
MW156		07/13/22	9:45 AM	18	GW			Y				_							V	V			
MW78		177710	AM		GW						Ø	7							V	Ø			Ų.
	rint Name and Sign) Fint Name and Sign) rint Name and Sign)	-	Date 07/13/	122 Time	30	Samples Received By (Samples Received By (Samples Received By ()	v (1				Date (1418	22 Tin	Gan ne	٨	N°.	Pa	ge <u>2</u>	of <u>3</u>		

a a a a contain

5835 Coopers Avenue Mississauga, Ontario L4Z 1Y2 Ph: 905 712.5100 Fax: 905_712.5122

Laboratory Use Only Work Order #: 22 P920496

Chain of C	ustody Record					nkling Water Chain of Custody Form (pota	able water c	onsume	ed by hi	ımans)	_			er Quar al Temp		ures:	-		1	7	
						gulatory Requirements: se check all applicable boxes)								Cust Note	tody Se	al Int	act:	□Y	'es		□No	□N/
Contact: Address:	4 Cataraqui St, Kingston, C	ON			- Ta	Regulation 153/04 Excess Soils R Table Table Indicate One Indicate One		Sev	ver Use anitary Regio		Storm	1			narou ular T						red:	
Phone: Reports to be sent to: 1. Email:	sanderson@blumetric.ca	Fax:		Soil T	☐ Res/Park ☐ Agriculture ☐ Regulation 55 ☐ Texture (Check One) ☐ COME		Pro Obj	ectives					Rush	TAT	sine	urcharge	Apply)		siness	П ^М	Next Busine Day	
2. Email:	pbandler@blumetric.ca				- 11	Fine	-		Indicate	e One			-				Requir			urcharg	ges May A	•
Project:	nation: 220509-00				Re	Is this submission for a ecord of Site Condition?	Cer	eport tifica Yes	te o	f Ana		ls			*TAT	is ex	clusive	of we	eken	ds and :	n for rush statutory	holidays
Site Location: Sampled By:						1 103 E 110		_	Reg 1				4				y' analy		lease	conta	ct your A	GAT CPM
AGAT Quote #:					В	mple Matrix Legend Biota	(H) (1) 000								SB		_	Sulphide				
Invoice Information Company: Contact: Address: Email:	In the sent to: Since Sample Identification Date Sampled Sample			s 🗹 No L	GW O P S SD SW	Oil Paint Soil Sediment	Field Filtered - (eta)s (Ha	& Inorganics	□ crvi, □ Hg, □ HWSB	F1-F4 PHCs				Disnosal Characterization TCI P	5 81 =	ń	Excess Soils Characterization Package pH, ICPMS Metals, BTEX, F1-F4	Corrosivity: Include Moisture □	Æs	Cholophenols		
Samp	ole Identification			# of Containers	Sample Matrix		Y/N	Metals	Metals -	BTEX, F	PAHs	PCBs	VOC	Aroclors Landfill Disp	TCLP: []	SPLP: Metals	Excess Soil pH, ICPMS	Corrosiv	BNAEs	Cho		
MW79				18	GW					Ø	Ø	V	Ø						V	Ø		
MW23					GW					Ø	Ø	V	\square						Ø	Ø		
Dup 1		07/13/22			GW		Y			Ø	V	V	✓						V			
Dup 2				18	GW		- 1	Ø			V		Ø									
Trip Blank					GW								✓									
															-							
									-						-							
								-							-							
-															- 1		-					
															-							
Samples Relinquished By (F	Priot Negus and Sign)	,	I Date	Time	1:30	Samples Received By (Print Marise and Sign):	1	A	1		1	Date		1/20	Time	an		Ī				

My 14/22 Time (600-

Page 3 of 3
N°:
Page 29 of 30

Sample Temperature Log

Client	BLUMETRIC	COC# or Work Order#:	
# of Coolers#	5 large Arrival Temperatures - Branch/Driver	# of Submissions:	00
		Arrival Temperatures - Laboratory	
	Cooler #1: 4.9 / 5-1 / 5-5	Cooler #1:	
	Cooler H2 9.2 1 9.4 1 9.6	Cooler #2 //	
	Cooler #3 6-6 16-8 174	Cooler #3:	-
	Cooler #4: 6.8 / 7-8 / 8-5	Cooler #4:	
	Cooler #5 77 17-9 18-3	Cooler #5:	154
	Cooler #6://	Cooler #5: / /	
	Cooler #7;//	Cooler #7: //	
	Cooler #8	Cooler #8	3
	Cooler #9:/	Cooler #9:	102
	Cooler #10/	Cooler #10:	-
IR Gun II	Dk	IR Gun ID:	
Taken B	ΥΣ	FaRen By:	
Date (yww/mm/do	Tlme::AM / PM	Date (www/mm/ss):Time:AM/_PM	

Instructions for use of this form: 1) complete all fields of info including total Work coding and Work supplied and an arrangement of the coding and the coding and the coding and the coding and the coding area of the coding and the coding area of the coding area. submission prior to giving a WOH, 3) Proceed as normal, write the WOH and scan (please make sure a scan in

Document 10, SR-78-9511.003 Date Issued, 2017-2-23

CLIENT NAME: BLUMETRIC ENVIRONMENTAL INC. 4 Cataraqui Street Kingston, ON K7K1Z7

(613) 531-2725

ATTENTION TO: Paul Bandler PROJECT: 220509-00

AGAT WORK ORDER: 22P921159

TRACE ORGANICS REVIEWED BY: Pinkal Patel, Report Reviewer

WATER ANALYSIS REVIEWED BY: Jacky Zhu, Spectroscopy Technician

DATE REPORTED: Jul 25, 2022

PAGES (INCLUDING COVER): 25 VERSION*: 1

Should you require any information regarding this analysis please contact your client services representative at (905) 712-5100

-	<u>Notes</u>

Disclaimer:

- All work conducted herein has been done using accepted standard protocols, and generally accepted practices and methods. AGAT test methods may
 incorporate modifications from the specified reference methods to improve performance.
- All samples will be disposed of within 30 days after receipt unless a Long Term Storage Agreement is signed and returned. Some specialty analysis may
 be exempt, please contact your Client Project Manager for details.
- AGAT's liability in connection with any delay, performance or non-performance of these services is only to the Client and does not extend to any other
 third party. Unless expressly agreed otherwise in writing, AGAT's liability is limited to the actual cost of the specific analysis or analyses included in the
 services.
- This Certificate shall not be reproduced except in full, without the written approval of the laboratory.
- The test results reported herewith relate only to the samples as received by the laboratory.
- Application of guidelines is provided "as is" without warranty of any kind, either expressed or implied, including, but not limited to, warranties of
 merchantability, fitness for a particular purpose, or non-infringement. AGAT assumes no responsibility for any errors or omissions in the guidelines
 contained in this document.
- All reportable information as specified by ISO/IEC 17025:2017 is available from AGAT Laboratories upon request.

AGAT Laboratories (V1)

Page 1 of 25

Member of: Association of Professional Engineers and Geoscientists of Alberta (APEGA)

Western Enviro-Agricultural Laboratory Association (WEALA) Environmental Services Association of Alberta (ESAA) AGAT Laboratories is accredited to ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA) and/or Standards Council of Canada (SCC) for specific tests listed on the scope of accreditation. AGAT Laboratories (Mississauga) is also accredited by the Canadian Association for Laboratory Accreditation Inc. (CALA) for specific drinking water tests. Accreditations are location and parameter specific. A complete listing of parameters for each location is available from www.cala.ca and/or www.scc.ca. The tests in this report may not necessarily be included in the scope of accreditation. Measurement Uncertainty is not taken into consideration when stating conformity with a specified requirement.

SAMPLING SITE:

Certificate of Analysis

AGAT WORK ORDER: 22P921159

PROJECT: 220509-00

ATTENTION TO: Paul Bandler

SAMPLED BY:

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

O. Reg. 153(511) - BNA (full) + PAHs (Water)

			<u> </u>	116g. 133(JII) - DINA	(IUII) + FAN	o (Walei)			
DATE RECEIVED: 2022-07-14								[DATE REPORTED	0: 2022-07-25
		SAMPLE DESCRIPTION: SAMPLE TYPE: DATE SAMPLED:		MW138 Water 2022-07-14 15:17	MW26 Water 2022-07-14 12:12	MW81 Water 2022-07-14 14:08	MW79 Water 2022-07-14 09:37	MW23 Water 2022-07-14 10:41	DUP2 Water 2022-07-14 10:41	
Parameter	Unit	G/S	RDL	4110272	4110274	4110275	4110276	4110277	4110278	
Naphthalene	μg/L	1400	0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	
Acenaphthylene	μg/L	1.8	0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	
Acenaphthene	μg/L	600	0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	
Fluorene	μg/L	400	0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	
Phenanthrene	μg/L	580	0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	
Anthracene	μg/L	2.4	0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	
Fluoranthene	μg/L	130	0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	
Pyrene	μg/L	68	0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	
Benzo(a)anthracene	μg/L	4.7	0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	
Chrysene	μg/L	1	0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	
Benzo(b)fluoranthene	μg/L	0.75	0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	
Benzo(k)fluoranthene	μg/L	0.4	0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	
Benzo(a)pyrene	μg/L	0.81	0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	
Indeno(1,2,3-cd)pyrene	μg/L	0.2	0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	
Dibenz(a,h)anthracene	μg/L	0.52	0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	
Benzo(g,h,i)perylene	μg/L	0.2	0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	
Phenol	μg/L	12000	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	
Bis(2-chloroethyl)ether	μg/L	300000	0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	
2-Chlorophenol	μg/L	3300	0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	
o-Cresol	μg/L		0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	
Bis(2-chloroisopropyl)ether	μg/L	20000	0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	
m&p-Cresol	μg/L		0.6	<0.6	<0.6	<0.6	<0.6	<0.6	<0.6	
2,4-Dimethylphenol	μg/L	39000	0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	
2,4-Dichlorophenol	μg/L	4600	0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	
1,2,4-Trichlorobenzene	μg/L		0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	
p-Chloroaniline	μg/L	400	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	
2-and 1-methyl Naphthalene	μg/L	1800	0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	
2,4,6-Trichlorophenol	μg/L	230	0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	
2,4,5-Trichlorophenol	μg/L	1600	0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	

Certificate of Analysis

AGAT WORK ORDER: 22P921159

PROJECT: 220509-00

ATTENTION TO: Paul Bandler

SAMPLED BY:

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

O. Reg. 153(511) - BNA (full) + PAHs (Water)

				• •		` '	• •			
DATE RECEIVED: 2022-07-14									DATE REPORTE	D: 2022-07-25
		SAMPLE DES	CRIPTION:	MW138	MW26	MW81	MW79	MW23	DUP2	
		SAMI	PLE TYPE:	Water	Water	Water	Water	Water	Water	
		DATE S	SAMPLED:	2022-07-14	2022-07-14	2022-07-14	2022-07-14	2022-07-14	2022-07-14	
				15:17	12:12	14:08	09:37	10:41	10:41	
Parameter	Unit	G/S	RDL	4110272	4110274	4110275	4110276	4110277	4110278	
1,1'-Biphenyl	μg/L	1000	0.50	<0.50	<0.50	< 0.50	<0.50	<0.50	<0.50	
Dimethyl phthalate	μg/L	38	0.50	<0.50	< 0.50	< 0.50	<0.50	<0.50	<0.50	
2,4 and 2,6-Dinitrotoluene	μg/L	2900	0.50	<0.50	<0.50	<0.50	< 0.50	< 0.50	<0.50	
Diethyl phthalate	μg/L	38	0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	
Pentachlorophenol	μg/L	62	0.50	<0.50	<0.50	< 0.50	<0.50	<0.50	<0.50	
3,3'-dichlorobenzidine	μg/L	640	0.50	<0.50	< 0.50	< 0.50	<0.50	<0.50	<0.50	
Bis(2-Ethylhexyl)phthalate	μg/L	140	0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	
2,4-Dinitrophenol	μg/L	11000	10	<10	<10	<10	<10	<10	<10	
Sediment				TRACE	TRACE	NO	TRACE	TRACE	TRACE	
Surrogate	Unit	Acceptab	le Limits							
2-Fluorophenol	%	50-1	140	94	100	80	108	93	108	
phenol-d6 surrogate	%	50-1	140	75	69	64	74	61	74	
2,4,6-Tribromophenol	%	50-1	140	109	87	62	103	91	91	
Chrysene-d12	%	50-1	140	117	87	76	88	96	109	

Comments:

SAMPLING SITE:

RDL - Reported Detection Limit; G / S - Guideline / Standard: Refers to Table 3: Full Depth Generic Site Condition Standards in a Non-Potable Ground Water Condition - Non-Potable Ground Water - All Types of Property Uses - Coarse Textured Soils

Guideline values are for general reference only. The guidelines provided may or may not be relevant for the intended use. Refer directly to the applicable standard for regulatory interpretation.

4110272-4110278 To meet the MOE Reporting limits the sample extract was analysed using two separate GC/MS methods. The full scan BNA method is capable of detecting most of the compounds at the RDLs except for several PAHs. The PAHs were analysed using a SIM mode GC/MS method.

Note: The result for Benzo(b)Fluoranthene is the total of the Benzo(b)&(j)Fluoranthene isomers because the isomers co-elute on the GC column.

Sediment parameter is comment only based on visual inspection of the sample prior to extraction and is not an accredited test.

Analysis performed at AGAT Toronto (unless marked by *)

Jimkal Jata

SAMPLING SITE:

Certificate of Analysis

AGAT WORK ORDER: 22P921159

PROJECT: 220509-00

ATTENTION TO: Paul Bandler

SAMPLED BY:

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

O D	450/544)		// // / /
O. Rea.	. 153(511)	- PCBS	(vvater)

				O. Reg	1. 153(511)	- PCBS (Wa	ler)				
DATE RECEIVED: 2022-07-14								I	DATE REPORTE	D: 2022-07-25	
		SAMPLE DES	CRIPTION:	MW138	MW26	MW81	MW79	MW23	DUP2		
		SAM	PLE TYPE:	Water 2022-07-14 15:17	Water	Water	Water	Water	Water		
		DATE	SAMPLED:		2022-07-14 12:12	2022-07-14 14:08	2022-07-14 09:37	2022-07-14 10:41	2022-07-14 10:41		
Parameter	Unit	G/S	RDL	4110272	4110274	4110275	4110276	4110277	4110278		
Polychlorinated Biphenyls	μg/L	0.2	0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1		
Surrogate	Unit	Acceptab	ole Limits								
Decachlorobiphenyl	%	60-	140	82	70	83	91	78	81		

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard: Refers to Table 7: Generic Site Condition Standards for Shallow Soils in a Non-Potable Ground Water Condition - Non-Potable Ground Water - All Types of Property Uses - Coarse Textured Soils

Guideline values are for general reference only. The guidelines provided may or may not be relevant for the intended use. Refer directly to the applicable standard for regulatory interpretation.

4110272-4110278 PCB total is a calculated parameter. The calculated value is the sum of Aroclor 1242, Aroclor 1248, Aroclor 1254 and Aroclor 1260.

The calculated parameter is non-accredited. The parameters that are components of the calculation are accredited.

Analysis performed at AGAT Toronto (unless marked by *)

Simkal Jostal

Certificate of Analysis

AGAT WORK ORDER: 22P921159

PROJECT: 220509-00

ATTENTION TO: Paul Bandler

SAMPLED BY:

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

SAMPLING SITE:

CLIENT NAME: BLUMETRIC ENVIRONMENTAL INC.

1.100) (141-1--)

DATE RECEIVED: 2022-07-14								[DATE REPORTE	D: 2022-07-25
	S	SAMPLE DESCRIPTION: SAMPLE TYPE: DATE SAMPLED:		MW138 Water 2022-07-14	MW26 Water 2022-07-14	MW81 Water 2022-07-14	MW79 Water 2022-07-14	MW23 Water 2022-07-14	DUP2 Water 2022-07-14	
Parameter	Unit	G/S	RDL	15:17 4110272	12:12 4110274	14:08 4110275	09:37 4110276	10:41 4110277	10:41 4110278	
F1 (C6-C10)	μg/L	750	25	<25	<25	<25	<25	<25	<25	
F1 (C6 to C10) minus BTEX	μg/L	750	25	<25	<25	<25	<25	<25	<25	
F2 (C10 to C16)	μg/L	150	100	<100	<100	<100	<100	<100	<100	
F2 (C10 to C16) minus Naphthalene	μg/L		100	<100	<100	<100	<100	<100	<100	
F3 (C16 to C34)	μg/L	500	100	<100	<100	<100	<100	<100	<100	
F3 (C16 to C34) minus PAHs	μg/L		100	<100	<100	<100	<100	<100	<100	
F4 (C34 to C50)	μg/L	500	100	<100	<100	<100	<100	<100	<100	
Gravimetric Heavy Hydrocarbons	μg/L		500	NA	NA	NA	NA	NA	NA	
Sediment				NO	NO	NO	NO	NO	NO	
Surrogate	Unit	Acceptable	Limits							
Toluene-d8	%	50-14	0	100	98	101	104	101	96	
Terphenyl	% Recovery	60-14	0	98	89	85	96	83	88	

Comments:

RDL - Reported Detection Limit: G / S - Guideline / Standard: Refers to Table 3: Full Depth Generic Site Condition Standards in a Non-Potable Ground Water Condition - Non-Potable Ground Water - All Types of Property Uses - Coarse Textured Soils

Guideline values are for general reference only. The guidelines provided may or may not be relevant for the intended use. Refer directly to the applicable standard for regulatory interpretation.

4110272-4110278 The C6-C10 fraction is calculated using toluene response factor.

C6-C10 (F1 minus BTEX) is a calculated parameter. The calculated value is F1 minus BTEX. The calculated parameter is non-accredited. The parameters that are components of the calculation are accredited.

The C10 - C16, C16 - C34, and C34 - C50 fractions are calculated using the average response factor for n-C10, n-C16, and n-C34.

Gravimetric Heavy Hydrocarbons are not included in the Total C16-C50 and are only determined if the chromatogram of the C34 - C50 hydrocarbons indicates that hydrocarbons >C50 are present. The chromatogram has returned to baseline by the retention time of nC50.

Total C6 - C50 results are corrected for BTEX and PAH contributions.

C>10 - C16 (F2- Naphthalene) is a calculated parameter. The calculated value is F2 - Naphthalene.

C>16 - C34 (F3-PAH) is a calculated parameter. The calculated value is F3-PAH (PAH: sum of Phenanthrene, Benzo(a)anthracene, Benzo(b)fluoranthene, Benzo(k)fluoranthene, Benzo(a)pyrene, Fluoranthene, Dibenzo(a,h)anthracene, Indeno(1,2,3-c,d)pyrene and Pyrene).

This method complies with the Reference Method for the CWS PHC and is validated for use in the laboratory.

nC10, nC16 and nC34 response factors are within 10% of their average.

C50 response factor is within 70% of nC10 + nC16 + nC34 average.

Linearity is within 15%.

Extraction and holding times were met for this sample.

Sediment parameter is comment only based on visual inspection of the sample prior to extraction and is not an accredited test.

Analysis performed at AGAT Toronto (unless marked by *)

Certificate of Analysis

AGAT WORK ORDER: 22P921159

PROJECT: 220509-00

MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

5835 COOPERS AVENUE

ATTENTION TO: Paul Bandler

SAMPLING SITE:					SAMPLED BY:
				O. Reg	g. 153(511) - VOCs (Water)
DATE RECEIVED: 2022-07-14					DATE REPORTED: 2022-07-25
		SAMPLE DES	CRIPTION:	Trip Blank	
		SAMI	PLE TYPE:	Water	
		DATE S	SAMPLED:	2022-07-14	
Parameter	Unit	G/S	RDL	4110292	
Dichlorodifluoromethane	μg/L	3500	0.40	< 0.40	
Vinyl Chloride	μg/L	0.5	0.17	<0.17	
Bromomethane	μg/L	0.89	0.20	<0.20	
Trichlorofluoromethane	μg/L	2000	0.40	< 0.40	
Acetone	μg/L	100000	1.0	<1.0	
1,1-Dichloroethylene	μg/L	0.5	0.30	< 0.30	
Methylene Chloride	μg/L	26	0.30	< 0.30	
trans- 1,2-Dichloroethylene	μg/L	1.6	0.20	<0.20	
Methyl tert-butyl ether	μg/L	15	0.20	<0.20	
1,1-Dichloroethane	μg/L	11	0.30	< 0.30	
Methyl Ethyl Ketone	μg/L	21000	1.0	<1.0	
cis- 1,2-Dichloroethylene	μg/L	1.6	0.20	<0.20	
Chloroform	μg/L	2	0.20	<0.20	
1,2-Dichloroethane	μg/L	0.5	0.20	<0.20	
1,1,1-Trichloroethane	μg/L	23	0.30	< 0.30	
Carbon Tetrachloride	μg/L	0.2	0.20	<0.20	
Benzene	μg/L	0.5	0.20	<0.20	
1,2-Dichloropropane	μg/L	0.58	0.20	<0.20	
Trichloroethylene	μg/L	0.5	0.20	<0.20	
Bromodichloromethane	μg/L	67000	0.20	<0.20	
Methyl Isobutyl Ketone	μg/L	5200	1.0	<1.0	
1,1,2-Trichloroethane	μg/L	0.5	0.20	<0.20	
Toluene	μg/L	320	0.20	<0.20	
Dibromochloromethane	μg/L	65000	0.10	<0.10	
Ethylene Dibromide	μg/L	0.2	0.10	<0.10	
Tetrachloroethylene	μg/L	0.5	0.20	<0.20	
1,1,1,2-Tetrachloroethane	μg/L	1.1	0.10	<0.10	
Chlorobenzene	μg/L	140	0.10	<0.10	
Ethylbenzene	μg/L	54	0.10	<0.10	

Certified By:

μg/L

0.20

< 0.20

m & p-Xylene

SAMPLING SITE:

Certificate of Analysis

AGAT WORK ORDER: 22P921159

PROJECT: 220509-00

ATTENTION TO: Paul Bandler

SAMPLED BY:

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

O Rea	153(511)	- VOCs	(Water)
O. NEU.	1000011	- v O O O O	i vval c i <i>i</i>

				O. INEG.	. 135(311) - VOCS (Water)
DATE RECEIVED: 2022-07-14					DATE REPORTED: 2022-07-25
	S	AMPLE DES	CRIPTION:	Trip Blank	
		SAM	PLE TYPE:	Water	
		DATE	SAMPLED:	2022-07-14	
Parameter	Unit	G/S	RDL	4110292	
Bromoform	μg/L	5	0.10	<0.10	
Styrene	μg/L	43	0.10	<0.10	
1,1,2,2-Tetrachloroethane	μg/L	0.5	0.10	<0.10	
o-Xylene	μg/L		0.10	<0.10	
1,3-Dichlorobenzene	μg/L	7600	0.10	<0.10	
1,4-Dichlorobenzene	μg/L	0.5	0.10	<0.10	
1,2-Dichlorobenzene	μg/L	150	0.10	<0.10	
1,3-Dichloropropene	μg/L	0.5	0.30	< 0.30	
Xylenes (Total)	μg/L	72	0.20	<0.20	
n-Hexane	μg/L	5	0.20	<0.20	
Surrogate	Unit	Acceptab	le Limits		
Toluene-d8	% Recovery	50-	140	100	
4-Bromofluorobenzene	% Recovery	50-	140	101	

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard: Refers to Table 7: Generic Site Condition Standards for Shallow Soils in a Non-Potable Ground Water Condition - Non-Potable Ground

Water - All Types of Property Uses - Coarse Textured Soils

Guideline values are for general reference only. The guidelines provided may or may not be relevant for the intended use. Refer directly to the applicable standard for regulatory interpretation.

4110292 Xylenes total is a calculated parameter. The calculated value is the sum of m&p-Xylene and o-Xylene.

1,3-Dichloropropene total is a calculated parameter. The calculated value is the sum of Cis-1,3-Dichloropropene and Trans-1,3-Dichloropropene.

The calculated parameter is non-accredited. The parameters that are components of the calculation are accredited.

Analysis performed at AGAT Toronto (unless marked by *)

SAMPLING SITE:

Certificate of Analysis

AGAT WORK ORDER: 22P921159

PROJECT: 220509-00

ATTENTION TO: Paul Bandler

SAMPLED BY:

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

O. Reg. 153(511) - VOCs (with PHC) (Water)

				1109. 100(011) 1000	, (WILIT I TIO	, (Trator)			
DATE RECEIVED: 2022-07-14								[DATE REPORTED	: 2022-07-25
		SAMPLE DESCRIPTION: SAMPLE TYPE: DATE SAMPLED:		MW138 Water 2022-07-14 15:17	MW26 Water 2022-07-14 12:12	MW81 Water 2022-07-14 14:08	MW79 Water 2022-07-14 09:37	MW23 Water 2022-07-14 10:41	DUP2 Water 2022-07-14 10:41	
Parameter	Unit	G/S	RDL	4110272	4110274	4110275	4110276	4110277	4110278	
Dichlorodifluoromethane	μg/L	3500	0.40	< 0.40	<0.40	<0.40	<0.40	<0.40	<0.40	
Vinyl Chloride	μg/L	0.5	0.17	<0.17	<0.17	<0.17	<0.17	<0.17	<0.17	
Bromomethane	μg/L	0.89	0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	
Trichlorofluoromethane	μg/L	2000	0.40	< 0.40	<0.40	<0.40	< 0.40	<0.40	<0.40	
Acetone	μg/L	100000	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	
1,1-Dichloroethylene	μg/L	0.5	0.30	< 0.30	< 0.30	< 0.30	< 0.30	< 0.30	<0.30	
Methylene Chloride	μg/L	26	0.30	< 0.30	< 0.30	< 0.30	< 0.30	< 0.30	< 0.30	
trans- 1,2-Dichloroethylene	μg/L	1.6	0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	
Methyl tert-butyl ether	μg/L	15	0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	
1,1-Dichloroethane	μg/L	11	0.30	< 0.30	<0.30	< 0.30	< 0.30	< 0.30	<0.30	
Methyl Ethyl Ketone	μg/L	21000	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	
cis- 1,2-Dichloroethylene	μg/L	1.6	0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	
Chloroform	μg/L	2	0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	
1,2-Dichloroethane	μg/L	0.5	0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	
1,1,1-Trichloroethane	μg/L	23	0.30	< 0.30	<0.30	< 0.30	< 0.30	< 0.30	<0.30	
Carbon Tetrachloride	μg/L	0.2	0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	
Benzene	μg/L	0.5	0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	
1,2-Dichloropropane	μg/L	0.58	0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	
Trichloroethylene	μg/L	0.5	0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	
Bromodichloromethane	μg/L	67000	0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	
Methyl Isobutyl Ketone	μg/L	5200	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	
1,1,2-Trichloroethane	μg/L	0.5	0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	
Toluene	μg/L	320	0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	
Dibromochloromethane	μg/L	65000	0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	
Ethylene Dibromide	μg/L	0.2	0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	
Tetrachloroethylene	μg/L	0.5	0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	
1,1,1,2-Tetrachloroethane	μg/L	1.1	0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	
Chlorobenzene	μg/L	140	0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	
Ethylbenzene	μg/L	54	0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	

Certificate of Analysis

AGAT WORK ORDER: 22P921159

PROJECT: 220509-00

ATTENTION TO: Paul Bandler

SAMPLED BY:

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

O. Reg. 153(511) - VOCs (with PHC) (Water)

			•		,	(, (110.101)			
DATE RECEIVED: 2022-07-14								[DATE REPORTED): 2022-07-25
	S	SAMPLE DESCRIPTION:		MW138 Water	MW26	MW81	MW79	MW23 Water 2022-07-14 10:41	DUP2	
			SAMPLE TYPE:		Water	Water 2022-07-14 14:08	Water 2022-07-14 09:37		Water	
		DATE SAMPLED:		2022-07-14 15:17	2022-07-14 12:12				2022-07-14 10:41	
Parameter	Unit	G/S	RDL	4110272	4110274	4110275	4110276	4110277	4110278	
m & p-Xylene	μg/L		0.20	<0.20	<0.20	< 0.20	<0.20	<0.20	< 0.20	
Bromoform	μg/L	5	0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	
Styrene	μg/L	43	0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	
1,1,2,2-Tetrachloroethane	μg/L	0.5	0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	
o-Xylene	μg/L		0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	
1,3-Dichlorobenzene	μg/L	7600	0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	
1,4-Dichlorobenzene	μg/L	0.5	0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	
1,2-Dichlorobenzene	μg/L	150	0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	
1,3-Dichloropropene	μg/L	0.5	0.30	< 0.30	<0.30	<0.30	< 0.30	< 0.30	< 0.30	
Xylenes (Total)	μg/L	72	0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	
n-Hexane	μg/L	5	0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	
Surrogate	Unit	Acceptab	le Limits							
Toluene-d8	% Recovery	50-	140	100	98	101	104	101	96	
4-Bromofluorobenzene	% Recovery	50-1	140	82	80	83	83	80	82	

Comments:

SAMPLING SITE:

RDL - Reported Detection Limit; G / S - Guideline / Standard: Refers to Table 7: Generic Site Condition Standards for Shallow Soils in a Non-Potable Ground Water Condition - Non-Potable Ground Water - All Types of Property Uses - Coarse Textured Soils

Guideline values are for general reference only. The guidelines provided may or may not be relevant for the intended use. Refer directly to the applicable standard for regulatory interpretation.

4110272-4110278 Xylenes total is a calculated parameter. The calculated value is the sum of m&p-Xylene and o-Xylene.

1,3-Dichloropropene total is a calculated parameter. The calculated value is the sum of Cis-1,3-Dichloropropene and Trans-1,3-Dichloropropene.

The calculated parameter is non-accredited. The parameters that are components of the calculation are accredited.

Analysis performed at AGAT Toronto (unless marked by *)

Jinkal Jata

Certificate of Analysis

AGAT WORK ORDER: 22P921159

PROJECT: 220509-00

ATTENTION TO: Paul Bandler

SAMPLED BY:

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

CLIENT NAME: BLUMETRIC ENVIRONMENTAL INC.

SAMPLING SITE:

O. Reg. 153(511) - Metals & Inorganics (Water)

DATE RECEIVED: 2022-07-14								ſ	DATE REPORTED: 2	022-07-25
	\$		CRIPTION: PLE TYPE: SAMPLED:	MW138 Water 2022-07-14 15:17	MW26 Water 2022-07-14 12:12	MW81 Water 2022-07-14 14:08	MW79 Water 2022-07-14 09:37	MW23 Water 2022-07-14 10:41	DUP2 Water 2022-07-14 10:41	
Parameter	Unit	G/S	RDL	4110272	4110274	4110275	4110276	4110277	4110278	
Dissolved Antimony	μg/L	16000	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	
Dissolved Arsenic	μg/L	1500	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	
Dissolved Barium	μg/L	23000	2.0	128	169	187	164	70.3	65.1	
Dissolved Beryllium	μg/L	53	0.50	<0.50	<0.50	<0.50	< 0.50	<0.50	<0.50	
Dissolved Boron	μg/L	36000	10.0	197	166	32.7	242	177	166	
Dissolved Cadmium	μg/L	2.1	0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	
Dissolved Chromium	μg/L	640	2.0	<2.0	<2.0	<2.0	<2.0	2.8	<2.0	
Dissolved Cobalt	μg/L	52	0.50	<0.50	<0.50	0.60	1.86	1.24	<0.50	
Dissolved Copper	μg/L	69	1.0	1.7	<1.0	<1.0	2.5	1.1	3.6	
Dissolved Lead	μg/L	20	0.50	<0.50	<0.50	< 0.50	< 0.50	<0.50	<0.50	
Dissolved Molybdenum	μg/L	7300	0.50	187	<0.50	< 0.50	0.97	2.76	2.65	
Dissolved Nickel	μg/L	390	1.0	<1.0	3.2	4.4	1.1	1.0	<1.0	
Dissolved Selenium	μg/L	50	1.0	<1.0	3.0	<1.0	<1.0	<1.0	<1.0	
Dissolved Silver	μg/L	1.2	0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	
Dissolved Thallium	μg/L	400	0.30	<0.30	<0.30	<0.30	< 0.30	< 0.30	< 0.30	
Dissolved Uranium	μg/L	330	0.50	<0.50	<0.50	2.30	< 0.50	<0.50	<0.50	
Dissolved Vanadium	μg/L	200	0.40	<0.40	<0.40	< 0.40	< 0.40	< 0.40	<0.40	
Dissolved Zinc	μg/L	890	5.0	<5.0	17.8	<5.0	<5.0	<5.0	<5.0	
Mercury	μg/L	0.1	0.02	<0.02	< 0.02	< 0.02	< 0.02	< 0.02	<0.02	
Chromium VI	μg/L	110	2.000	<2.000	<2.000	<2.000	<2.000	<2.000	<2.000	
Cyanide, WAD	μg/L	52	2	<2	<2	<2	<2	<2	<2	
Dissolved Sodium	μg/L	1800000	50	17800	133000	170000	51400	41100	38800	
Chloride	μg/L	1800000	100	18700	205000	336000	34500	34700	35200	
Electrical Conductivity	uS/cm	NA	2	756	1510	1810	964	961	962	
рН	pH Units		NA	7.72	7.70	7.65	7.72	7.78	7.75	

Certificate of Analysis

AGAT WORK ORDER: 22P921159

PROJECT: 220509-00

ATTENTION TO: Paul Bandler

SAMPLED BY:

O. Reg. 153(511) - Metals & Inorganics (Water)

DATE RECEIVED: 2022-07-14 **DATE REPORTED: 2022-07-25**

RDL - Reported Detection Limit; G / S - Guideline / Standard: Refers to Table 7: Generic Site Condition Standards for Shallow Soils in a Non-Potable Ground Water Condition - Non-Potable Ground Water - All Types of Property Uses - Coarse Textured Soils

Guideline values are for general reference only. The guidelines provided may or may not be relevant for the intended use. Refer directly to the applicable standard for regulatory interpretation.

4110272-4110274 Metals analysis completed on a filtered sample.

CLIENT NAME: BLUMETRIC ENVIRONMENTAL INC.

SAMPLING SITE:

Comments:

4110275 Metals analysis completed on a filtered sample.

Dilution required, RDL has been increased accordingly.

4110276-4110278 Metals analysis completed on a filtered sample.

Analysis performed at AGAT Toronto (unless marked by *)

Certified By:

5835 COOPERS AVENUE

MISSISSAUGA, ONTARIO

http://www.agatlabs.com

CANADA L4Z 1Y2

TEL (905)712-5100 FAX (905)712-5122

Quality Assurance

CLIENT NAME: BLUMETRIC ENVIRONMENTAL INC.

AGAT WORK ORDER: 22P921159
PROJECT: 220509-00

ATTENTION TO: Paul Bandler

SAMPLING SITE: SAMPLED BY:

Trace Organics Analysis															
RPT Date: Jul 25, 2022			С	UPLICAT	E		REFEREN	NCE MA	TERIAL	METHOD	BLANK	SPIKE	MAT	RIX SPI	KE
PARAMETER	Batch	Sample Id	Dup #1	Dup #2	RPD	Method Blank	Measured Value		ptable nits Upper	Recovery	Lin	ptable nits Upper	Recovery		ptable nits Upper
O. Reg. 153(511) - VOCs (Water)															
Dichlorodifluoromethane	4110292	1110292	< 0.40	< 0.40	NA	< 0.40	76%	50%	140%	115%	50%	140%	78%	50%	140%
Vinyl Chloride	4110292		<0.17	<0.17	NA	< 0.17	111%	50%	140%	92%	50%	140%	119%	50%	140%
Bromomethane	4110292	4110292	<0.20	<0.20	NA	< 0.20	89%	50%	140%	90%	50%	140%	109%	50%	140%
Trichlorofluoromethane	4110292	4110292	< 0.40	< 0.40	NA	< 0.40	103%	50%	140%	85%	50%	140%	110%	50%	140%
Acetone	4110292	4110292	<1.0	<1.0	NA	< 1.0	98%	50%	140%	104%	50%	140%	97%	50%	140%
1,1-Dichloroethylene	4110292	4110292	<0.30	<0.30	NA	< 0.30	70%	50%	140%	77%	60%	130%	102%	50%	140%
Methylene Chloride	4110292	1110292	< 0.30	< 0.30	NA	< 0.30	72%	50%	140%	76%	60%	130%	96%	50%	140%
trans- 1,2-Dichloroethylene	4110292	1110292	<0.20	<0.20	NA	< 0.20	73%	50%	140%	82%	60%	130%	99%	50%	140%
Methyl tert-butyl ether	4110292	1110292	<0.20	< 0.20	NA	< 0.20	72%	50%	140%	91%	60%	130%	110%	50%	140%
1,1-Dichloroethane	4110292	4110292	<0.30	<0.30	NA	< 0.30	86%	50%	140%	81%	60%	130%	114%	50%	140%
Methyl Ethyl Ketone	4110292	1110292	<1.0	<1.0	NA	< 1.0	94%	50%	140%	90%	50%	140%	111%	50%	140%
cis- 1,2-Dichloroethylene	4110292		<0.20	<0.20	NA	< 0.20	79%	50%	140%	86%	60%	130%	98%	50%	140%
Chloroform	4110292	4110292	<0.20	<0.20	NA	< 0.20	83%	50%	140%	83%	60%	130%	109%	50%	140%
1,2-Dichloroethane	4110292	4110292	<0.20	< 0.20	NA	< 0.20	87%	50%	140%	105%	60%	130%	105%	50%	140%
1,1,1-Trichloroethane	4110292	4110292	<0.30	<0.30	NA	< 0.30	73%	50%	140%	104%	60%	130%	109%	50%	140%
Carbon Tetrachloride	4110292	4110292	<0.20	<0.20	NA	< 0.20	93%	50%	140%	114%	60%	130%	90%	50%	140%
Benzene	4110292	4110292	<0.20	<0.20	NA	< 0.20	108%	50%	140%	111%	60%	130%	76%	50%	140%
1,2-Dichloropropane	4110292	4110292	<0.20	<0.20	NA	< 0.20	83%	50%	140%	93%	60%	130%	104%	50%	140%
Trichloroethylene	4110292	4110292	<0.20	<0.20	NA	< 0.20	85%	50%	140%	93%	60%	130%	110%	50%	140%
Bromodichloromethane	4110292	4110292	<0.20	<0.20	NA	< 0.20	79%	50%	140%	92%	60%	130%	101%	50%	140%
Methyl Isobutyl Ketone	4110292	4110292	<1.0	<1.0	NA	< 1.0	104%	50%	140%	86%	50%	140%	99%	50%	140%
1,1,2-Trichloroethane	4110292	4110292	<0.20	<0.20	NA	< 0.20	93%	50%	140%	84%	60%	130%	109%	50%	140%
Toluene	4110292	4110292	<0.20	< 0.20	NA	< 0.20	90%	50%	140%	74%	60%	130%	115%	50%	140%
Dibromochloromethane	4110292	4110292	<0.10	< 0.10	NA	< 0.10	87%	50%	140%	76%	60%	130%	104%	50%	140%
Ethylene Dibromide	4110292	4110292	<0.10	<0.10	NA	< 0.10	89%	50%	140%	82%	60%	130%	105%	50%	140%
Tetrachloroethylene	4110292	4110292	<0.20	<0.20	NA	< 0.20	92%	50%	140%	71%	60%	130%	105%	50%	140%
1,1,1,2-Tetrachloroethane	4110292	4110292	<0.10	<0.10	NA	< 0.10	87%	50%	140%	73%	60%	130%	110%	50%	140%
Chlorobenzene	4110292	4110292	<0.10	<0.10	NA	< 0.10	90%	50%	140%	74%	60%	130%	114%	50%	140%
Ethylbenzene	4110292	4110292	<0.10	<0.10	NA	< 0.10	94%	50%	140%	76%	60%	130%	112%	50%	140%
m & p-Xylene	4110292	4110292	<0.20	<0.20	NA	< 0.20	90%	50%	140%	91%	60%	130%	116%	50%	140%
Bromoform	4110292	4110292	<0.10	<0.10	NA	< 0.10	87%	50%	140%	80%	60%	130%	101%	50%	140%
Styrene	4110292	4110292	<0.10	<0.10	NA	< 0.10	87%	50%	140%	78%	60%	130%	106%	50%	140%
1,1,2,2-Tetrachloroethane	4110292	4110292	<0.10	<0.10	NA	< 0.10	102%	50%	140%	90%	60%	130%	71%	50%	140%
o-Xylene	4110292		<0.10	<0.10	NA	< 0.10	89%	50%	140%	73%	60%	130%	112%	50%	140%
1,3-Dichlorobenzene	4110292	4110292	<0.10	<0.10	NA	< 0.10	93%	50%	140%	77%	60%	130%	109%	50%	140%
1,4-Dichlorobenzene	4110292	4110292	<0.10	<0.10	NA	< 0.10	95%	50%	140%	78%	60%	130%	105%	50%	140%
1,2-Dichlorobenzene	4110292	4110292	<0.10	<0.10	NA	< 0.10	93%	50%	140%	76%	60%	130%	101%	50%	140%
n-Hexane	4110292	4110292	<0.20	< 0.20	NA	< 0.20	108%	50%	140%	85%	60%	130%	118%	50%	140%

AGAT QUALITY ASSURANCE REPORT (V1)

Page 12 of 25

Quality Assurance

CLIENT NAME: BLUMETRIC ENVIRONMENTAL INC.

AGAT WORK ORDER: 22P921159
PROJECT: 220509-00

ATTENTION TO: Paul Bandler

SAMPLING SITE: SAMPLED BY:

SAMPLING SITE:								SAMP	LED B	Υ:					
		Γrace	Org	anics	Ana	alysis	(Cor	ntin	ued)					
RPT Date: Jul 25, 2022			Г	DUPLICAT	E		REFERE	NCE MA	TERIAL	METHOD	BLAN	SPIKE	МАТ	RIX SPI	IKE
PARAMETER	Batch	Sample Id	Dup #1	Dup #2	RPD	Method Blank	Measured Value		ptable nits	Recovery	Lie	ptable nits	Recovery	Lie	eptable mits
								Lower	Upper		Lower	Upper		Lower	Uppe
O. Reg. 153(511) - PHCs F1 - F	4 (with PAHs	and VOC)	(Water)												
F1 (C6-C10)	4105558		<25	<25	NA	< 25	118%	60%	140%	110%	60%	140%	77%	60%	1409
F2 (C10 to C16)	4110272	4110272	<100	<100	NA	< 100	103%	60%	140%	91%	60%	140%	67%	60%	1409
F3 (C16 to C34)	4110272		<100	<100	NA	< 100	108%	60%	140%	81%	60%	140%	70%	60%	140
F4 (C34 to C50)	4110272	4110272	<100	<100	NA	< 100	87%	60%	140%	108%	60%	140%	99%	60%	1409
O. Reg. 153(511) - BNA (full) +	PAHs (Water)														
Naphthalene	4110277	4110277	<0.20	<0.20	NA	< 0.20	112%	50%	140%	101%	50%	140%	75%	50%	1409
Acenaphthylene	4110277	4110277	<0.20	<0.20	NA	< 0.20	102%	50%	140%	72%	50%	140%	85%	50%	1409
Acenaphthene	4110277	4110277	<0.20	<0.20	NA	< 0.20	107%	50%	140%	74%	50%	140%	82%	50%	1409
Fluorene	4110277	4110277	<0.20	<0.20	NA	< 0.20	95%	50%	140%	70%	50%	140%	97%	50%	1409
Phenanthrene	4110277	4110277	<0.10	<0.10	NA	< 0.10	105%	50%	140%	85%	50%	140%	98%	50%	1409
Anthracene	4110277	4110277	<0.10	<0.10	NA	< 0.10	102%	50%	140%	88%	50%	140%	99%	50%	1409
Fluoranthene	4110277	4110277	<0.20	< 0.20	NA	< 0.20	92%	50%	140%	98%	50%	140%	92%	50%	1409
Pyrene	4110277	4110277	<0.20	< 0.20	NA	< 0.20	99%	50%	140%	99%	50%	140%	92%	50%	1409
Benzo(a)anthracene	4110277	4110277	<0.20	<0.20	NA	< 0.20	108%	50%	140%	102%	50%	140%	88%	50%	1409
Chrysene	4110277	4110277	<0.10	<0.10	NA	< 0.10	93%	50%	140%	98%	50%	140%	93%	50%	140%
Benzo(b)fluoranthene	4110277	4110277	<0.10	<0.10	NA	< 0.10	95%	50%	140%	78%	50%	140%	84%	50%	1409
Benzo(k)fluoranthene	4110277	4110277	<0.10	<0.10	NA	< 0.10	102%	50%	140%	80%	50%	140%	95%	50%	1409
Benzo(a)pyrene	4110277	4110277	< 0.01	<0.01	NA	< 0.01	104%	50%	140%	80%	50%	140%	82%	50%	1409
Indeno(1,2,3-cd)pyrene	4110277	4110277	<0.20	<0.20	NA	< 0.20	92%	50%	140%	81%	50%	140%	66%	50%	140
Dibenz(a,h)anthracene	4110277	4110277	<0.20	<0.20	NA	< 0.20	97%	50%	140%	80%	50%	140%	66%	50%	1409
Benzo(g,h,i)perylene	4110277	4110277	<0.20	<0.20	NA	< 0.20	91%	50%	140%	81%	50%	140%	64%	50%	1409
Phenol	4110277	4110277	<1.0	<1.0	NA	< 1.0	77%	30%	130%	77%	30%	130%	65%	30%	1309
Bis(2-chloroethyl)ether	4110277	4110277	<0.5	<0.5	NA	< 0.5	104%	50%	140%	79%	50%	140%	83%	50%	1409
2-Chlorophenol	4110277	4110277	<0.5	<0.5	NA	< 0.5	70%	50%	140%	81%	50%	140%	78%	50%	1409
o-Cresol	4110277	4110277	<0.5	<0.5	NA	< 0.5	103%	50%	140%	70%	50%	140%	71%	50%	1409
Bis(2-chloroisopropyl)ether	4110277	4110277	<0.5	<0.5	NA	< 0.5	89%	50%	140%	69%	50%	140%	102%	50%	1409
m&p-Cresol	4110277	4110277	<0.6	<0.6	NA	< 0.6	96%	50%	140%	71%	50%	140%	74%	50%	1409
2,4-Dimethylphenol	4110277	4110277	<0.5	<0.5	NA	< 0.5	69%	30%	130%	69%	30%	130%	86%	30%	1309
2,4-Dichlorophenol	4110277	4110277	< 0.3	< 0.3	NA	< 0.3	109%	50%	140%	68%	50%	140%	71%	50%	140
1,2,4-Trichlorobenzene	4110277	4110277	<0.5	<0.5	NA	< 0.5	108%	50%	140%	65%	50%	140%	62%	50%	1409
p-Chloroaniline	4110277	4110277	<1.0	<1.0	NA	< 1.0	91%	30%	130%	89%	30%	130%	89%	30%	130
2,4,6-Trichlorophenol	4110277	4110277	<0.20	< 0.20	NA	< 0.20	110%	50%	140%	83%	50%	140%	78%	50%	1409
2,4,5-Trichlorophenol	4110277	4110277	<0.20	<0.20	NA	< 0.20	87%	50%	140%	88%	50%	140%	96%	50%	140
1,1'-Biphenyl	4110277	4110277	<0.50	<0.50	NA	< 0.50	81%	50%	140%	93%	50%	140%	83%		1409
Dimethyl phthalate	4110277	4110277	<0.50	<0.50	NA	< 0.50	112%	50%	140%	88%	50%	140%	92%	50%	1409
Diethyl phthalate	4110277	4110277	<0.50	<0.50	NA	< 0.50	101%	50%	140%	97%	50%	140%	104%	50%	1409
Pentachlorophenol	4110277		<0.50	<0.50	NA	< 0.50	95%		140%	71%		140%	79%	50%	
3,3'-dichlorobenzidine	4110277		<0.50	<0.50	NA	< 0.50	85%			89%		130%	75%		130%
Bis(2-Ethylhexyl)phthalate	4110277		< 0.50	<0.50	NA	< 0.50	108%		140%	98%		140%	93%		1409

AGAT QUALITY ASSURANCE REPORT (V1)

Page 13 of 25

AGAT Laboratories is accredited to ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA) and/or Standards Council of Canada (SCC) for specific tests listed on the scope of accreditation. AGAT Laboratories (Mississauga) is also accredited by the Canadian Association for Laboratory Accreditation Inc. (CALA) for specific drinking water tests. Accreditations are location and parameter specific. A complete listing of parameters for each location is available from www.cala.ca and/or www.scc.ca. The tests in this report may not necessarily be included in the scope of accreditation. RPDs calculated using raw data. The RPD may not be reflective of duplicate values shown, due to rounding of final results.

Quality Assurance

CLIENT NAME: BLUMETRIC ENVIRONMENTAL INC.

AGAT WORK ORDER: 22P921159
PROJECT: 220509-00

ATTENTION TO: Paul Bandler

SAMPLING SITE: SAMPLED BY:

SAMPLING SITE:								SAMP	LED B	Υ:					
	٦	race	Org	anics	Ana	alysis	(Cor	ntin	ued)					
RPT Date: Jul 25, 2022			Г	DUPLICAT	E		REFERE	NCE MA	TERIAL	METHOD	BLAN	K SPIKE	MAT	RIX SPI	IKE
PARAMETER	Batch	Sample Id	Dup #1	Dup #2	RPD	Method Blank	Measured Value		eptable nits	Recovery	Liv	eptable mits	Recovery	Lie	eptable mits
							1	Lower	Upper		Lower	Upper		Lower	Upper
2,4-Dinitrophenol	4110277 4	1110277	<10	<10	NA	< 10	100%	30%	130%	86%	30%	130%	85%	30%	130%
O. Reg. 153(511) - VOCs (with	PHC) (Water)														
Dichlorodifluoromethane	4105558		<0.40	< 0.40	NA	< 0.40	74%	50%	140%	76%	50%	140%	76%	50%	140%
Vinyl Chloride	4105558		<0.17	<0.17	NA	< 0.17	88%	50%	140%	90%	50%	140%	110%	50%	140%
Bromomethane	4105558		<0.20	<0.20	NA	< 0.20	75%	50%	140%	81%	50%	140%	98%	50%	140%
Trichlorofluoromethane	4105558		<0.40	< 0.40	NA	< 0.40	96%	50%	140%	93%	50%	140%	107%	50%	140%
Acetone	4105558		<1.0	<1.0	NA	< 1.0	91%	50%	140%	111%	50%	140%	117%	50%	140%
1,1-Dichloroethylene	4105558		<0.30	<0.30	NA	< 0.30	99%	50%	140%	114%	60%	130%	105%	50%	140%
Methylene Chloride	4105558		< 0.30	< 0.30	NA	< 0.30	104%	50%	140%	105%	60%	130%	83%	50%	140%
trans- 1,2-Dichloroethylene	4105558		<0.20	< 0.20	NA	< 0.20	98%	50%	140%	117%	60%	130%	109%	50%	140%
Methyl tert-butyl ether	4105558		<0.20	< 0.20	NA	< 0.20	87%	50%	140%	107%	60%	130%	113%	50%	140%
1,1-Dichloroethane	4105558		<0.30	<0.30	NA	< 0.30	97%	50%	140%	114%	60%	130%	105%	50%	140%
Methyl Ethyl Ketone	4105558		<1.0	<1.0	NA	< 1.0	100%	50%	140%	101%	50%	140%	102%	50%	140%
cis- 1,2-Dichloroethylene	4105558		<0.20	<0.20	NA	< 0.20	100%	50%	140%	117%	60%	130%	112%	50%	140%
Chloroform	4105558		<0.20	<0.20	NA	< 0.20	100%	50%	140%	110%	60%	130%	109%	50%	140%
1,2-Dichloroethane	4105558		< 0.20	< 0.20	NA	< 0.20	100%	50%	140%	114%	60%	130%	118%	50%	140%
1,1,1-Trichloroethane	4105558		<0.30	<0.30	NA	< 0.30	96%	50%	140%	110%	60%	130%	98%	50%	140%
Carbon Tetrachloride	4105558		<0.20	<0.20	NA	< 0.20	98%	50%	140%	115%	60%	130%	104%	50%	140%
Benzene	4105558		<0.20	< 0.20	NA	< 0.20	99%	50%	140%	119%	60%	130%	113%	50%	140%
1,2-Dichloropropane	4105558		<0.20	<0.20	NA	< 0.20	98%	50%	140%	113%	60%	130%	108%	50%	140%
Trichloroethylene	4105558		<0.20	<0.20	NA	< 0.20	115%	50%	140%	110%	60%	130%	119%	50%	140%
Bromodichloromethane	4105558		<0.20	<0.20	NA	< 0.20	99%	50%	140%	113%	60%	130%	113%	50%	140%
Methyl Isobutyl Ketone	4105558		<1.0	<1.0	NA	< 1.0	98%	50%	140%	109%	50%	140%	117%	50%	140%
1,1,2-Trichloroethane	4105558		<0.20	< 0.20	NA	< 0.20	106%	50%	140%	116%	60%	130%	103%	50%	140%
Toluene	4105558		<0.20	< 0.20	NA	< 0.20	97%	50%	140%	119%	60%	130%	111%	50%	140%
Dibromochloromethane	4105558		<0.10	<0.10	NA	< 0.10	100%	50%	140%	119%	60%	130%	118%	50%	140%
Ethylene Dibromide	4105558		<0.10	<0.10	NA	< 0.10	100%	50%	140%	116%	60%	130%	118%	50%	140%
Tetrachloroethylene	4105558		<0.20	<0.20	NA	< 0.20	97%	50%	140%	120%	60%	130%	108%	50%	140%
1,1,1,2-Tetrachloroethane	4105558		<0.10	<0.10	NA	< 0.10	98%	50%	140%	115%	60%	130%	107%	50%	140%
Chlorobenzene	4105558		<0.10	<0.10	NA	< 0.10	97%	50%	140%	115%	60%	130%	111%	50%	140%
Ethylbenzene	4105558		<0.10	<0.10	NA	< 0.10	87%	50%	140%	110%	60%	130%	101%	50%	140%
m & p-Xylene	4105558		<0.20	<0.20	NA	< 0.20	93%	50%	140%	114%	60%	130%	109%	50%	140%
Bromoform	4105558		<0.10	<0.10	NA	< 0.10	98%	50%	140%	111%	60%	130%	118%	50%	140%
Styrene	4105558		<0.10	<0.10	NA	< 0.10	80%		140%	98%	60%		96%	50%	140%
1,1,2,2-Tetrachloroethane	4105558		<0.10	<0.10	NA	< 0.10	83%		140%	90%		130%	81%		140%
o-Xylene	4105558		<0.10	<0.10	NA	< 0.10	94%		140%	113%		130%	113%		140%
1,3-Dichlorobenzene	4105558		<0.10	<0.10	NA	< 0.10	98%		140%	109%		130%	106%		140%
1,4-Dichlorobenzene	4105558		<0.10	<0.10	NA	< 0.10	96%	50%	140%	108%	60%	130%	118%	50%	140%
1,2-Dichlorobenzene	4105558		<0.10	<0.10	NA	< 0.10	92%		140%	103%		130%	118%		140%
.,	+100000		~0.10	~0.10	11/7	~ U.1U	JZ /0	JJ /0	1-0/0	100/0	00 /0	100 /0	1 10 /0	00/0	. 70 /0

AGAT QUALITY ASSURANCE REPORT (V1)

Page 14 of 25

AGAT Laboratories is accredited to ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA) and/or Standards Council of Canada (SCC) for specific tests listed on the scope of accreditation. AGAT Laboratories (Mississauga) is also accredited by the Canadian Association for Laboratory Accreditation Inc. (CALA) for specific drinking water tests. Accreditations are location and parameter specific. A complete listing of parameters for each location is available from www.cala.ca and/or www.scc.ca. The tests in this report may not necessarily be included in the scope of accreditation. RPDs calculated using raw data. The RPD may not be reflective of duplicate values shown, due to rounding of final results.

Quality Assurance

CLIENT NAME: BLUMETRIC ENVIRONMENTAL INC.

AGAT WORK ORDER: 22P921159
PROJECT: 220509-00

ATTENTION TO: Paul Bandler

SAMPLING SITE: SAMPLED BY:

Trace Organics Analysis (Continued)															
RPT Date: Jul 25, 2022	PT Date: Jul 25, 2022 DUPLICATE							NCE MA	TERIAL	METHOD	BLANK	SPIKE	MAT	RIX SPI	KE
PARAMETER	Batch	Sample	Dup #1	Dup #2	RPD	Method Blank	Measured		ptable nits	Recovery	Lin	ptable nits	Recovery	Lin	ptable nits
		ld					Value	Lower	Upper		Lower	Upper	, , ,	Lower	Upper
n-Hexane	4105558		<0.20	<0.20	NA	< 0.20	92%	50%	140%	77%	60%	130%	78%	50%	140%

O. Reg. 153(511) - PCBs (Water)

Polychlorinated Biphenyls 4110275 4110275 < 0.1 < 0.1 NA < 0.1 101% 50% 140% 100% 50% 140% 82% 50% 140%

Comments: When the average of the sample and duplicate results is less than 5x the RDL, the Relative Percent Difference (RPD) will be indicated as Not Applicable (NA).

Quality Assurance

CLIENT NAME: BLUMETRIC ENVIRONMENTAL INC. AGAT WORK ORDER: 22P921159
PROJECT: 220509-00 ATTENTION TO: Paul Bandler

SAMPLING SITE: SAMPLED BY:

5/4/11 ELTO 5/12.														
Water Analysis														
RPT Date: Jul 25, 2022			DUPLICATE	<u> </u>		REFEREN	NCE MA	ATERIAL	METHOD	BLANK	SPIKE	MAT	RIX SPI	KE
PARAMETER	Batch Sample	Dup #1	Dup #2	RPD	Method Blank	Measured Value		eptable mits	Recovery	Lie	ptable nits	Recovery	Lie	ptable
	ld ld					value	Lower	Upper		Lower	Upper		Lower	Upper
O. Reg. 153(511) - Metals & In	organics (Water)													
Dissolved Antimony	4099722	<1.0	<1.0	NA	< 1.0	102%	70%	130%	96%	80%	120%	100%	70%	130%
Dissolved Arsenic	4099722	<1.0	<1.0	NA	< 1.0	96%	70%	130%	92%	80%	120%	99%	70%	130%
Dissolved Barium	4099722	89.9	88.1	2.0%	< 2.0	104%	70%	130%	105%	80%	120%	104%	70%	130%
Dissolved Beryllium	4099722	< 0.50	< 0.50	NA	< 0.50	98%	70%	130%	97%	80%	120%	105%	70%	130%
Dissolved Boron	4099722	128	130	1.6%	< 10.0	97%	70%	130%	102%	80%	120%	102%	70%	130%
Dissolved Cadmium	4099722	<0.20	<0.20	NA	< 0.20	99%	70%	130%	95%	80%	120%	103%	70%	130%
Dissolved Chromium	4099722	2.6	2.5	NA	< 2.0	101%	70%	130%	101%	80%	120%	99%	70%	130%
Dissolved Cobalt	4099722	< 0.50	< 0.50	NA	< 0.50	96%	70%	130%	101%	80%	120%	97%	70%	130%
Dissolved Copper	4099722	1.1	<1.0	NA	< 1.0	100%	70%	130%	98%	80%	120%	95%	70%	130%
Dissolved Lead	4099722	<0.50	<0.50	NA	< 0.50	99%	70%	130%	92%	80%	120%	91%	70%	130%
Dissolved Molybdenum	4099722	<0.50	<0.50	NA	< 0.50	101%	70%	130%	105%	80%	120%	105%	70%	130%
Dissolved Nickel	4099722	1.6	1.6	NA	< 1.0	97%	70%	130%	100%	80%	120%	97%	70%	130%
Dissolved Selenium	4099722	<1.0	1.5	NA	< 1.0	105%	70%	130%	96%	80%	120%	105%	70%	130%
Dissolved Silver	4099722	<0.20	< 0.20	NA	< 0.20	94%	70%	130%	98%	80%	120%	95%	70%	130%
Dissolved Thallium	4099722	<0.30	<0.30	NA	< 0.30	97%	70%	130%	98%	80%	120%	98%	70%	130%
Dissolved Uranium	4099722	0.64	0.64	NA	< 0.50	105%	70%	130%	105%	80%	120%	105%	70%	130%
Dissolved Vanadium	4099722	0.57	0.70	NA	< 0.40	98%	70%	130%	105%	80%	120%	101%	70%	130%
Dissolved Zinc	4099722	8.1	5.7	NA	< 5.0	100%	70%	130%	98%	80%	120%	101%	70%	130%
Mercury	4110272 4110272	< 0.02	< 0.02	NA	< 0.02	102%	70%	130%	104%	80%	120%	101%	70%	130%
Chromium VI	4110272 4110272	<2.000	<2.000	NA	< 2	101%	70%	130%	102%	80%	120%	108%	70%	130%
Cyanide, WAD	4110272 4110272	<2	<2	NA	< 2	96%	70%	130%	94%	80%	120%	103%	70%	130%
Dissolved Sodium	4099722	5390	5420	0.6%	< 50	96%	70%	130%	97%	80%	120%	94%	70%	130%
Chloride	4099918	121000	120000	0.8%	< 100	101%	70%	130%	100%	80%	120%	104%	70%	130%
Electrical Conductivity	4110250	33000	33300	0.9%	< 2	99%	90%	110%						
pH	4110250	7.30	7.52	3.0%	NA	102%	90%	110%						

Comments: NA signifies Not Applicable.

Duplicate NA: results are under 5X the RDL and will not be calculated.

MANUAL CHARACTERES
Method Summary

CLIENT NAME: BLUMETRIC ENVIRONMENTAL INC. AGAT WORK ORDER: 22P921159
PROJECT: 220509-00 ATTENTION TO: Paul Bandler

SAMPLING SITE:		SAMPLED BY:	
PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE
Trace Organics Analysis			
Naphthalene	ORG-91-5114	modified from EPA 3510C, 8270E & ON MOECC E3265	GC/MS
Acenaphthylene	ORG-91-5114	modified from EPA 3510C, 8270E & ON MOECC E3265	GC/MS
Acenaphthene	ORG-91-5114	modified from EPA 3510C, 8270E & ON MOECC E3265	GC/MS
Fluorene	ORG-91-5114	modified from EPA 3510C, 8270E & ON MOECC E3265	GC/MS
Phenanthrene	ORG-91-5114	modified from EPA 3510C, 8270E & ON MOECC E3265	GC/MS
Anthracene	ORG-91-5114	modified from EPA 3510C, 8270E & ON MOECC E3265	GC/MS
Fluoranthene	ORG-91-5114	modified from EPA 3510C, 8270E & ON MOECC E3265	GC/MS
Pyrene	ORG-91-5114	modified from EPA 3510C, 8270E & ON MOECC E3265	GC/MS
Benzo(a)anthracene	ORG-91-5114	modified from EPA 3510C, 8270E & ON MOECC E3265	GC/MS
Chrysene	ORG-91-5114	modified from EPA 3510C, 8270E & ON MOECC E3265	GC/MS
Benzo(b)fluoranthene	ORG-91-5114	modified from EPA 3510C, 8270E & ON MOECC E3265	GC/MS
Benzo(k)fluoranthene	ORG-91-5114	modified from EPA 3510C, 8270E & ON MOECC E3265	GC/MS
Benzo(a)pyrene	ORG-91-5114	modified from EPA 3510C, 8270E & ON MOECC E3265	GC/MS
Indeno(1,2,3-cd)pyrene	ORG-91-5114	modified from EPA 3510C, 8270E & ON MOECC E3265	GC/MS
Dibenz(a,h)anthracene	ORG-91-5114	modified from EPA 3510C and EPA 8270E	GC/MS
Benzo(g,h,i)perylene	ORG-91-5114	modified from EPA 3510C, 8270E & ON MOECC E3265	GC/MS
Phenol	ORG-91-5114	modified from EPA 3510C, 8270E & ON MOECC E3265	GC/MS
Bis(2-chloroethyl)ether	ORG-91-5114	modified from EPA 3510C, 8270E & ON MOECC E3265	GC/MS
2-Chlorophenol	ORG-91-5114	modified from EPA 3510C, 8270E & ON MOECC E3265	GC/MS
o-Cresol	ORG-91-5114	modified from EPA 3510C, 8270E & ON MOECC E3265	GC/MS
Bis(2-chloroisopropyl)ether	ORG-91-5114	modified from EPA 3510C, 8270E & ON MOECC E3265	GC/MS
m&p-Cresol	ORG-91-5114	modified from EPA 3510C, 8270E & ON MOECC E3265	GC/MS
2,4-Dimethylphenol	ORG-91-5114	modified from EPA 3510C, 8270E & ON MOECC E3265	GC/MS
2,4-Dichlorophenol	ORG-91-5114	modified from EPA 3510C, 8270E & ON MOECC E3265	GC/MS
1,2,4-Trichlorobenzene	ORG-91-5114	modified from EPA 3510C, 8270E & ON MOECC E3265	GC/MS
p-Chloroaniline	ORG-91-5114	modified from EPA 3510C, 8270E & ON MOECC E3265	GC/MS
2-and 1-methyl Naphthalene	ORG-91-5114	modified from EPA 3510C, 8270E & ON MOECC E3265	CALCULATION

Method Summary

CLIENT NAME: BLUMETRIC ENVIRONMENTAL INC.

AGAT WORK ORDER: 22P921159
PROJECT: 220509-00

ATTENTION TO: Paul Bandler

PARAMETER	SAMPLING SITE.		SAMPLED BY.	
2-4,6-Trichlorophenol ORG-91-5114 ON MOECC E3265 GC/MS	PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE
2-4,3-Finitrophenol ORG-91-5114 ON MOECC E3285 GC/MS	2,4,6-Trichlorophenol	ORG-91-5114		GC/MS
1.1-sepheny	2,4,5-Trichlorophenol	ORG-91-5114	·	GC/MS
On MOECC 23265 CALCULATION	1,1'-Biphenyl	ORG-91-5114	·	GC/MS
Diethyl phthalate ORG-91-5114 ON MOECC E3285 GC/MS	Dimethyl phthalate	ORG-91-5114		GC/MS
Diemyl printalate	2,4 and 2,6-Dinitrotoluene	ORG-91-5114	·	CALCULATION
Sediment ORG-91-5114 ON MOECC E3265 GC/MS	Diethyl phthalate	ORG-91-5114		GC/MS
Sis (2-Ethylhexyl)phthalate	Pentachlorophenol	ORG-91-5114		GC/MS
2.4-Dinitrophenol ORG-91-5114 ON MOECC E3265 GC/MS 2.4-Dinitrophenol ORG-91-5114 ON MOECC E3265 Modified from EPA 3510C, 8270E & ON MOECC E3265 Modified from EPA 3510C, 8270E & ON MOECC E3265 Modified from EPA 3510C, 8270E & ON MOECC E3265 Modified from EPA 3510C, 8270E & ON MOECC E3265 Modified from EPA 3510C, 8270E & ON MOECC E3265 Modified from EPA 3510C, 8270E & ON MOECC E3265 Modified from EPA 3510C, 8270E & ON MOECC E3265 Modified from EPA 3510C, 8270E & ON MOECC E3265 Modified from EPA 3510C, 8270E & ON MOECC E3265 Modified from EPA 3510C, 8270E & ON MOECC E3265 Modified from EPA 3510C, 8270E & ON MOECC E3265 Modified from EPA 3510C, 8270E & ON MOECC E3265 Modified from EPA 3510C, 8270E & ON MOECC E3265 Modified from EPA 3510C, 8270E & ON MOECC E3265 Modified from EPA SW-846 3510 & GC/ECD MOECC E3265 MOE	3,3'-dichlorobenzidine	ORG-91-5114		GC/MS
2-Filuorophenol ORG-91-5114 ON MOECC E3265 GC/MS 2-Filuorophenol ORG-91-5114 modified from EPA 3510C, 8270E & OR MS ON MOECC E3265 phenol-d6 surrogate ORG-91-5114 modified from EPA 3510C, 8270E & ON MOECC E3265 phenol-d6 surrogate ORG-91-5114 modified from EPA 3510C, 8270E & OR MS ON MOECC E3265 modified from EPA 3510C, 8270E & OR MS ON MOECC E3265 modified from EPA 3510C, 8270E & OR MS ON MOECC E3265 modified from EPA 3510C, 8270E & OR MS ON MOECC E3265 modified from EPA 3510C, 8270E & OR MS ON MOECC E3265 modified from EPA S510C, 8270E & OR MS ON MOECC E3265 modified from EPA S510C, 8270E & OR MS ON MOECC E3265 modified from EPA S510C, 8270E & OR MS ON MOECC E3265 modified from EPA S510C, 8270E & OR MS ON MOECC E3265 modified from EPA S510C, 8270E & OR MS ON MOECC E3265 modified from EPA SW-846 3510 & GC/ECD MS ON MOECC E3265 modified from EPA SW-846 3510 & GC/ECD MS ON MOECC E3265 modified from EPA SW-846 3510 & GC/ECD MS ON MOECC E3265 modified from MOE PHC-E3421 P&T GC/FID MS ON	Bis(2-Ethylhexyl)phthalate	ORG-91-5114	ON MOECC E3265	GC/MS
DRG-91-5114 ON MOECC E3265 GC/MS	2,4-Dinitrophenol	ORG-91-5114		GC/MS
ORG-91-5114 ON MOECC E3265 GC/MS	2-Fluorophenol	ORG-91-5114		GC/MS
2.4,6-1 Inbromophenol ORG-91-5114 ON MOECC E3265 GC/MS	phenol-d6 surrogate	ORG-91-5114		GC/MS
OR MOECC E3265 Sc/MS	2,4,6-Tribromophenol	ORG-91-5114	·	GC/MS
Polychlorinated Biphenyls ORG-91-5112 modified from EPA SW-846 3510 & 8082A B082A GC/ECD	Chrysene-d12	ORG-91-5114		GC/MS
Decachlorobiphenyl	Sediment			
Decarloroolphenyl	Polychlorinated Biphenyls	ORG-91-5112		GC/ECD
F1 (C6 to C10) minus BTEX	Decachlorobiphenyl	ORG-91-5112		GC/ECD
Toluene-d8 VOL-91-5001 modified from EPA 5030B & EPA 8260D (P&T)GC/MS F2 (C10 to C16) VOL-91-5010 modified from MOE PHC-E3421 GC/FID F2 (C10 to C16) minus Naphthalene VOL-91-5010 modified from MOE PHC-E3421 GC/FID F3 (C16 to C34) VOL-91-5010 modified from MOE PHC-E3421 GC/FID F3 (C16 to C34) minus PAHs VOL-91-5010 modified from MOE PHC-E3421 GC/FID F4 (C34 to C50) VOL-91-5010 modified from MOE PHC-E3421 GC/FID Gravimetric Heavy Hydrocarbons VOL-91-5010 modified from MOE PHC-E3421 BALANCE Terphenyl VOL-91-5010 modified from MOE PHC-E3421 GC/FID Dichlorodifluoromethane VOL-91-5001 modified from EPA 5030B & EPA 8260D (P&T)GC/MS Vinyl Chloride VOL-91-5001 modified from EPA 5030B & EPA 8260D (P&T)GC/MS Bromomethane VOL-91-5001 modified from EPA 5030B & EPA 8260D (P&T)GC/MS Acetone VOL-91-5001 modified from EPA 5030B & EPA 8260D (P&T)GC/MS	F1 (C6-C10)	VOL-91-5010	modified from MOE PHC-E3421	(P&T)GC/FID
## Sections ## Vol91-5001 ## Vol91-5	F1 (C6 to C10) minus BTEX	VOL-91-5010	modified from MOE PHC-E3421	P&T GC/FID
F2 (C10 to C16) minus Naphthalene VOL-91-5010 modified from MOE PHC-E3421 GC/FID F3 (C16 to C34) VOL-91-5010 modified from MOE PHC-E3421 GC/FID F3 (C16 to C34) minus PAHs VOL-91-5010 modified from MOE PHC-E3421 GC/FID F4 (C34 to C50) VOL-91-5010 modified from MOE PHC-E3421 GC/FID Gravimetric Heavy Hydrocarbons VOL-91-5010 modified from MOE PHC-E3421 BALANCE Terphenyl VOL-91-5010 modified from MOE PHC-E3421 GC/FID Dichlorodifluoromethane VOL-91-5001 modified from EPA 5030B & EPA (P&T)GC/MS Vinyl Chloride VOL-91-5001 modified from EPA 5030B & EPA (P&T)GC/MS Bromomethane VOL-91-5001 modified from EPA 5030B & EPA (P&T)GC/MS Trichlorofluoromethane VOL-91-5001 modified from EPA 5030B & EPA (P&T)GC/MS	Toluene-d8	VOL-91- 5001		(P&T)GC/MS
F3 (C16 to C34) VOL-91-5010 modified from MOE PHC-E3421 GC/FID F3 (C16 to C34) minus PAHs VOL-91-5010 modified from MOE PHC-E3421 GC/FID F4 (C34 to C50) VOL-91-5010 modified from MOE PHC-E3421 GC/FID Gravimetric Heavy Hydrocarbons VOL-91-5010 modified from MOE PHC-E3421 BALANCE Terphenyl VOL-91-5010 modified from MOE PHC-E3421 GC/FID Dichlorodifluoromethane VOL-91-5001 modified from EPA 5030B & EPA (P&T)GC/MS Vinyl Chloride VOL-91-5001 modified from EPA 5030B & EPA (P&T)GC/MS Bromomethane VOL-91-5001 modified from EPA 5030B & EPA (P&T)GC/MS Trichlorofluoromethane VOL-91-5001 modified from EPA 5030B & EPA (P&T)GC/MS Acetone VOL-91-5001 modified from EPA 5030B & EPA (P&T)GC/MS	F2 (C10 to C16)	VOL-91-5010	modified from MOE PHC-E3421	GC/FID
F3 (C16 to C34) minus PAHs VOL-91-5010 modified from MOE PHC-E3421 GC/FID F4 (C34 to C50) VOL-91-5010 modified from MOE PHC-E3421 GC/FID Gravimetric Heavy Hydrocarbons VOL-91-5010 modified from MOE PHC-E3421 BALANCE Terphenyl VOL-91-5010 modified from MOE PHC-E3421 GC/FID Dichlorodifluoromethane VOL-91-5001 modified from EPA 5030B & EPA 8260D (P&T)GC/MS Vinyl Chloride VOL-91-5001 modified from EPA 5030B & EPA 8260D (P&T)GC/MS Bromomethane VOL-91-5001 modified from EPA 5030B & EPA 8260D (P&T)GC/MS Trichlorofluoromethane VOL-91-5001 modified from EPA 5030B & EPA 8260D (P&T)GC/MS	F2 (C10 to C16) minus Naphthalene	VOL-91-5010	modified from MOE PHC-E3421	GC/FID
F4 (C34 to C50) VOL-91-5010 modified from MOE PHC-E3421 GC/FID Gravimetric Heavy Hydrocarbons VOL-91-5010 modified from MOE PHC-E3421 BALANCE Terphenyl VOL-91-5010 modified from MOE PHC-E3421 GC/FID Dichlorodifluoromethane VOL-91-5001 modified from EPA 5030B & EPA 8260D (P&T)GC/MS Vinyl Chloride VOL-91-5001 modified from EPA 5030B & EPA 8260D (P&T)GC/MS Bromomethane VOL-91-5001 modified from EPA 5030B & EPA 8260D (P&T)GC/MS Trichlorofluoromethane VOL-91-5001 modified from EPA 5030B & EPA 8260D (P&T)GC/MS Acetone VOL-91-5001 modified from EPA 5030B & EPA 8260D (P&T)GC/MS	F3 (C16 to C34)	VOL-91-5010	modified from MOE PHC-E3421	GC/FID
Gravimetric Heavy Hydrocarbons VOL-91-5010 modified from MOE PHC-E3421 BALANCE Terphenyl VOL-91-5010 modified from MOE PHC-E3421 GC/FID Dichlorodifluoromethane VOL-91-5001 modified from EPA 5030B & EPA 8260D Vinyl Chloride VOL-91-5001 modified from EPA 5030B & EPA 8260D Bromomethane VOL-91-5001 modified from EPA 5030B & EPA 8260D Trichlorofluoromethane VOL-91-5001 modified from EPA 5030B & EPA 8260D Trichlorofluoromethane VOL-91-5001 modified from EPA 5030B & EPA 8260D Acetone VOL-91-5001 modified from EPA 5030B & EPA 8260D Modified from EPA 5030B & EPA (P&T)GC/MS Modified from EPA 5030B & EPA 8260D	F3 (C16 to C34) minus PAHs	VOL-91-5010	modified from MOE PHC-E3421	GC/FID
Terphenyl VOL-91-5010 modified from MOE PHC-E3421 GC/FID Dichlorodifluoromethane VOL-91-5001 modified from EPA 5030B & EPA 8260D (P&T)GC/MS Vinyl Chloride VOL-91-5001 modified from EPA 5030B & EPA 8260D (P&T)GC/MS Bromomethane VOL-91-5001 modified from EPA 5030B & EPA 8260D (P&T)GC/MS Trichlorofluoromethane VOL-91-5001 modified from EPA 5030B & EPA 8260D (P&T)GC/MS Acetone VOL-91-5001 modified from EPA 5030B & EPA 8260D (P&T)GC/MS	F4 (C34 to C50)	VOL-91-5010	modified from MOE PHC-E3421	GC/FID
Dichlorodifluoromethane VOL-91-5001 modified from EPA 5030B & EPA 8260D (P&T)GC/MS Vinyl Chloride VOL-91-5001 modified from EPA 5030B & EPA 8260D (P&T)GC/MS Bromomethane VOL-91-5001 modified from EPA 5030B & EPA 8260D (P&T)GC/MS Trichlorofluoromethane VOL-91-5001 modified from EPA 5030B & EPA 8260D (P&T)GC/MS Acetone VOL-91-5001 modified from EPA 5030B & EPA 8260D (P&T)GC/MS	Gravimetric Heavy Hydrocarbons	VOL-91-5010	modified from MOE PHC-E3421	BALANCE
Dictriorodiffuorometriane VOL-91-5001 8260D (P&T)GC/MS Vinyl Chloride VOL-91-5001 modified from EPA 5030B & EPA 8260D (P&T)GC/MS Bromomethane VOL-91-5001 modified from EPA 5030B & EPA 8260D (P&T)GC/MS Trichlorofluoromethane VOL-91-5001 modified from EPA 5030B & EPA 8260D (P&T)GC/MS Acetone VOL-91-5001 modified from EPA 5030B & EPA 8260D (P&T)GC/MS	Terphenyl	VOL-91-5010	modified from MOE PHC-E3421	GC/FID
## Sections Vol91-5001 8260D (P&T)GC/MS ## Sections Vol91-5001 8260D modified from EPA 5030B & EPA (P&T)GC/MS ## Sections Vol91-5001 modified from EPA 5030B & EPA (P&T)GC/MS ## Sections Vol91-5001 modified from EPA 5030B & EPA (P&T)GC/MS ## Sections Vol91-5001 modified from EPA 5030B & EPA (P&T)GC/MS ## Sections Vol91-5001 modified from EPA 5030B & EPA (P&T)GC/MS ## Sections Vol91-5001 modified from EPA 5030B & EPA (P&T)GC/MS ## Sections Vol91-5001 modified from EPA 5030B & EPA (P&T)GC/MS ## Sections Vol91-5001 modified from EPA 5030B & EPA (P&T)GC/MS ## Sections Vol91-5001 modified from EPA 5030B & EPA (P&T)GC/MS ## Sections Vol91-5001 modified from EPA 5030B & EPA (P&T)GC/MS ## Sections Vol91-5001 modified from EPA 5030B & EPA (P&T)GC/MS ## Sections Vol91-5001 modified from EPA 5030B & EPA (P&T)GC/MS ## Sections Vol91-5001 modified from EPA 5030B & EPA (P&T)GC/MS ## Sections Vol91-5001 modified from EPA 5030B & EPA (P&T)GC/MS ## Sections Vol91-5001 modified from EPA 5030B & EPA (P&T)GC/MS ## Sections Vol91-5001 modified from EPA 5030B & EPA (P&T)GC/MS ## Sections Vol91-5001 modified from EPA 5030B & EPA (P&T)GC/MS ## Sections Vol91-5001 modified from EPA 5030B & EPA (P&T)GC/MS ## Sections Vol91-5001 modified from EPA 5030B & EPA (P&T)GC/MS ## Sections Vol91-5001 modified from EPA 5030B & EPA (P&T)GC/MS ## Sections Vol91-5001 modified from EPA 5030B & EPA (P&T)GC/MS ## Sections Vol91-5001 modified from EPA 5030B & EPA (P&T)GC/MS ## Sections Vol91-5001 modified from EPA 5030B & EPA (P&T)GC/MS ## Sections Vol91-5001 modified from EPA 5030B & EPA (P&T)GC/MS ## Sections Vol91-5001 modified from EPA 5030B & EPA (P&T)GC/MS ## Sections Vol91-5001 modified from EPA 5030B & EPA (P&T)GC/MS ## Sections Vol91-5001 modified	Dichlorodifluoromethane	VOL-91-5001		(P&T)GC/MS
Bromomethane	Vinyl Chloride	VOL-91-5001		(P&T)GC/MS
Acetone VOL-91-5001 8260D (P&T)GC/MS WOL-91-5001 8260D (P&T)GC/MS Modified from EPA 5030B & EPA (P&T)GC/MS	Bromomethane	VOL-91-5001	8260D	(P&T)GC/MS
IACETONE	Trichlorofluoromethane	VOL-91-5001		(P&T)GC/MS
	Acetone	VOL-91-5001		(P&T)GC/MS

Method Summary

CLIENT NAME: BLUMETRIC ENVIRONMENTAL INC.

AGAT WORK ORDER: 22P921159
PROJECT: 220509-00

ATTENTION TO: Paul Bandler

OAMI LING OITE.		OAMI LLD D1.	
PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE
1,1-Dichloroethylene	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
Methylene Chloride	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
trans- 1,2-Dichloroethylene	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
Methyl tert-butyl ether	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
1,1-Dichloroethane	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
Methyl Ethyl Ketone	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
cis- 1,2-Dichloroethylene	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
Chloroform	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
1,2-Dichloroethane	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
1,1,1-Trichloroethane	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
Carbon Tetrachloride	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
Benzene	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
1,2-Dichloropropane	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
Trichloroethylene	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
Bromodichloromethane	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
Methyl Isobutyl Ketone	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
1,1,2-Trichloroethane	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
Toluene	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
Dibromochloromethane	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
Ethylene Dibromide	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
Tetrachloroethylene	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
1,1,1,2-Tetrachloroethane	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
Chlorobenzene	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
Ethylbenzene	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
m & p-Xylene	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
Bromoform	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
Styrene	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
1,1,2,2-Tetrachloroethane	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS

Method Summary

CLIENT NAME: BLUMETRIC ENVIRONMENTAL INC.

AGAT WORK ORDER: 22P921159
PROJECT: 220509-00

ATTENTION TO: Paul Bandler

PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE
o-Xylene	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
1,3-Dichlorobenzene	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
1,4-Dichlorobenzene	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
1,2-Dichlorobenzene	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
1,3-Dichloropropene	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
Xylenes (Total)	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
n-Hexane	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
Toluene-d8	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
4-Bromofluorobenzene	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS

Method Summary

CLIENT NAME: BLUMETRIC ENVIRONMENTAL INC. AGAT WORK ORDER: 22P921159
PROJECT: 220509-00 ATTENTION TO: Paul Bandler

PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE
Water Analysis			
Dissolved Antimony	MET-93-6103	modified from EPA 200.8 and EPA 3005A	ICP-MS
Dissolved Arsenic	MET-93-6103	modified from EPA 200.8 and EPA 3005A	ICP-MS
Dissolved Barium	MET-93-6103	modified from EPA 200.8 and EPA 3005A	ICP-MS
Dissolved Beryllium	MET-93-6103	modified from EPA 200.8 and EPA 3005A	ICP-MS
Dissolved Boron	MET-93-6103	modified from EPA 200.8 and EPA 3005A	ICP-MS
Dissolved Cadmium	MET-93-6103	modified from EPA 200.8 and EPA 3005A	ICP-MS
Dissolved Chromium	MET-93-6103	modified from EPA 200.8 and EPA 3005A	ICP-MS
Dissolved Cobalt	MET-93-6103	modified from EPA 200.8 and EPA 3005A	ICP-MS
Dissolved Copper	MET-93-6103	modified from EPA 200.8 and EPA 3005A	ICP-MS
Dissolved Lead	MET-93-6103	modified from EPA 200.8 and EPA 3005A	ICP-MS
Dissolved Molybdenum	MET-93-6103	modified from EPA 200.8 and EPA 3005A	ICP-MS
Dissolved Nickel	MET-93-6103	modified from EPA 200.8 and EPA 3005A	ICP-MS
Dissolved Selenium	MET-93-6103	modified from EPA 200.8 and EPA 3005A	ICP-MS
Dissolved Silver	MET-93-6103	modified from EPA 200.8 and EPA 3005A	ICP-MS
Dissolved Thallium	MET-93-6103	modified from EPA 200.8 and EPA 3005A	ICP-MS
Dissolved Uranium	MET-93-6103	modified from EPA 200.8 and EPA 3005A	ICP-MS
Dissolved Vanadium	MET-93-6103	modified from EPA 200.8 and EPA 3005A	ICP-MS
Dissolved Zinc	MET-93-6103	modified from EPA 200.8 and EPA 3005A	ICP-MS
Mercury	MET-93-6100	modified from EPA 245.2 and SM 3112 B	CVAAS
Chromium VI	INOR-93-6073	modified from SM 3500-CR B	LACHAT FIA
Cyanide, WAD	INOR-93-6052	modified from ON MOECC E3015, SM 4500-CN- I, G-387	TECHNICON AUTO ANALYZER
Dissolved Sodium	MET-93-6103	modified from EPA 200.8 and EPA 3005A	ICP/MS
Chloride	INOR-93-6004	modified from SM 4110 B	ION CHROMATOGRAPH
Electrical Conductivity	INOR-93-6000	SM 2510 B	PC TITRATE
рН	INOR-93-6000	modified from SM 4500-H+ B	PC TITRATE

AGAT Laboratories

Mississauga, Ontario L4Z 1Y2 Ph: 905.712.5100 Fax: 905.712.5122 webearth agatlabs.com

5835 Coopers Avenue

Laboratory Use Only

Work Order #:

Cooler Quantity:

Chain of Custody Record If this is a Drinking Water sample, please				se use Drini	king Water Chain o	of Custody Form (pot	table water	consum	ed by h	umans	;)		_	Allivai	rempera	itures.		100	4	1-1	77	0	
Report Inform	nation: BluMetric Environmenta	al			(Please	gulatory Requestions of the check all applicable boxes	es)								Custoo	ly Seal Ir	ntact:	Y	/es		□No	[3M/A
Contact: Address:	4 Cataraqui St, Kingston,	, ON				ble Indicate One	Excess Soils	- 1	Ser	wer Us Sanitary		Storm	ı	Į.	Turna	round	Time) (TA	T) R	equi	red:		
Phone:		Fax:			- E	Ind/Com Res/Park Agriculture	Table		☐ Pro Obi	Region Re	er Qua			- 11	_	AT (Rush	Surcharge			' Busin	ess Day	'S	
Reports to be sent to: 1. Email:	sanderson@blumetric.ca	ı			- 11	exture (Check One)	ССМЕ		Oth		- (. · · ·	407				3 Busin	ess			siness		Next Bu	siness
2. Email:	pbandler@blumetric.ca					Coarse Fine	CONTE			Indical	te One			-		Days OR Date	e Requi		Days ush Si			Day y Apply):	
Project Inform	mation:				11	this submissi			eport							Plea	se orov	ide nri	ior no	tificatio	on for ru		÷
Project:	220509-00				-																	ry holida	ys .
Site Location:	18				- 💆	Y Yes] No	X	Yes	5		N)		For '	Same Da	ay' anal	ysis, r	olease	e conta	act your	AGAT CE	PM .
Sampled By: AGAT Quote #:	BluMetric 2022 SO	PO:	he hilled & ill selection	niteli	San	nple Matrix Le	gend	DOOC IN	0	Reg 1	53				0. R 55		Reg 406	ide					(N/W)
	Please note: If quotation number	er is not provided, client will	be bliled full price for a	naysis.	В	Biota									9 €		Ckag	Sulphide					ration
Invoice Infor	mation:	В	ill To Same: Yes	No 🗆	1111	Ground Water		(1)		HWSB					Characterization TCLP:	Rainwater Leach	Pa 7-						ncent
Company:					- O P	Oil Paint		Metals		1 =					eriza	છ ક્રેં⊓	cterization Pa	stare		[0]		1 1	ි ව
Contact:					- s	Soil			8						aract	LP Rainwa	BTE	Mo.		g			量ら
Address:	ap@blumetric.ca				SD	Sediment		iltere	luga.		사.				등	SPLP I	Chargetals	clude		her			rdous
Email:					- SW	Surface Water		Field Filtered	N Io	Ö	F1-F4 PHCs				Sispos	SS Soils:	Soils (ry:	Es	do			y Haza
Samp	ole Identification	Date Sampled	Time Sampled	# of Containers	Sample Matrix		nments/ Instructions	Ø N	Metals & Inorganics	Metals - □ CrVI, □ Hg,		PAHs	PCBs	NOC	Landfill Disposal	Excess Soils SP	Excess Soils Characterization Package bH. ICPMS Metals. BTEX. F1-F4	Corrosivity: Include Moisture	BNAEs	Cholophenols			Potentiall
MW146			AM PM	18	GW						1			V						Ø			
MW148			AM PM	18	GW						Ø	V		7									
-MW149			AM PM	18	GW							Ø		V									
MWI52			AM PM	18	GW						Ø	V		7									
MW82			AM PM	18	GW						Ø		Ø	7					Ø				
MW136			AM PM	18	GW						Ø	☑	7	7					_	V			
MW138		July14/22	15:17 AM	18	GW			Y			-			V					_	Ø			
MW157			AM PM	18	GW						Ø	\square	V	7									
MW26		July 14/22	12:A- AM	18	GW			4					V	7					Ø	Ø			
MW81		July122	1408 AM	18	GW			Y	Ø		_	_	Ø	7					Ø				
MW121			AM PM	18	GW			1					V	V					Ø				
Samples Relinquished By (Pr	ndersonal pu	~	Date July 1	1/22 Time	7:20	Samples Received By (Print Name and Sign)	2	N	2	-1	4	Data /4	Shi	322	Time 19	50			72	ne s		
Samples Philinguished by (Pr	In Name and Sphil	1 0 -	Tete S.	19 Time	200	Ramaing Reaching by I	Print Name and Jurni	Vin.		M	20.	In	Date			Tirrus		1	Pa	age <u>l</u>	of	3	
Samples Rullinguished By (Print Name and Sulp) Samples Relindushed By (Print Name and Sign) Dairy Time			Samples Received By (Print Name and Sign):	war	-	21	MILA	WY	Date			Timo		Nº:								
	1		V				U				* 1 *		-				17447	4	7-1-				_

5835 Coopers Avenue webearth.agatlabs.com **Laboratory Use Only**

Work Order #: 22 P921159

Mississauga, Ontario L4Z 1Y2 Ph: 905 712 5100 Fax: 905 712.5122

Chain of C	sustody Record	If this is a	sample, plea	se use Drin	king Water Chain o	of Custody Form (po	otable water	consum	ed by h	umans)	-			uantity: empera		9	.2		78	19	1	
Report Inform					Res	gulatory Req	uirements:								Custody Notes:	Seal In	tact:		es		□No	1	A/A
Contact: Address:	4 Cataraqui St, Kingston, O	N			- та	egulation 153/04 ble Indicate One	Table Indicate		Sev			Storm			urnar egulai	ound r TAT	Time			_	red:		
Phone: Reports to be sent to: 1. Email:	sanderson@blumetric.ca	Fax:			- [Res/Park]Agriculture exture (Check One)	Regulation		_ 1	ective	er Qua s (PW)			R		T (Rush s	_	s Apply)		iness		Next Bu	siness
2. Email:	pbandler@blumetric.ca				- 11	[Coarse]Fine	ССМЕ		Oth	Indicat	e One		_			ays)R Date	Requir		ays sh Su	ırcharg	es May	Day Apply):	
Project Information Project: Site Location: Sampled By:	nation: 				Re	this submissi cord of Site Co		Ce	eport rtifica Yes	ate o	f Ana				For 'Sa	AT is ex	clusive	of wee	kend	is and s		h TAT y holiday AGAT CP	
AGAT Quote #:	BluMetric 2022 SO Please note: If quotation number is	PO: PO:	i be billed full price for	analysis.	Sar B	nple Matrix Le	gend	Crvi, DOC	0.	. Reg 1	53				O. Reg 558 SBOA		eg 406 eg 806	Sulphide					ation (Y/N)
Invoice Information Company: Contact: Address: Email:	nvoice Information: Dompany: Contact: dddress: Imail: Sample Identification Date Time # of			GW O P S SD SW	Ground Water Oil Paint Soil Sediment Surface Water		Field Filtered - Metals, Hg, CrVI, DOC	s & Inorganics	s - 🗆 CrVI, 🗆 Hg, 🗆 HWSB	F1-F4 PHCs			Б	II Disposal Characterization TCLP: ☐ M&L ☐ VOC> ☐ ABNs ☐ B(a)P ☐ PCBs	Excess Soils SPLP Rainwater Leach SPLP: ☐ Metals ☐ vocs ☐ Svocs	Soils Characteriza MS Metals, BTEX,	Moisture	BNAEs	Cholophenols			ally Hazardous or High Concent	
Samp	le Identification	Date Sampled	Time Sampled	# of Containers	Sample Matrix		nments/ Instructions	Y/N	Metals	Metals -	втех,	PAHS	NOC N	Aroclors	Landfill Disp TCLP: □M&I	Exces SPLP:	Excess pH, ICP	Corros	BN	S S			Potentially
MW130			AN PN	18	GW								7 7						V	I			
MW50			AN PN	18	GW							V	7 7						V	4			
MW84			AN	18	GW				V		Ø	1	7 7						V	V			
MW128			AN	18	GW						7	1	7 7						Ø				
MW151			AN PN	18	GW				V		V	V I	7 7						7				
MW22	<u> </u>		AN PN	18	GW						V	V I	7 7						7	V			
MW25			AN PN	18	GW							1	7 7						Ø				
MW24	/		AN PN	18	GW						7	V I	7 7						Ø	Ø			
MW80			AN RN		GW				V		Ø		7 7						Ø	Ø			
MW156			AN PN		GW								7 7										
MW78			AN PN		GW							1	7 2						Ø				
Semples Fallinguished By (Print Name and Sign) Date Time)				7:10	Just	Print Name and Sign	9	W	7	_				22 Tin	1e/4	30			2		2		
Bamoles Relinquished By (Pr	Jones WA	100	July 15.	52 /(600	Samples Received By (Date		Tire			Nº:		ge <u>2</u>	of		
	1/																	-			Page 2	23 of 25	

5835 Coopers Avenue

Mississauga, Ontario L4Z 1Y2 Ph: 905.712.5100 Fax: 905.712.5122 webearth.agatlabs.com

Work Order #;	lape	2115	9
Cooler Quantity:		5	
Arrival Temperatures:	9.2	9.8	9.6
Custody Seal Intagt	Yes	□No	□ ₩/A

Laboratory Use Only

Chain o	f Custody	Record
---------	-----------	--------

Chain of C	ustody Recor	d If this is a	Drinking Water	sample, plea	se use Drin	king Water Chain of Custo	dy Form (pota	ble water	consume	ed by hur	nans)			Arri	ival Ter	nperat	ures:	9	7-7	210	7.8	19.	6
Report Inform	nation: BluMetric Environmenta	ıl.			Reg (Please	gulatory Requirem e check all applicable boxes)	nents:								stody S	Seal Int	act:	e DY	/es		□No	I	JN/A
Contact: Address:	4 Cataraqui St, Kingston,	ON	_ Ta	Table Table Table					Sewer Use						Turnaround Time (TAT) Required:								
Phone: Reports to be sent to: 1. Email:	sanderson@blumetric.ca	Fax:			- C	Ind/Com Res/Park	Regulation 55	8	Prov Obje	ectives				Rus		(Rush s	iurcharge	s Apply)		Business	ess Day	vs Next Bu Day	sines
2. Email:	pbandler@blumetric.ca]Fine			_	Indiçate (пе		-			•	Require		•	urchar	ges May	/ Apply):	
Project Information: Project: 220509-00 Site Location: Sampled By:					Re	Is this submission for a Record of Site Condition? Yes \text{No}			Report Guideline on Certificate of Analysis Yes No						Please provide prior notification for rush TAT *TAT is exclusive of weekends and statutory holidays For 'Same Day' analysis, please contact your AGAT CPM								
AGAT Quote #:	BluMetric 2022 SO Please note: If quotation number	PO: Po:	be billed full price for	analysis.	San	Sample Matrix Legend B Biota			0. Reg 153						0. Reg 0. Reg 400			Sulphide 🗅					ion (Y/N)
Invoice Information Company: Contact: Address: Email:	ap@blumetric.ca	В	ill To Same: Ye	es 🗹 No 🗆	GW O P S SD SW	Ground Water Oil Paint Soil Sediment Surface Water		Field Filtered - Metals Ng & W. DOC	s & Inorganics	s - □ CrVI, □ Hg, □ HWSB	TI-14 LUCS			Aroclors	IIII Disposal Characterization TCLT ☐ M& □ VOCs □ ABNs □ B(a)p□ ☐ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □	Excess Soils SPLP Rainwater Leach SPLP: ☐ Metals ☐ vocs ☐ svocs	Excess Soils Characterization Package pH, ICPMS Metals, BTEX, F1-F4	clude Moisture □	BNAEs	Cholophenols			ally Hazardous or High Concentral
Samp	le Identification	Date Sampled	Time Sampled	# of Containers	Sample Matrix	Comments, Special Instruc	•	(D) N	Metals &	Metals -	PAHS C	PCBs	VOC	Aroclors	1 4 E	Exces. SPLP:	Excess pH, IC	Corros	BN	Ch			Potenti
MW79		07/14/22	9:37 AN	18	GW			Y	Ø	[7 2		Ø						Ø	Ø			
MW23		07/14/22	10.41 AN		GW	/		4	Ø		7 2		Ø						Ø	Ø			
Dup 1			AN PN		GW				Ø	1	7 2		V						V	Ø			
Dup 2		07/14/22	10:41 AN		GW			+		[)				V		1		
Trip Blank		07/07/22	AN PN		GW								V										
			AN PN AN PN	A																			
			AN PN AN PN	1																			
			AN PN AN PN																				
	nt Name and Sign) AUSON At Name and Sign)	gh	July 14	1 Time /	1:20	Samples Received By (Print Name Samples Repolated by (Print Name	e and Sign):	K	10	7		Dat	170	1/22	Time	95	G		Devi	ge <u>3</u>	of	3	
Samples Relinquished By (Pri	nt Name and Sign	The	COLUMN 15	Time	(000	Samples Received By (Print Name	and Sign):					Dat	e		Time			Nº:	rdį		01 .		

A GOAT

£ Laboratories

Sample Temperature Log

nolers:	3	17.				# of Submissions:		The second section section is a second	
	Arrival Tem	peratures -	Branch/D	river		ONE SECURITION	mperatures - L	aboraton	
	Cooler #1: 22-1	122-2	2 1 22	-3		Cooler #1:	7	a boratory	
	Cooler #2 22.2	122-3	122-	4_		Cooler #2			
	Cooler #3 22-1	1 22	3 122-	4		Cooler #3	/		
	Cooler #4	/	/		Section Bellino	Cooler #4;	1		
	Cooler #5	/	/			Cooler #5:	/	/	
	Cooler #6:	· · /	/	en distance		Cooler #5:	/		
	Cooler #7:		/			Cooler #7:			
	Cooler #8	/			H.	Cooler #8	/		
	Cooler #9	/	_/		W.C	Cooler #9:			
	Cooler #10.	/				Cooler #10:	/	. ,	
R Gun ID);				IR Gun ID:				
Taken By	:		¥	5 mil v	Faken By:			n interior on a stationer.	1270 N 12 T
(yyy/mm/dd)	F	T.fme;		AM/PM	Date (xxxy/mm/dd):		er a driva	Z.PM	

Instructions for use of this form: 1) complete all fields of info including total # of codiers and # of sub-issions red to be submission prior to giving a WO#, 3) Proceed as normal, write the WO# and scan (please mike surbics of the submission prior to giving a WO#, 3) Proceed as normal, write the WO# and scan (please mike surbics of the submission prior to giving a WO#, 3) Proceed as normal, write the WO# and scan (please mike surbics of the submission prior to giving a WO#, 3) Proceed as normal, write the WO# and scan (please mike surbics of the submission prior to giving a WO#, 3) Proceed as normal write the WO# and scan (please mike surbics of the submission prior to giving a WO#, 3) Proceed as normal write the WO# and scan (please mike surbics of the submission prior to giving a WO#, 3) Proceed as normal write the WO# and scan (please mike surbics of the submission prior to giving a WO#, 3) Proceed as normal write the WO# and scan (please mike surbics of the submission prior to giving a WO#, 3) Proceed as normal write the WO# and scan (please mike surbics of the submission prior to giving a WO#, 3) Proceed as normal write the WO# and scan (please mike surbics of the submission prior to giving a WO#, 3) Proceed as normal write the WO# and scan (please mike submission prior to giving a WO#, 3) Proceed as normal write the WO# and scan (please mike submission prior to giving a WO#, 3) Proceed as normal write the WO# and scan (please mike submission prior to giving a WO#, 3) Proceed as normal write the WO# and scan (please mike submission prior to giving a WO#, 3) Proceed as normal write the WO# and scan (please mike submission prior to giving a WO#, 3) Proceed as normal write the WO# and scan (please mike submission prior to giving a WO#, 3) Proceed as normal write the WO# and scan (please mike submission prior to giving a WO#, 3) Proceed as normal write the WO# and scan (please mike submission prior to giving a WO#, 3) Proceed as normal write the WO# and scan (please mike submission prior t

and place in each

Occument ID 5R-78-9511.003 Date Issued: 2017-2-23

Page:_____of____

CLIENT NAME: BLUMETRIC ENVIRONMENTAL INC. 4 Cataraqui Street Kingston, ON K7K1Z7

(613) 531-2725

ATTENTION TO: Paul Bandler

PROJECT: 220509

AGAT WORK ORDER: 22P980724

SOIL ANALYSIS REVIEWED BY: Amanjot Bhela, Inorganic Lab Manager TRACE ORGANICS REVIEWED BY: Neli Popnikolova, Senior Chemist

DATE REPORTED: Dec 23, 2022

PAGES (INCLUDING COVER): 22 VERSION*: 1

Should you require any information regarding this analysis please contact your client services representative at (905) 712-5100

-	<u>Notes</u>

Disclaimer:

- All work conducted herein has been done using accepted standard protocols, and generally accepted practices and methods. AGAT test methods may
 incorporate modifications from the specified reference methods to improve performance.
- All samples will be disposed of within 30 days after receipt unless a Long Term Storage Agreement is signed and returned. Some specialty analysis may
 be exempt, please contact your Client Project Manager for details.
- AGAT's liability in connection with any delay, performance or non-performance of these services is only to the Client and does not extend to any other
 third party. Unless expressly agreed otherwise in writing, AGAT's liability is limited to the actual cost of the specific analysis or analyses included in the
 services.
- This Certificate shall not be reproduced except in full, without the written approval of the laboratory.
- The test results reported herewith relate only to the samples as received by the laboratory.
- Application of guidelines is provided "as is" without warranty of any kind, either expressed or implied, including, but not limited to, warranties of
 merchantability, fitness for a particular purpose, or non-infringement. AGAT assumes no responsibility for any errors or omissions in the guidelines
 contained in this document.
- All reportable information as specified by ISO/IEC 17025:2017 is available from AGAT Laboratories upon request.

AGAT Laboratories (V1)

Page 1 of 22

Member of: Association of Professional Engineers and Geoscientists of Alberta (APEGA)

Western Enviro-Agricultural Laboratory Association (WEALA) Environmental Services Association of Alberta (ESAA) AGAT Laboratories is accredited to ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA) and/or Standards Council of Canada (SCC) for specific tests listed on the scope of accreditation. AGAT Laboratories (Mississauga) is also accredited by the Canadian Association for Laboratory Accreditation Inc. (CALA) for specific drinking water tests. Accreditations are location and parameter specific. A complete listing of parameters for each location is available from www.cala.ca and/or www.scc.ca. The tests in this report may not necessarily be included in the scope of accreditation. Measurement Uncertainty is not taken into consideration when stating conformity with a specified requirement.

Certificate of Analysis

AGAT WORK ORDER: 22P980724

PROJECT: 220509

ATTENTION TO: Paul Bandler SAMPLED BY:M Lloyd

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

CLIENT NAME: BLUMETRIC ENVIRONMENTAL INC. SAMPLING SITE:Belleville Bakelite

O. Reg. 153(511) - Metals & Inorganics (Soil)

DATE RECEIVED: 2022-12-14								С	ATE REPORTE	D: 2022-12-23	
		SAMPLE DES	CRIPTION:	TP231b	TP236a	TP225a	TP231b-dup	TP227a	TP229b	TP230b	TP233a
		SAM	PLE TYPE:	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil
		DATE	SAMPLED:	2022-12-13	2022-12-13	2022-12-13	2022-12-13	2022-12-14	2022-12-14	2022-12-14	2022-12-14
				13:15	13:58	15:50	13:15	08:30	09:35	10:21	11:14
Parameter	Unit	G/S	RDL	4622594	4622596	4622599	4622602	4622667	4622682	4622685	4622687
Antimony	μg/g	7.5	0.8	<0.8	<0.8	<0.8	<0.8	<0.8	<0.8	<0.8	<0.8
Arsenic	μg/g	18	1	5	9	3	5	3	7	2	3
Barium	μg/g	390	2.0	219	138	237	179	42.2	102	20.2	84.4
Beryllium	μg/g	4	0.4	0.5	0.5	0.8	0.5	<0.4	0.6	<0.4	0.5
Boron	μg/g	120	5	13	12	9	11	11	12	8	14
Boron (Hot Water Soluble)	μg/g	1.5	0.10	0.31	0.36	0.13	0.32	<0.10	0.26	<0.10	0.38
Cadmium	μg/g	1.2	0.5	<0.5	0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Chromium	μg/g	160	5	30	19	35	29	10	21	6	18
Cobalt	μg/g	22	0.5	5.4	6.1	13.6	5.8	3.9	6.3	2.7	6.6
Copper	μg/g	140	1.0	21.8	26.4	24.4	20.9	5.7	19.4	3.3	12.1
Lead	μg/g	120	1	77	39	16	75	6	19	5	15
Molybdenum	μg/g	6.9	0.5	2.8	5.0	0.5	2.4	<0.5	44.8	<0.5	1.0
Nickel	μg/g	100	1	8	12	25	9	3	12	<1	10
Selenium	μg/g	2.4	0.8	1.6	1.7	<0.8	1.0	<0.8	1.1	<0.8	<0.8
Silver	μg/g	20	0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Thallium	μg/g	1	0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Uranium	μg/g	23	0.50	0.54	0.80	0.71	0.54	< 0.50	0.63	< 0.50	< 0.50
Vanadium	μg/g	86	0.4	22.7	24.4	52.2	22.8	12.6	29.0	6.3	24.7
Zinc	μg/g	340	5	63	70	75	61	13	60	9	41
Chromium, Hexavalent	μg/g	8	0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Cyanide, WAD	μg/g	0.051	0.040	< 0.040	< 0.040	< 0.040	< 0.040	< 0.040	< 0.040	< 0.040	< 0.040
Mercury	μg/g	0.27	0.10	0.21	0.19	<0.10	0.15	<0.10	0.47	<0.10	<0.10
Electrical Conductivity (2:1)	mS/cm	0.7	0.005	0.561	1.39	0.271	0.556	0.220	0.992	0.109	0.267
Sodium Adsorption Ratio (2:1) (Calc.)	N/A	5	N/A	0.052	0.019	0.194	0.054	0.102	0.077	0.051	0.039
pH, 2:1 CaCl2 Extraction	pH Units		NA	7.26	6.54	7.70	7.57	7.70	7.56	7.71	7.51

Certificate of Analysis

AGAT WORK ORDER: 22P980724

PROJECT: 220509

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

CLIENT NAME: BLUMETRIC ENVIRONMENTAL INC.

SAMPLING SITE: Belleville Bakelite

ATTENTION TO: Paul Bandler SAMPLED BY:M Lloyd

O. Reg. 153(511) - Metals & Inorganics (Soil)

DATE RECEIVED: 2022-12-14 DATE REPORTED: 2022-12-23

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard: Refers to Table 7: Generic Site Condition Standards for Shallow Soils in a Non-Potable Ground Water Condition - Soil -

Residential/Parkland/Institutional Property Use - Coarse Textured Soils

Guideline values are for general reference only. The guidelines provided may or may not be relevant for the intended use. Refer directly to the applicable standard for regulatory interpretation.

4622594-4622687 EC was determined on the DI water extract obtained from the 2:1 leaching procedure (2 parts DI water:1 part soil). pH was determined on the 0.01M CaCl2 extract prepared at 2:1 ratio. SAR is a calculated

parameter.

Analysis performed at AGAT Toronto (unless marked by *)

mayot Bhells AMANDOT BHELA O CHEMIST

SAMPLING SITE: Belleville Bakelite

Certificate of Analysis

AGAT WORK ORDER: 22P980724

PROJECT: 220509

ATTENTION TO: Paul Bandler

SAMPLED BY:M Lloyd

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

Particle Size by Sieve (Wet)

DATE RECEIVED: 2022-12-14 DATE REPORTED: 2022-12-23

		SAMPLE DES	CRIPTION:	TP233a
		SAMI	PLE TYPE:	Soil
		DATE S	SAMPLED:	2022-12-14 11:14
Parameter	Unit	G/S	RDL	4622687
ieve Analysis - 75 µm (retained)	%		NA	41.96
ieve Analysis - 75 µm (passing)	%		NA	58.04
oil Texture (Toronto)				Fine

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard

4622687 Value reported is the amount of sample passing through or retained on sieve after wash with water and represents proportion by weight particles smaller or larger than indicated sieve size.

Analysis performed at AGAT Toronto (unless marked by *)

manyot Bhelis Ammortimena of Chemist

SAMPLING SITE: Belleville Bakelite

Certificate of Analysis

AGAT WORK ORDER: 22P980724

PROJECT: 220509

ATTENTION TO: Paul Bandler

SAMPLED BY:M Lloyd

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

O. Reg. 153(511) - BNA (full) + PAHs (Soil)

			C). Reg. 153	(511) - BNA	(tull) + PAI	15 (50II)				
DATE RECEIVED: 2022-12-14								[DATE REPORTE	ED: 2022-12-23	
			CRIPTION: PLE TYPE: SAMPLED:	TP231b Soil 2022-12-13 13:15	TP236a Soil 2022-12-13 13:58	TP225a Soil 2022-12-13 15:50	TP231b-dup Soil 2022-12-13 13:15	TP227a Soil 2022-12-14 08:30	TP229b Soil 2022-12-14 09:35	TP230b Soil 2022-12-14 10:21	TP233a Soil 2022-12-14 11:14
Parameter	Unit	G/S	RDL	4622594	4622596	4622599	4622602	4622667	4622682	4622685	4622687
Naphthalene	μg/g	0.6	0.05	< 0.05	<0.05	< 0.05	<0.05	< 0.05	<0.05	<0.05	< 0.05
Acenaphthylene	μg/g	0.15	0.05	< 0.05	<0.05	<0.05	< 0.05	< 0.05	< 0.05	<0.05	< 0.05
Acenaphthene	μg/g	7.9	0.05	< 0.05	<0.05	<0.05	< 0.05	< 0.05	<0.05	< 0.05	< 0.05
Fluorene	μg/g	62	0.05	< 0.05	< 0.05	<0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Phenanthrene	μg/g	6.2	0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Anthracene	μg/g	0.67	0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Fluoranthene	μg/g	0.69	0.05	< 0.05	< 0.05	<0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Pyrene	μg/g	78	0.05	< 0.05	< 0.05	<0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Benz(a)anthracene	μg/g	0.5	0.05	< 0.05	<0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Chrysene	μg/g	7	0.05	<0.05	<0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Benzo(b)fluoranthene	μg/g	0.78	0.05	< 0.05	<0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Benzo(k)fluoranthene	μg/g	0.78	0.05	< 0.05	<0.05	<0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Benzo(a)pyrene	μg/g	0.3	0.05	< 0.05	<0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Indeno(1,2,3-cd)pyrene	μg/g	0.38	0.05	< 0.05	<0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Dibenzo(a,h)anthracene	μg/g	0.1	0.05	<0.05	<0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Benzo(g,h,i)perylene	μg/g	6.6	0.05	<0.05	< 0.05	< 0.05	<0.05	< 0.05	<0.05	< 0.05	< 0.05
Phenol	μg/g	9.4	0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Bis(2-chloroethyl)ether	μg/g	0.5	0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
2-Chlorophenol	μg/g	1.6	0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
o-Cresol	μg/g		0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Bis(2-chloroisopropyl)ether	μg/g	0.67	0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
m & p - Cresol	μg/g		0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
2,4-Dimethylphenol	μg/g	390	0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2
2,4-Dichlorophenol	μg/g	1.7	0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
1,2,4-Trichlorobenzene	μg/g		0.05	< 0.05	< 0.05	<0.05	<0.05	< 0.05	<0.05	< 0.05	< 0.05
p-Chloroaniline	μg/g	0.5	0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
1 and 2 Methlynaphthalene	μg/g	0.99	0.05	< 0.05	< 0.05	<0.05	< 0.05	< 0.05	<0.05	< 0.05	< 0.05
2,4,6-Trichlorophenol	μg/g	3.8	0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
2,4,5-Trichlorophenol	μg/g	4.4	0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1

Certified By:

NPopukolof

SAMPLING SITE: Belleville Bakelite

Certificate of Analysis

AGAT WORK ORDER: 22P980724

PROJECT: 220509

ATTENTION TO: Paul Bandler

SAMPLED BY:M Lloyd

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

O. Reg. 153(511) - BNA (full) + PAHs (Soil)

					` '	, ,	` '				
DATE RECEIVED: 2022-12-14								[DATE REPORT	ED: 2022-12-23	
		SAMPLE DES	CRIPTION:	TP231b	TP236a	TP225a	TP231b-dup	TP227a	TP229b	TP230b	TP233a
		SAMI	PLE TYPE:	Soil							
		DATE	SAMPLED:	2022-12-13 13:15	2022-12-13 13:58	2022-12-13 15:50	2022-12-13 13:15	2022-12-14 08:30	2022-12-14 09:35	2022-12-14 10:21	2022-12-14 11:14
Parameter	Unit	G/S	RDL	4622594	4622596	4622599	4622602	4622667	4622682	4622685	4622687
1,1-Biphenyl	μg/g	0.31	0.05	< 0.05	< 0.05	< 0.05	<0.05	< 0.05	< 0.05	< 0.05	< 0.05
Dimethyl Phthalate	μg/g	0.5	0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
2,4 and 2,6-Dinitrotoluene	μg/g	0.92	0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Diethyl Phthalate	μg/g	0.5	0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Pentachlorophenol	μg/g	0.1	0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
3,3'-Dichlorobenzidine	μg/g		0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
2,4-Dinitrophenol	μg/g	38	2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0
Bis(2-Ethylhexyl)phthalate	μg/g	5	0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Moisture Content	%		0.1	18.5	25.9	18.6	18.0	9.9	24.2	8.4	17.6
wet weight BNA	g		0.01	10.07	10.43	10.44	10.25	10.54	10.34	10.41	10.40
Surrogate	Unit	Acceptab	le Limits								
phenol-d6 surrogate	%	50-1	140	96	87	98	78	77	99	80	93
2-Fluorophenol	%	50-1	140	89	80	89	80	108	83	101	95
2,4,6-Tribromophenol	%	50-1	140	86	95	86	95	78	99	78	98
Chrysene-d12	%	50-1	140	101	105	101	98	90	86	96	75

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard: Refers to Table 7: Generic Site Condition Standards for Shallow Soils in a Non-Potable Ground Water Condition - Soil -

Residential/Parkland/Institutional Property Use - Coarse Textured Soils

Guideline values are for general reference only. The guidelines provided may or may not be relevant for the intended use. Refer directly to the applicable standard for regulatory interpretation.

4622594-4622687 Results are based on the dry weight of the soil.

Note: The result for Benzo(b)Fluoranthene is the total of the Benzo(b)&(j)Fluoranthene isomers because the isomers co-elute on the GC column.

Analysis performed at AGAT Toronto (unless marked by *)

Certified By:

MPoprukolof

Certificate of Analysis

AGAT WORK ORDER: 22P980724

PROJECT: 220509

ATTENTION TO: Paul Bandler

SAMPLED BY:M Lloyd

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

CLIENT NAME: BLUMETRIC ENVIRONMENTAL INC.

SAMPLING SITE: Belleville Bakelite

				O. Re	g. 153(511)	- PCBs (So	oil)				
DATE RECEIVED: 2022-12-14								Γ	DATE REPORT	ED: 2022-12-23	
		SAMPLE DES	CRIPTION:	TP231b	TP236a	TP225a	TP231b-dup	TP227a	TP229b	TP230b	TP233a
		SAM	PLE TYPE:	Soil							
		DATE	SAMPLED:	2022-12-13 13:15	2022-12-13 13:58	2022-12-13 15:50	2022-12-13 13:15	2022-12-14 08:30	2022-12-14 09:35	2022-12-14 10:21	2022-12-14 11:14
Parameter	Unit	G/S	RDL	4622594	4622596	4622599	4622602	4622667	4622682	4622685	4622687
Polychlorinated Biphenyls	μg/g	0.35	0.1	1.12	0.38	<0.1	1.10	<0.1	<0.1	<0.1	<0.1
Moisture Content	%		0.1	18.5	25.9	18.6	18.0	9.9	24.2	8.4	17.6
Surrogate	Unit	Acceptab	le Limits								
Decachlorobiphenyl	%	50-	140	100	84	80	72	88	96	79	92

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard: Refers to Table 7: Generic Site Condition Standards for Shallow Soils in a Non-Potable Ground Water Condition - Soil -

Residential/Parkland/Institutional Property Use - Coarse Textured Soils

Guideline values are for general reference only. The guidelines provided may or may not be relevant for the intended use. Refer directly to the applicable standard for regulatory interpretation.

4622594-4622687 Results are based on the dry weight of soil extracted.

PCB total is a calculated parameter. The calculated value is the sum of Aroclor 1242, Aroclor 1248, Aroclor 1254 and Aroclor 1260.

The calculated parameter is non-accredited. The parameters that are components of the calculation are accredited.

Analysis performed at AGAT Toronto (unless marked by *)

SAMPLING SITE: Belleville Bakelite

Certificate of Analysis

AGAT WORK ORDER: 22P980724

PROJECT: 220509

ATTENTION TO: Paul Bandler

SAMPLED BY:M Lloyd

O. Reg. 153(511) - PHCs F1 - F4 (with PAHs and VOC) (Soil)

DATE RECEIVED: 2022-12-14								Ι	DATE REPORTE	ED: 2022-12-23	
		SAMPLE DES	CRIPTION:	TP231b	TP236a	TP225a	TP231b-dup	TP227a	TP229b	TP230b	TP233a
		SAM	PLE TYPE:	Soil							
		DATE	SAMPLED:	2022-12-13 13:15	2022-12-13 13:58	2022-12-13 15:50	2022-12-13 13:15	2022-12-14 08:30	2022-12-14 09:35	2022-12-14 10:21	2022-12-14 11:14
Parameter	Unit	G/S	RDL	4622594	4622596	4622599	4622602	4622667	4622682	4622685	4622687
F1 (C6 - C10)	μg/g		5	<5	<5	<5	<5	<5	<5	<5	<5
F1 (C6 to C10) minus BTEX	μg/g	55	5	<5	<5	<5	<5	<5	<5	<5	<5
F2 (C10 to C16)	μg/g	98	10	<10	<10	<10	<10	<10	<10	<10	<10
F2 (C10 to C16) minus Naphthalene	μg/g		10	<10	<10	<10	<10	<10	<10	<10	<10
F3 (C16 to C34)	μg/g	300	50	697	114	112	1090	<50	127	<50	<50
F3 (C16 to C34) minus PAHs	μg/g		50	697	114	112	1090	<50	127	<50	<50
F4 (C34 to C50)	μg/g	2800	50	209	<50	130	282	<50	67	<50	<50
Gravimetric Heavy Hydrocarbons	μg/g	2800	50	NA							
Moisture Content	%		0.1	18.5	25.9	18.6	18.0	9.9	24.2	8.4	17.6
Surrogate	Unit	Acceptab	le Limits								
Toluene-d8	%	50-	140	94	89	88	90	91	87	90	91
Terphenyl	%	60-1	140	93	88	82	88	101	86	75	94

Comments:

RDL - Reported Detection Limit: G / S - Guideline / Standard: Refers to Table 7: Generic Site Condition Standards for Shallow Soils in a Non-Potable Ground Water Condition - Soil -

Residential/Parkland/Institutional Property Use - Coarse Textured Soils

Guideline values are for general reference only. The guidelines provided may or may not be relevant for the intended use. Refer directly to the applicable standard for regulatory interpretation.

4622594-4622687 Results are based on sample dry weight.

The C6-C10 fraction is calculated using toluene response factor.

C6-C10 (F1 minus BTEX) is a calculated parameter. The calculated value is F1 minus BTEX. The calculated parameter is non-accredited. The parameters that are components of the calculation are

The C10 - C16, C16 - C34, and C34 - C50 fractions are calculated using the average response factor for n-C10, n-C16, and n-C34.

Gravimetric Heavy Hydrocarbons are not included in the Total C16-C50 and are only determined if the chromatogram of the C34 - C50 hydrocarbons indicates that hydrocarbons >C50 are present. The chromatogram has returned to baseline by the retention time of nC50.

Total C6 - C50 results are corrected for BTEX and PAH contributions.

C>10 – C16 (F2- Naphthalene) is a calculated parameter. The calculated value is F2 - Naphthalene.

C>16 - C34 (F3-PAH) is a calculated parameter. The calculated value is F3-PAH (PAH; sum of Phenanthrene, Benzo(a)anthracene, Benzo(b)fluoranthene, Benzo(k)fluoranthene, Benzo(k)fluoranthene, Benzo(a)anthracene, Benzo(b)fluoranthene, Benzo(b)f Fluoranthene, Dibenzo(a,h)anthracene, Indeno(1,2,3-c,d)pyrene and Pyrene).

This method complies with the Reference Method for the CWS PHC and is validated for use in the laboratory.

nC10, nC16 and nC34 response factors are within 10% of their average.

C50 response factor is within 70% of nC10 + nC16 + nC34 average.

Linearity is within 15%.

Extraction and holding times were met for this sample.

Analysis performed at AGAT Toronto (unless marked by *)

Certified By:

NPopukoloj

5835 COOPERS AVENUE

MISSISSAUGA, ONTARIO CANADA L4Z 1Y2

http://www.agatlabs.com

TEL (905)712-5100 FAX (905)712-5122

Certificate of Analysis

AGAT WORK ORDER: 22P980724

PROJECT: 220509

ATTENTION TO: Paul Bandler SAMPLED BY:M Lloyd

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

CLIENT NAME: BLUMETRIC ENVIRONMENTAL INC. SAMPLING SITE:Belleville Bakelite

O. Reg. 153(511) - VOCs (with PHC) (Soil)

DATE RECEIVED: 2022-12-14								Γ	DATE REPORTE	ED: 2022-12-23	
		SAMPLE DESC	RIPTION:	TP231b	TP236a	TP225a	TP231b-dup	TP227a	TP229b	TP230b	TP233a
		SAMP	LE TYPE:	Soil							
			AMPLED:	2022-12-13 13:15	2022-12-13 13:58	2022-12-13 15:50	2022-12-13 13:15	2022-12-14 08:30	2022-12-14 09:35	2022-12-14 10:21	2022-12-14 11:14
Parameter	Unit	G/S	RDL	4622594	4622596	4622599	4622602	4622667	4622682	4622685	4622687
Dichlorodifluoromethane	μg/g	16	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
Vinyl Chloride	ug/g	0.02	0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02
Bromomethane	ug/g	0.05	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
Trichlorofluoromethane	ug/g	4	0.05	< 0.05	<0.05	<0.05	<0.05	<0.05	< 0.05	<0.05	< 0.05
Acetone	ug/g	16	0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50
1,1-Dichloroethylene	ug/g	0.05	0.05	< 0.05	< 0.05	< 0.05	<0.05	<0.05	<0.05	<0.05	<0.05
Methylene Chloride	ug/g	0.1	0.05	< 0.05	< 0.05	<0.05	<0.05	< 0.05	<0.05	< 0.05	< 0.05
Trans- 1,2-Dichloroethylene	ug/g	0.084	0.05	< 0.05	< 0.05	<0.05	<0.05	< 0.05	<0.05	< 0.05	< 0.05
Methyl tert-butyl Ether	ug/g	0.75	0.05	< 0.05	< 0.05	<0.05	<0.05	< 0.05	< 0.05	< 0.05	< 0.05
1,1-Dichloroethane	ug/g	3.5	0.02	<0.02	<0.02	<0.02	< 0.02	< 0.02	<0.02	<0.02	< 0.02
Methyl Ethyl Ketone	ug/g	16	0.50	< 0.50	<0.50	<0.50	< 0.50	<0.50	<0.50	<0.50	< 0.50
Cis- 1,2-Dichloroethylene	ug/g	3.4	0.02	<0.02	<0.02	<0.02	< 0.02	< 0.02	<0.02	<0.02	< 0.02
Chloroform	ug/g	0.05	0.04	<0.04	<0.04	<0.04	< 0.04	< 0.04	<0.04	<0.04	< 0.04
1,2-Dichloroethane	ug/g	0.05	0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03
1,1,1-Trichloroethane	ug/g	0.38	0.05	<0.05	<0.05	< 0.05	<0.05	< 0.05	< 0.05	< 0.05	< 0.05
Carbon Tetrachloride	ug/g	0.05	0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Benzene	ug/g	0.21	0.02	<0.02	<0.02	< 0.02	< 0.02	<0.02	< 0.02	< 0.02	< 0.02
1,2-Dichloropropane	ug/g	0.05	0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03
Trichloroethylene	ug/g	0.061	0.03	<0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03
Bromodichloromethane	ug/g	13	0.05	<0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Methyl Isobutyl Ketone	ug/g	1.7	0.50	<0.50	< 0.50	<0.50	< 0.50	< 0.50	<0.50	<0.50	< 0.50
1,1,2-Trichloroethane	ug/g	0.05	0.04	<0.04	< 0.04	< 0.04	< 0.04	< 0.04	< 0.04	<0.04	< 0.04
Toluene	ug/g	2.3	0.05	0.32	< 0.05	< 0.05	0.32	< 0.05	0.29	< 0.05	< 0.05
Dibromochloromethane	ug/g	9.4	0.05	< 0.05	< 0.05	<0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Ethylene Dibromide	ug/g	0.05	0.04	<0.04	<0.04	<0.04	< 0.04	<0.04	<0.04	<0.04	<0.04
Tetrachloroethylene	ug/g	0.28	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
1,1,1,2-Tetrachloroethane	ug/g	0.058	0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04
Chlorobenzene	ug/g	2.4	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
Ethylbenzene	ug/g	2	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05

Certified By:

NPopukolof

SAMPLING SITE: Belleville Bakelite

Certificate of Analysis

AGAT WORK ORDER: 22P980724

PROJECT: 220509

ATTENTION TO: Paul Bandler

SAMPLED BY:M Lloyd

				J. Keg. 153	8(511) - VOC	S (WILLI PH	J) (3011)				
DATE RECEIVED: 2022-12-14								[DATE REPORTE	ED: 2022-12-23	
	S	SAMPLE DES	CRIPTION:	TP231b	TP236a	TP225a	TP231b-dup	TP227a	TP229b	TP230b	TP233a
		SAMI	PLE TYPE:	Soil							
		DATE S	SAMPLED:	2022-12-13 13:15	2022-12-13 13:58	2022-12-13 15:50	2022-12-13 13:15	2022-12-14 08:30	2022-12-14 09:35	2022-12-14 10:21	2022-12-14 11:14
Parameter	Unit	G/S	RDL	4622594	4622596	4622599	4622602	4622667	4622682	4622685	4622687
m & p-Xylene	ug/g		0.05	<0.05	< 0.05	< 0.05	<0.05	< 0.05	< 0.05	< 0.05	< 0.05
Bromoform	ug/g	0.27	0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Styrene	ug/g	0.7	0.05	< 0.05	<0.05	<0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
1,1,2,2-Tetrachloroethane	ug/g	0.05	0.05	< 0.05	< 0.05	<0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
o-Xylene	ug/g		0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
1,3-Dichlorobenzene	ug/g	4.8	0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
1,4-Dichlorobenzene	ug/g	0.083	0.05	< 0.05	< 0.05	<0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
1,2-Dichlorobenzene	ug/g	3.4	0.05	< 0.05	< 0.05	<0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Xylenes (Total)	ug/g	3.1	0.05	<0.05	<0.05	<0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
1,3-Dichloropropene (Cis + Trans)	μg/g	0.05	0.05	<0.05	<0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
n-Hexane	μg/g	2.8	0.05	< 0.05	<0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Moisture Content	%		0.1	18.5	25.9	18.6	18.0	9.9	24.2	8.4	17.6
Surrogate	Unit	Acceptab	le Limits								
Toluene-d8	% Recovery	50-1	40	94	89	88	90	91	87	90	91
4-Bromofluorobenzene	% Recovery	50-1	40	102	99	98	100	100	96	105	102

Comments:

RDL - Reported Detection Limit; G / S - Guideline / Standard: Refers to Table 7: Generic Site Condition Standards for Shallow Soils in a Non-Potable Ground Water Condition - Soil -Residential/Parkland/Institutional Property Use - Coarse Textured Soils

Guideline values are for general reference only. The guidelines provided may or may not be relevant for the intended use. Refer directly to the applicable standard for regulatory interpretation.

4622594-4622687 The sample was analyzed using the high level technique. The sample was extracted using methanol, a small amount of the methanol extract was diluted in water and the purge & trap GC/MS analysis was performed. Results are based on the dry weight of the soil.

Xylenes total is a calculated parameter. The calculated value is the sum of m&p-Xylene + o-Xylene.

1,3-Dichloropropene total is a calculated parameter. The calculated value is the sum of Cis-1,3-Dichloropropene and Trans-1,3-Dichloropropene.

The calculated parameters are non-accredited. The parameters that are components of the calculation are accredited.

Analysis performed at AGAT Toronto (unless marked by *)

Certified By:

NPoprukoloj

5835 COOPERS AVENUE

MISSISSAUGA, ONTARIO CANADA L4Z 1Y2

http://www.agatlabs.com

TEL (905)712-5100 FAX (905)712-5122

Exceedance Summary

AGAT WORK ORDER: 22P980724

PROJECT: 220509

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

CLIENT NAME: BLUMETRIC ENVIRONMENTAL INC.

ATTENTION TO: Paul Bandler

SAMPLEID	SAMPLE TITLE	GUIDELINE	ANALYSIS PACKAGE	PARAMETER	UNIT	GUIDEVALUE	RESULT
4622594	TP231b	ON T7 S RPI CT	O. Reg. 153(511) - PCBs (Soil)	Polychlorinated Biphenyls	μg/g	0.35	1.12
4622594	TP231b	ON T7 S RPI CT	O. Reg. 153(511) - PHCs F1 - F4 (with PAHs and VOC) (Soil)	F3 (C16 to C34)	μg/g	300	697
4622596	TP236a	ON T7 S RPI CT	O. Reg. 153(511) - Metals & Inorganics (Soil)	Electrical Conductivity (2:1)	mS/cm	0.7	1.39
4622596	TP236a	ON T7 S RPI CT	O. Reg. 153(511) - PCBs (Soil)	Polychlorinated Biphenyls	μg/g	0.35	0.38
4622602	TP231b-dup	ON T7 S RPI CT	O. Reg. 153(511) - PCBs (Soil)	Polychlorinated Biphenyls	μg/g	0.35	1.10
4622602	TP231b-dup	ON T7 S RPI CT	O. Reg. 153(511) - PHCs F1 - F4 (with PAHs and VOC) (Soil)	F3 (C16 to C34)	μg/g	300	1090
4622682	TP229b	ON T7 S RPI CT	O. Reg. 153(511) - Metals & Inorganics (Soil)	Electrical Conductivity (2:1)	mS/cm	0.7	0.992
4622682	TP229b	ON T7 S RPI CT	O. Reg. 153(511) - Metals & Inorganics (Soil)	Mercury	μg/g	0.27	0.47
4622682	TP229b	ON T7 S RPI CT	O. Reg. 153(511) - Metals & Inorganics (Soil)	Molybdenum	μg/g	6.9	44.8

Quality Assurance

CLIENT NAME: BLUMETRIC ENVIRONMENTAL INC. AGAT WORK ORDER: 22P980724
PROJECT: 220509 ATTENTION TO: Paul Bandler

SAMPLING SITE: Belleville Bakelite

				Soi	l Ana	alysis	3								
RPT Date: Dec 23, 2022			С	UPLICATE			REFERE	NCE MA	TERIAL	METHOD	BLANK	SPIKE	MAT	RIX SP	IKE
PARAMETER	Batch	Sample	Dup #1	Dup #2	RPD	Method Blank	Measured		ptable nits	Recovery		ptable nits	Recovery		eptable mits
		ld					Value	Lower	Upper		Lower	Upper		Lower	Uppe
O. Reg. 153(511) - Metals & Inorg	janics (Soil))													
Antimony	4622594	4622594	<0.8	<0.8	NA	< 0.8	87%	70%	130%	86%	80%	120%	87%	70%	130%
Arsenic	4622594	4622594	5	5	0.0%	< 1	121%	70%	130%	97%	80%	120%	103%	70%	130%
Barium	4622594	4622594	219	207	5.6%	< 2.0	104%	70%	130%	100%	80%	120%	94%	70%	130%
Beryllium	4622594	4622594	0.5	0.5	NA	< 0.4	120%	70%	130%	101%	80%	120%	102%	70%	130%
Boron	4622594	4622594	13	13	NA	< 5	106%	70%	130%	103%	80%	120%	99%	70%	130%
Boron (Hot Water Soluble)	4625462		<0.10	<0.10	NA	< 0.10	106%	60%	140%	100%	70%	130%	97%	60%	140%
Cadmium	4622594	4622594	<0.5	<0.5	NA	< 0.5	114%	70%	130%	104%	80%	120%	99%	70%	130%
Chromium	4622594	4622594	30	29	3.4%	< 5	103%	70%	130%	97%	80%	120%	98%	70%	130%
Cobalt	4622594	4622594	5.4	5.3	1.9%	< 0.5	109%	70%	130%	103%	80%	120%	101%	70%	130%
Copper	4622594	4622594	21.8	21.0	3.7%	< 1.0	98%	70%	130%	102%	80%	120%	94%	70%	130%
Lead	4622594	4622594	77	74	4.0%	< 1	114%	70%	130%	99%	80%	120%	97%	70%	130%
Molybdenum	4622594	4622594	2.8	2.4	NA	< 0.5	108%	70%	130%	105%	80%	120%	112%	70%	130%
Nickel	4622594	4622594	8	8	0.0%	< 1	106%	70%	130%	101%	80%	120%	97%	70%	130%
Selenium	4622594	4622594	1.6	1.0	NA	< 0.8	102%	70%	130%	106%	80%	120%	110%	70%	130%
Silver	4622594	4622594	<0.5	<0.5	NA	< 0.5	105%	70%	130%	98%	80%	120%	89%	70%	130%
Thallium	4622594	4622594	<0.5	<0.5	NA	< 0.5	122%	70%	130%	105%	80%	120%	106%	70%	130%
Uranium	4622594	4622594	0.54	0.53	NA	< 0.50	130%	70%	130%	102%	80%	120%	113%	70%	130%
Vanadium	4622594	4622594	22.7	22.1	2.7%	< 0.4	114%	70%	130%	100%	80%	120%	103%	70%	130%
Zinc	4622594	4622594	63	61	3.2%	< 5	108%	70%	130%	104%	80%	120%	112%	70%	130%
Chromium, Hexavalent	4622651		<0.2	<0.2	NA	< 0.2	100%	70%	130%	103%	80%	120%	79%	70%	130%
Cyanide, WAD	4625596		<0.040	<0.040	NA	< 0.040	103%	70%	130%	100%	80%	120%	102%	70%	130%
Mercury	4622594	4622594	0.21	0.19	NA	< 0.10	111%	70%	130%	103%	80%	120%	103%	70%	130%
Electrical Conductivity (2:1)	4621905		0.338	0.365	7.7%	< 0.005	109%	80%	120%	NA			NA		
Sodium Adsorption Ratio (2:1) (Calc.)	4621905		0.738	0.714	3.3%	N/A	NA			NA			NA		
pH, 2:1 CaCl2 Extraction	4624992		7.49	7.72	3.0%	NA	99%	80%	120%	NA			NA		
Comments: NA signifies Not Applica pH duplicates QA acceptance criteri Duplicate NA: results are under 5X t	a was met re				Analytica	al Protocol	document								
Particle Size by Sieve (Wet)															
Sieve Analysis - 75 µm (retained)	4622687	4622687	41.96	40.76	2.9%		98%	70%	130%	NA			NA		

Sieve Analysis - 75 μm (retained) 4622687 4622687 41.96 40.76 2.9% 98% 70% 130% NA NA Sieve Analysis - 75 μm (passing) 4622687 4622687 58.04 59.24 2.0% NA NA NA

Comments: NA Signifies Not Applicable

Amanyot Bhells AMANTERED GOVERNMENT

SAMPLED BY:M Lloyd

Certified By:

AGAT QUALITY ASSURANCE REPORT (V1)

Page 12 of 22

Quality Assurance

SAMPLED BY:M Lloyd

CLIENT NAME: BLUMETRIC ENVIRONMENTAL INC. AGAT WORK ORDER: 22P980724
PROJECT: 220509 ATTENTION TO: Paul Bandler

SAMPLING SITE:Belleville Bakelite

			Trac	e Org	gani	cs Ar	nalys	is							
RPT Date: Dec 23, 2022			С	UPLICATI	E		REFERE	NCE MA	TERIAL	METHOD	BLANK	SPIKE	MAT	RIX SPI	KE
PARAMETER	Batch	Sample	Dup #1	Dup #2	RPD	Method Blank	Measured		ptable nits	Recovery		ptable nits	Recovery		ptable nits
TANAMETER	Baton	ld	Бар // 1	Dup #2	111 5		Value	Lower	Upper	rtooovery	Lower	Upper	rtooovery	Lower	Upper
O. Reg. 153(511) - BNA (full) +	PAHs (Soil)														
Naphthalene	4622596 4	4622596	< 0.05	< 0.05	NA	< 0.05	85%	50%	140%	89%	50%	140%	79%	50%	140%
Acenaphthylene	4622596 4	4622596	< 0.05	< 0.05	NA	< 0.05	79%	50%	140%	85%	50%	140%	85%	50%	140%
Acenaphthene	4622596 4	4622596	< 0.05	< 0.05	NA	< 0.05	85%	50%	140%	84%	50%	140%	84%	50%	140%
Fluorene	4622596 4	4622596	< 0.05	< 0.05	NA	< 0.05	82%	50%	140%	79%	50%	140%	79%	50%	140%
Phenanthrene	4622596 4	4622596	< 0.05	< 0.05	NA	< 0.05	85%	50%	140%	85%	50%	140%	85%	50%	140%
Anthracene	4622596 4	4622596	< 0.05	< 0.05	NA	< 0.05	84%	50%	140%	79%	50%	140%	84%	50%	140%
Fluoranthene	4622596 4	4622596	< 0.05	< 0.05	NA	< 0.05	79%	50%	140%	85%	50%	140%	79%	50%	140%
Pyrene	4622596 4	4622596	< 0.05	< 0.05	NA	< 0.05	85%	50%	140%	84%	50%	140%	85%	50%	140%
Benz(a)anthracene	4622596 4	4622596	< 0.05	< 0.05	NA	< 0.05	79%	50%	140%	79%	50%	140%	82%	50%	140%
Chrysene	4622596 4	4622596	< 0.05	< 0.05	NA	< 0.05	85%	50%	140%	85%	50%	140%	85%	50%	140%
Benzo(b)fluoranthene	4622596 4	4622596	< 0.05	< 0.05	NA	< 0.05	82%	50%	140%	86%	50%	140%	84%	50%	140%
Benzo(k)fluoranthene	4622596 4		< 0.05	< 0.05	NA	< 0.05	89%	50%	140%	82%	50%	140%	79%	50%	140%
Benzo(a)pyrene	4622596 4		< 0.05	< 0.05	NA	< 0.05	85%	50%	140%	85%	50%	140%	85%	50%	140%
Indeno(1,2,3-cd)pyrene	4622596 4		< 0.05	< 0.05	NA	< 0.05	84%	50%	140%	84%	50%	140%	85%	50%	140%
Dibenzo(a,h)anthracene	4622596 4		< 0.05	< 0.05	NA	< 0.05	79%	50%	140%	79%	50%	140%	60%	50%	140%
Benzo(g,h,i)perylene	4622596 4	1622506	< 0.05	< 0.05	NA	< 0.05	85%	50%	140%	68%	50%	140%	75%	50%	140%
Phenol	4622596 4		< 0.5	< 0.5	NA	< 0.5	84%	30%	130%	80%	30%	130%	79%	30%	130%
Bis(2-chloroethyl)ether	4622596 4		< 0.1	< 0.1	NA	< 0.5	114%	50%	140%	81%	50%	140%	118%	50%	140%
2-Chlorophenol	4622596		< 0.1	< 0.1	NA	< 0.1	71%	50%	140%	65%	50%	140%	90%	50%	140%
o-Cresol	4622596		< 0.1	< 0.1	NA	< 0.1	104%	50%	140%	72%	50%	140%	78%	50%	140%
Bis(2-chloroisopropyl)ether	4622596 4	1622506	< 0.1	< 0.1	NA	< 0.1	96%	50%	140%	84%	50%	140%	62%	50%	140%
m & p - Cresol	4622596 4		< 0.1	< 0.1	NA	< 0.1	104%	50%	140%	87%	50%	140%	103%	50%	140%
2,4-Dimethylphenol	4622596 4		< 0.1	< 0.1	NA	< 0.1	75%	30%	130%	66%	30%	130%	60%	30%	130%
2,4-Dichlorophenol	4622596 4		< 0.2	< 0.2		< 0.2	75% 75%	50%	140%	104%	50%	140%	96%	50%	140%
1,2,4-Trichlorobenzene	4622596 4		< 0.05	< 0.15	NA NA	< 0.15	93%	50%	140%	68%	50%	140%	68%	50%	140%
o Oblassa Pra	1000500	4000500	0.5	0.5	NIA	0.5	000/	000/	4000/	700/	000/	4000/	070/	000/	4000/
p-Chloroaniline	4622596		< 0.5	< 0.5	NA	< 0.5	96%	30%	130%	78%	30%	130%	67%	30%	130%
2,4,6-Trichlorophenol	4622596		< 0.1	< 0.1	NA	< 0.1	111%	50%	140%	114%	50%	140%	89%	50%	140%
2,4,5-Trichlorophenol	4622596		< 0.1	< 0.1	NA	< 0.1	106%	50%	140%	102%	50%	140%	69%	50%	140%
1,1-Biphenyl Dimethyl Phthalate	4622596 4 4622596 4		< 0.05 < 0.1	< 0.05 < 0.1	NA NA	< 0.05 < 0.1	NA 90%	50% 50%	140% 140%	77% 67%	50% 50%	140% 140%	65% 62%	50% 50%	140% 140%
•	4600500	4600500	.04	.04	N I A	.04	4470/	E00/	1.4007	700/	E00/	1.400/	0.50/	E00/	1.4004
Diethyl Phthalate	4622596		< 0.1	< 0.1	NA	< 0.1	117%		140%	72%		140%	85%		140%
Pentachlorophenol	4622596 4		< 0.1	< 0.1	NA	< 0.1	90%		140%	73%	50%	140%	76%	50%	140%
3,3'-Dichlorobenzidine	4622596		< 0.5	< 0.5	NA	< 0.5	96%	30%		104%		130%	60%	30%	130%
2,4-Dinitrophenol Bis(2-Ethylhexyl)phthalate	4622596 4 4622596 4		< 2.0 < 0.2	< 2.0 < 0.2	NA NA	< 2.0 < 0.2	96% 99%	30% 50%	130% 140%	89% 63%	30% 50%	130% 140%	88% 65%	30% 50%	130% 140%
									2.0			2,0		- 2.3	
O. Reg. 153(511) - PHCs F1 - F	•	and VOC)		-	h : A	-	4.400/	000/	4.4007	4070/	000/	4.4007	700/	000/	1.4004
F1 (C6 - C10)	4625469	100055=	<5	<5	NA	< 5	140%		140%	137%		140%	73%		140%
F2 (C10 to C16)	4622687		<10	<10	NA	< 10	104%	60%	140%	121%	60%	140%	117%	60%	140%
F3 (C16 to C34)	4622687	4622687	<50	<50	NA	< 50	107%	60%	140%	111%	60%	140%	110%	60%	140%

AGAT QUALITY ASSURANCE REPORT (V1)

Page 13 of 22

AGAT Laboratories is accredited to ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA) and/or Standards Council of Canada (SCC) for specific tests listed on the scope of accreditation. AGAT Laboratories (Mississauga) is also accredited by the Canadian Association for Laboratory Accreditation Inc. (CALA) for specific drinking water tests. Accreditations are location and parameter specific. A complete listing of parameters for each location is available from www.cala.ca and/or www.scc.ca. The tests in this report may not necessarily be included in the scope of accreditation. RPDs calculated using raw data. The RPD may not be reflective of duplicate values shown, due to rounding of final results.

Quality Assurance

CLIENT NAME: BLUMETRIC ENVIRONMENTAL INC. AGAT WORK ORDER: 22P980724 PROJECT: 220509 ATTENTION TO: Paul Bandler

SAMPLING SITE:Belleville			,	SAMP	LED B	Y:M Llo	yd								
	-	Trace	Org	anics	Ana	lysis	(Co	ntin	ued)					
RPT Date: Dec 23, 2022				DUPLICAT	E		REFERE	NCE MA	TERIAL	METHOD BLANK SPIKE			MAT	TRIX SPI	KE
PARAMETER	Batch	Sample Id	Dup #1	Dup #2	RPD	Method Blank	Measured Value	Acceptable Limits R		Recovery	1 1 1 1 1	ptable nits	Recovery	Lin	ptable nits
		lu lu					value	Lower	Upper		Lower	Upper		Lower	Upper
F4 (C34 to C50)	4622687	4622687	<50	<50	NA	< 50	93%	60%	140%	106%	60%	140%	130%	60%	140%
O. Reg. 153(511) - PCBs (Soil)															
Polychlorinated Biphenyls	4622594	4622594	1.12	1.0	11.3%	< 0.1	98%	50%	140%	87%	50%	140%	98%	50%	140%
O. Reg. 153(511) - VOCs (with F	PHC) (Soil)														
Dichlorodifluoromethane	4625469		< 0.05	< 0.05	NA	< 0.05	107%	50%	140%	104%	50%	140%	111%	50%	140%
Vinyl Chloride	4625469		< 0.02	< 0.02	NA	< 0.02	93%	50%	140%	119%	50%	140%	113%	50%	140%
Bromomethane	4625469		<0.05	< 0.05	NA	< 0.05	90%	50%	140%	102%	50%	140%	90%	50%	140%
Trichlorofluoromethane	4625469		< 0.05	< 0.05	NA	< 0.05	117%	50%	140%	119%	50%	140%	85%	50%	140%
Acetone	4625469		<0.50	<0.50	NA	< 0.50	101%	50%	140%	119%	50%	140%	99%	50%	140%
1,1-Dichloroethylene	4625469		<0.05	<0.05	NA	< 0.05	104%	50%	140%	115%	60%	130%	89%	50%	140%
Methylene Chloride	4625469		< 0.05	< 0.05	NA	< 0.05	107%	50%	140%	101%	60%	130%	104%	50%	140%
Trans- 1,2-Dichloroethylene	4625469		< 0.05	< 0.05	NA	< 0.05	82%	50%	140%	93%	60%	130%	87%	50%	140%
Methyl tert-butyl Ether	4625469		< 0.05	< 0.05	NA	< 0.05	99%	50%	140%	104%	60%	130%	114%	50%	140%
1,1-Dichloroethane	4625469		<0.02	<0.02	NA	< 0.02	112%	50%	140%	98%	60%	130%	89%	50%	140%
Methyl Ethyl Ketone	4625469		<0.50	<0.50	NA	< 0.50	101%	50%	140%	119%	50%	140%	102%	50%	140%
Cis- 1,2-Dichloroethylene	4625469		< 0.02	< 0.02	NA	< 0.02	103%	50%	140%	94%	60%	130%	107%	50%	140%
Chloroform	4625469		<0.04	<0.04	NA	< 0.04	114%	50%	140%	109%	60%	130%	113%	50%	140%
1,2-Dichloroethane	4625469		< 0.03	< 0.03	NA	< 0.03	109%	50%	140%	111%	60%	130%	102%	50%	140%
1,1,1-Trichloroethane	4625469		<0.05	<0.05	NA	< 0.05	113%	50%	140%	111%	60%	130%	108%	50%	140%
Carbon Tetrachloride	4625469		< 0.05	<0.05	NA	< 0.05	119%	50%	140%	98%	60%	130%	105%	50%	140%
Benzene	4625469		< 0.02	<0.02	NA	< 0.02	102%	50%	140%	98%	60%	130%	87%	50%	140%
1,2-Dichloropropane	4625469		< 0.03	< 0.03	NA	< 0.03	104%	50%	140%	101%	60%	130%	96%	50%	140%
Trichloroethylene	4625469		0.41	0.40	1.3%	< 0.03	102%	50%	140%	100%	60%	130%	100%	50%	140%
Bromodichloromethane	4625469		<0.05	<0.05	NA	< 0.05	109%	50%	140%	91%	60%	130%	117%	50%	140%
Methyl Isobutyl Ketone	4625469		<0.50	<0.50	NA	< 0.50	95%	50%	140%	82%	50%	140%	98%	50%	140%
1,1,2-Trichloroethane	4625469		< 0.04	< 0.04	NA	< 0.04	93%	50%	140%	93%	60%	130%	72%	50%	140%
Toluene	4625469		< 0.05	< 0.05	NA	< 0.05	94%	50%	140%	90%	60%	130%	76%	50%	140%
Dibromochloromethane	4625469		< 0.05	< 0.05	NA	< 0.05	89%	50%	140%	93%	60%	130%	78%	50%	140%
Ethylene Dibromide	4625469		<0.04	<0.04	NA	< 0.04	83%	50%	140%	90%	60%	130%	70%	50%	140%
Tetrachloroethylene	4625469		<0.05	<0.05	NA	< 0.05	98%	50%	140%	102%	60%	130%	88%	50%	140%
1,1,1,2-Tetrachloroethane	4625469		< 0.04	< 0.04	NA	< 0.04	90%	50%	140%	91%	60%	130%	73%	50%	140%
Chlorobenzene	4625469		< 0.05	< 0.05	NA	< 0.05	102%	50%	140%	95%	60%	130%	83%	50%	140%
Ethylbenzene	4625469		<0.05	< 0.05	NA	< 0.05	82%	50%	140%	76%	60%	130%	100%	50%	140%
m & p-Xylene	4625469		<0.05	<0.05	NA	< 0.05	85%	50%	140%	77%	60%	130%	104%	50%	140%
Bromoform	4625469		<0.05	<0.05	NA	< 0.05	86%	50%	140%	90%	60%	130%	71%	50%	140%
Styrene	4625469		<0.05	< 0.05	NA	< 0.05	77%	50%	140%	72%	60%	130%	77%	50%	140%
1,1,2,2-Tetrachloroethane	4625469		< 0.05	< 0.05	NA	< 0.05	114%	50%	140%	95%	60%	130%	97%	50%	140%

AGAT QUALITY ASSURANCE REPORT (V1)

4625469

< 0.05

< 0.05

o-Xylene

Page 14 of 22

50% 140%

AGAT Laboratories is accredited to ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA) and/or Standards Council of Canada (SCC) for specific tests listed on the scope of accreditation. AGAT Laboratories (Mississauga) is also accredited by the Canadian Association for Laboratory Accreditation Inc. (CALA) for specific drinking water tests. Accreditations are location and parameter specific. A complete listing of parameters for each location is available from www.cala.ca and/or www.scc.ca. The tests in this report may not necessarily be included in the scope of accreditation. RPDs calculated using raw data. The RPD may not be reflective of duplicate values shown, due to rounding of final results.

NA

< 0.05

84%

50% 140%

81%

60% 130%

88%

Quality Assurance

CLIENT NAME: BLUMETRIC ENVIRONMENTAL INC.

AGAT WORK ORDER: 22P980724

PROJECT: 220509

ATTENTION TO: Paul Bandler

SAMPLING SITE:Belleville Bakelite

SAMPLED BY:M Lloyd

											,				
Trace Organics Analysis (Continued)															
RPT Date: Dec 23, 2022			С	UPLICAT	E		REFEREN	NCE MA	TERIAL	METHOD	BLANK	SPIKE	MAT	RIX SPI	KE
PARAMETER	Batch	Sample	Dup #1	Dup #2	RPD	Method Blank	Measured		ptable nits	Recovery	Lin	ptable nits	Recovery	Lin	ptable nits
		la la	·	·			Value	Lower	Upper	,	Lower	Upper		Lower	Upper
1,3-Dichlorobenzene	4625469		<0.05	<0.05	NA	< 0.05	93%	50%	140%	91%	60%	130%	79%	50%	140%
1,4-Dichlorobenzene	4625469		< 0.05	< 0.05	NA	< 0.05	93%	50%	140%	92%	60%	130%	80%	50%	140%
1,2-Dichlorobenzene	4625469		< 0.05	< 0.05	NA	< 0.05	90%	50%	140%	87%	60%	130%	78%	50%	140%
n-Hexane	4625469		< 0.05	< 0.05	NA	< 0.05	96%	50%	140%	88%	60%	130%	90%	50%	140%

Comments: When the average of the sample and duplicate results is less than 5x the RDL, the Relative Percent Difference (RPD) will be indicated as Not Applicable (NA).

Method Summary

CLIENT NAME: BLUMETRIC ENVIRONMENTAL INC.

AGAT WORK ORDER: 22P980724

PROJECT: 220509

ATTENTION TO: Paul Bandler

SAMPLING SITE:Belleville Bakelite

SAMPLED BY:M Lloyd

SAMPLING SITE. Delieville Bakeille		SAMPLED BY .WI LIOYU						
PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE					
Soil Analysis								
Antimony	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS					
Arsenic	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS					
Barium	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS					
Beryllium	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS					
Boron	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS					
Boron (Hot Water Soluble)	MET-93-6104	modified from EPA 6010D and MSA PART 3, CH 21	ICP/OES					
Cadmium	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS					
Chromium	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS					
Cobalt	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS					
Copper	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS					
Lead	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS					
Molybdenum	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS					
Nickel	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS					
Selenium	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS					
Silver	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS					
Thallium	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS					
Uranium	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS					
Vanadium	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS					
Zinc	MET 93 -6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS					
Chromium, Hexavalent	INOR-93-6068	modified from EPA 3060 and EPA 7196	SPECTROPHOTOMETER					
Cyanide, WAD	INOR-93-6052	modified from ON MOECC E3015, SM 4500-CN- I, G-387	TECHNICON AUTO ANALYZER					
Mercury	MET-93-6103	modified from EPA 7471B and SM 3112 B	ICP-MS					
Electrical Conductivity (2:1)	INOR-93-6075	modified from MSA PART 3, CH 14 and SM 2510 B	PC TITRATE					
Sodium Adsorption Ratio (2:1) (Calc.)	INOR-93-6007	modified from EPA 6010D & Analytical Protocol	ICP/OES					
pH, 2:1 CaCl2 Extraction	INOR-93-6075	modified from EPA 9045D, MCKEAGUE 3.11 E3137	PC TITRATE					
Sieve Analysis - 75 µm (retained) Sieve Analysis - 75 µm (passing)	INOR-93-6065 INOR-93-6065	ASTM D1140 ASTM D1140	SIEVE SIEVE					

Method Summary

CLIENT NAME: BLUMETRIC ENVIRONMENTAL INC.

AGAT WORK ORDER: 22P980724

PROJECT: 220509

ATTENTION TO: Paul Bandler

SAMPLED BY:M Lloyd

PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE
Trace Organics Analysis			
Naphthalene	ORG-91-5114	modified from EPA 3510C, 8270E & ON MOECC E3265	GC/MS
Acenaphthylene	ORG-91-5114	modified from EPA 3510C, 8270E & ON MOECC E3265	GC/MS
Acenaphthene	ORG-91-5114	modified from EPA 3510C, 8270E & ON MOECC E3265	GC/MS
Fluorene	ORG-91-5114	modified from EPA 3510C, 8270E & ON MOECC E3265	GC/MS
Phenanthrene	ORG-91-5114	modified from EPA 3510C, 8270E & ON MOECC E3265	GC/MS
Anthracene	ORG-91-5114	modified from EPA 3510C, 8270E & ON MOECC E3265	GC/MS
Fluoranthene	ORG-91-5114	modified from EPA 3510C, 8270E & ON MOECC E3265	GC/MS
Pyrene	ORG-91-5114	modified from EPA 3510C, 8270E & ON MOECC E3265	GC/MS
Benz(a)anthracene	ORG-91-5114	modified from EPA 3510C, 8270E & ON MOECC E3265	GC/MS
Chrysene	ORG-91-5114	modified from EPA 3510C, 8270E & ON MOECC E3265	GC/MS
Benzo(b)fluoranthene	ORG-91-5114	modified from EPA 3510C, 8270E & ON MOECC E3265	GC/MS
Benzo(k)fluoranthene	ORG-91-5114	modified from EPA 3510C, 8270E & ON MOECC E3265	GC/MS
Benzo(a)pyrene	ORG-91-5114	modified from EPA 3510C, 8270E & ON MOECC E3265	GC/MS
Indeno(1,2,3-cd)pyrene	ORG-91-5114	modified from EPA 3510C, 8270E & ON MOECC E3265	GC/MS
Dibenzo(a,h)anthracene	ORG-91-5114	modified from EPA 3510C, 8270E & ON MOECC E3265	GC/MS
Benzo(g,h,i)perylene	ORG-91-5114	modified from EPA 3510C, 8270E & ON MOECC E3265	GC/MS
Phenol	ORG-91-5114	modified from EPA 3510C, 8270E & ON MOECC E3265	GC/MS
Bis(2-chloroethyl)ether	ORG-91-5114	modified from EPA 3510C, 8270E & ON MOECC E3265	GC/MS
2-Chlorophenol	ORG-91-5114	modified from EPA 3510C, 8270E & ON MOECC E3265	GC/MS
o-Cresol	ORG-91-5114	modified from EPA 3510C, 8270E & ON MOECC E3265	GC/MS
Bis(2-chloroisopropyl)ether	ORG-91-5114	modified from EPA 3510C, 8270E & ON MOECC E3265	GC/MS
m & p - Cresol	ORG-91-5114	modified from EPA 3510C, 8270E & ON MOECC E3265	GC/MS
2,4-Dimethylphenol	ORG-91-5114	modified from EPA 3510C, 8270E & ON MOECC E3265	GC/MS
2,4-Dichlorophenol	ORG-91-5114	modified from EPA 3510C, 8270E & ON MOECC E3265	GC/MS
1,2,4-Trichlorobenzene	ORG-91-5114	modified from EPA 3510C, 8270E & ON MOECC E3265	GC/MS
p-Chloroaniline	ORG-91-5114	modified from EPA 3510C, 8270E & ON MOECC E3265	GC/MS
1 and 2 Methlynaphthalene	ORG-91-5114	modified from EPA 3510C, 8270E & ON MOECC E3265	CALCULATION

Method Summary

CLIENT NAME: BLUMETRIC ENVIRONMENTAL INC.

AGAT WORK ORDER: 22P980724

PROJECT: 220509

ATTENTION TO: Paul Bandler

SAMPLED BY:M Lloyd

PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE
2,4,6-Trichlorophenol	ORG-91-5114	modified from EPA 3510C, 8270E & ON MOECC E3265	GC/MS
2,4,5-Trichlorophenol	ORG-91-5114	modified from EPA 3510C, 8270E & ON MOECC E3265	GC/MS
1,1-Biphenyl	ORG-91-5114	modified from EPA 3510C, 8270E & ON MOECC E3265	GC/MS
Dimethyl Phthalate	ORG-91-5114	modified from EPA 3510C, 8270E & ON MOECC E3265	GC/MS
2,4 and 2,6-Dinitrotoluene	ORG-91-5114	modified from EPA 3510C, 8270E & ON MOECC E3265	CALCULATION
Diethyl Phthalate	ORG-91-5114	modified from EPA 3510C, 8270E & ON MOECC E3265	GC/MS
Pentachlorophenol	ORG-91-5114	modified from EPA 3510C, 8270E & ON MOECC E3265	GC/MS
3,3'-Dichlorobenzidine	ORG-91-5114	modified from EPA 3510C, 8270E & ON MOECC E3265	GC/MS
2,4-Dinitrophenol	ORG-91-5114	modified from EPA 3510C, 8270E & ON MOECC E3265	GC/MS
Bis(2-Ethylhexyl)phthalate	ORG-91-5114	modified from EPA 3510C, 8270E & ON MOECC E3265	GC/MS
phenol-d6 surrogate	ORG-91-5114	modified from EPA 3510C, 8270E & ON MOECC E3265	GC/MS
2-Fluorophenol	ORG-91-5114	modified from EPA 3510C, 8270E & ON MOECC E3265	GC/MS
2,4,6-Tribromophenol	ORG-91-5114	modified from EPA 3510C, 8270E & ON MOECC E3265	GC/MS
Chrysene-d12	ORG-91-5114	modified from EPA 3510C, 8270E & ON MOECC E3265	GC/MS
Moisture Content wet weight BNA	VOL-91-5009 ORG-91-5114	modified from CCME Tier 1 Method	BALANCE BALANCE
Polychlorinated Biphenyls	ORG-91-5113	modified from EPA SW-846 3570 & 8082A	GC/ECD
Decachlorobiphenyl	ORG-91-5113	modified from EPA SW-846 3541 & 8082A	GC/ECD
F1 (C6 - C10)	VOL-91-5009	modified from CCME Tier 1 Method	(P&T)GC/FID
F1 (C6 to C10) minus BTEX	VOL-91-5009	modified from CCME Tier 1 Method	P&T GC/FID
Toluene-d8	VOL-91- 5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
F2 (C10 to C16)	VOL-91-5009	modified from CCME Tier 1 Method	GC/FID
F2 (C10 to C16) minus Naphthalene	VOL-91-5009	modified from CCME Tier 1 Method	GC/FID
F3 (C16 to C34)	VOL-91-5009	modified from CCME Tier 1 Method	GC/FID
F3 (C16 to C34) minus PAHs	VOL-91-5009	modified from CCME Tier 1 Method	GC/FID
F4 (C34 to C50)	VOL-91-5009	modified from CCME Tier 1 Method	GC/FID
Gravimetric Heavy Hydrocarbons	VOL-91-5009	modified from CCME Tier 1 Method	BALANCE
Terphenyl	VOL-91-5009	modified from CCME Tier 1 Method	GC/FID
Dichlorodifluoromethane	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS
Vinyl Chloride	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS
Bromomethane	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS
Trichlorofluoromethane	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS
Acetone	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS

Method Summary

CLIENT NAME: BLUMETRIC ENVIRONMENTAL INC.

AGAT WORK ORDER: 22P980724

PROJECT: 220509

ATTENTION TO: Paul Bandler

SAMPLED BY:M Lloyd

SAMPLING SITE: Believille Bakelite		SAMPLED BY: W Lloyd							
PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE						
1,1-Dichloroethylene	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS						
Methylene Chloride	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS						
Trans- 1,2-Dichloroethylene	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS						
Methyl tert-butyl Ether	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS						
1,1-Dichloroethane	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS						
Methyl Ethyl Ketone	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS						
Cis- 1,2-Dichloroethylene	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS						
Chloroform	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS						
1,2-Dichloroethane	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS						
1,1,1-Trichloroethane	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS						
Carbon Tetrachloride	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS						
Benzene	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS						
1,2-Dichloropropane	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS						
Trichloroethylene	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS						
Bromodichloromethane	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS						
Methyl Isobutyl Ketone	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS						
1,1,2-Trichloroethane	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS						
Toluene	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS						
Dibromochloromethane	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS						
Ethylene Dibromide	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS						
Tetrachloroethylene	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS						
1,1,1,2-Tetrachloroethane	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS						
Chlorobenzene	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS						
Ethylbenzene	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS						
m & p-Xylene	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS						
Bromoform	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS						
Styrene	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS						
1,1,2,2-Tetrachloroethane	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS						

Method Summary

CLIENT NAME: BLUMETRIC ENVIRONMENTAL INC.

AGAT WORK ORDER: 22P980724

PROJECT: 220509

ATTENTION TO: Paul Bandler

SAMPLING SITE:Belleville Bakelite

SAMPLED BY:M Lloyd

PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE
o-Xylene	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS
1,3-Dichlorobenzene	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS
1,4-Dichlorobenzene	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS
1,2-Dichlorobenzene	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS
Xylenes (Total)	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS
1,3-Dichloropropene (Cis + Trans)	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS
n-Hexane	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS
Toluene-d8	VOL-91-5002	modified from EPA 5035A & EPA 8260D	(P&T)GC/MS
4-Bromofluorobenzene	VOL-91-5002	modified from EPA 5035A & EPA 8260D	(P&T)GC/MS

5835 Coopers Avenue Mississauga, Ontario L4Z 1Y2 Ph: 905.712 5100 Fax: 905 712 5122 webearth.agatlabs.com

Laboratory Use (Only		
Work Order #:	12P	980 3	724
Cooler Quantity: Arrival Temperatures:	9.7	9.1	9.3
Custody Seal Intact:	∐Yes	□No	□N/A

Chain of	Custody	Record

Chain of Custody Recor	rd If this is a	Drinking Water	sample, plea	ise use Drir	iking Water Chain	of Custody Form (p	otable water	consum	ed by h	umans			. A	rrival T	Tempera	itures:	-	7. +	9.1	T-	5
Report Information: Company:	Environm	noutal	Inc	(Pleas	gulatory Req e check all applicable box	es)							Custody Seal Intact: Yes No Notes:]N/A			
Address: 41 Catar	sondler	reet		т:	egulation 153/04	Table		Sewer Use					Turnaround Time (TAT) Required:								
	ugston]Ind/Com]Res/Park]Agriculture	Regulation		Pro		er Qua			43	_	r TAT AT (Rush	Surcharge			usiness Days		
1. Email:		-		Soil	Texture (Check One)	ССМЕ		Ob.	ective: ier	s (PWC	(O)				3 Busine Days	ess		2 Busine Days		Next Busi Day	ines
2. Email: mlloyde	e on we	til ice		-]Fine	1			Indical	one One		_		•	OR Date	e Requir	red (R	ush Surc	harges May A	Apply):	
Project Information: Project: 22050 Site Location: Belleville	9 Bokelil	c		Re	this submissi cord of Site C		Ce	eport rtifica Yes	ate o	Ana					TAT is ex	clusive	of we	eekends a	ation for rush and statutory ontact your A	/ holidays	
Sampled By: AGAT Quote #: 7471 4 8								0	. Reg 1	53		т		O. Reg		eg 406	1	nease co	illact your A	GAI CFI	5
Please note: If quotation number	PO: is not provided, client will	be billed full price for	analysis	Sar B	nple Matrix Le Biota	egend	Srvi, Doo					SBS		Package F4	Sulphide 🗆				ation (Y/N		
Invoice Information: Company: Contact:	В	ill To Same: Ye	es 🗂 No 🗆	GW O P	Ground Water Oil Paint		Metals, Hg,		, 🗆 HWSB					Characterization TCLP: CS □ABNS □B(a)P□P	inwater Les	cterization Par BTEX, F1-F4	Moisture □ S	BNs	-14		idh Concentr
Address: Email: ap@blue	refric c	q		S SD SW	Soil Sediment Surface Water		Field Filtered - Metals, Hg, CrVI, DOC	Metals & Inorganics	. □ CrVI, □ Hg,	F1-F4 PHCs				Landfill Disposal Charad	Excess Soils SPLP Rainwater Leach SPLP: 🗆 Metals 🗆 vocs 🗅 Svocs	Excess Soils Characterization pH, ICPMS Metals, BTEX, F1-F		12 1		Hold	9
Sample Identification	Date Sampled	Time Sampled	# of Containers	Sample Matrix		nments/ Instructions	Y/N	Metals	Metals - I		PAHS	VOC	Aroclors	Landfill [TCLP:	Excess Soils SF SPLP:	Excess (pH, ICPI	Corrosiv	J			Potential
TP Z3 la	22-12-13	13,10 AN																		V	
TP 2316		13:15 AN	1					V		1	V	V						V			
TP 2310	SI COLOR	13,20 AN											1		Nig e					V	
TP 236a		13:58 AN	1		1			V		1	V	V						V			
TP 236 b	The same	14:11 AN																		V	
TP 236C		14:20 AN					12.00						1							V	
TP 225a	1 1 1 1 1 1 1	15:50 AN						/		1	~ ~	1	1000					V			
TP 225 b		15:57 AN																		1	
TP 225 C		16:08 AN																		V	
TP 2316-dup	1	13:15 AN						1		v.	1 1	1						V			
TP 227a	22-12-17							1		1	V	V						V			
M Lloyd M. (Print Name and Sign):	1	Date 22-12 -	-14 Time	100	Samples Received By (I	Print Name and Sign):	U	1	1		Dec.	14/	22	Tim	150	ا ان					
samples Relinquished by (Print Nam Aand Sign): Samples Relinquished by (Print Name and Sign):	(Date Date	Time	600	Samples Received By II	Print Name and Sign):	0	1			De C	ite		Tim	9:10			Page	of	2	
II V							V										Nº:	-	LAZS	Ub	

5835 Coopers Avenue Mississauga, Ontario L4Z 1Y2 Ph: 905.712 5100 Fax: 905.712.5122

Laboratory	Use Only
Work Order #:	221980724

Chain of Custody Record If this is a Drinking Water sample, plea	webearth agatlabs.com use Drinking Water Chain of Custody Form (potable water consumed by humans)	Cooler Quantity: Arrival Temperatures: 7-(2 7-1 7.5-				
Report Information: Company: Bluttetric Environmental Inc.	Regulatory Requirements: (Please check all applicable boxes)	Custody Seal Intact:				
Contact: Address: 4 Cataragu Street kingston Phone: Reports to be sent to: 1. Email: phandlereblumetric.ca 2. Email: Mloydeblumetric.ca	Table	Turnaround Time (TAT) Required: Regular TAT				
Project Information: Project: 220 509 Site Location: Belleville Bakelile Sampled By:	Is this submission for a Report Guldeline on Certificate of Analysis Yes No Yes No	Please provide prior notification for rush TAT *TAT is exclusive of weekends and statutory holidays For 'Same Day' analysis, please contact your AGAT CPM				
AGAT Quote #: 747248 PO: Picase note: If quotation number is not provided, client will be billed full price for analysis. Invoice Information: Company: Contact: Address: Email: Date Time # of	Sample Matrix Legend B Biota GW Ground Water O Oil P Paint S Soil SD Sediment S Surface Water Sample Comments/ Comments	Aroclors Landfill Disposal Characterization TCLP: TCLP: CIMAil Clycos Clyaby Class Page Excess Soils SPLP Rainwater Leach SPLP: Clyabasis Clycos Clycos By Coccess Soils Characterization Package DH. ICPMS Metals, BTEX, F1-F4 Corrosivity: Include Moisture Clycos CPS, ABMs Potentially Hazardous or High Concentration (V/N)				
Sampled Sampled Containers	Matrix Special Instructions	Aroclors Landfill I TCLP: Or Excess SPLP: C SPLP: C Corrosiv Corrosiv				
TP 2299 1 9:30 AM 5	lioi lioi					
TP 2296 9:35 AM 5	/ X					
TP 229 C 9',40 AM 5	X					
TP 230 a 10'15 AM 5						
TP 230 b 10:21 AM 5	VXVVI					
TP 230C 10:27 AM 5						
- 7 7 7 7 1 1 2 1 1 AM (18111					
TP 233b V 11.20 AM 5						
	V					
AM PM AM PM PM						
Samples Relinquished By (Print Name and Sign): Date 22-12-14 Time 15 'S Samples Relinquished By (Print Name and Sign) Samples Relinquished By (Print Name and Sign) Time Date Time	Samples Received By (Print Name and Sign): Samples Received By (Print Name and Sign): Date Date Date Date Date Date Date Date	4/22 1500 8122 Time Page 2 of 2 Time N°: T - 142307				

CLIENT NAME: BLUMETRIC ENVIRONMENTAL INC. 4 Cataraqui Street

Kingston, ON K7K1Z7 (613) 531-2725

ATTENTION TO: Paul Bandler

PROJECT: 220509

AGAT WORK ORDER: 22P983244

SOIL ANALYSIS REVIEWED BY: Amanjot Bhela, Inorganic Lab Manager TRACE ORGANICS REVIEWED BY: Neli Popnikolova, Senior Chemist

DATE REPORTED: Jan 09, 2023

PAGES (INCLUDING COVER): 25 VERSION*: 1

Should you require any information regarding this analysis please contact your client services representative at (905) 712-5100

*Notes	

Disclaimer:

- All work conducted herein has been done using accepted standard protocols, and generally accepted practices and methods. AGAT test methods may
 incorporate modifications from the specified reference methods to improve performance.
- All samples will be disposed of within 30 days after receipt unless a Long Term Storage Agreement is signed and returned. Some specialty analysis may
 be exempt, please contact your Client Project Manager for details.
- AGAT's liability in connection with any delay, performance or non-performance of these services is only to the Client and does not extend to any other
 third party. Unless expressly agreed otherwise in writing, AGAT's liability is limited to the actual cost of the specific analysis or analyses included in the
 services.
- This Certificate shall not be reproduced except in full, without the written approval of the laboratory.
- The test results reported herewith relate only to the samples as received by the laboratory.
- Application of guidelines is provided "as is" without warranty of any kind, either expressed or implied, including, but not limited to, warranties of
 merchantability, fitness for a particular purpose, or non-infringement. AGAT assumes no responsibility for any errors or omissions in the guidelines
 contained in this document.
- All reportable information as specified by ISO/IEC 17025:2017 is available from AGAT Laboratories upon request.

AGAT Laboratories (V1)

Page 1 of 25

Member of: Association of Professional Engineers and Geoscientists of Alberta (APEGA)

Western Enviro-Agricultural Laboratory Association (WEALA) Environmental Services Association of Alberta (ESAA) AGAT Laboratories is accredited to ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA) and/or Standards Council of Canada (SCC) for specific tests listed on the scope of accreditation. AGAT Laboratories (Mississauga) is also accredited by the Canadian Association for Laboratory Accreditation Inc. (CALA) for specific drinking water tests. Accreditations are location and parameter specific. A complete listing of parameters for each location is available from www.cala.ca and/or www.scc.ca. The tests in this report may not necessarily be included in the scope of accreditation. Measurement Uncertainty is not taken into consideration when stating conformity with a specified requirement.

Certificate of Analysis

AGAT WORK ORDER: 22P983244

PROJECT: 220509

ATTENTION TO: Paul Bandler

SAMPLED BY:MC

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

CLIENT NAME: BLUMETRIC ENVIRONMENTAL INC. SAMPLING SITE: Belleville Bakelite

O. Reg. 153(511)	- Metals & Inorganics (Soil)

				• •			` '			
DATE RECEIVED: 2022-12-22								[DATE REPORTED: 2	2023-01-09
		SAMPLE DES	CRIPTION:	BH219 SS2	BH224 SS2	BH211 SS1	BH211 SS3	BH212 SS1	BH212 SS4	
		SAM	PLE TYPE:	Soil	Soil	Soil	Soil	Soil	Soil	
		DATE	SAMPLED:	2022-12-15	2022-12-15	2022-12-15	2022-12-15	2022-12-15	2022-12-15	
Parameter	Unit	G/S	RDL	4643388	4643397	4643399	4643400	4643402	4643404	
Antimony	μg/g	7.5	0.8	<0.8	<0.8	<0.8	<0.8	<0.8	<0.8	
Arsenic	μg/g	18	1	3	3	5	2	2	3	
Barium	μg/g	390	2.0	138	50.7	46.1	53.1	71.9	31.7	
Beryllium	μg/g	4	0.4	0.8	<0.4	<0.4	<0.4	<0.4	<0.4	
Boron	μg/g	120	5	9	8	13	6	9	10	
Boron (Hot Water Soluble)	µg/g	1.5	0.10	0.19	<0.10	0.14	0.18	0.33	0.63	
Cadmium	μg/g	1.2	0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	
Chromium	μg/g	160	5	28	13	15	14	8	10	
Cobalt	μg/g	22	0.5	9.5	5.7	5.4	11.4	3.5	4.1	
Copper	μg/g	140	1.0	15.3	9.5	8.1	10.3	6.7	7.4	
Lead	μg/g	120	1	16	8	10	9	16	15	
Molybdenum	μg/g	6.9	0.5	<0.5	<0.5	0.5	<0.5	<0.5	1.0	
Nickel	μg/g	100	1	19	11	13	23	11	9	
Selenium	μg/g	2.4	0.8	<0.8	<0.8	<0.8	<0.8	<0.8	<0.8	
Silver	μg/g	20	0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	
Thallium	μg/g	1	0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	
Uranium	μg/g	23	0.50	0.57	<0.50	<0.50	0.53	<0.50	0.55	
Vanadium	µg/g	86	0.4	34.7	20.7	16.2	21.4	4.8	11.0	
Zinc	μg/g	340	5	45	20	18	25	12	19	
Chromium, Hexavalent	μg/g	8	0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	
Cyanide, WAD	μg/g	0.051	0.040	<0.040	<0.040	< 0.040	<0.040	< 0.040	<0.040	
Mercury	μg/g	0.27	0.10	0.11	<0.10	<0.10	<0.10	<0.10	<0.10	
Electrical Conductivity (2:1)	mS/cm	0.7	0.005	0.259	0.220	0.637	0.374	0.208	0.367	
Sodium Adsorption Ratio (2:1) (Calc.)	N/A	5	N/A	0.061	0.121	0.062	0.327	0.114	0.170	
pH, 2:1 CaCl2 Extraction	pH Units		NA	7.60	7.60	7.67	7.62	7.48	7.43	

Certificate of Analysis

AGAT WORK ORDER: 22P983244

PROJECT: 220509

ATTENTION TO: Paul Bandler

SAMPLED BY:MC

O. Reg. 153(511) - Metals & Inorganics (Soil)

DATE RECEIVED: 2022-12-22 **DATE REPORTED: 2023-01-09**

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard: Refers to Table 7: Generic Site Condition Standards for Shallow Soils in a Non-Potable Ground Water Condition - Soil -

Residential/Parkland/Institutional Property Use - Coarse Textured Soils

Guideline values are for general reference only. The guidelines provided may or may not be relevant for the intended use. Refer directly to the applicable standard for regulatory interpretation.

4643388-4643397 EC was determined on the DI water extract obtained from the 2:1 leaching procedure (2 parts DI water:1 part soil). pH was determined on the 0.01M CaCl2 extract prepared at 2:1 ratio. SAR is a calculated

SAMPLING SITE: Belleville Bakelite

4643399-4643400 EC was determined on the DI water extract obtained from the 2:1 leaching procedure (2 parts DI water:1 part soil). pH was determined on the 0.01M CaCl2 extract prepared at 2:1 ratio. SAR is a calculated

Cyanide analysis was performed beyond recommended hold time.

4643402-4643404 EC was determined on the DI water extract obtained from the 2:1 leaching procedure (2 parts DI water:1 part soil). pH was determined on the 0.01M CaCl2 extract prepared at 2:1 ratio. SAR is a calculated

parameter.

Analysis performed at AGAT Toronto (unless marked by *)

Certified By:

5835 COOPERS AVENUE

MISSISSAUGA, ONTARIO

http://www.agatlabs.com

CANADA L4Z 1Y2

TEL (905)712-5100 FAX (905)712-5122

SAMPLING SITE: Belleville Bakelite

Certificate of Analysis

AGAT WORK ORDER: 22P983244

PROJECT: 220509

ATTENTION TO: Paul Bandler

SAMPLED BY:MC

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

Farmaldabyda (Cail)	
Formaldehyde (Soil)	

				ı	Officialucity	ue (Soii)		
DATE RECEIVED: 2022-12-22								DATE REPORTED: 2023-01-09
		SAMPLE DESC	CRIPTION:	BH211 SS1	BH211 SS3	BH212 SS1	BH212 SS4	
		SAMI	PLE TYPE:	E: Soil	Soil	Soil	Soil	
		DATE S	SAMPLED:	2022-12-15	2022-12-15	2022-12-15	2022-12-15	
Parameter	Unit	G/S	RDL	4643399	4643400	4643402	4643404	
Formaldehyde	mg/Kg		0.5	<0.5	4.3	<0.5	<0.5	
Surrogate	Unit	Acceptab	le Limits					
2,3,5,6-Tetrafluorobenzaldehyde	%	40-1	40	48	68	42	58	

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard

4643399-4643404 A higher LDR indicates that a dilution was performed to reduce analyte concentration or reduce matrix interference.

Analysis performed at AGAT Montréal (unless marked by *)

SAMPLING SITE: Belleville Bakelite

Certificate of Analysis

AGAT WORK ORDER: 22P983244

PROJECT: 220509

ATTENTION TO: Paul Bandler

SAMPLED BY:MC

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

O. Reg. 153(511) - BNA (full) + PAHs (Soil)

DATE RECEIVED: 2022-12-22								DATE REPORTED: 2023-01-09
		SAMPLE DESCRIPTIO	N: BH219 SS2	BH211 SS1	BH211 SS3	BH212 SS1	BH212 SS4	
		SAMPLE TYP	E: Soil	Soil	Soil	Soil	Soil	
		DATE SAMPLE	D: 2022-12-15	2022-12-15	2022-12-15	2022-12-15	2022-12-15	
Parameter	Unit	G/S RDL	4643388	4643399	4643400	4643402	4643404	
Naphthalene	μg/g	0.6 0.05	<0.05	< 0.05	<0.05	<0.05	<0.05	
Acenaphthylene	μg/g	0.15 0.05	<0.05	0.08	< 0.05	< 0.05	<0.05	
Acenaphthene	μg/g	7.9 0.05	<0.05	< 0.05	<0.05	< 0.05	< 0.05	
Fluorene	μg/g	62 0.05	<0.05	<0.05	<0.05	<0.05	< 0.05	
Phenanthrene	μg/g	6.2 0.05	<0.05	0.92	<0.05	< 0.05	< 0.05	
Anthracene	μg/g	0.67 0.05	<0.05	0.31	< 0.05	< 0.05	< 0.05	
Fluoranthene	μg/g	0.69 0.05	< 0.05	2.29	< 0.05	< 0.05	< 0.05	
Pyrene	μg/g	78 0.05	<0.05	1.98	<0.05	< 0.05	< 0.05	
Benz(a)anthracene	μg/g	0.5 0.05	<0.05	1.04	< 0.05	< 0.05	<0.05	
Chrysene	μg/g	7 0.05	<0.05	0.95	<0.05	< 0.05	< 0.05	
Benzo(b)fluoranthene	μg/g	0.78 0.05	<0.05	2.00	<0.05	< 0.05	< 0.05	
Benzo(k)fluoranthene	μg/g	0.78 0.05	< 0.05	1.10	< 0.05	< 0.05	< 0.05	
Benzo(a)pyrene	μg/g	0.3 0.05	<0.05	1.20	<0.05	< 0.05	< 0.05	
Indeno(1,2,3-cd)pyrene	μg/g	0.38 0.05	<0.05	0.55	<0.05	< 0.05	< 0.05	
Dibenzo(a,h)anthracene	μg/g	0.1 0.05	< 0.05	<0.05	< 0.05	< 0.05	< 0.05	
Benzo(g,h,i)perylene	μg/g	6.6 0.05	<0.05	0.50	< 0.05	< 0.05	< 0.05	
Phenol	μg/g	9.4 0.5	<0.5	<0.5	<0.5	<0.5	<0.5	
Bis(2-chloroethyl)ether	μg/g	0.5 0.1	<0.1	<0.1	<0.1	<0.1	<0.1	
2-Chlorophenol	μg/g	1.6 0.1	<0.1	<0.1	<0.1	<0.1	<0.1	
o-Cresol	μg/g	0.1	<0.1	<0.1	<0.1	<0.1	<0.1	
Bis(2-chloroisopropyl)ether	μg/g	0.67 0.1	<0.1	<0.1	<0.1	<0.1	<0.1	
m & p - Cresol	μg/g	0.1	<0.1	<0.1	<0.1	<0.1	<0.1	
2,4-Dimethylphenol	μg/g	390 0.2	<0.2	<0.2	<0.2	<0.2	<0.2	
2,4-Dichlorophenol	μg/g	1.7 0.1	<0.1	<0.1	<0.1	<0.1	<0.1	
1,2,4-Trichlorobenzene	μg/g	0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	
p-Chloroaniline	μg/g	0.5 0.5	<0.5	<0.5	<0.5	<0.5	<0.5	
1 and 2 Methlynaphthalene	μg/g	0.99 0.05	<0.05	< 0.05	< 0.05	< 0.05	<0.05	
2,4,6-Trichlorophenol	μg/g	3.8 0.1	<0.1	<0.1	<0.1	<0.1	<0.1	
2,4,5-Trichlorophenol	μg/g	4.4 0.1	<0.1	<0.1	<0.1	<0.1	<0.1	
1,1-Biphenyl	μg/g	0.31 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	

Certified By:

NPopukolof

Certificate of Analysis

AGAT WORK ORDER: 22P983244

PROJECT: 220509

ATTENTION TO: Paul Bandler

SAMPLED BY:MC

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

SAMPLING SITE:Belleville Bakelite

DATE RECEIVED: 2022-12-22									DATE REPORTED: 2023-01-09
57(12 (12 GE) 12 B. 2022 12 EE									2,112 HET GRIEB: 2020 01 00
		SAMPLE DES		BH219 SS2	BH211 SS1	BH211 SS3	BH212 SS1	BH212 SS4	
			PLE TYPE:	Soil	Soil	Soil	Soil	Soil	
			SAMPLED:	2022-12-15	2022-12-15	2022-12-15	2022-12-15	2022-12-15	
Parameter	Unit	G/S	RDL	4643388	4643399	4643400	4643402	4643404	
Dimethyl Phthalate	μg/g	0.5	0.1	<0.1	<0.1	<0.1	<0.1	<0.1	
2,4 and 2,6-Dinitrotoluene	μg/g	0.92	0.5	<0.5	<0.5	<0.5	<0.5	<0.5	
Diethyl Phthalate	μg/g	0.5	0.1	<0.1	<0.1	<0.1	<0.1	<0.1	
Pentachlorophenol	μg/g	0.1	0.1	<0.1	<0.1	<0.1	<0.1	<0.1	
3,3'-Dichlorobenzidine	μg/g		0.5	<0.5	<0.5	<0.5	<0.5	<0.5	
2,4-Dinitrophenol	μg/g	38	2.0	<2.0	<2.0	<2.0	<2.0	<2.0	
Bis(2-Ethylhexyl)phthalate	μg/g	5	0.2	<0.2	<0.2	<0.2	<0.2	<0.2	
Moisture Content	%		0.1	17.8	8.4	14.8	6.4	12.0	
wet weight BNA	g		0.01	10.59	10.84	10.26	10.08	10.90	
Surrogate	Unit	Acceptab	le Limits						
phenol-d6 surrogate	%	50-1	140	90	86	90	98	75	
2-Fluorophenol	%	50-1	140	93	77	74	72	82	
2,4,6-Tribromophenol	%	50-1	140	97	104	82	80	90	
Chrysene-d12	%	50-1	140	98	80	105	77	88	

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard: Refers to Table 7: Generic Site Condition Standards for Shallow Soils in a Non-Potable Ground Water Condition - Soil -

Residential/Parkland/Institutional Property Use - Coarse Textured Soils

Guideline values are for general reference only. The guidelines provided may or may not be relevant for the intended use. Refer directly to the applicable standard for regulatory interpretation.

4643388-4643404 Results are based on the dry weight of the soil.

Note: The result for Benzo(b)Fluoranthene is the total of the Benzo(b)&(j)Fluoranthene isomers because the isomers co-elute on the GC column.

Analysis performed at AGAT Toronto (unless marked by *)

Certified By:

NPoprukolof

SAMPLING SITE: Belleville Bakelite

Certificate of Analysis

AGAT WORK ORDER: 22P983244

PROJECT: 220509

O Reg. 153(511) - PAHs (Soil)

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

__ ' ' ' ' '

ATTENTION TO: Paul Bandler

SAMPLED BY:MC

	3. 16g. 166(311) 171116 (3611)	
DATE DECENTED		D. TE DEDODTED

DATE RECEIVED: 2022-12-22					DATE REPORTED: 2023-	-01-09
		SAMPLE DESCR	RIPTION:	BH224 SS2		
		SAMPL	E TYPE:	Soil		
		DATE SA	MPLED:	2022-12-15		
Parameter	Unit	G/S	RDL	4643397		
Naphthalene	μg/g	0.6	0.05	<0.05		
Acenaphthylene	μg/g	0.15	0.05	< 0.05		
Acenaphthene	μg/g	7.9	0.05	< 0.05		
Fluorene	μg/g	62	0.05	< 0.05		
Phenanthrene	μg/g	6.2	0.05	< 0.05		
Anthracene	μg/g	0.67	0.05	< 0.05		
Fluoranthene	μg/g	0.69	0.05	< 0.05		
Pyrene	μg/g	78	0.05	< 0.05		
Benz(a)anthracene	μg/g	0.5	0.05	< 0.05		
Chrysene	μg/g	7	0.05	<0.05		
Benzo(b)fluoranthene	μg/g	0.78	0.05	< 0.05		
Benzo(k)fluoranthene	μg/g	0.78	0.05	< 0.05		
Benzo(a)pyrene	μg/g	0.3	0.05	< 0.05		
ndeno(1,2,3-cd)pyrene	μg/g	0.38	0.05	<0.05		
Dibenz(a,h)anthracene	μg/g	0.1	0.05	< 0.05		
Benzo(g,h,i)perylene	μg/g	6.6	0.05	< 0.05		
and 2 Methlynaphthalene	μg/g	0.99	0.05	<0.05		
Noisture Content	%		0.1	12.0		
Surrogate	Unit	Acceptable	Limits			
Naphthalene-d8	%	50-140)	95		
Acridine-d9	%	50-140)	95		
Terphenyl-d14	%	50-140)	110		

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard: Refers to Table 7: Generic Site Condition Standards for Shallow Soils in a Non-Potable Ground Water Condition - Soil -

Residential/Parkland/Institutional Property Use - Coarse Textured Soils

Guideline values are for general reference only. The guidelines provided may or may not be relevant for the intended use. Refer directly to the applicable standard for regulatory interpretation.

4643397 Results are based on the dry weight of the soil.

Note: The result for Benzo(b)Fluoranthene is the total of the Benzo(b)&j)Fluoranthene isomers because the isomers co-elute on the GC column.

2- and 1-Methyl Naphthalene is a calculated parameter. The calculated value is the sum of 2-Methyl Naphthalene and 1-Methyl Naphthalene.

Analysis performed at AGAT Toronto (unless marked by *)

SAMPLING SITE: Belleville Bakelite

Certificate of Analysis

AGAT WORK ORDER: 22P983244

PROJECT: 220509

ATTENTION TO: Paul Bandler

SAMPLED BY:MC

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

O Reg. 153(511) - PCRs (Soil)

				O. INE	g. 133(311)	- FCD3 (30	11)		
DATE RECEIVED: 2022-12-22									DATE REPORTED: 2023-01-09
		SAMPLE DES	CRIPTION:	BH224 SS2	BH211 SS1	BH211 SS3	BH212 SS1	BH212 SS4	
		SAM	PLE TYPE:	Soil	Soil	Soil	Soil	Soil	
		DATE	SAMPLED:	2022-12-15	2022-12-15	2022-12-15	2022-12-15	2022-12-15	
Parameter	Unit	G/S	RDL	4643397	4643399	4643400	4643402	4643404	
Polychlorinated Biphenyls	μg/g	0.35	0.1	<0.1	<0.1	<0.1	<0.1	<0.1	
Moisture Content	%		0.1	12.0	8.4	14.8	6.4	12.0	
Surrogate	Unit	Acceptab	ole Limits						
Decachlorobiphenyl	%	50-	140	88	76	96	100	96	

Comments:

RDL - Reported Detection Limit; G / S - Guideline / Standard: Refers to Table 7: Generic Site Condition Standards for Shallow Soils in a Non-Potable Ground Water Condition - Soil -

Residential/Parkland/Institutional Property Use - Coarse Textured Soils

Guideline values are for general reference only. The guidelines provided may or may not be relevant for the intended use. Refer directly to the applicable standard for regulatory interpretation.

4643397-4643404 Results are based on the dry weight of soil extracted.

PCB total is a calculated parameter. The calculated value is the sum of Aroclor 1242, Aroclor 1248, Aroclor 1254 and Aroclor 1260.

The calculated parameter is non-accredited. The parameters that are components of the calculation are accredited.

Analysis performed at AGAT Toronto (unless marked by *)

SAMPLING SITE: Belleville Bakelite

Certificate of Analysis

AGAT WORK ORDER: 22P983244

PROJECT: 220509

ATTENTION TO: Paul Bandler

SAMPLED BY:MC

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

O. Reg. 153(511) - PHCs F1 - F4 (with PAHs and VOC) (Soil)

			- 3	- (- /		•	/	()	
DATE RECEIVED: 2022-12-22									DATE REPORTED: 2023-01-09
		SAMPLE DES	CRIPTION:	BH219 SS2	BH211 SS1	BH211 SS3	BH212 SS1	BH212 SS4	
		SAMI	PLE TYPE:	Soil	Soil	Soil	Soil	Soil	
		DATE S	SAMPLED:	2022-12-15	2022-12-15	2022-12-15	2022-12-15	2022-12-15	
Parameter	Unit	G/S	RDL	4643388	4643399	4643400	4643402	4643404	
F1 (C6 - C10)	μg/g		5	<5	17	<5	8	<5	
F1 (C6 to C10) minus BTEX	μg/g	55	5	<5	9	<5	7	<5	
F2 (C10 to C16)	μg/g	98	10	<10	<10	<10	<10	<10	
F2 (C10 to C16) minus Naphthalene	μg/g		10	<10	<10	<10	<10	<10	
F3 (C16 to C34)	μg/g	300	50	<50	<50	<50	<50	<50	
F3 (C16 to C34) minus PAHs	μg/g		50	<50	<50	<50	<50	<50	
F4 (C34 to C50)	μg/g	2800	50	<50	<50	<50	<50	<50	
Gravimetric Heavy Hydrocarbons	μg/g	2800	50	NA	NA	NA	NA	NA	
Moisture Content	%		0.1	17.8	8.4	14.8	6.4	12.0	
Surrogate	Unit	Acceptab	le Limits						
Toluene-d8	%	50-1	140	58	98	58	98	67	
Terphenyl	%	60-1	40	87	69	90	75	94	

Comments:

RDL - Reported Detection Limit; G / S - Guideline / Standard: Refers to Table 7: Generic Site Condition Standards for Shallow Soils in a Non-Potable Ground Water Condition - Soil -

Residential/Parkland/Institutional Property Use - Coarse Textured Soils

Guideline values are for general reference only. The guidelines provided may or may not be relevant for the intended use. Refer directly to the applicable standard for regulatory interpretation.

4643388-4643404 Results are based on sample dry weight.

The C6-C10 fraction is calculated using toluene response factor.

C6-C10 (F1 minus BTEX) is a calculated parameter. The calculated value is F1 minus BTEX. The calculated parameter is non-accredited. The parameters that are components of the calculation are accredited.

The C10 - C16, C16 - C34, and C34 - C50 fractions are calculated using the average response factor for n-C10, n-C16, and n-C34.

Gravimetric Heavy Hydrocarbons are not included in the Total C16-C50 and are only determined if the chromatogram of the C34 - C50 hydrocarbons indicates that hydrocarbons >C50 are present. The chromatogram has returned to baseline by the retention time of nC50.

Total C6 - C50 results are corrected for BTEX and PAH contributions.

C>10 - C16 (F2- Naphthalene) is a calculated parameter. The calculated value is F2 - Naphthalene.

C>16 - C34 (F3-PAH) is a calculated parameter. The calculated value is F3-PAH (PAH: sum of Phenanthrene, Benzo(a)anthracene, Benzo(b)fluoranthene, Benzo(k)fluoranthene, Benzo(a)pyrene, Fluoranthene, Dibenzo(a,h)anthracene, Indeno(1,2,3-c,d)pyrene and Pyrene).

This method complies with the Reference Method for the CWS PHC and is validated for use in the laboratory.

nC10, nC16 and nC34 response factors are within 10% of their average.

C50 response factor is within 70% of nC10 + nC16 + nC34 average.

Linearity is within 15%.

Extraction and holding times were met for this sample.

Analysis performed at AGAT Toronto (unless marked by *)

Certified By:

MPopukoly

Certificate of Analysis

AGAT WORK ORDER: 22P983244

PROJECT: 220509

ATTENTION TO: Paul Bandler

SAMPLED BY:MC

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

CLIENT NAME: BLUMETRIC ENVIRONMENTAL INC.

SAMPLING SITE: Belleville Bakelite

O. Reg. 153(511) - PHCs F1 - F4 (with PAHs) (Soil)

DATE RECEIVED: 2022-12-22					DATE REPORTED: 2023-01-
	S/	AMPLE DESC	RIPTION:	BH224 SS2	
	SAMPLE TYPE:			Soil	
		DATE SAMPLED:		2022-12-15	
Parameter	Unit	G/S	RDL	4643397	
enzene	μg/g	0.21	0.02	<0.02	
oluene	μg/g	2.3	0.05	< 0.05	
thylbenzene	μg/g	2	0.05	< 0.05	
n & p-Xylene	μg/g		0.05	< 0.05	
-Xylene	μg/g		0.05	< 0.05	
ylenes (Total)	μg/g	3.1	0.05	< 0.05	
1 (C6 - C10)	μg/g		5	<5	
1 (C6 to C10) minus BTEX	μg/g	55	5	<5	
2 (C10 to C16)	μg/g	98	10	<10	
2 (C10 to C16) minus Naphthalene	μg/g		10	<10	
3 (C16 to C34)	μg/g	300	50	<50	
3 (C16 to C34) minus PAHs	μg/g		50	<50	
4 (C34 to C50)	μg/g	2800	50	<50	
Gravimetric Heavy Hydrocarbons	μg/g	2800	50	NA	
loisture Content	%		0.1	12.0	
Surrogate	Unit	Acceptabl	e Limits		
oluene-d8	% Recovery	60-1	40	94	
erphenyl	%	60-1	40	89	

Certificate of Analysis

AGAT WORK ORDER: 22P983244

PROJECT: 220509

ATTENTION TO: Paul Bandler

SAMPLED BY:MC

O. Reg. 153(511) - PHCs F1 - F4 (with PAHs) (Soil)

DATE RECEIVED: 2022-12-22 DATE REPORTED: 2023-01-09

Residential/Parkland/Institutional Property Use - Coarse Textured Soils

Guideline values are for general reference only. The guidelines provided may or may not be relevant for the intended use. Refer directly to the applicable standard for regulatory interpretation.

RDL - Reported Detection Limit: G / S - Guideline / Standard: Refers to Table 7: Generic Site Condition Standards for Shallow Soils in a Non-Potable Ground Water Condition - Soil -

4643397 Results are based on sample dry weight.

CLIENT NAME: BLUMETRIC ENVIRONMENTAL INC.

SAMPLING SITE: Belleville Bakelite

Comments:

The C6-C10 fraction is calculated using toluene response factor.

Xylenes total is a calculated parameter. The calculated value is the sum of m&p-Xylene and o-Xylene.

C6-C10 (F1 minus BTEX) is a calculated parameter. The calculated value is F1 minus BTEX.

The calculated parameters are non-accredited. The parameters that are components of the calculation are accredited.

The C10 - C16, C16 - C34, and C34 - C50 fractions are calculated using the average response factor for n-C10, n-C16, and n-C34.

Gravimetric Heavy Hydrocarbons are not included in the Total C16-C50 and are only determined if the chromatogram of the C34 - C50 hydrocarbons indicates that hydrocarbons >C50 are present.

The chromatogram has returned to baseline by the retention time of nC50.

Total C6 - C50 results are corrected for BTEX and PAH contributions.

C>10 - C16 (F2- Naphthalene) is a calculated parameter. The calculated value is F2 - Naphthalene.

C>16 - C34 (F3-PAH) is a calculated parameter. The calculated value is F3-PAH (PAH: sum of Phenanthrene, Benzo(a)anthracene, Benzo(b)fluoranthene, Benzo(k)fluoranthene, Benzo(a)pyrene,

Fluoranthene, Dibenzo(a,h)anthracene, Indeno(1,2,3-c,d)pyrene and Pyrene).

This method complies with the Reference Method for the CWS PHC and is validated for use in the laboratory.

nC10, nC16 and nC34 response factors are within 10% of their average.

C50 response factor is within 70% of nC10 + nC16 + nC34 average.

Linearity is within 15%.

Extraction and holding times were met for this sample.

Analysis performed at AGAT Toronto (unless marked by *)

Certified By:

NPopukolof

5835 COOPERS AVENUE

MISSISSAUGA, ONTARIO CANADA L4Z 1Y2

http://www.agatlabs.com

TEL (905)712-5100 FAX (905)712-5122

SAMPLING SITE: Belleville Bakelite

Certificate of Analysis

AGAT WORK ORDER: 22P983244

PROJECT: 220509

ATTENTION TO: Paul Bandler

SAMPLED BY:MC

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

O. Reg. 153(511) - VOCs (with PHC) (Soil)

				J. Reg. 153	(511) - VUC	s (with PHC	J) (3011)		
DATE RECEIVED: 2022-12-22									DATE REPORTED: 2023-01-09
		SAMPLE DESCRIPTION: SAMPLE TYPE: DATE SAMPLED:		BH219 SS2 Soil 2022-12-15	BH211 SS1 Soil 2022-12-15	BH211 SS3 Soil 2022-12-15	BH212 SS1 Soil 2022-12-15	BH212 SS4 Soil 2022-12-15	
Parameter	Unit	G/S	RDL	4643388	4643399	4643400	4643402	4643404	
Dichlorodifluoromethane	μg/g	16	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	
Vinyl Chloride	ug/g	0.02	0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	
Bromomethane	ug/g	0.05	0.05	< 0.05	<0.05	<0.05	< 0.05	< 0.05	
Trichlorofluoromethane	ug/g	4	0.05	< 0.05	< 0.05	<0.05	< 0.05	< 0.05	
Acetone	ug/g	16	0.50	< 0.50	<0.50	<0.50	< 0.50	< 0.50	
1,1-Dichloroethylene	ug/g	0.05	0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	
Methylene Chloride	ug/g	0.1	0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	
Trans- 1,2-Dichloroethylene	ug/g	0.084	0.05	< 0.05	< 0.05	<0.05	< 0.05	< 0.05	
Methyl tert-butyl Ether	ug/g	0.75	0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	
1,1-Dichloroethane	ug/g	3.5	0.02	<0.02	<0.02	<0.02	< 0.02	< 0.02	
Methyl Ethyl Ketone	ug/g	16	0.50	<0.50	<0.50	<0.50	< 0.50	< 0.50	
Cis- 1,2-Dichloroethylene	ug/g	3.4	0.02	< 0.02	<0.02	<0.02	<0.02	< 0.02	
Chloroform	ug/g	0.05	0.04	< 0.04	<0.04	<0.04	<0.04	< 0.04	
1,2-Dichloroethane	ug/g	0.05	0.03	<0.03	<0.03	< 0.03	< 0.03	< 0.03	
1,1,1-Trichloroethane	ug/g	0.38	0.05	< 0.05	<0.05	< 0.05	< 0.05	< 0.05	
Carbon Tetrachloride	ug/g	0.05	0.05	< 0.05	<0.05	< 0.05	<0.05	< 0.05	
Benzene	ug/g	0.21	0.02	<0.02	0.54	<0.02	< 0.02	< 0.02	
1,2-Dichloropropane	ug/g	0.05	0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	
Trichloroethylene	ug/g	0.061	0.03	<0.03	< 0.03	< 0.03	< 0.03	< 0.03	
Bromodichloromethane	ug/g	13	0.05	<0.05	< 0.05	< 0.05	<0.05	< 0.05	
Methyl Isobutyl Ketone	ug/g	1.7	0.50	<0.50	< 0.50	<0.50	< 0.50	< 0.50	
1,1,2-Trichloroethane	ug/g	0.05	0.04	< 0.04	< 0.04	< 0.04	< 0.04	< 0.04	
Toluene	ug/g	2.3	0.05	< 0.05	2.10	< 0.05	0.38	< 0.05	
Dibromochloromethane	ug/g	9.4	0.05	<0.05	< 0.05	< 0.05	<0.05	< 0.05	
Ethylene Dibromide	ug/g	0.05	0.04	<0.04	< 0.04	<0.04	<0.04	< 0.04	
Tetrachloroethylene	ug/g	0.28	0.05	< 0.05	<0.05	< 0.05	<0.05	< 0.05	
1,1,1,2-Tetrachloroethane	ug/g	0.058	0.04	<0.04	<0.04	<0.04	<0.04	< 0.04	
Chlorobenzene	ug/g	2.4	0.05	<0.05	< 0.05	< 0.05	<0.05	< 0.05	
Ethylbenzene	ug/g	2	0.05	< 0.05	0.60	< 0.05	< 0.05	< 0.05	
m & p-Xylene	ug/g		0.05	< 0.05	3.05	< 0.05	0.48	< 0.05	

Certified By:

NPopukolof

SAMPLING SITE: Belleville Bakelite

Certificate of Analysis

AGAT WORK ORDER: 22P983244

PROJECT: 220509

ATTENTION TO: Paul Bandler

SAMPLED BY:MC

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

O. Reg. 153(511) - VOCs (with PHC) (Soil)

DATE RECEIVED: 2022-12-22									DATE REPORTED: 2023-01-09
	S	AMPLE DES	CRIPTION:	BH219 SS2	BH211 SS1	BH211 SS3	BH212 SS1	BH212 SS4	
		SAMPLE TYPE: DATE SAMPLED: G/S RDL		Soil	Soil 2022-12-15 4643399	Soil 2022-12-15 4643400	Soil 2022-12-15 4643402	Soil	
				2022-12-15				2022-12-15	
Parameter	Unit			4643388				4643404	
Bromoform	ug/g	0.27	0.05	< 0.05	<0.05	<0.05	<0.05	< 0.05	
Styrene	ug/g	0.7	0.05	< 0.05	<0.05	< 0.05	< 0.05	< 0.05	
1,1,2,2-Tetrachloroethane	ug/g	0.05	0.05	< 0.05	<0.05	<0.05	< 0.05	< 0.05	
o-Xylene	ug/g		0.05	< 0.05	1.93	<0.05	0.27	< 0.05	
1,3-Dichlorobenzene	ug/g	4.8	0.05	< 0.05	<0.05	<0.05	< 0.05	< 0.05	
1,4-Dichlorobenzene	ug/g	0.083	0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	
1,2-Dichlorobenzene	ug/g	3.4	0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	
Kylenes (Total)	ug/g	3.1	0.05	< 0.05	4.98	<0.05	0.75	< 0.05	
1,3-Dichloropropene (Cis + Trans)	μg/g	0.05	0.05	< 0.05	< 0.05	<0.05	<0.05	< 0.05	
n-Hexane	μg/g	2.8	0.05	<0.05	0.60	< 0.05	< 0.05	< 0.05	
Moisture Content	%		0.1	17.8	8.4	14.8	6.4	12.0	
Surrogate	Unit	Acceptable Limits							
Toluene-d8	% Recovery	50-140		58	98	58	98	67	
4-Bromofluorobenzene	% Recovery	50-140		105	102	90	99	102	

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard: Refers to Table 7: Generic Site Condition Standards for Shallow Soils in a Non-Potable Ground Water Condition - Soil -

Residential/Parkland/Institutional Property Use - Coarse Textured Soils

Guideline values are for general reference only. The guidelines provided may or may not be relevant for the intended use. Refer directly to the applicable standard for regulatory interpretation.

4643388-4643404 The sample was analyzed using the high level technique. The sample was extracted using methanol, a small amount of the methanol extract was diluted in water and the purge & trap GC/MS analysis was performed. Results are based on the dry weight of the soil.

Xylenes total is a calculated parameter. The calculated value is the sum of m&p-Xylene + o-Xylene.

1,3-Dichloropropene total is a calculated parameter. The calculated value is the sum of Cis-1,3-Dichloropropene and Trans-1,3-Dichloropropene.

The calculated parameters are non-accredited. The parameters that are components of the calculation are accredited.

Analysis performed at AGAT Toronto (unless marked by *)

Quality Assurance

CLIENT NAME: BLUMETRIC ENVIRONMENTAL INC.

AGAT WORK ORDER: 22P983244

PROJECT: 220509

ATTENTION TO: Paul Bandler

SAMPLING SITE:Belleville Bakelite

SAMPLED BY:MC

RPT Date: Jan 09, 2023			DUPLICATE				REFEREN	NCE MA	TERIAL	METHOD	BLANK	SPIKE	MAT	RIX SPI	IKE
PARAMETER	Batch	Sample Id	Dup #1	Dup #2	RPD	Method Blank	Measured	Acceptable Limits		Recovery	Acceptable Limits		Recovery	Acceptable Limits	
							Value	Lower	Upper		Lower	Upper		Lower	Upp
O. Reg. 153(511) - Metals & Inor	ganics (Soil)										•				
Antimony	4640396		<0.8	<0.8	NA	< 0.8	118%	70%	130%	88%	80%	120%	88%	70%	130
Arsenic	4640396		2	2	NA	< 1	118%	70%	130%	103%	80%	120%	105%	70%	130
Barium	4640396		50.0	48.5	3.0%	< 2.0	102%	70%	130%	98%	80%	120%	94%	70%	130
Beryllium	4640396		<0.4	<0.4	NA	< 0.4	96%	70%	130%	96%	80%	120%	97%	70%	130
Boron	4640396		7	7	NA	< 5	77%	70%	130%	97%	80%	120%	97%	70%	130
Boron (Hot Water Soluble)	4638982		0.17	0.17	NA	< 0.10	90%	60%	140%	102%	70%	130%	101%	60%	140
Cadmium	4640396		<0.5	<0.5	NA	< 0.5	85%	70%	130%	106%	80%	120%	105%	70%	130
Chromium	4640396		14	13	NA	< 5	99%	70%	130%	112%	80%	120%	109%	70%	130
Cobalt	4640396		5.3	5.0	5.8%	< 0.5	117%	70%	130%	109%	80%	120%	108%	70%	130
Copper	4640396		8.3	7.9	4.9%	< 1.0	102%	70%	130%	109%	80%	120%	96%	70%	130
Lead	4640396		16	15	6.5%	< 1	118%	70%	130%	110%	80%	120%	103%	70%	130
Molybdenum	4640396		2.4	2.3	NA	< 0.5	116%	70%	130%	114%	80%	120%	116%	70%	130
Nickel	4640396		8	8	0.0%	< 1	112%	70%	130%	109%	80%	120%	105%	70%	130
Selenium	4640396		<0.8	<0.8	NA	< 0.8	118%	70%	130%	110%	80%	120%	110%	70%	130
Silver	4640396		<0.5	<0.5	NA	< 0.5	102%	70%	130%	102%	80%	120%	96%	70%	130
Γhallium	4640396		<0.5	<0.5	NA	< 0.5	110%	70%	130%	109%	80%	120%	112%	70%	130
Jranium	4640396		<0.50	< 0.50	NA	< 0.50	128%	70%	130%	112%	80%	120%	119%	70%	130
/anadium	4640396		24.5	23.6	3.7%	< 0.4	109%	70%	130%	110%	80%	120%	108%	70%	130
Zinc	4640396		41	40	2.5%	< 5	111%	70%	130%	113%	80%	120%	112%	70%	130
Chromium, Hexavalent	4634391		<0.2	<0.2	NA	< 0.2	104%	70%	130%	101%	80%	120%	86%	70%	130
Cyanide, WAD	4634391		< 0.040	< 0.040	NA	< 0.040	92%	70%	130%	92%	80%	120%	109%	70%	130
Mercury	4640396		<0.10	<0.10	NA	< 0.10	123%	70%	130%	107%	80%	120%	106%	70%	130
Electrical Conductivity (2:1)	4638982		0.282	0.305	7.8%	< 0.005	115%	80%	120%	NA			NA		
Sodium Adsorption Ratio (2:1) Calc.)	4638982		0.320	0.326	1.9%	N/A	NA			NA			NA		
pH, 2:1 CaCl2 Extraction	4634391		7.47	7.59	1.6%	NA	100%	80%	120%	NA			NA		
Comments: NA signifies Not Applic pH duplicates QA acceptance crite Duplicate NA: results are under 5X	ria was met re				Analytica	al Protocol	document	-							

pH, 2:1 CaCl2 Extraction 4643404 4643404 7.43 7.66 3% 98% 80% 120% NA NA

Comments: NA signifies Not Applicable.

pH duplicates QA acceptance criteria was met relative as stated in Table 5-15 of Analytical Protocol document.

Duplicate NA: results are under 5X the RDL and will not be calculated.

O. Reg. 153(511) - Metals & Inorganics (Soil)

pH, 2:1 CaCl2 Extraction 4648666 7.31 7.38 1% 99% 80% 120% NA NA

Comments: NA signifies Not Applicable.

pH duplicates QA acceptance criteria was met relative as stated in Table 5-15 of Analytical Protocol document.

Duplicate NA: results are under 5X the RDL and will not be calculated.

AGAT QUALITY ASSURANCE REPORT (V1)

Page 14 of 25

Quality Assurance

CLIENT NAME: BLUMETRIC ENVIRONMENTAL INC.

AGAT WORK ORDER: 22P983244

PROJECT: 220509

ATTENTION TO: Paul Bandler

SAMPLING SITE:Belleville Bakelite

SAMPLED BY:MC

		Soil	Analy	/sis	(Con	tinue	d)							
RPT Date: Jan 09, 2023			DUPLICATE	=		REFERE	NCE MA	TERIAL	METHOD	BLANK	SPIKE	MAT	RIX SPI	KE
PARAMETER	Batch Sample	Dup #1	Dup #2	RPD	Method Blank	Measured		ptable nits	Recovery		ptable nits	Recovery		ptable nits
	Batch Id					Value	Lower	Upper		Lower	Upper		Lower	Upper
O. Reg. 153(511) - Metals & Inorg	ganics (Soil)													
Antimony	4648703	<0.8	<0.8	NA	< 0.8	101%	70%	130%	85%	80%	120%	71%	70%	130%
Arsenic	4648703	2	2	NA	< 1	122%	70%	130%	103%	80%	120%	119%	70%	130%
Barium	4648703	58.5	58.1	0.7%	< 2.0	108%	70%	130%	101%	80%	120%	103%	70%	130%
Beryllium	4648703	< 0.4	< 0.4	NA	< 0.4	110%	70%	130%	99%	80%	120%	102%	70%	130%
Boron	4648703	9	8	NA	< 5	102%	70%	130%	108%	80%	120%	106%	70%	130%
Boron (Hot Water Soluble)	4647553	0.16	0.16	NA	< 0.10	94%	60%	140%	95%	70%	130%	92%	60%	140%
Cadmium	4648703	<0.5	<0.5	NA	< 0.5	83%	70%	130%	105%	80%	120%	105%	70%	130%
Chromium	4648703	13	13	NA	< 5	119%	70%	130%	111%	80%	120%	117%	70%	130%
Cobalt	4648703	4.7	4.6	2.2%	< 0.5	119%	70%	130%	110%	80%	120%	109%	70%	130%
Copper	4648703	8.7	8.8	1.1%	< 1.0	104%	70%	130%	109%	80%	120%	129%	70%	130%
Lead	4648703	4	4	NA	< 1	110%	70%	130%	108%	80%	120%	101%	70%	130%
Molybdenum	4648703	<0.5	<0.5	NA	< 0.5	115%	70%	130%	113%	80%	120%	107%	70%	130%
Nickel	4648703	11	10	9.5%	< 1	117%	70%	130%	108%	80%	120%	103%	70%	130%
Selenium	4648703	<0.8	<0.8	NA	< 0.8	101%	70%	130%	103%	80%	120%	110%	70%	130%
Silver	4648703	<0.5	<0.5	NA	< 0.5	112%	70%	130%	116%	80%	120%	91%	70%	130%
Thallium	4648703	<0.5	<0.5	NA	< 0.5	117%	70%	130%	105%	80%	120%	100%	70%	130%
Uranium	4648703	0.58	0.58	NA	< 0.50	119%	70%	130%	104%	80%	120%	113%	70%	130%
Vanadium	4648703	22.1	22.5	1.8%	< 0.4	128%	70%	130%	108%	80%	120%	116%	70%	130%
Zinc	4648703	25	23	NA	< 5	113%	70%	130%	110%	80%	120%	98%	70%	130%
Chromium, Hexavalent	4650899	<0.2	<0.2	NA	< 0.2	93%	70%	130%	97%	80%	120%	72%	70%	130%
Cyanide, WAD	4643402 4643402	< 0.040	< 0.040	NA	< 0.040	97%	70%	130%	108%	80%	120%	105%	70%	130%
Mercury	4648703	<0.10	<0.10	NA	< 0.10	124%	70%	130%	99%	80%	120%	101%	70%	130%
Electrical Conductivity (2:1)	4647553	0.941	1.09	14.7%	< 0.005	112%	80%	120%	NA			NA		
Sodium Adsorption Ratio (2:1) (Calc.)	4647553	1.38	1.39	0.7%	N/A	NA			NA			NA		
pH, 2:1 CaCl2 Extraction	4648666	7.31	7.38	1.0%	NA	99%	80%	120%						

Comments: NA signifies Not Applicable.

pH duplicates QA acceptance criteria was met relative as stated in Table 5-15 of Analytical Protocol document.

Duplicate NA: results are under 5X the RDL and will not be calculated.

O. Reg. 153(511) - Metals & Inorganics (Soil)

pH, 2:1 CaCl2 Extraction 4643402 4643402 7.48 7.47 0.2% 99% 80% 120% NA NA

Comments: NA signifies Not Applicable.

pH duplicates QA acceptance criteria was met relative as stated in Table 5-15 of Analytical Protocol document.

Duplicate NA: results are under 5X the RDL and will not be calculated.

manyot Bheles MANACOTHER ONE MEMBET

Certified By:

AGAT QUALITY ASSURANCE REPORT (V1)

Page 15 of 25

Quality Assurance

CLIENT NAME: BLUMETRIC ENVIRONMENTAL INC.

AGAT WORK ORDER: 22P983244

PROJECT: 220509

ATTENTION TO: Paul Bandler

SAMPLING SITE:Belleville Bakelite SAMPLED BY:MC

SAMPLING SITE. Believille	Dakeille							AIVIP	LED D	1.IVIC					
			Trac	e Or	gani	cs Ar	nalys	is							
RPT Date: Jan 09, 2023				DUPLICAT	E		REFERE	NCE MA	TERIAL	METHOD	BLANK	SPIKE	MAT	RIX SPI	KE
PARAMETER	Batch	Sample Id	Dup #1	Dup #2	RPD	Method Blank	Measured Value		eptable mits	Recovery	Lie	ptable nits	Recovery	Lin	ptable nits
		lu	-				value	Lower	Upper		Lower	Upper		Lower	Upper
O. Reg. 153(511) - PHCs F1 - F	4 (with PAHs	and VOC)	(Soil)												
F1 (C6 - C10)	4636102		<5	<5	NA	< 5	98%	60%	140%	86%	60%	140%	80%	60%	140%
F2 (C10 to C16)	4643399		< 10	< 10	NA	< 10	100%	60%	140%	112%	60%	140%	109%	60%	140%
F3 (C16 to C34)	4643399		< 50	< 50	NA	< 50	105%	60%	140%	105%	60%	140%	127%	60%	140%
F4 (C34 to C50)	4643399		< 50	< 50	NA	< 50	80%	60%	140%	100%	60%	140%	127%	60%	140%
O. Reg. 153(511) - BNA (full) +	PAHs (Soil)														
Naphthalene	4600978		< 0.05	< 0.05	NA	< 0.05	85%	50%	140%	89%	50%	140%	79%	50%	140%
Acenaphthylene	4600978		< 0.05	< 0.05	NA	< 0.05	79%	50%	140%	85%	50%	140%	85%	50%	140%
Acenaphthene	4600978		< 0.05	< 0.05	NA	< 0.05	85%	50%	140%	84%	50%	140%	84%	50%	140%
Fluorene	4600978		< 0.05	< 0.05	NA	< 0.05	82%	50%	140%	79%	50%	140%	79%	50%	140%
Phenanthrene	4600978		< 0.05	< 0.05	NA	< 0.05	85%	50%	140%	85%	50%	140%	85%	50%	140%
Anthracene	4600978		< 0.05	< 0.05	NA	< 0.05	84%	50%	140%	79%	50%	140%	84%	50%	140%
Fluoranthene	4600978		< 0.05	< 0.05	NA	< 0.05	79%	50%	140%	85%	50%	140%	79%	50%	140%
Pyrene	4600978		< 0.05	< 0.05	NA	< 0.05	85%	50%	140%	84%	50%	140%	85%	50%	140%
Benz(a)anthracene	4600978		< 0.05	< 0.05	NA	< 0.05	79%	50%	140%	79%	50%	140%	82%	50%	140%
Chrysene	4600978		< 0.05	< 0.05	NA	< 0.05	85%	50%	140%	85%	50%	140%	85%	50%	140%
Benzo(b)fluoranthene	4600978		< 0.05	< 0.05	NA	< 0.05	82%	50%	140%	86%	50%	140%	84%	50%	140%
Benzo(k)fluoranthene	4600978		< 0.05	< 0.05	NA	< 0.05	89%	50%	140%	82%	50%	140%	79%	50%	140%
Benzo(a)pyrene	4600978		< 0.05	< 0.05	NA	< 0.05	85%	50%		85%	50%	140%	85%	50%	140%
Indeno(1,2,3-cd)pyrene	4600978		< 0.05	< 0.05	NA	< 0.05	84%	50%	140%	84%	50%	140%	85%	50%	140%
Dibenzo(a,h)anthracene	4600978		< 0.05	< 0.05	NA	< 0.05	79%	50%		79%	50%	140%	60%	50%	140%
Benzo(g,h,i)perylene	4600978		< 0.05	< 0.05	NA	< 0.05	85%	50%	140%	68%	50%	140%	75%	50%	140%
Phenol	4600978		< 0.5	< 0.5	NA	< 0.5	84%	30%	130%	80%	30%	130%	79%	30%	130%
Bis(2-chloroethyl)ether	4600978		< 0.1	< 0.1	NA	< 0.1	114%	50%	140%	81%	50%	140%	118%	50%	140%
2-Chlorophenol	4600978		< 0.1	< 0.1	NA	< 0.1	71%	50%	140%	65%	50%	140%	90%	50%	140%
o-Cresol	4600978		< 0.1	< 0.1	NA	< 0.1	104%	50%		72%	50%	140%	78%	50%	140%
Bis(2-chloroisopropyl)ether	4600978		< 0.1	< 0.1	NA	< 0.1	96%	50%	140%	84%	50%	140%	62%	50%	140%
m & p - Cresol	4600978		< 0.1	< 0.1	NA	< 0.1	104%	50%	140%	87%	50%	140%	103%	50%	140%
2,4-Dimethylphenol	4600978		< 0.2	< 0.2	NA	< 0.2	75%	30%	130%	66%	30%	130%	60%	30%	130%
2,4-Dichlorophenol	4600978		< 0.1	< 0.1	NA	< 0.1	75%	50%		104%	50%	140%	96%		140%
1,2,4-Trichlorobenzene	4600978		< 0.05	< 0.05	NA	< 0.05	93%	50%	140%	68%	50%	140%	68%	50%	140%
p-Chloroaniline	4600978		< 0.5	< 0.5	NA	< 0.5	96%	30%	130%	78%	30%	130%	67%	30%	130%
2,4,6-Trichlorophenol	4600978		< 0.1	< 0.1	NA	< 0.1	111%	50%		114%	50%	140%	89%		140%
2,4,5-Trichlorophenol	4600978		< 0.1	< 0.1	NA	< 0.1	106%		140%	102%		140%	69%		140%
1,1-Biphenyl	4600978		< 0.05	< 0.05	NA	< 0.05	NA		140%	77%		140%	65%		140%
Dimethyl Phthalate	4600978		< 0.1	< 0.1	NA	< 0.1	90%	50%		67%		140%	62%		140%
Diethyl Phthalate	4600978		< 0.1	< 0.1	NA	< 0.1	117%	50%	140%	72%	50%	140%	85%	50%	140%
Pentachlorophenol	4600978		< 0.1	< 0.1	NA	< 0.1	90%		140%	73%		140%	76%		140%
3,3'-Dichlorobenzidine	4600978		< 0.5	< 0.5	NA	< 0.5	96%	30%		104%	30%		60%		130%
2,4-Dinitrophenol	4600978		< 2.0	< 2.0	NA	< 2.0	96%	30%		89%		130%	88%		130%
,							-0,0	- 3 , 3			- 5,5	0 , 0	/ 0	- 3 , 0	

AGAT QUALITY ASSURANCE REPORT (V1)

Page 16 of 25

AGAT Laboratories is accredited to ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA) and/or Standards Council of Canada (SCC) for specific tests listed on the scope of accreditation. AGAT Laboratories (Mississauga) is also accredited by the Canadian Association for Laboratory Accreditation Inc. (CALA) for specific drinking water tests. Accreditations are location and parameter specific. A complete listing of parameters for each location is available from www.cala.ca and/or www.scc.ca. The tests in this report may not necessarily be included in the scope of accreditation. RPDs calculated using raw data. The RPD may not be reflective of duplicate values shown, due to rounding of final results.

Quality Assurance

CLIENT NAME: BLUMETRIC ENVIRONMENTAL INC. AGAT WORK ORDER: 22P983244 PROJECT: 220509 ATTENTION TO: Paul Bandler

SAMPLING SITE:Belleville	Bakelite						5	SAMPL	_ED B	Y:MC					
	٦	race	Org	anics	Ana	alysis	(Cor	ntin	ued	l)					
RPT Date: Jan 09, 2023			Г	UPLICAT	E		REFERE	NCE MA	TERIAL	METHOD	BLANK	SPIKE	MAT	RIX SPI	KE
PARAMETER	Batch	Sample Id	Dup #1	Dup #2	RPD	Method Blank	Measured Value		ptable nits Upper	Recovery		ptable nits Upper	Recovery		ptable nits Upper
Bis(2-Ethylhexyl)phthalate	4600978		< 0.2	< 0.2	NA	< 0.2	99%	50%	140%	63%	50%	140%	65%	50%	140%
O. Reg. 153(511) - VOCs (with I	PHC) (Soil)														
Dichlorodifluoromethane	4636102		< 0.05	< 0.05	NA	< 0.05	86%	50%	140%	108%	50%	140%	96%	50%	140%
Vinyl Chloride	4636102		< 0.02	< 0.02	NA	< 0.02	88%	50%	140%	107%	50%	140%	113%	50%	140%
Bromomethane	4636102		< 0.05	< 0.05	NA	< 0.05	107%	50%	140%	99%	50%	140%	83%	50%	140%
Trichlorofluoromethane	4636102		< 0.05	< 0.05	NA	< 0.05	81%	50%	140%	115%	50%	140%	114%	50%	140%
Acetone	4636102		<0.50	<0.50	NA	< 0.50	106%	50%	140%	95%	50%	140%	109%	50%	140%
1,1-Dichloroethylene	4636102		<0.05	<0.05	NA	< 0.05	102%	50%	140%	114%	60%	130%	97%	50%	140%
Methylene Chloride	4636102		< 0.05	< 0.05	NA	< 0.05	99%	50%	140%	83%	60%	130%	88%	50%	140%
Trans- 1,2-Dichloroethylene	4636102		< 0.05	< 0.05	NA	< 0.05	111%	50%	140%	101%	60%	130%	100%	50%	140%
Methyl tert-butyl Ether	4636102		< 0.05	< 0.05	NA	< 0.05	113%	50%	140%	100%	60%	130%	103%	50%	140%
1,1-Dichloroethane	4636102		<0.02	<0.02	NA	< 0.02	120%	50%	140%	90%	60%	130%	98%	50%	140%
Methyl Ethyl Ketone	4636102		<0.50	<0.50	NA	< 0.50	99%	50%	140%	97%	50%	140%	103%	50%	140%
Cis- 1,2-Dichloroethylene	4636102		<0.02	< 0.02	NA	< 0.02	119%	50%	140%	104%	60%	130%	97%	50%	140%
Chloroform	4636102		< 0.04	< 0.04	NA	< 0.04	95%	50%	140%	120%	60%	130%	95%	50%	140%
1,2-Dichloroethane	4636102		< 0.03	< 0.03	NA	< 0.03	101%	50%	140%	101%	60%	130%	97%	50%	140%
1,1,1-Trichloroethane	4636102		<0.05	<0.05	NA	< 0.05	116%	50%	140%	103%	60%	130%	93%	50%	140%
Carbon Tetrachloride	4636102		<0.05	<0.05	NA	< 0.05	102%	50%	140%	95%	60%	130%	97%	50%	140%
Benzene	4636102		< 0.02	< 0.02	NA	< 0.02	119%	50%	140%	115%	60%	130%	107%	50%	140%
1,2-Dichloropropane	4636102		< 0.03	< 0.03	NA	< 0.03	101%	50%	140%	115%	60%	130%	84%	50%	140%
Trichloroethylene	4636102		<0.03	< 0.03	NA	< 0.03	112%	50%	140%	98%	60%	130%	110%	50%	140%
Bromodichloromethane	4636102		<0.05	<0.05	NA	< 0.05	100%	50%	140%	93%	60%	130%	105%	50%	140%
Methyl Isobutyl Ketone	4636102		<0.50	<0.50	NA	< 0.50	108%	50%	140%	77%	50%	140%	92%	50%	140%
1,1,2-Trichloroethane	4636102		< 0.04	< 0.04	NA	< 0.04	81%	50%	140%	99%	60%	130%	81%	50%	140%
Toluene	4636102		< 0.05	< 0.05	NA	< 0.05	73%	50%	140%	98%	60%	130%	92%	50%	140%
Dibromochloromethane	4636102		< 0.05	< 0.05	NA	< 0.05	96%	50%	140%	118%	60%	130%	91%	50%	140%
Ethylene Dibromide	4636102		<0.04	<0.04	NA	< 0.04	81%		140%	95%	60%	130%	74%	50%	140%
Tetrachloroethylene	4636102		<0.05	<0.05	NA	< 0.05	84%	50%	140%	96%	60%	130%	102%	50%	140%
1,1,1,2-Tetrachloroethane	4636102		< 0.04	< 0.04	NA	< 0.04	87%	50%	140%	108%	60%	130%	98%	50%	140%
Chlorobenzene	4636102		<0.05	< 0.05	NA	< 0.05	89%		140%	113%		130%	102%		140%
Ethylbenzene	4636102		<0.05	<0.05	NA	< 0.05	72%		140%	87%		130%	82%		140%
m & p-Xylene	4636102		<0.05	<0.05	NA	< 0.05	91%		140%	89%		130%	87%		140%
Bromoform	4636102		<0.05	<0.05	NA	< 0.05	95%	50%	140%	113%	60%	130%	88%	50%	140%
Styrene	4636102		<0.05	<0.05	NA	< 0.05	78%		140%	92%		130%	76%		140%
1,1,2,2-Tetrachloroethane	4636102		<0.05	<0.05	NA	< 0.05	102%		140%	103%		130%	91%		140%
o-Xylene	4636102		<0.05	<0.05	NA	< 0.05	71%	50%	140%	95%		130%	88%		140%
1,3-Dichlorobenzene	4636102		<0.05	<0.05	NA	< 0.05	89%		140%	109%		130%	99%		140%
1,4-Dichlorobenzene	4636102		<0.05	<0.05	NA	< 0.05	93%	50%	140%	110%	60%	130%	100%	50%	140%
1,2-Dichlorobenzene	4636102		<0.05	<0.05	NA	< 0.05	87%		140%	109%		130%	94%		140%

AGAT QUALITY ASSURANCE REPORT (V1)

Page 17 of 25

AGAT Laboratories is accredited to ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA) and/or Standards Council of Canada (SCC) for specific tests listed on the scope of accreditation. AGAT Laboratories (Mississauga) is also accredited by the Canadian Association for Laboratory Accreditation Inc. (CALA) for specific drinking water tests. Accreditations are location and parameter specific. A complete listing of parameters for each location is available from www.cala.ca and/or www.scc.ca. The tests in this report may not necessarily be included in the scope of accreditation. RPDs calculated using raw data. The RPD may not be reflective of duplicate values shown, due to rounding of final results.

Quality Assurance

CLIENT NAME: BLUMETRIC ENVIRONMENTAL INC.

AGAT WORK ORDER: 22P983244

PROJECT: 220509

ATTENTION TO: Paul Bandler

SAMPLING SITE: Belleville Bakelite

SAMPLED BY:MC

	7	Ггасе	Org	anics	Ana	lysis	(Cor	ntin	ued)					
RPT Date: Jan 09, 2023				UPLICAT	E		REFERE	NCE MA	TERIAL	METHOD	BLANK	SPIKE	MAT	RIX SPI	KE
PARAMETER	Batch	Sample	Dup #1	Dup #2	RPD	Method Blank	Measured		ptable nits	Recovery	1 :	ptable nits	Recovery		ptable nits
		ld	''	.,			Value	Lower	Upper	,	Lower	Upper	,	Lower	Upper
n-Hexane	4636102	,	<0.05	<0.05	NA	< 0.05	92%	50%	140%	112%	60%	130%	76%	50%	140%
O. Reg. 153(511) - PHCs F1 - F4 (with PAHs)	(Soil)													
Benzene	4637267		< 0.02	< 0.02	NA	< 0.02	98%	60%	140%	83%	60%	140%	97%	60%	140%
Toluene	4637267		< 0.05	< 0.05	NA	< 0.05	100%	60%	140%	87%	60%	140%	89%	60%	140%
Ethylbenzene	4637267		< 0.05	< 0.05	NA	< 0.05	101%	60%	140%	87%	60%	140%	88%	60%	140%
m & p-Xylene	4637267		< 0.05	< 0.05	NA	< 0.05	101%	60%	140%	104%	60%	140%	110%	60%	140%
o-Xylene	4637267		<0.05	<0.05	NA	< 0.05	103%	60%	140%	89%	60%	140%	85%	60%	140%
F1 (C6 - C10)	4637267		<5	<5	NA	< 5	90%	60%	140%	81%	60%	140%	79%	60%	140%
O. Reg. 153(511) - PCBs (Soil)															
Polychlorinated Biphenyls	4634373		< 0.1	< 0.1	NA	< 0.1	92%	50%	140%	85%	50%	140%	90%	50%	140%
Formaldehyde (Soil)															
Formaldehyde		NA	NA	NA	0.0%	< 0.5	NA	70%	130%	87%	70%	130%	NA	70%	130%
2,3,5,6-Tetrafluorobenzaldehyde		NA	NA	NA	0.0%	80	NA	40%	140%	93%	40%	140%	NA	40%	140%

Comments: NA: Not applicable

NA in Duplicate Deviation indicates that the deviation could not be calculated because one or both results are < 5x LDR.

NA in Percent Recovery of Fortified Sample indicates that the result is not provided due to sample heterogeneity or too high concentration relative to spike.

NA in fortified blank or MRC indicates that it is not required by the procedure.

Formaldehyde (Soil)

Formaldehyde	NA	NA	NA	0.0%	< 0.5	NA	70% 130%	95%	70% 130%	NA	70% 130%
2,3,5,6-Tetrafluorobenzaldehyde	NA	NA	NA	0.0%	101	NA	40% 140%	102%	40% 140%	NA	40% 140%

Comments: NA: Not applicable

NA in Duplicate Deviation indicates that the deviation could not be calculated because one or both results are < 5x LDR.

NA in Percent Recovery of Fortified Sample indicates that the result is not provided due to sample heterogeneity or too high concentration relative to spike.

NA in fortified blank or MRC indicates that it is not required by the procedure.

Certified By:

NPoprukolof

AGAT QUALITY ASSURANCE REPORT (V1)

Page 18 of 25

Method Summary

SAMPLED BY:MC

CLIENT NAME: BLUMETRIC ENVIRONMENTAL INC.

AGAT WORK ORDER: 22P983244

PROJECT: 220509

ATTENTION TO: Paul Bandler

SAMPLING SITE: Belleville Bakelite

Or titil Elito OTTE:Bollovillo Baltolito			
PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE
Soil Analysis			
Antimony	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS
Arsenic	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS
Barium	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS
Beryllium	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS
Boron	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS
Boron (Hot Water Soluble)	MET-93-6104	modified from EPA 6010D and MSA PART 3, CH 21	ICP/OES
Cadmium	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS
Chromium	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS
Cobalt	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS
Copper	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS
Lead	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS
Molybdenum	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS
Nickel	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS
Selenium	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS
Silver	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS
Thallium	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS
Uranium	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS
Vanadium	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS
Zinc	MET 93 -6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS
Chromium, Hexavalent	INOR-93-6068	modified from EPA 3060 and EPA 7196	SPECTROPHOTOMETER
Cyanide, WAD	INOR-93-6052	modified from ON MOECC E3015, SM 4500-CN- I, G-387 $$	TECHNICON AUTO ANALYZER
Mercury	MET-93-6103	modified from EPA 7471B and SM 3112 B	ICP-MS
Electrical Conductivity (2:1)	INOR-93-6075	modified from MSA PART 3, CH 14 and SM 2510 B	PC TITRATE
Sodium Adsorption Ratio (2:1) (Calc.)	INOR-93-6007	modified from EPA 6010D & Analytical Protocol	ICP/OES
pH, 2:1 CaCl2 Extraction	INOR-93-6075	modified from EPA 9045D, MCKEAGUE 3.11 E3137	PC TITRATE

Method Summary

SAMPLED BY:MC

CLIENT NAME: BLUMETRIC ENVIRONMENTAL INC. AGAT WORK ORDER: 22P983244
PROJECT: 220509 ATTENTION TO: Paul Bandler

SAMPLING SITE: Belleville Bakelite

PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE
Trace Organics Analysis		·	
Formaldehyde	ORG-100-5126F	Standard Methods 6252B; MA. 400 - HCHO 1.0	GC/MS
2,3,5,6-Tetrafluorobenzaldehyde	ORG-100-5126F	Standard Methods 6252B	GC/MS
Naphthalene	ORG-91-5114	modified from EPA 3510C, 8270E & ON MOECC E3265	GC/MS
Acenaphthylene	ORG-91-5114	modified from EPA 3510C, 8270E & ON MOECC E3265	GC/MS
Acenaphthene	ORG-91-5114	modified from EPA 3510C, 8270E & ON MOECC E3265	GC/MS
Fluorene	ORG-91-5114	modified from EPA 3510C, 8270E & ON MOECC E3265	GC/MS
Phenanthrene	ORG-91-5114	modified from EPA 3510C, 8270E & ON MOECC E3265	GC/MS
Anthracene	ORG-91-5114	modified from EPA 3510C, 8270E & ON MOECC E3265	GC/MS
Fluoranthene	ORG-91-5114	modified from EPA 3510C, 8270E & ON MOECC E3265	GC/MS
Pyrene	ORG-91-5114	modified from EPA 3510C, 8270E & ON MOECC E3265	GC/MS
Benz(a)anthracene	ORG-91-5114	modified from EPA 3510C, 8270E & ON MOECC E3265	GC/MS
Chrysene	ORG-91-5114	modified from EPA 3510C, 8270E & ON MOECC E3265	GC/MS
Benzo(b)fluoranthene	ORG-91-5114	modified from EPA 3510C, 8270E & ON MOECC E3265	GC/MS
Benzo(k)fluoranthene	ORG-91-5114	modified from EPA 3510C, 8270E & ON MOECC E3265	GC/MS
Benzo(a)pyrene	ORG-91-5114	modified from EPA 3510C, 8270E & ON MOECC E3265	GC/MS
Indeno(1,2,3-cd)pyrene	ORG-91-5114	modified from EPA 3510C, 8270E & ON MOECC E3265	GC/MS
Dibenzo(a,h)anthracene	ORG-91-5114	modified from EPA 3510C, 8270E & ON MOECC E3265	GC/MS
Benzo(g,h,i)perylene	ORG-91-5114	modified from EPA 3510C, 8270E & ON MOECC E3265	GC/MS
Phenol	ORG-91-5114	modified from EPA 3510C, 8270E & ON MOECC E3265	GC/MS
Bis(2-chloroethyl)ether	ORG-91-5114	modified from EPA 3510C, 8270E & ON MOECC E3265	GC/MS
2-Chlorophenol	ORG-91-5114	modified from EPA 3510C, 8270E & ON MOECC E3265	GC/MS
o-Cresol	ORG-91-5114	modified from EPA 3510C, 8270E & ON MOECC E3265	GC/MS
Bis(2-chloroisopropyl)ether	ORG-91-5114	modified from EPA 3510C, 8270E & ON MOECC E3265	GC/MS
m & p - Cresol	ORG-91-5114	modified from EPA 3510C, 8270E & ON MOECC E3265	GC/MS
2,4-Dimethylphenol	ORG-91-5114	modified from EPA 3510C, 8270E & ON MOECC E3265	GC/MS
2,4-Dichlorophenol	ORG-91-5114	modified from EPA 3510C, 8270E & ON MOECC E3265	GC/MS
1,2,4-Trichlorobenzene	ORG-91-5114	modified from EPA 3510C, 8270E & ON MOECC E3265	GC/MS
p-Chloroaniline	ORG-91-5114	modified from EPA 3510C, 8270E & ON MOECC E3265	GC/MS

Method Summary

SAMPLED BY:MC

CLIENT NAME: BLUMETRIC ENVIRONMENTAL INC.

AGAT WORK ORDER: 22P983244

PROJECT: 220509

ATTENTION TO: Paul Bandler

SAMPLING SITE: Belleville Bakelite

PARAMETER AGAT S.O.P LITERATURE REFERENCE ANALYTICAL TECHNIQUE modified from EPA 3510C, 8270E & 1 and 2 Methlynaphthalene ORG-91-5114 CALCULATION ON MOECC E3265 modified from EPA 3510C, 8270E & ORG-91-5114 GC/MS 2,4,6-Trichlorophenol ON MOECC E3265 modified from EPA 3510C, 8270E & ORG-91-5114 GC/MS 2,4,5-Trichlorophenol ON MOECC E3265 modified from EPA 3510C, 8270E & 1,1-Biphenyl ORG-91-5114 GC/MS ON MOECC E3265 modified from EPA 3510C, 8270E & GC/MS Dimethyl Phthalate ORG-91-5114 ON MOECC E3265 modified from EPA 3510C, 8270E & 2,4 and 2,6-Dinitrotoluene CALCULATION ORG-91-5114 ON MOECC E3265 modified from EPA 3510C, 8270E & Diethyl Phthalate ORG-91-5114 GC/MS ON MOECC E3265 modified from EPA 3510C, 8270E & Pentachlorophenol ORG-91-5114 GC/MS ON MOECC E3265 modified from EPA 3510C, 8270E & GC/MS 3,3'-Dichlorobenzidine ORG-91-5114 ON MOECC E3265 modified from EPA 3510C, 8270E & 2,4-Dinitrophenol ORG-91-5114 GC/MS ON MOECC E3265 modified from EPA 3510C, 8270E & Bis(2-Ethylhexyl)phthalate ORG-91-5114 GC/MS ON MOECC E3265 modified from EPA 3510C, 8270E & phenol-d6 surrogate ORG-91-5114 GC/MS ON MOECC E3265 modified from EPA 3510C, 8270E & 2-Fluorophenol ORG-91-5114 GC/MS ON MOECC E3265 modified from EPA 3510C, 8270E & 2,4,6-Tribromophenol ORG-91-5114 GC/MS ON MOECC E3265 modified from EPA 3510C, 8270E & Chrysene-d12 ORG-91-5114 GC/MS ON MOECC E3265 Moisture Content VOL-91-5009 modified from CCME Tier 1 Method **BALANCE** wet weight BNA ORG-91-5114 BALANCE modified from EPA 3570 and EPA ORG-91-5106 GC/MS Naphthalene 8270E modified from EPA 3570 and EPA Acenaphthylene ORG-91-5106 GC/MS 8270E modified from EPA 3570 and EPA Acenaphthene ORG-91-5106 GC/MS 8270E modified from EPA 3570 and EPA Fluorene ORG-91-5106 GC/MS 8270F modified from EPA 3570 and EPA ORG-91-5106 GC/MS Phenanthrene 8270F modified from EPA 3570 and EPA ORG-91-5106 GC/MS Anthracene 8270E modified from EPA 3570 and EPA Fluoranthene ORG-91-5106 GC/MS 8270E modified from EPA 3570 and EPA Pyrene ORG-91-5106 GC/MS 8270E modified from EPA 3570 and EPA Benz(a)anthracene ORG-91-5106 GC/MS modified from EPA 3570 and EPA ORG-91-5106 GC/MS Chrysene 8270F modified from EPA 3570 and EPA Benzo(b)fluoranthene GC/MS ORG-91-5106 8270F modified from EPA 3570 and EPA ORG-91-5106 GC/MS Benzo(k)fluoranthene

8270E

Method Summary

SAMPLED BY:MC

CLIENT NAME: BLUMETRIC ENVIRONMENTAL INC.

AGAT WORK ORDER: 22P983244

PROJECT: 220509

ATTENTION TO: Paul Bandler

SAMPLING SITE: Belleville Bakelite

PARAMETER AGAT S.O.P LITERATURE REFERENCE ANALYTICAL TECHNIQUE modified from EPA 3570 and EPA Benzo(a)pyrene ORG-91-5106 GC/MS 8270E modified from EPA 3570 and EPA GC/MS ORG-91-5106 Indeno(1,2,3-cd)pyrene 8270F modified from EPA 3570 and EPA ORG-91-5106 GC/MS Dibenz(a,h)anthracene 8270F modified from EPA 3570 and EPA Benzo(g,h,i)perylene ORG-91-5106 GC/MS 8270E modified from EPA 3570 and EPA GC/MS 1 and 2 Methlynaphthalene ORG-91-5106 8270E modified from EPA 3570 and EPA ORG-91-5106 GC/MS Naphthalene-d8 8270E modified from EPA 3570 and EPA Acridine-d9 ORG-91-5106 GC/MS modified from EPA 3570 and EPA Terphenyl-d14 ORG-91-5106 GC/MS 8270E modified from EPA SW-846 3570 & GC/ECD Polychlorinated Biphenyls ORG-91-5113 8082A modified from EPA SW-846 3541 & ORG-91-5113 GC/ECD Decachlorobiphenyl 8082A F1 (C6 - C10) VOL-91-5009 modified from CCME Tier 1 Method (P&T)GC/FID F1 (C6 to C10) minus BTEX VOL-91-5009 modified from CCME Tier 1 Method P&T GC/FID modified from EPA 5030B & EPA VOL-91-5001 (P&T)GC/MS Toluene-d8 8260D F2 (C10 to C16) VOL-91-5009 modified from CCME Tier 1 Method GC/FID F2 (C10 to C16) minus Naphthalene VOL-91-5009 modified from CCME Tier 1 Method GC/FID modified from CCME Tier 1 Method GC/FID F3 (C16 to C34) VOL-91-5009 F3 (C16 to C34) minus PAHs VOL-91-5009 modified from CCME Tier 1 Method GC/FID F4 (C34 to C50) VOL-91-5009 modified from CCME Tier 1 Method GC/FID Gravimetric Heavy Hydrocarbons modified from CCME Tier 1 Method **BALANCE** VOL-91-5009 Terphenyl VOL-91-5009 modified from CCME Tier 1 Method GC/FID (P&T)GC/MS Benzene VOL-91-5009 modified from CCME Tier 1 Method Toluene VOL-91-5009 modified from CCME Tier 1 Method (P&T)GC/MS Ethylbenzene VOL-91-5009 modified from CCME Tier 1 Method (P&T)GC/MS m & p-Xylene VOL-91-5009 modified from CCME Tier 1 Method (P&T)GC/MS o-Xylene VOL-91-5009 modified from CCME Tier 1 Method (P&T)GC/MS Xylenes (Total) VOL-91-5009 modified from CCME Tier 1 Method (P&T)GC/MS modified from EPA SW-846 5030C & Toluene-d8 VOL-91-5009 (P&T)GC/MS 8260D modified from EPA 5035A and EPA Dichlorodifluoromethane VOL-91-5002 (P&T)GC/MS 8260D modified from EPA 5035A and EPA Vinyl Chloride VOL-91-5002 (P&T)GC/MS 8260D modified from EPA 5035A and EPA Bromomethane VOL-91-5002 (P&T)GC/MS 8260D modified from EPA 5035A and EPA Trichlorofluoromethane VOL-91-5002 (P&T)GC/MS 8260D modified from EPA 5035A and EPA Acetone VOL-91-5002 (P&T)GC/MS 8260D modified from EPA 5035A and EPA 1,1-Dichloroethylene VOL-91-5002 (P&T)GC/MS 8260D modified from EPA 5035A and EPA Methylene Chloride VOL-91-5002 (P&T)GC/MS 8260D

ANALYTICAL TECHNIQUE

Method Summary

SAMPLED BY:MC

LITERATURE REFERENCE

CLIENT NAME: BLUMETRIC ENVIRONMENTAL INC. AGAT WORK ORDER: 22P983244 PROJECT: 220509 ATTENTION TO: Paul Bandler

AGAT S.O.P

SAMPLING SITE: Belleville Bakelite

PARAMETER

PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE
Trans- 1,2-Dichloroethylene	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS
Methyl tert-butyl Ether	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS
1,1-Dichloroethane	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS
Methyl Ethyl Ketone	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS
Cis- 1,2-Dichloroethylene	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS
Chloroform	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS
1,2-Dichloroethane	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS
1,1,1-Trichloroethane	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS
Carbon Tetrachloride	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS
Benzene	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS
1,2-Dichloropropane	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS
Trichloroethylene	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS
Bromodichloromethane	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS
Methyl Isobutyl Ketone	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS
1,1,2-Trichloroethane	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS
Toluene	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS
Dibromochloromethane	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS
Ethylene Dibromide	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS
Tetrachloroethylene	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS
1,1,1,2-Tetrachloroethane	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS
Chlorobenzene	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS
Ethylbenzene	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS
m & p-Xylene	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS
Bromoform	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS
Styrene	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS
1,1,2,2-Tetrachloroethane	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS
o-Xylene	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS
1,3-Dichlorobenzene	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS

Method Summary

CLIENT NAME: BLUMETRIC ENVIRONMENTAL INC. AGAT WORK ORDER: 22P983244 PROJECT: 220509 ATTENTION TO: Paul Bandler

SAMPLING SITE:Belleville Bakelite		SAMPLED BY:MO	
PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE
1,4-Dichlorobenzene	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS
1,2-Dichlorobenzene	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS
Xylenes (Total)	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS
1,3-Dichloropropene (Cis + Trans)	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS
n-Hexane	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS
Toluene-d8	VOL-91-5002	modified from EPA 5035A & EPA 8260D	(P&T)GC/MS
4-Bromofluorobenzene	VOL-91-5002	modified from EPA 5035A & EPA 8260D	(P&T)GC/MS

5835 Coopers Avenue Mississauga, Ontario L4Z 1Y2 Ph: 905.712.5100 Fax: 905.712.5122 **Laboratory Use Only**

Work Order #: 22P 983 244

		La	0010					w	ebeart	h agai	labs.cc	- -	Co	ooler Qua	antity:	-			1			
Chain of Custody Reco				ise use Drin	ıklıng Water Chain o	of Custody Form (po	table water	consum	ed by hi	ımans)			Ar	rival Ten	nperat	tures:	8	1	18	21	8:	-
Report Information: Company: Contact:	Environm	what h	<i>C</i> ,		gulatory Requerected to the state of the sta									ustody Sotes:	-	act:	l □Ye	9 <u>5</u> s	9.]No	NO.	7A
Address: 4 Catara	gyri St.				egulation 153/04 able	Table Indicate C		Ser	wer Use anitary		itorm			rnaro			(TAT) Rec	quire	d:		=
Rhope: 613 453 543	ston			211]Ind/Com ⊒Res/Park				Region				Re	gular 1	ГАТ		X 5	to 7 Bu	siness	Days		
Filolic.	I un]Agriculture	Regulation 5	558	Pro	v. Wate ectives				Rus	sh TAT	(Rush S	iurcharge	s Apply)					
1. Email:	plumetric	.ca		_	Texture (Check One)	ССМЕ		Oth		(·,	+1		1 1	Busine	SS		Busine	255	1 1	xt Busir	es
2. Email: Mloyd (e blumetric	cq		11	Coarse Fine				Indicate	One				□ Day OR		Requir		ays sh Surcl	harges	□□ Da May App	•	
Project Information:					s this submissi			eport				711		-							1	
Project: 220509	0 1-11			- 11	cord of Site Co		Ce	rtifica	te of		-									or rush Ta atutory ho		
Site Location:	Bakelite			_ [5	Yes [No		l Yes	5		No									your AGA	0000	
Sampled By: 747248							7 0	0	Reg 15	3		1		0. Reg 558		g 406						9
AGAT Quote #: Please note: If quotation number	PO: er is not provided, client will i	be billed full price for	ənalysis		nple Matrix Le	gend	CrVI, DOC						hart.	CBs			Sulphide 🗆		1			n (Y/N
Invoice Information:	Bi	II To Same: Ye	s 🗗 No 🗆	B GW	Biota Ground Water		Hg, Cr∛		m	-		-		Landfill Disposal Characterization TCLP: TCLP: ☐M&I ☐VOCs ☐ABNs ☐B(a)P ☐PCBs	Excess Solls SPLP Rainwater Leach SPLP: Metals VOCs SVOCs	Excess Soils Characterization Package pH, ICPMS Metals, BTEX, F1-F4			1			ntratio
Company:				0	Oil		als, H		□HWSB					zation DB(water Le	tion Pi F1-F4	_ lre	2	1 3			Conce
Contact:				P	Paint		Met		g g					ABNS	alnw Cs 🗆	cteriza BTEX,	loisti	12	3,5	J	1	High
Address:	1			SD	Soil Sediment		ered.	anics	□ Hg	PHCs				Char.	□ vocs	aract als, B	ide M	Pe	1	15	0	ons or
Email: apeloli	unetic i	Ca		sw	Surface Water		Field Filtered - Metals,	Inorganics	Crvi,	4 PH	- 1			osal DvC	is SP	ess Soils Chara ICPMS Metals,	Inclu	Pè I	TINS	AX	0	azardo
						<u></u>	Fiel	80		F1-F4			وا	fill Disp	S CO	s Soi PMS	sivity:	E a	S C	5	T	ally H
Sample Identification	Date Sampled	Time Sampled	# of Containers	Sample Matrix		nments/ Instructions	Y/N	Metals	Metals -	втех,	PCBs	700	Aroclors	Landfi TCLP: [SPLP: Metals	Exces: pH, IC	Corrosivity: Include Moisture	16 C	ق	HO		Potenti
BH219552	22-12-15	AM PM	6	Soil				/		_	1	V						V	1 1			
BH219554	22-12-15	AM PM	5																1		5	
BH 724552	22-12-15	AM PM	5	1				V		V.	1									V		
BH 224 554	22-12-15	AM PM											500		-						V	
134 211 551	22-12-16	AM PM						100											12		V	
BH211 553	22-12-16	AM PM	6					V		1	V	V			nix			VV			4	-
BH 212551	22-12-16	AM PM	5								1				bGr						V	
BHZ12SS4	22-12-16	AM PM	6	V				1		1	11	1						11				
		AM PM						The second													all o	
		AM PM					10.3															
		AM PM					1				198											
Samples Relinquished By (Print Name and Sign):		Date	Time	0.0	Samples Received By (P		2	1			Da	te	27	Time	120-				-			
Samples Relinquished By (Print Name and Sign):		22-12-1	Time	00 am	Samples Received By (F	Time Sign):	7	//	1		Da	<u>ال√ي</u> te	c27	Time	100				1	+		_
Samples Relinquished By (Print Name and Sign):		Date	-		Zaid	2100					2	ec.	22/2	29	:43	5AM		Page		_ of	TID S	
Somples reiniquisned by (Print Name and Sign):		Date	Time		Samples Received By (P	nnervame and Sign):					Da	ite		Time			Nº: T		14	23	13	

CLIENT NAME: BLUMETRIC ENVIRONMENTAL INC. 4 Cataraqui Street Kingston, ON K7K1Z7

(613) 531-2725

ATTENTION TO: Paul Bandler

PROJECT: 220509

AGAT WORK ORDER: 22P983391

SOIL ANALYSIS REVIEWED BY: Amanjot Bhela, Inorganic Lab Manager TRACE ORGANICS REVIEWED BY: Neli Popnikolova, Senior Chemist

DATE REPORTED: Jan 16, 2023

PAGES (INCLUDING COVER): 35 VERSION*: 2

Should you require any information regarding this analysis please contact your client services representative at (905) 712-5100

Notes .
ERSION 2:V2 issued 2023-01-16. Complete report with additional analyses requested. Supersedes previous version.(LB) 1 issued 2023-01-05. Partial report excluding Formaldehyde. (LB)

Disclaimer

- All work conducted herein has been done using accepted standard protocols, and generally accepted practices and methods. AGAT test methods may
 incorporate modifications from the specified reference methods to improve performance.
- All samples will be disposed of within 30 days after receipt unless a Long Term Storage Agreement is signed and returned. Some specialty analysis may
 be exempt, please contact your Client Project Manager for details.
- AGAT's liability in connection with any delay, performance or non-performance of these services is only to the Client and does not extend to any other
 third party. Unless expressly agreed otherwise in writing, AGAT's liability is limited to the actual cost of the specific analysis or analyses included in the
 services.
- This Certificate shall not be reproduced except in full, without the written approval of the laboratory.
- The test results reported herewith relate only to the samples as received by the laboratory.
- Application of guidelines is provided "as is" without warranty of any kind, either expressed or implied, including, but not limited to, warranties of
 merchantability, fitness for a particular purpose, or non-infringement. AGAT assumes no responsibility for any errors or omissions in the guidelines
 contained in this document.
- All reportable information as specified by ISO/IEC 17025:2017 is available from AGAT Laboratories upon request.

AGAT Laboratories (V2)

Page 1 of 35

Member of: Association of Professional Engineers and Geoscientists of Alberta (APEGA)

Western Enviro-Agricultural Laboratory Association (WEALA) Environmental Services Association of Alberta (ESAA) AGAT Laboratories is accredited to ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA) and/or Standards Council of Canada (SCC) for specific tests listed on the scope of accreditation. AGAT Laboratories (Mississauga) is also accredited by the Canadian Association for Laboratory Accreditation Inc. (CALA) for specific drinking water tests. Accreditations are location and parameter specific. A complete listing of parameters for each location is available from www.cala.ca and/or www.scc.ca. The tests in this report may not necessarily be included in the scope of accreditation. Measurement Uncertainty is not taken into consideration when stating conformity with a specified requirement.

Certificate of Analysis

AGAT WORK ORDER: 22P983391

PROJECT: 220509

ATTENTION TO: Paul Bandler

SAMPLED BY:ML

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

CLIENT NAME: BLUMETRIC ENVIRONMENTAL INC. SAMPLING SITE:Bakelite Belleville

O. Reg. 153(511) - Metals & Inorganics (Soil)

DATE RECEIVED: 2022-12-22								D	ATE REPORT	ED: 2023-01-16	
		SAMPLE DES	CRIPTION:	BH207 SS1	BH205 SS1	BH235 SS1	BH235 SS2	BH215 SS1		BH232 SS1	
		SAM	PLE TYPE:	Soil	Soil	Soil	Soil	Soil		Soil	
		DATE	SAMPLED:	2022-12-22	2022-12-22	2022-12-22	2022-12-22	2022-12-22		2022-12-22	
				09:35	11:30	13:29	13:38	14:48		08:30	
Parameter	Unit	G/S	RDL	4650899	4650903	4650906	4650913	4650915	RDL	4650916	
Antimony	μg/g	7.5	0.8	7.4	<0.8	<0.8	<0.8	<0.8	8.0	13.9	
Arsenic	μg/g	18	1	7	3	27	4	2	1	6	
Barium	μg/g	390	2.0	110	21.5	104	51.2	136	2.0	177	
Beryllium	μg/g	4	0.4	0.4	<0.4	0.5	<0.4	<0.4	0.4	0.4	
Boron	μg/g	120	5	18	<5	16	11	7	5	15	
Boron (Hot Water Soluble)	μg/g	1.5	0.10	0.54	0.27	0.22	0.43	0.15	0.10	0.36	
Cadmium	μg/g	1.2	0.5	<0.5	< 0.5	<0.5	<0.5	<0.5	0.5	<0.5	
Chromium	μg/g	160	5	15	8	21	14	7	5	22	
Cobalt	μg/g	22	0.5	8.4	3.1	4.6	4.4	2.1	0.5	6.3	
Copper	μg/g	140	1.0	23.8	7.3	20.0	6.2	3.7	1.0	110	
Lead	μg/g	120	1	18	5	12	10	15	1	47	
Molybdenum	μg/g	6.9	0.5	22.9	<0.5	3.5	0.9	0.8	5	241	
Nickel	μg/g	100	1	13	5	13	9	4	1	21	
Selenium	μg/g	2.4	0.8	<0.8	<0.8	<0.8	0.9	<0.8	0.8	<0.8	
Silver	μg/g	20	0.5	<0.5	<0.5	<0.5	<0.5	<0.5	0.5	<0.5	
Thallium	μg/g	1	0.5	<0.5	<0.5	<0.5	<0.5	<0.5	0.5	<0.5	
Uranium	μg/g	23	0.50	0.50	0.71	<0.50	<0.50	<0.50	0.50	<0.50	
Vanadium	μg/g	86	0.4	28.6	16.5	17.4	15.7	7.6	0.4	25.5	
Zinc	μg/g	340	5	40	14	61	24	9	5	194	
Chromium, Hexavalent	μg/g	8	0.2	<0.2	<0.2	<0.2	<0.2	<0.2	0.2	<0.2	
Cyanide, WAD	μg/g	0.051	0.040	<0.040	<0.040	<0.040	<0.040	<0.040	0.040	<0.040	
Mercury	μg/g	0.27	0.10	0.20	<0.10	0.10	<0.10	<0.10	0.10	1.44	
Electrical Conductivity (2:1)	mS/cm	0.7	0.005	0.689	0.258	0.179	0.707	0.189	0.005	0.184	
Sodium Adsorption Ratio (2:1) (Calc.)	N/A	5	N/A	0.114	0.102	0.081	0.159	0.168	N/A	0.227	
pH, 2:1 CaCl2 Extraction	pH Units		NA	7.69	7.45	7.80	7.65	7.70	NA	7.18	

Certificate of Analysis

AGAT WORK ORDER: 22P983391

PROJECT: 220509

ATTENTION TO: Paul Bandler

SAMPLED BY:ML

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

CLIENT NAME: BLUMETRIC ENVIRONMENTAL INC. SAMPLING SITE: Bakelite Belleville

O. Reg. 153(511) - Metals & Inorganics (Soil) DATE RECEIVED: 2022-12-22 **DATE REPORTED: 2023-01-16** BH234 SS4 SAMPLE DESCRIPTION: BH232 SS2 BH228 SS1 BH228 SS3 BH217 SS1 SAMPLE TYPE: Soil Soil Soil Soil Soil DATE SAMPLED: 2022-12-22 2022-12-22 2022-12-22 2022-12-22 2022-12-22 08:35 11:30 11:45 13:45 Parameter Unit G/S **RDL** 4650919 4650926 4650928 4650930 4651008 7.5 Antimony μg/g 8.0 8.4 <0.8 < 0.8 < 0.8 < 0.8 Arsenic μg/g 18 1 5 3 3 2 2 390 2.0 115 88.3 54.5 32.5 28.2 Barium μg/g <0.4 Beryllium 4 0.4 0.5 0.6 < 0.4 <0.4 μg/g Boron 120 5 16 16 10 10 12 μg/g Boron (Hot Water Soluble) μg/g 1.5 0.10 0.36 0.42 0.49 0.14 < 0.10 1.2 0.5 <0.5 < 0.5 Cadmium μg/g < 0.5 < 0.5 < 0.5 Chromium 160 5 23 23 12 9 8 μg/g Cobalt μg/g 22 0.5 6.2 5.7 3.7 3.2 2.5 Copper μg/g 140 1.0 65.0 14.4 9.4 5.4 4.1 Lead μg/g 120 35 35 31 9 7 Molybdenum 3.6 μg/g 6.9 0.5 180 14.5 5.0 1.4 Nickel 100 17 13 12 7 8 μg/g Selenium 2.4 8.0 < 0.8 < 0.8 <0.8 <0.8 <0.8 μg/g Silver μg/g 20 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 Thallium 0.5 < 0.5 < 0.5 < 0.5 < 0.5 μg/g 1 < 0.5 Uranium μg/g 23 0.50 < 0.50 0.51 < 0.50 < 0.50 0.59 Vanadium 86 0.4 26.3 15.0 12.1 7.0 μg/g 24.2 Zinc μg/g 340 5 125 46 24 14 8 Chromium, Hexavalent <0.2 < 0.2 <0.2 <0.2 μg/g 8 0.2 < 0.2 Cyanide, WAD < 0.040 < 0.040 < 0.040 < 0.040 µg/g 0.051 0.040 < 0.040 Mercury 0.10 0.82 <0.10 < 0.10 μg/g 0.27 < 0.10 < 0.10 0.222 Electrical Conductivity (2:1) mS/cm 0.7 0.005 0.708 1.31 0.719 0.180 Sodium Adsorption Ratio (2:1) N/A 5 0.324 0.578 0.204 0.274 0.170 N/A (Calc.)

Certified By:

8.24

7.94

7.53

pH Units

NA

7.45

pH, 2:1 CaCl2 Extraction

7.42

Certificate of Analysis

AGAT WORK ORDER: 22P983391

PROJECT: 220509

ATTENTION TO: Paul Bandler

SAMPLED BY:ML

O. Reg. 153(511) - Metals & Inorganics (Soil)

DATE RECEIVED: 2022-12-22 **DATE REPORTED: 2023-01-16**

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard: Refers to Table 7: Generic Site Condition Standards for Shallow Soils in a Non-Potable Ground Water Condition - Soil -

Residential/Parkland/Institutional Property Use - Coarse Textured Soils

Guideline values are for general reference only. The guidelines provided may or may not be relevant for the intended use. Refer directly to the applicable standard for regulatory interpretation.

4650899-4650915 EC was determined on the DI water extract obtained from the 2:1 leaching procedure (2 parts DI water:1 part soil). pH was determined on the 0.01M CaCl2 extract prepared at 2:1 ratio. SAR is a calculated

parameter.

SAMPLING SITE: Bakelite Belleville

4650916 EC was determined on the DI water extract obtained from the 2:1 leaching procedure (2 parts DI water:1 part soil), pH was determined on the 0.01M CaCl2 extract prepared at 2:1 ratio. SAR is a calculated

Cyanide analysis was performed beyond recommended hold time.

Dilution required, RDL has been increased accordingly.

4650919-4650926 EC was determined on the DI water extract obtained from the 2:1 leaching procedure (2 parts DI water:1 part soil). pH was determined on the 0.01M CaCl2 extract prepared at 2:1 ratio. SAR is a calculated

parameter.

4650928 EC was determined on the DI water extract obtained from the 2:1 leaching procedure (2 parts DI water:1 part soil). pH was determined on the 0.01M CaCl2 extract prepared at 2:1 ratio. SAR is a calculated

Cyanide analysis was performed beyond recommended hold time.

4650930 EC was determined on the DI water extract obtained from the 2:1 leaching procedure (2 parts DI water:1 part soil). pH was determined on the 0.01M CaCl2 extract prepared at 2:1 ratio. SAR is a calculated

4651008 EC was determined on the DI water extract obtained from the 2:1 leaching procedure (2 parts DI water:1 part soil). pH was determined on the 0.01M CaCl2 extract prepared at 2:1 ratio. SAR is a calculated

Cyanide analysis was performed beyond recommended hold time.

Analysis performed at AGAT Toronto (unless marked by *)

Certified By:

5835 COOPERS AVENUE

MISSISSAUGA, ONTARIO

http://www.agatlabs.com

CANADA L4Z 1Y2

TEL (905)712-5100 FAX (905)712-5122

Certificate of Analysis

AGAT WORK ORDER: 22P983391

PROJECT: 220509

ATTENTION TO: Paul Bandler

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

SAMPLING SITE:Bakelite Bel	leville			SAMPLED BY:ML						
				ŀ	ormaldehy	de (Soil)				
DATE RECEIVED: 2022-12-22							DATE REPORTED:	2023-01-16		
		SAMPLE DES	CRIPTION:	BH207 SS1	BH215 SS1					
		SAM	PLE TYPE:	Soil	Soil					
		DATE	SAMPLED:	2022-12-22 09:35	2022-12-22 14:48					
Parameter	Unit	G/S	RDL	4650899	4650915					
Formaldehyde	mg/Kg		0.5	<0.5	<0.5					
Surrogate	Unit	Acceptab	le Limits							
2,3,5,6-Tetrafluorobenzaldehyde	%	40-	140	51	43					

RDL - Reported Detection Limit; G / S - Guideline / Standard Comments:

4650899-4650915 A higher LDR indicates that a dilution was performed to reduce analyte concentration or reduce matrix interference.

Analysis performed at AGAT Montréal (unless marked by *)

SAMPLING SITE: Bakelite Belleville

Certificate of Analysis

AGAT WORK ORDER: 22P983391

PROJECT: 220509

ATTENTION TO: Paul Bandler

SAMPLED BY:ML

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

O. Reg. 153(511) - BNA (full) + PAHs (Soil)

DATE RECEIVED: 2022-12-22								Ι	DATE REPORTE	ED: 2023-01-16	-
		SAMPLE DES	CRIPTION:	BH214 SS2	BH214 SS3	BH207 SS1	BH205 SS1	BH235 SS1	BH235 SS2	BH215 SS1	BH232 SS2
		SAM	PLE TYPE:	Soil							
			SAMPLED:	2022-12-22 07:57	2022-12-22 08:20	2022-12-22 09:35	2022-12-22 11:30	2022-12-22 13:29	2022-12-22 13:38	2022-12-22 14:48	2022-12-22 08:35
Parameter	Unit	G/S	RDL	4650888	4650891	4650899	4650903	4650906	4650913	4650915	4650919
Naphthalene	μg/g	0.6	0.05	< 0.05	0.11	0.08	<0.05	<0.05	<0.05	<0.05	< 0.05
Acenaphthylene	μg/g	0.15	0.05	<0.05	<0.05	<0.05	< 0.05	<0.05	<0.05	<0.05	< 0.05
Acenaphthene	μg/g	7.9	0.05	<0.05	0.31	<0.05	<0.05	< 0.05	<0.05	< 0.05	< 0.05
Fluorene	μg/g	62	0.05	< 0.05	0.57	<0.05	< 0.05	<0.05	<0.05	<0.05	< 0.05
Phenanthrene	μg/g	6.2	0.05	< 0.05	4.06	0.08	<0.05	< 0.05	< 0.05	0.07	0.10
Anthracene	μg/g	0.67	0.05	< 0.05	1.06	< 0.05	<0.05	< 0.05	< 0.05	< 0.05	< 0.05
Fluoranthene	μg/g	0.69	0.05	< 0.05	4.32	0.09	<0.05	<0.05	0.07	0.11	0.12
Pyrene	μg/g	78	0.05	< 0.05	3.54	0.08	<0.05	<0.05	0.06	0.10	0.10
Benz(a)anthracene	μg/g	0.5	0.05	< 0.05	1.74	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Chrysene	μg/g	7	0.05	< 0.05	1.74	< 0.05	< 0.05	< 0.05	< 0.05	0.06	< 0.05
Benzo(b)fluoranthene	μg/g	0.78	0.05	< 0.05	2.48	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Benzo(k)fluoranthene	μg/g	0.78	0.05	< 0.05	1.32	<0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Benzo(a)pyrene	μg/g	0.3	0.05	< 0.05	1.57	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Indeno(1,2,3-cd)pyrene	μg/g	0.38	0.05	< 0.05	0.59	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Dibenzo(a,h)anthracene	μg/g	0.1	0.05	< 0.05	0.13	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Benzo(g,h,i)perylene	μg/g	6.6	0.05	<0.05	0.54	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Phenol	μg/g	9.4	0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Bis(2-chloroethyl)ether	μg/g	0.5	0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
2-Chlorophenol	μg/g	1.6	0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
o-Cresol	μg/g		0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Bis(2-chloroisopropyl)ether	μg/g	0.67	0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
m & p - Cresol	μg/g		0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
2,4-Dimethylphenol	μg/g	390	0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2
2,4-Dichlorophenol	μg/g	1.7	0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
1,2,4-Trichlorobenzene	μg/g		0.05	< 0.05	<0.05	< 0.05	<0.05	<0.05	<0.05	<0.05	<0.05
p-Chloroaniline	μg/g	0.5	0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
1 and 2 Methlynaphthalene	μg/g	0.99	0.05	<0.05	< 0.05	< 0.05	<0.05	< 0.05	< 0.05	< 0.05	< 0.05
2,4,6-Trichlorophenol	μg/g	3.8	0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
2,4,5-Trichlorophenol	μg/g	4.4	0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1

SAMPLING SITE: Bakelite Belleville

Certificate of Analysis

AGAT WORK ORDER: 22P983391

PROJECT: 220509

ATTENTION TO: Paul Bandler

SAMPLED BY:ML

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

O. Reg. 153(511) - BNA (full) + PAHs (Soil)

			_	. Itog. 100	(311) 210	(1411)	10 (0011)				
DATE RECEIVED: 2022-12-22								Γ	DATE REPORT	ED: 2023-01-16	
		SAMPLE DES	CRIPTION:	BH214 SS2	BH214 SS3	BH207 SS1	BH205 SS1	BH235 SS1	BH235 SS2	BH215 SS1	BH232 SS2
		SAMI	PLE TYPE:	Soil							
		DATES	SAMPLED:	2022-12-22 07:57	2022-12-22 08:20	2022-12-22 09:35	2022-12-22 11:30	2022-12-22 13:29	2022-12-22 13:38	2022-12-22 14:48	2022-12-22 08:35
Parameter	Unit	G/S	RDL	4650888	4650891	4650899	4650903	4650906	4650913	4650915	4650919
1,1-Biphenyl	μg/g	0.31	0.05	< 0.05	< 0.05	0.98	<0.05	< 0.05	< 0.05	< 0.05	< 0.05
Dimethyl Phthalate	μg/g	0.5	0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
2,4 and 2,6-Dinitrotoluene	μg/g	0.92	0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Diethyl Phthalate	μg/g	0.5	0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Pentachlorophenol	μg/g	0.1	0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
3,3'-Dichlorobenzidine	μg/g		0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
2,4-Dinitrophenol	μg/g	38	2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0
Bis(2-Ethylhexyl)phthalate	μg/g	5	0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Moisture Content	%		0.1	12.8	15.5	12.8	18.2	17.0	16.9	8.4	14.1
wet weight BNA	g		0.01	10.63	10.74	10.42	10.40	10.65	10.05	10.36	10.30
Surrogate	Unit	Acceptab	le Limits								
phenol-d6 surrogate	%	50-1	140	110	77	65	70	106	98	83	98
2-Fluorophenol	%	50-1	140	96	61	68	96	78	74	92	82
2,4,6-Tribromophenol	%	50-1	140	67	77	75	97	70	88	74	105
Chrysene-d12	%	50-1	140	108	63	99	88	80	89	78	96

SAMPLING SITE: Bakelite Belleville

Certificate of Analysis

AGAT WORK ORDER: 22P983391

PROJECT: 220509

ATTENTION TO: Paul Bandler

SAMPLED BY:ML

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

O. Reg. 153(511) - BNA (full) + PAHs (Soil)

				7. IXeg. 133	(311) - DIVA	$(u) + 1 \wedge$	113 (3011)		
DATE RECEIVED: 2022-12-22									DATE REPORTED: 2023-01-16
		SAMPLE DESC	RIPTION:	BH228 SS1	BH217 SS1	BH223 SS1	BH223 SS1-DUP	BH234 SS4	
		SAMPL	LE TYPE:	Soil	Soil	Soil	Soil	Soil	
		DATE SA	AMPLED:	2022-12-22	2022-12-22	2022-12-22	2022-12-22	2022-12-22	
Parameter	Unit	G/S	RDL	11:30 4650926	13:45 4650930	15:55 4650940	15:55 4650968	4651008	
Naphthalene	μg/g	0.6	0.05	<0.05	<0.05	5.23	5.26	<0.05	
Acenaphthylene	μg/g	0.15	0.05	< 0.05	< 0.05	0.48	0.53	< 0.05	
Acenaphthene	μg/g	7.9	0.05	< 0.05	<0.05	9.51	9.97	< 0.05	
Fluorene	μg/g	62	0.05	<0.05	<0.05	13.0	9.53	< 0.05	
Phenanthrene	μg/g	6.2	0.05	< 0.05	< 0.05	95.5	66.8	< 0.05	
Anthracene	μg/g	0.67	0.05	<0.05	< 0.05	22.3	21.3	< 0.05	
Fluoranthene	μg/g	0.69	0.05	0.09	0.09	105	90.7	< 0.05	
Pyrene	μg/g	78	0.05	0.08	0.09	94.7	73.3	< 0.05	
Benz(a)anthracene	μg/g	0.5	0.05	<0.05	<0.05	36.0	24.0	< 0.05	
Chrysene	μg/g	7	0.05	<0.05	<0.05	38.0	27.9	< 0.05	
Benzo(b)fluoranthene	μg/g	0.78	0.05	< 0.05	<0.05	54.6	35.9	< 0.05	
Benzo(k)fluoranthene	μg/g	0.78	0.05	< 0.05	<0.05	20.2	20.9	< 0.05	
Benzo(a)pyrene	µg/g	0.3	0.05	<0.05	<0.05	27.8	22.8	< 0.05	
Indeno(1,2,3-cd)pyrene	μg/g	0.38	0.05	<0.05	<0.05	10.9	11.8	< 0.05	
Dibenzo(a,h)anthracene	μg/g	0.1	0.05	<0.05	<0.05	1.72	2.41	< 0.05	
Benzo(g,h,i)perylene	μg/g	6.6	0.05	<0.05	<0.05	10.4	11.8	< 0.05	
Phenol	μg/g	9.4	0.5	<0.5	<0.5	<0.5	<0.5	<0.5	
Bis(2-chloroethyl)ether	μg/g	0.5	0.1	<0.1	<0.1	<0.1	<0.1	<0.1	
2-Chlorophenol	μg/g	1.6	0.1	<0.1	<0.1	<0.1	<0.1	<0.1	
o-Cresol	μg/g		0.1	<0.1	<0.1	<0.1	<0.1	<0.1	
Bis(2-chloroisopropyl)ether	μg/g	0.67	0.1	<0.1	<0.1	<0.1	<0.1	<0.1	
m & p - Cresol	μg/g		0.1	<0.1	<0.1	<0.1	<0.1	<0.1	
2,4-Dimethylphenol	μg/g	390	0.2	<0.2	<0.2	<0.2	<0.2	<0.2	
2,4-Dichlorophenol	μg/g	1.7	0.1	<0.1	<0.1	<0.1	<0.1	<0.1	
1,2,4-Trichlorobenzene	μg/g		0.05	<0.05	< 0.05	< 0.05	<0.05	< 0.05	
p-Chloroaniline	μg/g	0.5	0.5	<0.5	<0.5	<0.5	<0.5	<0.5	
1 and 2 Methlynaphthalene	μg/g	0.99	0.05	<0.05	< 0.05	4.07	3.11	< 0.05	
2,4,6-Trichlorophenol	μg/g	3.8	0.1	<0.1	<0.1	<0.1	<0.1	<0.1	
2,4,5-Trichlorophenol	μg/g	4.4	0.1	<0.1	<0.1	<0.1	<0.1	<0.1	

Certified By:

NPopukolof

Certificate of Analysis

AGAT WORK ORDER: 22P983391

PROJECT: 220509

ATTENTION TO: Paul Bandler

SAMPLED BY:ML

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

CLIENT NAME: BLUMETRIC ENVIRONMENTAL INC.

SAMPLING SITE: Bakelite Belleville

O. Reg. 153(511) - BNA (full) + PAHs (Soil)

DATE RECEIVED: 2022-12-22

DATE RECEIVED: 2022-12-22

DATE RECEIVED: 2022-12-22									DATE REPORTED: 2023-01-16
		SAMPLE DES	CRIPTION:	BH228 SS1	BH217 SS1	BH223 SS1	BH223 SS1-DUP	BH234 SS4	
		SAMI	PLE TYPE:	Soil	Soil	Soil	Soil	Soil	
		DATES	SAMPLED:	2022-12-22 11:30	2022-12-22 13:45	2022-12-22 15:55	2022-12-22 15:55	2022-12-22	
Parameter	Unit	G/S	RDL	4650926	4650930	4650940	4650968	4651008	
1,1-Biphenyl	μg/g	0.31	0.05	<0.05	<0.05	0.62	0.55	<0.05	
Dimethyl Phthalate	μg/g	0.5	0.1	<0.1	<0.1	<0.1	<0.1	<0.1	
2,4 and 2,6-Dinitrotoluene	μg/g	0.92	0.5	<0.5	<0.5	<0.5	<0.5	< 0.5	
Diethyl Phthalate	μg/g	0.5	0.1	<0.1	<0.1	<0.1	<0.1	<0.1	
Pentachlorophenol	μg/g	0.1	0.1	<0.1	<0.1	<0.1	<0.1	<0.1	
3,3'-Dichlorobenzidine	μg/g		0.5	<0.5	<0.5	<0.5	<0.5	<0.5	
2,4-Dinitrophenol	μg/g	38	2.0	<2.0	<2.0	<2.0	<2.0	<2.0	
Bis(2-Ethylhexyl)phthalate	μg/g	5	0.2	<0.2	<0.2	<0.2	<0.2	<0.2	
Moisture Content	%		0.1	29.8	12.7	24.9	24.6	12.0	
wet weight BNA	g		0.01	10.58	10.67	10.80	10.17	10.70	
Surrogate	Unit	Acceptab	le Limits						
phenol-d6 surrogate	%	50-1	40	105	105	78	87	78	
2-Fluorophenol	%	50-1	40	98	98	80	80	77	
2,4,6-Tribromophenol	%	50-1	40	88	88	88	88	70	
Chrysene-d12	%	50-1	40	70	75	78	99	66	

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard: Refers to Table 7: Generic Site Condition Standards for Shallow Soils in a Non-Potable Ground Water Condition - Soil - Residential/Parkland/Institutional Property Use - Coarse Textured Soils

Guideline values are for general reference only. The guidelines provided may or may not be relevant for the intended use. Refer directly to the applicable standard for regulatory interpretation.

4650888-4651008 Results are based on the dry weight of the soil.

Note: The result for Benzo(b)Fluoranthene is the total of the Benzo(b)&(j)Fluoranthene isomers because the isomers co-elute on the GC column.

Analysis performed at AGAT Toronto (unless marked by *)

SAMPLING SITE: Bakelite Belleville

Certificate of Analysis

AGAT WORK ORDER: 22P983391

PROJECT: 220509

ATTENTION TO: Paul Bandler

SAMPLED BY:ML

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

O. Reg. 153(511) - PAHs (Soil)

			0.10	(eg. 103(311) -1 Alis (0011)
DATE RECEIVED: 2022-12-22				DATE REPORTED: 2023-0
		SAMPLE DESCRIP	TION: BH216 SS1	
		SAMPLE ³	TYPE: Soil	
		DATE SAMI	PLED: 2022-12-22 15:05	
Parameter	Unit	G/S R	DL 4650939	
Naphthalene	μg/g	0.6 0	.05 0.82	
Acenaphthylene	μg/g	0.15 0	.05 0.36	
Acenaphthene	μg/g	7.9 0	.05 2.23	
Fluorene	μg/g	62 0	.05 2.88	
Phenanthrene	μg/g	6.2 0	.05 29.1	
Anthracene	μg/g	0.67 0	.05 5.84	
Fluoranthene	μg/g	0.69 0	.05 41.2	
Pyrene	μg/g	78 0	.05 36.8	
Benz(a)anthracene	μg/g	0.5 0	.05 12.9	
Chrysene	μg/g	7 0	.05 10.9	
Benzo(b)fluoranthene	μg/g	0.78 0	.05 11.9	
Benzo(k)fluoranthene	μg/g	0.78 0	.05 5.08	
Benzo(a)pyrene	μg/g	0.3 0	.05 10.3	
Indeno(1,2,3-cd)pyrene	μg/g	0.38 0	.05 6.14	
Dibenz(a,h)anthracene	μg/g	0.1 0	.05 1.29	
Benzo(g,h,i)perylene	μg/g	6.6 0	.05 7.14	
1 and 2 Methlynaphthalene	μg/g	0.99 0	.05 1.07	
Moisture Content	%	(0.1 10.9	
Surrogate	Unit	Acceptable Li	mits	
Naphthalene-d8	%	50-140	91	
Acridine-d9	%	50-140	104	
Terphenyl-d14	%	50-140	101	

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard: Refers to Table 7: Generic Site Condition Standards for Shallow Soils in a Non-Potable Ground Water Condition - Soil -

Residential/Parkland/Institutional Property Use - Coarse Textured Soils

Guideline values are for general reference only. The guidelines provided may or may not be relevant for the intended use. Refer directly to the applicable standard for regulatory interpretation.

4650939 Results are based on the dry weight of the soil.

Note: The result for Benzo(b)Fluoranthene is the total of the Benzo(b)&j)Fluoranthene isomers because the isomers co-elute on the GC column.

2- and 1-Methyl Naphthalene is a calculated parameter. The calculated value is the sum of 2-Methyl Naphthalene and 1-Methyl Naphthalene.

Analysis performed at AGAT Toronto (unless marked by *)

Certificate of Analysis

AGAT WORK ORDER: 22P983391

PROJECT: 220509

ATTENTION TO: Paul Bandler

SAMPLED BY:ML

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

SAMPLING SITE:Bakelite Belleville

				O. Re	g. 153(511)) - PCBs (Soi	l)				
DATE RECEIVED: 2022-12-22								ļ	DATE REPORT	ED: 2023-01-16	
		SAMPLE DES	CRIPTION:	BH207 SS1	BH205 SS1	BH235 SS1	BH235 SS2	BH215 SS1	BH232 SS2	BH228 SS1	BH217 SS1
		SAM	PLE TYPE:	Soil							
		DATE	SAMPLED:	2022-12-22 09:35	2022-12-22 11:30	2022-12-22 13:29	2022-12-22 13:38	2022-12-22 14:48	2022-12-22 08:35	2022-12-22 11:30	2022-12-22 13:45
Parameter	Unit	G/S	RDL	4650899	4650903	4650906	4650913	4650915	4650919	4650926	4650930
Polychlorinated Biphenyls	μg/g	0.35	0.1	1.57	<0.1	<0.1	<0.1	<0.1	0.64	<0.1	<0.1
Moisture Content	%		0.1	12.8	18.2	17.0	16.9	8.4	14.1	29.8	12.7
Surrogate	Unit	Acceptab	le Limits								
Decachlorobiphenyl	%	50-	140	80	100	96	92	72	72	92	80
		SAMPLE DES	CRIPTION:	BH216 SS1	BH223 SS1	BH223 SS1-DUP	BH234 SS4				
		SAM	PLE TYPE:	Soil	Soil	Soil	Soil				
		DATE	SAMPLED:	2022-12-22 15:05	2022-12-22 15:55	2022-12-22 15:55	2022-12-22				
Parameter	Unit	G/S	RDL	4650939	4650940	4650968	4651008				
Polychlorinated Biphenyls	μg/g	0.35	0.1	<0.1	<0.1	<0.1	<0.1				
Moisture Content	%		0.1	10.9	24.9	24.6	12.0				
Surrogate	Unit	Acceptab	le Limits								
Decachlorobiphenyl	%	50-	140	120	76	88	92				

Comments:

RDL - Reported Detection Limit; G / S - Guideline / Standard: Refers to Table 7: Generic Site Condition Standards for Shallow Soils in a Non-Potable Ground Water Condition - Soil -

Residential/Parkland/Institutional Property Use - Coarse Textured Soils

Guideline values are for general reference only. The guidelines provided may or may not be relevant for the intended use. Refer directly to the applicable standard for regulatory interpretation.

4650899-4651008 Results are based on the dry weight of soil extracted.

PCB total is a calculated parameter. The calculated value is the sum of Aroclor 1242, Aroclor 1248, Aroclor 1254 and Aroclor 1260.

The calculated parameter is non-accredited. The parameters that are components of the calculation are accredited.

Analysis performed at AGAT Toronto (unless marked by *)

Certificate of Analysis

AGAT WORK ORDER: 22P983391

PROJECT: 220509

ATTENTION TO: Paul Bandler

SAMPLED BY:ML

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

SAMPLING SITE: Bakelite Belleville O. Reg. 153(511) - PHCs F1 - F4 (with PAHs and VOC) (Soil)

DATE DECENTED: 0000 40 00									ATE DEDODT	-D: 0000 04 40	
DATE RECEIVED: 2022-12-22								ı	DATE REPORTI	ED: 2023-01-16	
		SAMPLE DES	CRIPTION:	BH214 SS2	BH214 SS3	BH207 SS1	BH205 SS1	BH235 SS1	BH235 SS2	BH215 SS1	BH232 SS2
		SAM	PLE TYPE:	Soil							
_			SAMPLED:	2022-12-22 07:57	2022-12-22 08:20	2022-12-22 09:35	2022-12-22 11:30	2022-12-22 13:29	2022-12-22 13:38	2022-12-22 14:48	2022-12-22 08:35
Parameter	Unit	G/S	RDL	4650888	4650891	4650899	4650903	4650906	4650913	4650915	4650919
F1 (C6 - C10)	μg/g		5	<5	<5	<5	<5	5	<5	<5	<5
F1 (C6 to C10) minus BTEX	μg/g	55	5	<5	<5	<5	<5	<5	<5	<5	<5
F2 (C10 to C16)	μg/g	98	10	<10	<10	17	<10	<10	<10	<10	<10
F2 (C10 to C16) minus Naphthalene	μg/g		10	<10	<10	17	<10	<10	<10	<10	<10
F3 (C16 to C34)	μg/g	300	50	146	73	114	<50	<50	<50	<50	<50
F3 (C16 to C34) minus PAHs	μg/g		50	146	53	114	<50	<50	<50	<50	<50
F4 (C34 to C50)	μg/g	2800	50	<50	<50	<50	<50	<50	<50	<50	<50
Gravimetric Heavy Hydrocarbons	μg/g	2800	50	NA							
Moisture Content	%		0.1	12.8	15.5	12.8	18.2	17.0	16.9	8.4	14.1
Surrogate	Unit	Acceptab	le Limits								
Toluene-d8	%	50-	140	102	101	98	104	100	102	100	106
Terphenyl	%	60-1	140	69	89	84	74	74	77	73	86

SAMPLING SITE: Bakelite Belleville

Certificate of Analysis

AGAT WORK ORDER: 22P983391

PROJECT: 220509

ATTENTION TO: Paul Bandler

SAMPLED BY:ML

MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

5835 COOPERS AVENUE

O. Reg. 153(511) - PHCs F1 - F4 (with PAHs and VOC) (Soil)

DATE RECEIVED: 2022-12-22									DATE REPORTED: 2023-01-16
		SAMPLE DES	CRIPTION:	BH228 SS1	BH217 SS1	BH223 SS1	BH223 SS1-DUP	BH234 SS4	
		SAM	PLE TYPE:	Soil	Soil	Soil	Soil	Soil	
		DATE	SAMPLED:	2022-12-22 11:30	2022-12-22 13:45	2022-12-22 15:55	2022-12-22 15:55	2022-12-22	
Parameter	Unit	G/S	RDL	4650926	4650930	4650940	4650968	4651008	
-1 (C6 - C10)	μg/g		5	<5	<5	20	15	<5	
-1 (C6 to C10) minus BTEX	μg/g	55	5	<5	<5	18	13	<5	
F2 (C10 to C16)	μg/g	98	10	<10	<10	147	147	<10	
F2 (C10 to C16) minus Naphthalene	μg/g		10	<10	<10	142	142	<10	
F3 (C16 to C34)	μg/g	300	50	<50	<50	3500	3500	<50	
F3 (C16 to C34) minus PAHs	μg/g		50	<50	<50	3050	3150	<50	
F4 (C34 to C50)	μg/g	2800	50	<50	<50	544	563	<50	
Gravimetric Heavy Hydrocarbons	μg/g	2800	50	NA	NA	NA	NA	NA	
Moisture Content	%		0.1	29.8	12.7	24.9	24.6	12.0	
Surrogate	Unit	Acceptab	le Limits						
Toluene-d8	%	50-	40	104	102	100	106	101	
[Ferphenyl	%	60-	140	85	91	85	88	75	

Comments:

RDL - Reported Detection Limit: G / S - Guideline / Standard: Refers to Table 7: Generic Site Condition Standards for Shallow Soils in a Non-Potable Ground Water Condition - Soil -

Residential/Parkland/Institutional Property Use - Coarse Textured Soils

Guideline values are for general reference only. The guidelines provided may or may not be relevant for the intended use. Refer directly to the applicable standard for regulatory interpretation.

4650888-4651008 Results are based on sample dry weight.

The C6-C10 fraction is calculated using toluene response factor.

C6-C10 (F1 minus BTEX) is a calculated parameter. The calculated value is F1 minus BTEX. The calculated parameter is non-accredited. The parameters that are components of the calculation are

The C10 - C16, C16 - C34, and C34 - C50 fractions are calculated using the average response factor for n-C10, n-C16, and n-C34.

Gravimetric Heavy Hydrocarbons are not included in the Total C16-C50 and are only determined if the chromatogram of the C34 - C50 hydrocarbons indicates that hydrocarbons >C50 are present. The chromatogram has returned to baseline by the retention time of nC50.

Total C6 - C50 results are corrected for BTEX and PAH contributions.

C>10 – C16 (F2- Naphthalene) is a calculated parameter. The calculated value is F2 - Naphthalene.

C>16 - C34 (F3-PAH) is a calculated parameter. The calculated value is F3-PAH (PAH; sum of Phenanthrene, Benzo(a)anthracene, Benzo(b)fluoranthene, Benzo(k)fluoranthene, Benzo(k)fluoranthene, Benzo(a)anthracene, Benzo(b)fluoranthene, Benzo(b)f Fluoranthene, Dibenzo(a,h)anthracene, Indeno(1,2,3-c,d)pyrene and Pyrene).

This method complies with the Reference Method for the CWS PHC and is validated for use in the laboratory.

nC10, nC16 and nC34 response factors are within 10% of their average.

C50 response factor is within 70% of nC10 + nC16 + nC34 average.

Linearity is within 15%.

Extraction and holding times were met for this sample.

Analysis performed at AGAT Toronto (unless marked by *)

SAMPLING SITE: Bakelite Belleville

Certificate of Analysis

AGAT WORK ORDER: 22P983391

PROJECT: 220509

ATTENTION TO: Paul Bandler

SAMPLED BY:ML

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

O. Reg. 153(511) - VOCs (with PHC) (Soil)

DATE RECEIVED: 2022-12-22								DATE REPORTED: 2023-01-16				
		SAMPLE DES	CRIPTION:	BH214 SS2	BH214 SS3	BH207 SS1	BH205 SS1	BH235 SS1	BH235 SS2	BH215 SS1	BH232 SS2	
		SAMI	PLE TYPE:	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	
			SAMPLED:	2022-12-22 07:57	2022-12-22 08:20	2022-12-22 09:35	2022-12-22 11:30	2022-12-22 13:29	2022-12-22 13:38	2022-12-22 14:48	2022-12-22 08:35	
Parameter	Unit	G/S	RDL	4650888	4650891	4650899	4650903	4650906	4650913	4650915	4650919	
Dichlorodifluoromethane	μg/g	16	0.05	<0.05	<0.05	< 0.05	<0.05	<0.05	<0.05	<0.05	<0.05	
Vinyl Chloride	ug/g	0.02	0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	< 0.02	
Bromomethane	ug/g	0.05	0.05	< 0.05	<0.05	<0.05	< 0.05	< 0.05	<0.05	< 0.05	< 0.05	
Trichlorofluoromethane	ug/g	4	0.05	<0.05	<0.05	<0.05	<0.05	< 0.05	<0.05	<0.05	< 0.05	
Acetone	ug/g	16	0.50	<0.50	< 0.50	< 0.50	<0.50	< 0.50	<0.50	<0.50	< 0.50	
1,1-Dichloroethylene	ug/g	0.05	0.05	< 0.05	< 0.05	<0.05	<0.05	<0.05	<0.05	< 0.05	<0.05	
Methylene Chloride	ug/g	0.1	0.05	< 0.05	< 0.05	<0.05	< 0.05	< 0.05	<0.05	< 0.05	< 0.05	
Trans- 1,2-Dichloroethylene	ug/g	0.084	0.05	< 0.05	< 0.05	<0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	
Methyl tert-butyl Ether	ug/g	0.75	0.05	< 0.05	<0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	
1,1-Dichloroethane	ug/g	3.5	0.02	< 0.02	<0.02	<0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	
Methyl Ethyl Ketone	ug/g	16	0.50	< 0.50	<0.50	< 0.50	< 0.50	<0.50	<0.50	< 0.50	< 0.50	
Cis- 1,2-Dichloroethylene	ug/g	3.4	0.02	< 0.02	<0.02	<0.02	< 0.02	<0.02	< 0.02	<0.02	< 0.02	
Chloroform	ug/g	0.05	0.04	<0.04	<0.04	<0.04	< 0.04	< 0.04	<0.04	< 0.04	< 0.04	
1,2-Dichloroethane	ug/g	0.05	0.03	< 0.03	<0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	
1,1,1-Trichloroethane	ug/g	0.38	0.05	< 0.05	<0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	
Carbon Tetrachloride	ug/g	0.05	0.05	< 0.05	< 0.05	<0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	
Benzene	ug/g	0.21	0.02	<0.02	<0.02	<0.02	< 0.02	< 0.02	<0.02	< 0.02	< 0.02	
1,2-Dichloropropane	ug/g	0.05	0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	
Trichloroethylene	ug/g	0.061	0.03	<0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	
Bromodichloromethane	ug/g	13	0.05	<0.05	< 0.05	< 0.05	< 0.05	< 0.05	<0.05	< 0.05	< 0.05	
Methyl Isobutyl Ketone	ug/g	1.7	0.50	<0.50	<0.50	<0.50	< 0.50	<0.50	<0.50	<0.50	< 0.50	
1,1,2-Trichloroethane	ug/g	0.05	0.04	<0.04	<0.04	< 0.04	< 0.04	< 0.04	< 0.04	< 0.04	< 0.04	
Toluene	ug/g	2.3	0.05	0.15	< 0.05	<0.05	<0.05	0.41	< 0.05	< 0.05	1.33	
Dibromochloromethane	ug/g	9.4	0.05	< 0.05	< 0.05	<0.05	<0.05	< 0.05	<0.05	< 0.05	<0.05	
Ethylene Dibromide	ug/g	0.05	0.04	< 0.04	<0.04	<0.04	<0.04	<0.04	<0.04	< 0.04	< 0.04	
Tetrachloroethylene	ug/g	0.28	0.05	<0.05	<0.05	< 0.05	< 0.05	<0.05	< 0.05	< 0.05	<0.05	
1,1,1,2-Tetrachloroethane	ug/g	0.058	0.04	<0.04	< 0.04	< 0.04	< 0.04	<0.04	< 0.04	<0.04	< 0.04	
Chlorobenzene	ug/g	2.4	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	
Ethylbenzene	ug/g	2	0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	

SAMPLING SITE: Bakelite Belleville

Certificate of Analysis

AGAT WORK ORDER: 22P983391

PROJECT: 220509

ATTENTION TO: Paul Bandler

SAMPLED BY:ML

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

O. Reg. 153(511) - VOCs (with PHC) (Soil)

			`). I tog. 100	(311)	,	0) (0011)				
DATE RECEIVED: 2022-12-22								[DATE REPORT	ED: 2023-01-16	
	S	AMPLE DES	CRIPTION:	BH214 SS2	BH214 SS3	BH207 SS1	BH205 SS1	BH235 SS1	BH235 SS2	BH215 SS1	BH232 SS2
		SAMI	PLE TYPE:	Soil							
		DATES	SAMPLED:	2022-12-22 07:57	2022-12-22 08:20	2022-12-22 09:35	2022-12-22 11:30	2022-12-22 13:29	2022-12-22 13:38	2022-12-22 14:48	2022-12-22 08:35
Parameter	Unit	G/S	RDL	4650888	4650891	4650899	4650903	4650906	4650913	4650915	4650919
m & p-Xylene	ug/g		0.05	2.03	< 0.05	< 0.05	<0.05	0.61	< 0.05	< 0.05	< 0.05
Bromoform	ug/g	0.27	0.05	< 0.05	< 0.05	< 0.05	<0.05	< 0.05	< 0.05	< 0.05	< 0.05
Styrene	ug/g	0.7	0.05	< 0.05	<0.05	<0.05	<0.05	<0.05	< 0.05	< 0.05	< 0.05
1,1,2,2-Tetrachloroethane	ug/g	0.05	0.05	< 0.05	<0.05	<0.05	<0.05	<0.05	< 0.05	< 0.05	< 0.05
o-Xylene	ug/g		0.05	1.27	< 0.05	< 0.05	< 0.05	0.45	< 0.05	< 0.05	< 0.05
1,3-Dichlorobenzene	ug/g	4.8	0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
1,4-Dichlorobenzene	ug/g	0.083	0.05	< 0.05	< 0.05	<0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
1,2-Dichlorobenzene	ug/g	3.4	0.05	< 0.05	< 0.05	<0.05	<0.05	<0.05	< 0.05	< 0.05	< 0.05
Xylenes (Total)	ug/g	3.1	0.05	3.30	<0.05	< 0.05	< 0.05	1.06	< 0.05	< 0.05	< 0.05
1,3-Dichloropropene (Cis + Trans)	μg/g	0.05	0.05	< 0.05	<0.05	< 0.05	<0.05	< 0.05	< 0.05	< 0.05	< 0.05
n-Hexane	μg/g	2.8	0.05	< 0.05	<0.05	< 0.05	<0.05	< 0.05	< 0.05	< 0.05	< 0.05
Moisture Content	%		0.1	12.8	15.5	12.8	18.2	17.0	16.9	8.4	14.1
Surrogate	Unit	Acceptab	le Limits								
Toluene-d8	% Recovery	50-1	140	102	101	98	104	100	102	100	106
4-Bromofluorobenzene	% Recovery	50-1	140	100	97	92	99	96	99	102	103

SAMPLING SITE: Bakelite Belleville

Certificate of Analysis

AGAT WORK ORDER: 22P983391

PROJECT: 220509

ATTENTION TO: Paul Bandler

SAMPLED BY:ML

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

O. Reg. 153(511) - VOCs (with PHC) (Soil)

DATE RECEIVED: 2022-12-22									DATE REPORTED: 2023-01-16
		SAMPLE DESC	CRIPTION:	BH228 SS1	BH217 SS1	BH223 SS1	BH223 SS1-DUP	BH234 SS4	
		SAM	PLE TYPE:	Soil	Soil	Soil	Soil	Soil	
		DATES	SAMPLED:	2022-12-22 11:30	2022-12-22 13:45	2022-12-22 15:55	2022-12-22 15:55	2022-12-22	
Parameter	Unit	G/S	RDL	4650926	4650930	4650940	4650968	4651008	
Dichlorodifluoromethane	μg/g	16	0.05	<0.05	<0.05	< 0.05	<0.05	<0.05	
Vinyl Chloride	ug/g	0.02	0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	
Bromomethane	ug/g	0.05	0.05	< 0.05	< 0.05	<0.05	<0.05	< 0.05	
Trichlorofluoromethane	ug/g	4	0.05	< 0.05	<0.05	<0.05	< 0.05	< 0.05	
Acetone	ug/g	16	0.50	<0.50	<0.50	< 0.50	<0.50	<0.50	
1,1-Dichloroethylene	ug/g	0.05	0.05	< 0.05	< 0.05	< 0.05	<0.05	< 0.05	
Methylene Chloride	ug/g	0.1	0.05	< 0.05	< 0.05	<0.05	< 0.05	< 0.05	
Trans- 1,2-Dichloroethylene	ug/g	0.084	0.05	< 0.05	< 0.05	<0.05	<0.05	< 0.05	
Methyl tert-butyl Ether	ug/g	0.75	0.05	< 0.05	<0.05	< 0.05	<0.05	< 0.05	
1,1-Dichloroethane	ug/g	3.5	0.02	<0.02	<0.02	<0.02	<0.02	< 0.02	
Methyl Ethyl Ketone	ug/g	16	0.50	< 0.50	<0.50	< 0.50	<0.50	<0.50	
Cis- 1,2-Dichloroethylene	ug/g	3.4	0.02	< 0.02	<0.02	<0.02	< 0.02	< 0.02	
Chloroform	ug/g	0.05	0.04	< 0.04	<0.04	<0.04	< 0.04	< 0.04	
1,2-Dichloroethane	ug/g	0.05	0.03	< 0.03	<0.03	< 0.03	< 0.03	< 0.03	
1,1,1-Trichloroethane	ug/g	0.38	0.05	<0.05	<0.05	< 0.05	< 0.05	< 0.05	
Carbon Tetrachloride	ug/g	0.05	0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	
Benzene	ug/g	0.21	0.02	<0.02	<0.02	< 0.02	<0.02	< 0.02	
1,2-Dichloropropane	ug/g	0.05	0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	
Trichloroethylene	ug/g	0.061	0.03	<0.03	< 0.03	< 0.03	< 0.03	< 0.03	
Bromodichloromethane	ug/g	13	0.05	<0.05	< 0.05	< 0.05	< 0.05	< 0.05	
Methyl Isobutyl Ketone	ug/g	1.7	0.50	< 0.50	< 0.50	< 0.50	<0.50	<0.50	
1,1,2-Trichloroethane	ug/g	0.05	0.04	<0.04	< 0.04	< 0.04	<0.04	< 0.04	
Toluene	ug/g	2.3	0.05	<0.05	<0.05	1.19	0.93	< 0.05	
Dibromochloromethane	ug/g	9.4	0.05	< 0.05	< 0.05	< 0.05	<0.05	< 0.05	
Ethylene Dibromide	ug/g	0.05	0.04	<0.04	<0.04	< 0.04	<0.04	<0.04	
Tetrachloroethylene	ug/g	0.28	0.05	< 0.05	< 0.05	< 0.05	<0.05	< 0.05	
1,1,1,2-Tetrachloroethane	ug/g	0.058	0.04	<0.04	<0.04	<0.04	<0.04	<0.04	
Chlorobenzene	ug/g	2.4	0.05	<0.05	<0.05	< 0.05	<0.05	<0.05	
Ethylbenzene	ug/g	2	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	

Certified By:

NPopukolof

SAMPLING SITE: Bakelite Belleville

Certificate of Analysis

AGAT WORK ORDER: 22P983391

PROJECT: 220509

ATTENTION TO: Paul Bandler

SAMPLED BY:ML

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.aqatlabs.com

O. Reg. 153(511) - VOCs (with PHC) (Soil)

				9	` '	`	, (,		
DATE RECEIVED: 2022-12-22									DATE REPORTED: 2023-01-16
	;	SAMPLE DESC	RIPTION:	BH228 SS1	BH217 SS1	BH223 SS1	BH223 SS1-DUP	BH234 SS4	
		SAMP	LE TYPE:	Soil	Soil	Soil	Soil	Soil	
		DATE S	AMPLED:	2022-12-22 11:30	2022-12-22 13:45	2022-12-22 15:55	2022-12-22 15:55	2022-12-22	
Parameter	Unit	G/S	RDL	4650926	4650930	4650940	4650968	4651008	
m & p-Xylene	ug/g		0.05	<0.05	<0.05	0.42	0.53	<0.05	
Bromoform	ug/g	0.27	0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	
Styrene	ug/g	0.7	0.05	< 0.05	<0.05	<0.05	<0.05	< 0.05	
1,1,2,2-Tetrachloroethane	ug/g	0.05	0.05	< 0.05	<0.05	<0.05	< 0.05	< 0.05	
o-Xylene	ug/g		0.05	< 0.05	<0.05	0.40	0.57	< 0.05	
1,3-Dichlorobenzene	ug/g	4.8	0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	
1,4-Dichlorobenzene	ug/g	0.083	0.05	< 0.05	< 0.05	< 0.05	<0.05	< 0.05	
1,2-Dichlorobenzene	ug/g	3.4	0.05	< 0.05	< 0.05	<0.05	<0.05	< 0.05	
Xylenes (Total)	ug/g	3.1	0.05	< 0.05	<0.05	0.82	1.10	< 0.05	
1,3-Dichloropropene (Cis + Trans)	μg/g	0.05	0.05	< 0.05	<0.05	< 0.05	< 0.05	< 0.05	
n-Hexane	μg/g	2.8	0.05	< 0.05	<0.05	< 0.05	< 0.05	< 0.05	
Moisture Content	%		0.1	29.8	12.7	24.9	24.6	12.0	
Surrogate	Unit	Acceptabl	e Limits						
Toluene-d8	% Recovery	50-1	40	104	102	100	106	101	
4-Bromofluorobenzene	% Recovery	50-1	40	101	98	104	114	88	

Comments:

RDL - Reported Detection Limit; G / S - Guideline / Standard: Refers to Table 7: Generic Site Condition Standards for Shallow Soils in a Non-Potable Ground Water Condition - Soil - Residential/Parkland/Institutional Property Use - Coarse Textured Soils

Guideline values are for general reference only. The guidelines provided may or may not be relevant for the intended use. Refer directly to the applicable standard for regulatory interpretation.

4650888-4651008 The sample was analyzed using the high level technique. The sample was extracted using methanol, a small amount of the methanol extract was diluted in water and the purge & trap GC/MS analysis was performed. Results are based on the dry weight of the soil.

Xylenes total is a calculated parameter. The calculated value is the sum of m&p-Xylene + o-Xylene.

1,3-Dichloropropene total is a calculated parameter. The calculated value is the sum of Cis-1,3-Dichloropropene and Trans-1,3-Dichloropropene.

The calculated parameters are non-accredited. The parameters that are components of the calculation are accredited.

Analysis performed at AGAT Toronto (unless marked by *)

Exceedance Summary

AGAT WORK ORDER: 22P983391

PROJECT: 220509

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

CLIENT NAME: BLUMETRIC ENVIRONMENTAL INC.

ATTENTION TO: Paul Bandler

SAMPLEID	SAMPLE TITLE	GUIDELINE	ANALYSIS PACKAGE	PARAMETER	UNIT	GUIDEVALUE	RESULT
4650888	BH214 SS2	ON T7 S RPI CT	O. Reg. 153(511) - VOCs (with PHC) (Soil)	Xylenes (Total)	ug/g	3.1	3.30
4650891	BH214 SS3	ON T7 S RPI CT	O. Reg. 153(511) - BNA (full) + PAHs (Soil)	Anthracene	μg/g	0.67	1.06
4650891	BH214 SS3	ON T7 S RPI CT	O. Reg. 153(511) - BNA (full) + PAHs (Soil)	Benz(a)anthracene	μg/g	0.5	1.74
4650891	BH214 SS3	ON T7 S RPI CT	O. Reg. 153(511) - BNA (full) + PAHs (Soil)	Benzo(a)pyrene	μg/g	0.3	1.57
4650891	BH214 SS3	ON T7 S RPI CT	O. Reg. 153(511) - BNA (full) + PAHs (Soil)	Benzo(b)fluoranthene	μg/g	0.78	2.48
4650891	BH214 SS3	ON T7 S RPI CT	O. Reg. 153(511) - BNA (full) + PAHs (Soil)	Benzo(k)fluoranthene	μg/g	0.78	1.32
4650891	BH214 SS3	ON T7 S RPI CT	O. Reg. 153(511) - BNA (full) + PAHs (Soil)	Dibenzo(a,h)anthracene	μg/g	0.1	0.13
4650891	BH214 SS3	ON T7 S RPI CT	O. Reg. 153(511) - BNA (full) + PAHs (Soil)	Fluoranthene	μg/g	0.69	4.32
4650891	BH214 SS3	ON T7 S RPI CT	O. Reg. 153(511) - BNA (full) + PAHs (Soil)	Indeno(1,2,3-cd)pyrene	μg/g	0.38	0.59
4650891	BH214 SS3	ON T7 S RPI CT	O. Reg. 153(511) - PHCs F1 - F4 (with PAHs and VOC) (Soil)	Benzo(a)anthracene	μg/g	0.5	1.74
4650891	BH214 SS3	ON T7 S RPI CT	O. Reg. 153(511) - PHCs F1 - F4 (with PAHs and VOC) (Soil)	Benzo(a)pyrene	μg/g	0.3	1.57
4650891	BH214 SS3	ON T7 S RPI CT	O. Reg. 153(511) - PHCs F1 - F4 (with PAHs and VOC) (Soil)	Benzo(b)fluoranthene	μg/g	0.78	2.48
4650891	BH214 SS3	ON T7 S RPI CT	O. Reg. 153(511) - PHCs F1 - F4 (with PAHs and VOC) (Soil)	Benzo(k)fluoranthene	μg/g	0.78	1.32
4650891	BH214 SS3	ON T7 S RPI CT	O. Reg. 153(511) - PHCs F1 - F4 (with PAHs and VOC) (Soil)	Dibenzo(a,h)anthracene	μg/g	0.1	0.13
4650891	BH214 SS3	ON T7 S RPI CT	O. Reg. 153(511) - PHCs F1 - F4 (with PAHs and VOC) (Soil)	Fluoranthene	μg/g	0.69	4.32
4650891	BH214 SS3	ON T7 S RPI CT	O. Reg. 153(511) - PHCs F1 - F4 (with PAHs and VOC) (Soil)	Indeno(1,2,3-cd)pyrene	μg/g	0.38	0.59
4650899	BH207 SS1	ON T7 S RPI CT	O. Reg. 153(511) - BNA (full) + PAHs (Soil)	1,1-Biphenyl	μg/g	0.31	0.98
4650899	BH207 SS1	ON T7 S RPI CT	O. Reg. 153(511) - Metals & Inorganics (Soil)	Molybdenum	μg/g	6.9	22.9
4650899	BH207 SS1	ON T7 S RPI CT	O. Reg. 153(511) - PCBs (Soil)	Polychlorinated Biphenyls	μg/g	0.35	1.57
4650906	BH235 SS1	ON T7 S RPI CT	O. Reg. 153(511) - Metals & Inorganics (Soil)	Arsenic	μg/g	18	27
4650913	BH235 SS2	ON T7 S RPI CT	O. Reg. 153(511) - Metals & Inorganics (Soil)	Electrical Conductivity (2:1)	mS/cm	0.7	0.707
4650916	BH232 SS1	ON T7 S RPI CT	O. Reg. 153(511) - Metals & Inorganics (Soil)	Antimony	μg/g	7.5	13.9
4650916	BH232 SS1	ON T7 S RPI CT	O. Reg. 153(511) - Metals & Inorganics (Soil)	Mercury	μg/g	0.27	1.44
4650916	BH232 SS1	ON T7 S RPI CT	O. Reg. 153(511) - Metals & Inorganics (Soil)	Molybdenum	μg/g	6.9	241
4650919	BH232 SS2	ON T7 S RPI CT	O. Reg. 153(511) - Metals & Inorganics (Soil)	Antimony	μg/g	7.5	8.4
4650919	BH232 SS2	ON T7 S RPI CT	O. Reg. 153(511) - Metals & Inorganics (Soil)	Electrical Conductivity (2:1)	mS/cm	0.7	0.708
4650919	BH232 SS2	ON T7 S RPI CT	O. Reg. 153(511) - Metals & Inorganics (Soil)	Mercury	μg/g	0.27	0.82
4650919	BH232 SS2	ON T7 S RPI CT	O. Reg. 153(511) - Metals & Inorganics (Soil)	Molybdenum	μg/g	6.9	180
4650919	BH232 SS2	ON T7 S RPI CT	O. Reg. 153(511) - PCBs (Soil)	Polychlorinated Biphenyls	μg/g	0.35	0.64
4650926	BH228 SS1	ON T7 S RPI CT	O. Reg. 153(511) - Metals & Inorganics (Soil)	Electrical Conductivity (2:1)	mS/cm	0.7	1.31
4650926	BH228 SS1	ON T7 S RPI CT	O. Reg. 153(511) - Metals & Inorganics (Soil)	Molybdenum	μg/g	6.9	14.5
4650930	BH217 SS1	ON T7 S RPI CT	O. Reg. 153(511) - Metals & Inorganics (Soil)	Electrical Conductivity (2:1)	mS/cm	0.7	0.719
4650939	BH216 SS1	ON T7 S RPI CT	O. Reg. 153(511) - PAHs (Soil)	1 and 2 Methlynaphthalene	μg/g	0.99	1.07
4650939	BH216 SS1	ON T7 S RPI CT	O. Reg. 153(511) - PAHs (Soil)	Acenaphthylene	μg/g	0.15	0.36
4650939	BH216 SS1	ON T7 S RPI CT	O. Reg. 153(511) - PAHs (Soil)	Anthracene	μg/g	0.67	5.84
4650939	BH216 SS1	ON T7 S RPI CT	O. Reg. 153(511) - PAHs (Soil)	Benz(a)anthracene	μg/g	0.5	12.9
4650939	BH216 SS1	ON T7 S RPI CT	O. Reg. 153(511) - PAHs (Soil)	Benzo(a)pyrene	μg/g	0.3	10.3

Exceedance Summary

AGAT WORK ORDER: 22P983391

PROJECT: 220509

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

CLIENT NAME: BLUMETRIC ENVIRONMENTAL INC.

ATTENTION TO: Paul Bandler

SAMPLEID	SAMPLE TITLE	GUIDELINE	ANALYSIS PACKAGE	PARAMETER	UNIT	GUIDEVALUE	RESULT
4650939	BH216 SS1	ON T7 S RPI CT	O. Reg. 153(511) - PAHs (Soil)	Benzo(b)fluoranthene	μg/g	0.78	11.9
4650939	BH216 SS1	ON T7 S RPI CT	O. Reg. 153(511) - PAHs (Soil)	Benzo(g,h,i)perylene	μg/g	6.6	7.14
4650939	BH216 SS1	ON T7 S RPI CT	O. Reg. 153(511) - PAHs (Soil)	Benzo(k)fluoranthene	μg/g	0.78	5.08
4650939	BH216 SS1	ON T7 S RPI CT	O. Reg. 153(511) - PAHs (Soil)	Chrysene	μg/g	7	10.9
4650939	BH216 SS1	ON T7 S RPI CT	O. Reg. 153(511) - PAHs (Soil)	Dibenz(a,h)anthracene	μg/g	0.1	1.29
4650939	BH216 SS1	ON T7 S RPI CT	O. Reg. 153(511) - PAHs (Soil)	Fluoranthene	μg/g	0.69	41.2
4650939	BH216 SS1	ON T7 S RPI CT	O. Reg. 153(511) - PAHs (Soil)	Indeno(1,2,3-cd)pyrene	μg/g	0.38	6.14
4650939	BH216 SS1	ON T7 S RPI CT	O. Reg. 153(511) - PAHs (Soil)	Naphthalene	μg/g	0.6	0.82
4650939	BH216 SS1	ON T7 S RPI CT	O. Reg. 153(511) - PAHs (Soil)	Phenanthrene	μg/g	6.2	29.1
4650940	BH223 SS1	ON T7 S RPI CT	O. Reg. 153(511) - BNA (full) + PAHs (Soil)	1 and 2 Methlynaphthalene	μg/g	0.99	4.07
4650940	BH223 SS1	ON T7 S RPI CT	O. Reg. 153(511) - BNA (full) + PAHs (Soil)	1,1-Biphenyl	μg/g	0.31	0.62
4650940	BH223 SS1	ON T7 S RPI CT	O. Reg. 153(511) - BNA (full) + PAHs (Soil)	Acenaphthene	μg/g	7.9	9.51
4650940	BH223 SS1	ON T7 S RPI CT	O. Reg. 153(511) - BNA (full) + PAHs (Soil)	Acenaphthylene	μg/g	0.15	0.48
4650940	BH223 SS1	ON T7 S RPI CT	O. Reg. 153(511) - BNA (full) + PAHs (Soil)	Anthracene	μg/g	0.67	22.3
4650940	BH223 SS1	ON T7 S RPI CT	O. Reg. 153(511) - BNA (full) + PAHs (Soil)	Benz(a)anthracene	μg/g	0.5	36.0
4650940	BH223 SS1	ON T7 S RPI CT	O. Reg. 153(511) - BNA (full) + PAHs (Soil)	Benzo(a)pyrene	μg/g	0.3	27.8
4650940	BH223 SS1	ON T7 S RPI CT	O. Reg. 153(511) - BNA (full) + PAHs (Soil)	Benzo(b)fluoranthene	μg/g	0.78	54.6
4650940	BH223 SS1	ON T7 S RPI CT	O. Reg. 153(511) - BNA (full) + PAHs (Soil)	Benzo(g,h,i)perylene	μg/g	6.6	10.4
4650940	BH223 SS1	ON T7 S RPI CT	O. Reg. 153(511) - BNA (full) + PAHs (Soil)	Benzo(k)fluoranthene	μg/g	0.78	20.2
4650940	BH223 SS1	ON T7 S RPI CT	O. Reg. 153(511) - BNA (full) + PAHs (Soil)	Chrysene	μg/g	7	38.0
4650940	BH223 SS1	ON T7 S RPI CT	O. Reg. 153(511) - BNA (full) + PAHs (Soil)	Dibenzo(a,h)anthracene	μg/g	0.1	1.72
4650940	BH223 SS1	ON T7 S RPI CT	O. Reg. 153(511) - BNA (full) + PAHs (Soil)	Fluoranthene	μg/g	0.69	105
4650940	BH223 SS1	ON T7 S RPI CT	O. Reg. 153(511) - BNA (full) + PAHs (Soil)	Indeno(1,2,3-cd)pyrene	μg/g	0.38	10.9
4650940	BH223 SS1	ON T7 S RPI CT	O. Reg. 153(511) - BNA (full) + PAHs (Soil)	Naphthalene	μg/g	0.6	5.23
4650940	BH223 SS1	ON T7 S RPI CT	O. Reg. 153(511) - BNA (full) + PAHs (Soil)	Phenanthrene	μg/g	6.2	95.5
4650940	BH223 SS1	ON T7 S RPI CT	O. Reg. 153(511) - BNA (full) + PAHs (Soil)	Pyrene	μg/g	78	94.7
4650940	BH223 SS1	ON T7 S RPI CT	O. Reg. 153(511) - PHCs F1 - F4 (with PAHs and VOC) (Soil)	Benzo(a)anthracene	μg/g	0.5	36.0
4650940	BH223 SS1	ON T7 S RPI CT	O. Reg. 153(511) - PHCs F1 - F4 (with PAHs and VOC) (Soil)	Benzo(a)pyrene	μg/g	0.3	27.8
4650940	BH223 SS1	ON T7 S RPI CT	O. Reg. 153(511) - PHCs F1 - F4 (with PAHs and VOC) (Soil)	Benzo(b)fluoranthene	μg/g	0.78	54.6
4650940	BH223 SS1	ON T7 S RPI CT	O. Reg. 153(511) - PHCs F1 - F4 (with PAHs and VOC) (Soil)	Benzo(k)fluoranthene	μg/g	0.78	20.2
4650940	BH223 SS1	ON T7 S RPI CT	O. Reg. 153(511) - PHCs F1 - F4 (with PAHs and VOC) (Soil)	Dibenzo(a,h)anthracene	μg/g	0.1	1.72
4650940	BH223 SS1	ON T7 S RPI CT	O. Reg. 153(511) - PHCs F1 - F4 (with PAHs and VOC) (Soil)	F2 (C10 to C16)	μg/g	98	147
4650940	BH223 SS1	ON T7 S RPI CT	O. Reg. 153(511) - PHCs F1 - F4 (with PAHs and VOC) (Soil)	F3 (C16 to C34)	μg/g	300	3500
4650940	BH223 SS1	ON T7 S RPI CT	O. Reg. 153(511) - PHCs F1 - F4 (with PAHs and VOC) (Soil)	Fluoranthene	μg/g	0.69	105
4650940	BH223 SS1	ON T7 S RPI CT	O. Reg. 153(511) - PHCs F1 - F4 (with PAHs and VOC) (Soil)	Indeno(1,2,3-cd)pyrene	μg/g	0.38	10.9

Exceedance Summary

AGAT WORK ORDER: 22P983391

PROJECT: 220509

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

CLIENT NAME: BLUMETRIC ENVIRONMENTAL INC.

ATTENTION TO: Paul Bandler

SAMPLEID	SAMPLE TITLE	GUIDELINE	ANALYSIS PACKAGE	PARAMETER	UNIT	GUIDEVALUE	RESULT
4650940	BH223 SS1	ON T7 S RPI CT	O. Reg. 153(511) - PHCs F1 - F4 (with PAHs and VOC) (Soil)	Naphthalene	µg/g	0.6	5.23
4650940	BH223 SS1	ON T7 S RPI CT	O. Reg. 153(511) - PHCs F1 - F4 (with PAHs and VOC) (Soil)	Phenanthrene	μg/g	6.2	95.5
4650940	BH223 SS1	ON T7 S RPI CT	O. Reg. 153(511) - PHCs F1 - F4 (with PAHs and VOC) (Soil)	Pyrene	μg/g	78	94.7
4650968	BH223 SS1-DUP	ON T7 S RPI CT	O. Reg. 153(511) - BNA (full) + PAHs (Soil)	1 and 2 Methlynaphthalene	μg/g	0.99	3.11
4650968	BH223 SS1-DUP	ON T7 S RPI CT	O. Reg. 153(511) - BNA (full) + PAHs (Soil)	1,1-Biphenyl	μg/g	0.31	0.55
4650968	BH223 SS1-DUP	ON T7 S RPI CT	O. Reg. 153(511) - BNA (full) + PAHs (Soil)	Acenaphthene	μg/g	7.9	9.97
4650968	BH223 SS1-DUP	ON T7 S RPI CT	O. Reg. 153(511) - BNA (full) + PAHs (Soil)	Acenaphthylene	μg/g	0.15	0.53
4650968	BH223 SS1-DUP	ON T7 S RPI CT	O. Reg. 153(511) - BNA (full) + PAHs (Soil)	Anthracene	μg/g	0.67	21.3
4650968	BH223 SS1-DUP	ON T7 S RPI CT	O. Reg. 153(511) - BNA (full) + PAHs (Soil)	Benz(a)anthracene	μg/g	0.5	24.0
4650968	BH223 SS1-DUP	ON T7 S RPI CT	O. Reg. 153(511) - BNA (full) + PAHs (Soil)	Benzo(a)pyrene	μg/g	0.3	22.8
4650968	BH223 SS1-DUP	ON T7 S RPI CT	O. Reg. 153(511) - BNA (full) + PAHs (Soil)	Benzo(b)fluoranthene	μg/g	0.78	35.9
4650968	BH223 SS1-DUP	ON T7 S RPI CT	O. Reg. 153(511) - BNA (full) + PAHs (Soil)	Benzo(g,h,i)perylene	μg/g	6.6	11.8
4650968	BH223 SS1-DUP	ON T7 S RPI CT	O. Reg. 153(511) - BNA (full) + PAHs (Soil)	Benzo(k)fluoranthene	μg/g	0.78	20.9
4650968	BH223 SS1-DUP	ON T7 S RPI CT	O. Reg. 153(511) - BNA (full) + PAHs (Soil)	Chrysene	μg/g	7	27.9
4650968	BH223 SS1-DUP	ON T7 S RPI CT	O. Reg. 153(511) - BNA (full) + PAHs (Soil)	Dibenzo(a,h)anthracene	μg/g	0.1	2.41
4650968	BH223 SS1-DUP	ON T7 S RPI CT	O. Reg. 153(511) - BNA (full) + PAHs (Soil)	Fluoranthene	μg/g	0.69	90.7
4650968	BH223 SS1-DUP	ON T7 S RPI CT	O. Reg. 153(511) - BNA (full) + PAHs (Soil)	Indeno(1,2,3-cd)pyrene	μg/g	0.38	11.8
4650968	BH223 SS1-DUP	ON T7 S RPI CT	O. Reg. 153(511) - BNA (full) + PAHs (Soil)	Naphthalene	μg/g	0.6	5.26
4650968	BH223 SS1-DUP	ON T7 S RPI CT	O. Reg. 153(511) - BNA (full) + PAHs (Soil)	Phenanthrene	μg/g	6.2	66.8
4650968	BH223 SS1-DUP	ON T7 S RPI CT	O. Reg. 153(511) - PHCs F1 - F4 (with PAHs and VOC) (Soil)	Benzo(a)anthracene	μg/g	0.5	24.0
4650968	BH223 SS1-DUP	ON T7 S RPI CT	O. Reg. 153(511) - PHCs F1 - F4 (with PAHs and VOC) (Soil)	Benzo(a)pyrene	μg/g	0.3	22.8
4650968	BH223 SS1-DUP	ON T7 S RPI CT	O. Reg. 153(511) - PHCs F1 - F4 (with PAHs and VOC) (Soil)	Benzo(b)fluoranthene	μg/g	0.78	35.9
4650968	BH223 SS1-DUP	ON T7 S RPI CT	O. Reg. 153(511) - PHCs F1 - F4 (with PAHs and VOC) (Soil)	Benzo(k)fluoranthene	μg/g	0.78	20.9
4650968	BH223 SS1-DUP	ON T7 S RPI CT	O. Reg. 153(511) - PHCs F1 - F4 (with PAHs and VOC) (Soil)	Dibenzo(a,h)anthracene	μg/g	0.1	2.41
4650968	BH223 SS1-DUP	ON T7 S RPI CT	O. Reg. 153(511) - PHCs F1 - F4 (with PAHs and VOC) (Soil)	F2 (C10 to C16)	μg/g	98	147
4650968	BH223 SS1-DUP	ON T7 S RPI CT	O. Reg. 153(511) - PHCs F1 - F4 (with PAHs and VOC) (Soil)	F3 (C16 to C34)	μg/g	300	3500
4650968	BH223 SS1-DUP	ON T7 S RPI CT	O. Reg. 153(511) - PHCs F1 - F4 (with PAHs and VOC) (Soil)	Fluoranthene	μg/g	0.69	90.7
4650968	BH223 SS1-DUP	ON T7 S RPI CT	O. Reg. 153(511) - PHCs F1 - F4 (with PAHs and VOC) (Soil)	Indeno(1,2,3-cd)pyrene	μg/g	0.38	11.8
4650968	BH223 SS1-DUP	ON T7 S RPI CT	O. Reg. 153(511) - PHCs F1 - F4 (with PAHs and VOC) (Soil)	Naphthalene	μg/g	0.6	5.26
4650968	BH223 SS1-DUP	ON T7 S RPI CT	O. Reg. 153(511) - PHCs F1 - F4 (with PAHs and VOC) (Soil)	Phenanthrene	μg/g	6.2	66.8

Quality Assurance

CLIENT NAME: BLUMETRIC ENVIRONMENTAL INC.

AGAT WORK ORDER: 22P983391

PROJECT: 220509

ATTENTION TO: Paul Bandler

SAMPLING SITE:Bakelite Belleville SAMPLED BY:ML

				Soi	l Ana	alysis	 }								
RPT Date: Jan 16, 2023			С	UPLICATI			REFEREN	NCE MA	TERIAL	METHOD	BLANK	SPIKE	MAT	RIX SPI	KE
PARAMETER	Batch	Sample	Dup #1	Dup #2	RPD	Method Blank	Measured	Acce	ptable	Recovery	Acce	ptable	Recovery	Acce	ptable
TATO WILLER	Date	ld	Jup	2 up 1/2	2		Value	Lower	Upper		Lower	Upper	,	Lower	Upper
O. Reg. 153(511) - Metals & Inor	ganics (Soil))									•	•			•
Antimony	4650899	4650899	7.4	6.7	9.9%	< 0.8	88%	70%	130%	101%	80%	120%	87%	70%	130%
Arsenic	4650899	4650899	7	6	15.4%	< 1	114%	70%	130%	117%	80%	120%	101%	70%	130%
Barium	4650899	4650899	110	102	7.5%	< 2.0	98%	70%	130%	96%	80%	120%	120%	70%	130%
Beryllium	4650899	4650899	0.4	0.4	NA	< 0.4	110%	70%	130%	94%	80%	120%	128%	70%	130%
Boron	4650899	4650899	18	19	NA	< 5	90%	70%	130%	99%	80%	120%	125%	70%	130%
Boron (Hot Water Soluble)	4666825	4650899	<0.10	<0.10	NA	< 0.10	84%	60%	140%	94%	70%	130%	97%	60%	140%
Cadmium	4650899	4650899	<0.5	<0.5	NA	< 0.5	113%	70%	130%	101%	80%	120%	129%	70%	130%
Chromium	4650899	4650899	15	15	NA	< 5	105%	70%	130%	106%	80%	120%	100%	70%	130%
Cobalt	4650899	4650899	8.4	7.8	7.4%	< 0.5	112%	70%	130%	117%	80%	120%	110%	70%	130%
Copper	4650899	4650899	23.8	22.5	5.6%	< 1.0	96%	70%	130%	100%	80%	120%	90%	70%	130%
Lead	4650899	4650899	18	17	5.7%	< 1	105%	70%	130%	115%	80%	120%	126%	70%	130%
Molybdenum	4650899	4650899	22.9	23.4	2.2%	< 0.5	112%	70%	130%	110%	80%	120%	112%	70%	130%
Nickel	4650899	4650899	13	13	0.0%	< 1	109%	70%	130%	116%	80%	120%	108%	70%	130%
Selenium	4650899	4650899	<0.8	<0.8	NA	< 0.8	107%	70%	130%	114%	80%	120%	106%	70%	130%
Silver	4650899	4650899	<0.5	<0.5	NA	< 0.5	108%	70%	130%	112%	80%	120%	117%	70%	130%
Thallium	4650899	4650899	<0.5	<0.5	NA	< 0.5	123%	70%	130%	119%	80%	120%	106%	70%	130%
Uranium	4650899	4650899	0.50	< 0.50	NA	< 0.50	125%	70%	130%	116%	80%	120%	116%	70%	130%
Vanadium	4650899	4650899	28.6	26.2	8.8%	< 0.4	125%	70%	130%	118%	80%	120%	101%	70%	130%
Zinc	4650899	4650899	40	36	10.5%	< 5	102%	70%	130%	99%	80%	120%	89%	70%	130%
Chromium, Hexavalent	4650899	4650899	<0.2	<0.2	NA	< 0.2	93%	70%	130%	97%	80%	120%	72%	70%	130%
Cyanide, WAD	4650930	4650930	<0.040	<0.040	NA	< 0.040	92%	70%	130%	100%	80%	120%	109%	70%	130%
Mercury	4650899	4650899	0.20	0.20	NA	< 0.10	109%	70%	130%	101%	80%	120%	92%	70%	130%
Electrical Conductivity (2:1)	4648526		0.627	0.653	4.1%	< 0.005	116%	80%	120%						
Sodium Adsorption Ratio (2:1) (Calc.)	4648653		3.66	3.81	4.0%	NA									
pH, 2:1 CaCl2 Extraction	4647783		7.50	7.50	0.0%	NA	99%	80%	120%						

Comments: NA signifies Not Applicable.

pH duplicates QA acceptance criteria was met relative as stated in Table 5-15 of Analytical Protocol document.

Duplicate NA: results are under 5X the RDL and will not be calculated.

O. Reg. 153(511) - Metals & Inorganics (Soil)

pH, 2:1 CaCl2 Extraction 4650903 4650903 7.45 7.60 2.0% NA 98% 80% 120%

Comments: NA signifies Not Applicable.

pH duplicates QA acceptance criteria was met relative as stated in Table 5-15 of Analytical Protocol document.

Duplicate NA: results are under 5X the RDL and will not be calculated.

O. Reg. 153(511) - Metals & Inorganics (Soil)

Antimony	4662167	<0.8	<0.8	NA	< 0.8	112%	70%	130%	88%	80%	120%	77%	70%	130%
Arsenic	4662167	2	2	NA	< 1	122%	70%	130%	99%	80%	120%	103%	70%	130%
Barium	4662167	17.2	16.3	5.4%	< 2.0	106%	70%	130%	105%	80%	120%	103%	70%	130%
Beryllium	4662167	< 0.4	<0.4	NA	< 0.4	94%	70%	130%	91%	80%	120%	90%	70%	130%

AGAT QUALITY ASSURANCE REPORT (V2)

Page 21 of 35

Quality Assurance

SAMPLED BY:ML

CLIENT NAME: BLUMETRIC ENVIRONMENTAL INC.

AGAT WORK ORDER: 22P983391

PROJECT: 220509

ATTENTION TO: Paul Bandler

SAMPLING SITE:Bakelite Belleville

GAMI EING GITE. Bakeite B	CIICVIIIC							ZAIVII		1.IVIL					
			Soil	Analy	/sis ((Con	tinue	d)							
RPT Date: Jan 16, 2023				DUPLICATI	E		REFEREN	NCE MA	TERIAL	METHOD	BLAN	SPIKE	MAT	RIX SPI	KE
PARAMETER	Batch	Sample Id	Dup #1	Dup #2	RPD	Method Blank	Measured Value		eptable mits	Recovery	Lie	ptable nits	Recovery	Lin	ptable nits
		iu					value	Lower	Upper		Lower	Upper		Lower	Upper
Boron	4662167		<5	<5	NA	< 5	85%	70%	130%	104%	80%	120%	100%	70%	130%
Boron (Hot Water Soluble)	4662167		<0.10	<0.10	NA	< 0.10	83%	60%	140%	98%	70%	130%	99%	60%	140%
Cadmium	4662167		< 0.5	< 0.5	NA	< 0.5	113%	70%	130%	106%	80%	120%	111%	70%	130%
Chromium	4662167		9	8	NA	< 5	103%	70%	130%	109%	80%	120%	105%	70%	130%
Cobalt	4662167		2.5	2.2	NA	< 0.5	103%	70%	130%	105%	80%	120%	106%	70%	130%
Copper	4662167		7.2	6.9	4.3%	< 1.0	100%	70%	130%	108%	80%	120%	106%	70%	130%
Lead	4662167		6	6	0.0%	< 1	113%	70%	130%	108%	80%	120%	108%	70%	130%
Molybdenum	4662167		<0.5	< 0.5	NA	< 0.5	118%	70%	130%	118%	80%	120%	120%	70%	130%
Nickel	4662167		5	5	0.0%	< 1	112%	70%	130%	106%	80%	120%	106%	70%	130%
Selenium	4662167		<0.8	<0.8	NA	< 0.8	104%	70%	130%	105%	80%	120%	110%	70%	130%
Silver	4662167		<0.5	<0.5	NA	< 0.5	115%	70%	130%	104%	80%	120%	109%	70%	130%
Thallium	4662167		<0.5	<0.5	NA	< 0.5	110%	70%	130%	106%	80%	120%	106%	70%	130%
Uranium	4662167		< 0.50	< 0.50	NA	< 0.50	127%	70%	130%	111%	80%	120%	116%	70%	130%
Vanadium	4662167		24.3	19.8	20.4%	< 0.4	116%	70%	130%	112%	80%	120%	107%	70%	130%
Zinc	4662167		20	21	NA	< 5	108%	70%	130%	109%	80%	120%	115%	70%	130%
Chromium, Hexavalent	4663513		<0.2	<0.2	NA	< 0.2	103%	70%	130%	103%	80%	120%	86%	70%	130%
Cyanide, WAD	4662158		<0.040	<0.040	NA	< 0.040	97%	70%	130%	109%	80%	120%	107%	70%	130%
Mercury	4662167		< 0.10	<0.10	NA	< 0.10	99%	70%	130%	107%	80%	120%	106%	70%	130%
Electrical Conductivity (2:1)	4662167		0.178	0.153	15.1%	< 0.005	105%	80%	120%	NA			NA		
Sodium Adsorption Ratio (2:1) (Calc.)	4662167		0.724	0.690	4.8%	N/A									
pH, 2:1 CaCl2 Extraction	4662158		7.62	7.76	1.8%	NA	98%	80%	120%	NA			NA		

Comments: NA signifies Not Applicable.

pH duplicates QA acceptance criteria was met relative as stated in Table 5-15 of Analytical Protocol document.

Duplicate NA: results are under 5X the RDL and will not be calculated.

O. Reg. 153(511) - Metals & Inorganics (Soil)

5 ,	. ,													
Antimony	4671972	<0.8	<0.8	NA	< 0.8	99%	70%	130%	84%	80%	120%	80%	70%	130%
Arsenic	4671972	1	1	NA	< 1	115%	70%	130%	100%	80%	120%	101%	70%	130%
Barium	4671972	22.8	23.7	3.9%	< 2.0	105%	70%	130%	101%	80%	120%	113%	70%	130%
Beryllium	4671972	<0.4	<0.4	NA	< 0.4	76%	70%	130%	88%	80%	120%	98%	70%	130%
Boron	4671972	<5	<5	NA	< 5	72%	70%	130%	97%	80%	120%	104%	70%	130%
Dans a (Hat) Water Oakskie)	1000005	0.40	0.40		0.40	0.407	000/	4.4007	0.40/	700/	1000/	070/	000/	4.400/
Boron (Hot Water Soluble)	4666825	<0.10	<0.10	NA	< 0.10	84%	60%	140%	94%	70%	130%	97%	60%	140%
Cadmium	4671972	<0.5	<0.5	NA	< 0.5	110%	70%	130%	100%	80%	120%	108%	70%	130%
Chromium	4671972	7	7	NA	< 5	97%	70%	130%	106%	80%	120%	101%	70%	130%
Cobalt	4671972	2.4	2.5	NA	< 0.5	103%	70%	130%	103%	80%	120%	101%	70%	130%
Copper	4671972	5.2	6.3	19.1%	< 1.0	97%	70%	130%	106%	80%	120%	100%	70%	130%
Lead	4671972	3	3	NA	< 1	114%	70%	130%	114%	80%	120%	110%	70%	130%
Molybdenum	4671972	<0.5	<0.5	NA	< 0.5	111%	70%	130%	105%	80%	120%	119%	70%	130%
Nickel	4671972	5	6	18.2%	< 1	106%	70%	130%	104%	80%	120%	101%	70%	130%
Selenium	4671972	<0.8	<0.8	NA	< 0.8	91%	70%	130%	94%	80%	120%	103%	70%	130%

AGAT QUALITY ASSURANCE REPORT (V2)

Page 22 of 35

AGAT Laboratories is accredited to ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA) and/or Standards Council of Canada (SCC) for specific tests listed on the scope of accreditation. AGAT Laboratories (Mississauga) is also accredited by the Canadian Association for Laboratory Accreditation Inc. (CALA) for specific drinking water tests. Accreditations are location and parameter specific. A complete listing of parameters for each location is available from www.cala.ca and/or www.scc.ca. The tests in this report may not necessarily be included in the scope of accreditation. RPDs calculated using raw data. The RPD may not be reflective of duplicate values shown, due to rounding of final results.

Quality Assurance

CLIENT NAME: BLUMETRIC ENVIRONMENTAL INC.

AGAT WORK ORDER: 22P983391

PROJECT: 220509

ATTENTION TO: Paul Bandler

SAMPLING SITE:Bakelite Belleville SAMPLED BY:ML

Ortivii Elito on E. Bakente Bi	Cilcvillo					•	, (IVII		1 . IVIL					
		Soil	Analy	/sis	(Con	tinue	d)							
RPT Date: Jan 16, 2023			DUPLICATE			REFEREN	NCE MA	TERIAL	METHOD	BLANK	SPIKE	МАТ	TRIX SPI	IKE
PARAMETER	Batch Sample	Dup #1	Dup #2	RPD	Method Blank	Measured Value		ptable nits	Recovery	l lie	ptable nits	Recovery	1 1 1 1	eptable mits
	ld ld	·	·			value	Lower	Upper	,	Lower	Upper		Lower	Upper
Silver	4671972	<0.5	<0.5	NA	< 0.5	105%	70%	130%	113%	80%	120%	96%	70%	130%
Thallium	4671972	<0.5	<0.5	NA	< 0.5	101%	70%	130%	103%	80%	120%	101%	70%	130%
Uranium	4671972	0.57	< 0.50	NA	< 0.50	119%	70%	130%	108%	80%	120%	118%	70%	130%
Vanadium	4671972	15.6	15.4	1.3%	< 0.4	112%	70%	130%	117%	80%	120%	115%	70%	130%
Zinc	4671972	12	15	NA	< 5	100%	70%	130%	102%	80%	120%	104%	70%	130%
Chromium, Hexavalent	4650916 4650916	< 0.2	< 0.2	NA	< 0.2	95%	70%	130%	101%	80%	120%	84%	70%	130%
Cyanide, WAD	4650916 4650916	< 0.040	< 0.040	NA	< 0.040	100%	70%	130%	96%	80%	120%	85%	70%	130%
Mercury	4671972	<0.10	<0.10	NA	< 0.10	106%	70%	130%	101%	80%	120%	100%	70%	130%
Electrical Conductivity (2:1)	4666825	0.215	0.240	11.0%	< 0.005	91%	80%	120%						
Sodium Adsorption Ratio (2:1) (Calc.)	4666825	0.185	0.193	4.2%	N/A	NA								
pH, 2:1 CaCl2 Extraction	4650916 4650916	7.18	7.48	4.1%	NA	99%	80%	120%						

Comments: NA signifies Not Applicable.

pH duplicates QA acceptance criteria was met relative as stated in Table 5-15 of Analytical Protocol document.

Duplicate NA: results are under 5X the RDL and will not be calculated.

O. Reg. 153(511) - Metals & Inorganics (Soil)

Electrical Conductivity (2:1)	4671972	0.469	0.454	3.2%	< 0.005	89%	80%	120%	NA	NA
pH, 2:1 CaCl2 Extraction	4650916 4650916	7.18	7.48	4%		99%	80%	120%	NA	NA

Comments: NA signifies Not Applicable.

pH duplicates QA acceptance criteria was met relative as stated in Table 5-15 of Analytical Protocol document.

Duplicate NA: results are under 5X the RDL and will not be calculated.

Amanyot Bhell Amanor Break

Quality Assurance

CLIENT NAME: BLUMETRIC ENVIRONMENTAL INC.

AGAT WORK ORDER: 22P983391

PROJECT: 220509

ATTENTION TO: Paul Bandler

SAMPLING SITE:Bakelite Belleville SAMPLED BY:ML

SAMPLING SITE:Bakelite	Belleville							SAMP	LED B	Y:ML					
			Trac	e Or	gani	cs Ar	nalys	is							
RPT Date: Jan 16, 2023				UPLICAT	E		REFERE	NCE MA	TERIAL	METHOD	BLAN	SPIKE	МАТ	RIX SPI	KE
PARAMETER	Batch	Sample Id	Dup #1	Dup #2	RPD	Method Blank	Measured Value		eptable mits	Recovery	1 1:4	ptable nits	Recovery	Lie	ptable nits
								Lower	Upper		Lower	Upper		Lower	Upper
O. Reg. 153(511) - PHCs F1 - F	4 (with PAHs	and VOC)	(Soil)												
F1 (C6 - C10)	4647603		<5	<5	NA	< 5	98%	60%	140%	86%	60%	140%	80%	60%	140%
F2 (C10 to C16)	4643613		<10	<10	NA	< 10	93%	60%	140%	104%	60%	140%	96%	60%	140%
F3 (C16 to C34)	4643613		<50	<50	NA	< 50	98%	60%	140%	103%	60%	140%	112%	60%	140%
F4 (C34 to C50)	4643613		<50	<50	NA	< 50	83%	60%	140%	115%	60%	140%	121%	60%	140%
O. Reg. 153(511) - VOCs (with	PHC) (Soil)														
Dichlorodifluoromethane	4647603		< 0.05	< 0.05	NA	< 0.05	86%	50%	140%	108%	50%	140%	96%	50%	140%
Vinyl Chloride	4647603		< 0.02	< 0.02	NA	< 0.02	88%	50%	140%	107%	50%	140%	113%	50%	140%
Bromomethane	4647603		< 0.05	< 0.05	NA	< 0.05	107%	50%	140%	99%	50%	140%	83%	50%	140%
Trichlorofluoromethane	4647603		< 0.05	< 0.05	NA	< 0.05	81%	50%	140%	115%	50%	140%	114%	50%	140%
Acetone	4647603		<0.50	<0.50	NA	< 0.50	106%	50%	140%	95%	50%	140%	109%	50%	140%
1,1-Dichloroethylene	4647603		<0.05	<0.05	NA	< 0.05	102%	50%	140%	114%	60%	130%	97%	50%	140%
Methylene Chloride	4647603		<0.05	<0.05	NA	< 0.05	99%	50%	140%	83%	60%	130%	88%	50%	140%
Trans- 1,2-Dichloroethylene	4647603		< 0.05	< 0.05	NA	< 0.05	111%	50%		101%	60%	130%	100%	50%	140%
Methyl tert-butyl Ether	4647603		<0.05	< 0.05	NA	< 0.05	113%	50%		100%	60%	130%	103%	50%	140%
1,1-Dichloroethane	4647603		<0.02	< 0.02	NA	< 0.02	120%	50%	140%	90%	60%	130%	98%	50%	140%
Methyl Ethyl Ketone	4647603		<0.50	<0.50	NA	< 0.50	99%	50%	140%	97%	50%	140%	103%	50%	140%
Cis- 1,2-Dichloroethylene	4647603		<0.02	<0.02	NA	< 0.02	119%	50%		104%	60%	130%	97%	50%	140%
Chloroform	4647603		<0.02	<0.04	NA	< 0.04	95%	50%		120%	60%	130%	95%	50%	140%
1,2-Dichloroethane	4647603		<0.03	< 0.03	NA	< 0.03	101%	50%	140%	101%	60%	130%	97%	50%	140%
1,1,1-Trichloroethane	4647603		<0.05	<0.05	NA	< 0.05	116%		140%	103%		130%	93%	50%	140%
Carbon Tetrachloride	4647603		<0.05	<0.05	NA	< 0.05	102%	50%	140%	95%	60%	130%	97%	50%	140%
Benzene	4647603		<0.02	<0.02	NA	< 0.02	119%	50%	140%	115%	60%	130%	107%	50%	140%
1,2-Dichloropropane	4647603		<0.02	<0.02	NA	< 0.02	101%	50%	140%	115%	60%	130%	84%	50%	140%
Trichloroethylene	4647603		<0.03	< 0.03	NA	< 0.03	112%	50%	140%	98%	60%	130%	110%	50%	140%
Bromodichloromethane	4647603		<0.05	<0.05	NA	< 0.05	100%	50%		93%	60%	130%	105%	50%	140%
Methyl Isobutyl Ketone	4647603		<0.50	<0.50	NA	< 0.50	108%	50%	140%	77%	50%	140%	92%	50%	140%
1,1,2-Trichloroethane	4647603		<0.04	<0.04	NA	< 0.04	81%	50%	140%	99%	60%	130%	81%	50%	140%
Toluene	4647603		<0.05	<0.05	NA	< 0.05	73%	50%		98%	60%	130%	92%	50%	140%
Dibromochloromethane	4647603		<0.05	<0.05	NA	< 0.05	96%		140%	118%		130%	91%		140%
Ethylene Dibromide	4647603		<0.04	<0.04	NA	< 0.04	81%	50%	140%	95%	60%	130%	74%	50%	140%
Tetrachloroethylene	4647603		<0.05	<0.05	NA	< 0.05	95%	50%	140%	101%	60%	130%	90%	50%	140%
1,1,1,2-Tetrachloroethane	4647603		<0.03	<0.03	NA	< 0.03	93 % 87%		140%	101%		130%	98%		140%
Chlorobenzene	4647603		<0.04	<0.04	NA	< 0.04	89%		140%	113%		130%	102%		140%
Ethylbenzene	4647603		<0.05	<0.05	NA	< 0.05	72%		140%	87%		130%	82%		140%
m & p-Xylene	4647603		<0.05	<0.05	NA	< 0.05	91%		140%	89%		130%	87%		140%
Bromoform	4647602		-0.05	-0 0E	NΙΛ	- 0 OF	QE9/	500/	1/100/	1120/	60%	1200/	000/	50%	140%
Styrene	4647603		<0.05	<0.05	NA NA	< 0.05	95% 78%		140%	113%		130%	88% 76%		140%
1,1,2,2-Tetrachloroethane	4647603 4647603		<0.05 <0.05	<0.05 <0.05	NA NA	< 0.05 < 0.05	78% 102%	50%	140% 140%	92% 103%		130% 130%	76% 91%		140%
	4647603		<0.05		NA NA		71%		140%	95%		130%	91% 88%		140%
o-Xylene	4047003		<0.05	<0.05	INA	< 0.05	1 170	JU 70	140%	3370	0070	130%	0070	JU 70	140%

AGAT QUALITY ASSURANCE REPORT (V2)

Page 24 of 35

AGAT Laboratories is accredited to ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA) and/or Standards Council of Canada (SCC) for specific tests listed on the scope of accreditation. AGAT Laboratories (Mississauga) is also accredited by the Canadian Association for Laboratory Accreditation Inc. (CALA) for specific drinking water tests. Accreditations are location and parameter specific. A complete listing of parameters for each location is available from www.cala.ca and/or www.scc.ca. The tests in this report may not necessarily be included in the scope of accreditation. RPDs calculated using raw data. The RPD may not be reflective of duplicate values shown, due to rounding of final results.

Quality Assurance

CLIENT NAME: BLUMETRIC ENVIRONMENTAL INC.

AGAT WORK ORDER: 22P983391

PROJECT: 220509

ATTENTION TO: Paul Bandler

SAMPLING SITE:Bakelite Belleville SAMPLED BY:ML

	٦	Гrасе	Org	anics	Ana	lysis	(Cor	ntin	ued)					
RPT Date: Jan 16, 2023				UPLICATI	Ī		REFERE	NCE MA	TERIAL	METHOD	BLANK	(SPIKE	MAT	RIX SPI	KE
		Sample				Method	Measured		ptable			ptable			ptable
PARAMETER	Batch	ld	Dup #1	Dup #2	RPD	Blank	Value	Lower	Upper	Recovery	Lower	Upper	Recovery	Lower	upper
1,3-Dichlorobenzene	4647603	•	<0.05	<0.05	NA	< 0.05	89%	50%	140%	109%	60%	130%	99%	50%	140%
1,4-Dichlorobenzene	4647603		<0.05	<0.05	NA	< 0.05	93%	50%	140%	110%	60%	130%	100%	50%	140%
1,2-Dichlorobenzene	4647603		< 0.05	< 0.05	NA	< 0.05	87%	50%	140%	109%	60%	130%	94%	50%	140%
n-Hexane	4647603		<0.05	<0.05	NA	< 0.05	92%	50%	140%	112%	60%	130%	76%	50%	140%
O. Reg. 153(511) - BNA (full) + F	PAHs (Soil)														
Naphthalene	4600978		< 0.05	< 0.05	NA	< 0.05	85%	50%	140%	89%	50%	140%	79%	50%	140%
Acenaphthylene	4600978		< 0.05	< 0.05	NA	< 0.05	79%	50%	140%	85%	50%	140%	85%	50%	140%
Acenaphthene	4600978		< 0.05	< 0.05	NA	< 0.05	85%	50%	140%	84%	50%	140%	84%	50%	140%
Fluorene	4600978		< 0.05	< 0.05	NA	< 0.05	82%	50%	140%	79%	50%	140%	79%	50%	140%
Phenanthrene	4600978		< 0.05	< 0.05	NA	< 0.05	85%	50%	140%	85%	50%	140%	85%	50%	140%
Anthracene	4600978		< 0.05	< 0.05	NA	< 0.05	84%	50%	140%	79%	50%	140%	84%	50%	140%
Fluoranthene	4600978		< 0.05	< 0.05	NA	< 0.05	79%	50%	140%	85%	50%	140%	79%	50%	140%
								50%				140%	85%	50%	140%
Pyrene Benz(a)anthracene	4600978 4600978		< 0.05 < 0.05	< 0.05	NA NA	< 0.05	85% 79%	50%	140% 140%	84% 79%	50% 50%	140%	82%	50%	140%
Chrysene	4600978		< 0.05	< 0.05 < 0.05	NA	< 0.05 < 0.05	85%	50%	140%	85%	50%	140%	85%	50%	140%
Dana (h) fil i annath ann	1000070		0.05	0.05		0.05	000/	500/	4.400/	000/	500 /	4.400/	0.40/	F00/	4.400/
Benzo(b)fluoranthene	4600978		< 0.05	< 0.05	NA	< 0.05	82%	50%	140%	86%	50%	140%	84%	50%	140%
Benzo(k)fluoranthene	4600978		< 0.05	< 0.05	NA	< 0.05	89%	50%	140%	82%	50%	140%	79%	50%	140%
Benzo(a)pyrene	4600978		< 0.05	< 0.05	NA	< 0.05	85%	50%	140%	85%	50%	140%	85%	50%	140%
Indeno(1,2,3-cd)pyrene	4600978		< 0.05	< 0.05	NA	< 0.05	84%	50%	140%	84%	50%	140%	85%	50%	140%
Dibenzo(a,h)anthracene	4600978		< 0.05	< 0.05	NA	< 0.05	79%	50%	140%	79%	50%	140%	60%	50%	140%
Benzo(g,h,i)perylene	4600978		< 0.05	< 0.05	NA	< 0.05	85%	50%	140%	68%	50%	140%	75%	50%	140%
Phenol	4600978		< 0.5	< 0.5	NA	< 0.5	84%	30%	130%	80%	30%	130%	79%	30%	130%
Bis(2-chloroethyl)ether	4600978		< 0.1	< 0.1	NA	< 0.1	114%	50%	140%	81%	50%	140%	118%	50%	140%
2-Chlorophenol	4600978		< 0.1	< 0.1	NA	< 0.1	71%	50%	140%	65%	50%	140%	90%	50%	140%
o-Cresol	4600978		< 0.1	< 0.1	NA	< 0.1	104%	50%	140%	72%	50%	140%	78%	50%	140%
Bis(2-chloroisopropyl)ether	4600978		< 0.1	< 0.1	NA	< 0.1	96%	50%	140%	84%	50%	140%	62%	50%	140%
m & p - Cresol	4600978		< 0.1	< 0.1	NA	< 0.1	104%	50%	140%	87%	50%	140%	103%	50%	140%
2,4-Dimethylphenol	4600978		< 0.2	< 0.2	NA	< 0.2	75%	30%	130%	66%	30%	130%	60%	30%	130%
2,4-Dichlorophenol	4600978		< 0.1	< 0.1	NA	< 0.1	75%	50%	140%	104%	50%	140%	96%	50%	140%
1,2,4-Trichlorobenzene	4600978		< 0.05	< 0.05	NA	< 0.05	93%	50%	140%	68%	50%	140%	68%	50%	140%
p-Chloroaniline	4600978		< 0.5	< 0.5	NA	< 0.5	96%	30%	130%	78%	30%	130%	67%	30%	130%
2,4,6-Trichlorophenol	4600978		< 0.1	< 0.1	NA	< 0.1	111%	50%	140%	114%	50%	140%	89%	50%	140%
2,4,5-Trichlorophenol	4600978		< 0.1	< 0.1	NA	< 0.1	106%	50%		102%	50%	140%	69%		140%
1,1-Biphenyl	4600978		< 0.05	< 0.05	NA	< 0.05	NA	50%		77%		140%	65%		140%
Dimethyl Phthalate	4600978		< 0.1	< 0.1	NA	< 0.1	90%	50%		67%		140%	62%		140%
Diethyl Phthalate	4600978		< 0.1	< 0.1	NA	< 0.1	117%	50%	140%	72%	50%	140%	85%	50%	140%
Pentachlorophenol	4600978		< 0.1	< 0.1	NA	< 0.1	90%	50%		73%	50%	140%	76%	50%	140%
3,3'-Dichlorobenzidine	4600978		< 0.5	< 0.5	NA	< 0.5	96%	30%	130%	104%	30%	130%	60%	30%	130%
2,4-Dinitrophenol	4600978		< 2.0	< 2.0	NA	< 2.0	96%		130%	89%		130%	88%		130%

AGAT QUALITY ASSURANCE REPORT (V2)

Page 25 of 35

AGAT Laboratories is accredited to ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA) and/or Standards Council of Canada (SCC) for specific tests listed on the scope of accreditation. AGAT Laboratories (Mississauga) is also accredited by the Canadian Association for Laboratory Accreditation Inc. (CALA) for specific drinking water tests. Accreditations are location and parameter specific. A complete listing of parameters for each location is available from www.cala.ca and/or www.scc.ca. The tests in this report may not necessarily be included in the scope of accreditation. RPDs calculated using raw data. The RPD may not be reflective of duplicate values shown, due to rounding of final results.

Quality Assurance

CLIENT NAME: BLUMETRIC ENVIRONMENTAL INC. AGAT WORK ORDER: 22P983391 PROJECT: 220509 ATTENTION TO: Paul Bandler

SAMPLING SITE:Bakelite Be	lleville						5	SAMP	LED B	Y:ML					
	_	Ггасе	Org	anics	Ana	lysis	(Cor	ntin	ued)					
RPT Date: Jan 16, 2023			С	UPLICAT	E		REFEREN	NCE MA	TERIAL	METHOD	BLANK	(SPIKE	MAT	RIX SPI	IKE
PARAMETER	Batch	Sample	Dup #1	Dup #2	RPD	Method Blank	Measured		ptable nits	Recovery		eptable mits	Recovery	1 1:0	eptable mits
		ld	·	,			Value	Lower	Upper	ĺ	Lower	Upper		Lower	Upper
Bis(2-Ethylhexyl)phthalate	4600978		< 0.2	< 0.2	NA	< 0.2	99%	50%	140%	63%	50%	140%	65%	50%	140%
O. Reg. 153(511) - PCBs (Soil) Polychlorinated Biphenyls	4644813		< 0.1	< 0.1	NA	< 0.1	102%	50%	140%	98%	50%	140%	88%	50%	140%
Comments: When the average of the	e sample and	d duplicate			x the RDL		tive Perce								
O. Reg. 153(511) - PCBs (Soil)															
Polychlorinated Biphenyls	4651008 4	4651008	< 0.1	< 0.1	NA	< 0.1	102%	50%	140%	103%	50%	140%	94%	50%	140%
Formaldehyde (Soil)															
Formaldehyde		NA	NA	NA	0.0%	< 0.5	NA	70%	130%	95%	70%	130%	NA	70%	130%
2,3,5,6-Tetrafluorobenzaldehyde		NA	NA	NA	0.0%	101	NA	40%	140%	102%	40%	140%	NA	40%	140%
Comments: NA: Not applicable															

NA in Duplicate Deviation indicates that the deviation could not be calculated because one or both results are < 5x LDR.

NA in Percent Recovery of Fortified Sample indicates that the result is not provided due to sample heterogeneity or too high concentration relative to spike.

NA in fortified blank or MRC indicates that it is not required by the procedure.

O. Reg. 153(511) - PHCs F1 - F	4 (with PAHs and Vo	OC) (Soil)												
F2 (C10 to C16)	4663097	<10	<10	NA	< 10	103%	60%	140%	78%	60%	140%	82%	60%	140%
F3 (C16 to C34)	4663097	<50	<50	NA	< 50	108%	60%	140%	105%	60%	140%	105%	60%	140%
F4 (C34 to C50)	4663097	<50	<50	NA	< 50	65%	60%	140%	93%	60%	140%	92%	60%	140%
O. Reg. 153(511) - BNA (full) +	PAHs (Soil)													
Naphthalene	4600978	< 0.05	< 0.05	NA	< 0.05	85%	50%	140%	89%	50%	140%	79%	50%	140%
Acenaphthylene	4600978	< 0.05	< 0.05	NA	< 0.05	79%	50%	140%	85%	50%	140%	85%	50%	140%
Acenaphthene	4600978	< 0.05	< 0.05	NA	< 0.05	85%	50%	140%	84%	50%	140%	84%	50%	140%
Fluorene	4600978	< 0.05	< 0.05	NA	< 0.05	82%	50%	140%	79%	50%	140%	79%	50%	140%
Phenanthrene	4600978	< 0.05	< 0.05	NA	< 0.05	85%	50%	140%	85%	50%	140%	85%	50%	140%
Anthracene	4600978	< 0.05	< 0.05	NA	< 0.05	84%	50%	140%	79%	50%	140%	84%	50%	
Fluoranthene	4600978	< 0.05	< 0.05	NA	< 0.05	79%	50%	140%	85%	50%	140%	79%	50%	
Pyrene	4600978	< 0.05	< 0.05	NA	< 0.05	85%	50%	140%	84%	50%	140%	85%	50%	140%
Benz(a)anthracene	4600978	< 0.05	< 0.05	NA	< 0.05	79%	50%	140%	79%	50%	140%	82%	50%	140%
Chrysene	4600978	< 0.05	< 0.05	NA	< 0.05	85%	50%	140%	85%	50%	140%	85%	50%	140%
Benzo(b)fluoranthene	4600978	< 0.05	< 0.05	NA	< 0.05	82%	50%	140%	86%	50%	140%	84%	50%	140%
Benzo(k)fluoranthene	4600978	< 0.05	< 0.05	NA	< 0.05	89%	50%	140%	82%	50%	140%	79%	50%	140%
Benzo(a)pyrene	4600978	< 0.05	< 0.05	NA	< 0.05	85%	50%	140%	85%	50%	140%	85%	50%	
Indeno(1,2,3-cd)pyrene	4600978	< 0.05	< 0.05	NA	< 0.05	84%	50%		84%	50%	140%	85%	50%	
Dibenzo(a,h)anthracene	4600978	< 0.05	< 0.05	NA	< 0.05	79%	50%	140%	79%	50%	140%	60%	50%	140%
Dibbli26(a,ii)anamabbil6	4000370	V 0.00	< 0.00	1471	< 0.00	1370	0070	14070	7370	3070	14070	0070	3070	1 1070
Benzo(g,h,i)perylene	4600978	< 0.05	< 0.05	NA	< 0.05	85%	50%	140%	68%	50%	140%	75%	50%	140%
Phenol	4600978	< 0.5	< 0.5	NA	< 0.5	84%	30%	130%	80%	30%	130%	79%	30%	130%
Bis(2-chloroethyl)ether	4600978	< 0.1	< 0.1	NA	< 0.1	114%	50%	140%	81%	50%	140%	118%	50%	140%

AGAT QUALITY ASSURANCE REPORT (V2)

Page 26 of 35

Quality Assurance

CLIENT NAME: BLUMETRIC ENVIRONMENTAL INC.

AGAT WORK ORDER: 22P983391

PROJECT: 220509

ATTENTION TO: Paul Bandler

SAMPLING SITE:Bakelite Belleville SAMPLED BY:ML

	Т	race	Org	anics	Ana	alysis	(Cor	ntin	ued)					
RPT Date: Jan 16, 2023			DUPLICATE				REFERENCE MATER			METHOD	BLANK	SPIKE	MAT	RIX SPI	KE
PARAMETER	Batch	Sample	Dup #1	Dup #2	RPD	Method Blank	Measured Value			Recovery	1 1 1 1 1	ptable	Recovery	منا أ	ptable nits
		iu					value	Lower	Upper		Lower	Upper		Lower	Upper
2-Chlorophenol	4600978		< 0.1	< 0.1	NA	< 0.1	71%	50%	140%	65%	50%	140%	90%	50%	140%
o-Cresol	4600978		< 0.1	< 0.1	NA	< 0.1	104%	50%	140%	72%	50%	140%	78%	50%	140%
Bis(2-chloroisopropyl)ether	4600978		< 0.1	< 0.1	NA	< 0.1	96%	50%	140%	84%	50%	140%	62%	50%	140%
m & p - Cresol	4600978		< 0.1	< 0.1	NA	< 0.1	104%	50%	140%	87%	50%	140%	103%	50%	140%
2,4-Dimethylphenol	4600978		< 0.2	< 0.2	NA	< 0.2	75%	30%	130%	66%	30%	130%	60%	30%	130%
2,4-Dichlorophenol	4600978		< 0.1	< 0.1	NA	< 0.1	75%	50%	140%	104%	50%	140%	96%	50%	140%
1,2,4-Trichlorobenzene	4600978		< 0.05	< 0.05	NA	< 0.05	93%	50%	140%	68%	50%	140%	68%	50%	140%
p-Chloroaniline	4600978		< 0.5	< 0.5	NA	< 0.5	96%	30%	130%	78%	30%	130%	67%	30%	130%
2,4,6-Trichlorophenol	4600978		< 0.1	< 0.1	NA	< 0.1	111%	50%	140%	114%	50%	140%	89%	50%	140%
2,4,5-Trichlorophenol	4600978		< 0.1	< 0.1	NA	< 0.1	106%	50%	140%	102%	50%	140%	69%	50%	140%
1,1-Biphenyl	4600978		< 0.05	< 0.05	NA	< 0.05	88%	50%	140%	77%	50%	140%	65%	50%	140%
Dimethyl Phthalate	4600978		< 0.1	< 0.1	NA	< 0.1	90%	50%	140%	67%	50%	140%	62%	50%	140%
Diethyl Phthalate	4600978		< 0.1	< 0.1	NA	< 0.1	117%	50%	140%	72%	50%	140%	85%	50%	140%
Pentachlorophenol	4600978		< 0.1	< 0.1	NA	< 0.1	90%	50%	140%	73%	50%	140%	76%	50%	140%
3,3'-Dichlorobenzidine	4600978		< 0.5	< 0.5	NA	< 0.5	96%	30%	130%	104%	30%	130%	60%	30%	130%
2,4-Dinitrophenol	4600978		< 2.0	< 2.0	NA	< 2.0	96%	30%	130%	89%	30%	130%	88%	30%	130%
Bis(2-Ethylhexyl)phthalate	4600978		< 0.2	< 0.2	NA	< 0.2	99%	50%	140%	63%	50%	140%	65%	50%	140%

Certified By:

Method Summary

SAMPLED BY:ML

CLIENT NAME: BLUMETRIC ENVIRONMENTAL INC. AGAT WORK ORDER: 22P983391
PROJECT: 220509 ATTENTION TO: Paul Bandler

Of this Ento of Elbaronto Bollovillo		OF THE	
PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE
Soil Analysis			
Antimony	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS
Arsenic	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS
Barium	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS
Beryllium	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS
Boron	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS
Boron (Hot Water Soluble)	MET-93-6104	modified from EPA 6010D and MSA PART 3, CH 21	ICP/OES
Cadmium	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS
Chromium	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS
Cobalt	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS
Copper	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS
Lead	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS
Molybdenum	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS
Nickel	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS
Selenium	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS
Silver	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS
Thallium	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS
Uranium	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS
Vanadium	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS
Zinc	MET 93 -6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS
Chromium, Hexavalent	INOR-93-6068	modified from EPA 3060 and EPA 7196	SPECTROPHOTOMETER
Cyanide, WAD	INOR-93-6052	modified from ON MOECC E3015, SM 4500-CN- I, G-387	TECHNICON AUTO ANALYZER
Mercury	MET-93-6103	modified from EPA 7471B and SM 3112 B	ICP-MS
Electrical Conductivity (2:1)	INOR-93-6075	modified from MSA PART 3, CH 14 and SM 2510 B	PC TITRATE
Sodium Adsorption Ratio (2:1) (Calc.)	INOR-93-6007	modified from EPA 6010D & Analytical Protocol	ICP/OES
pH, 2:1 CaCl2 Extraction	INOR-93-6075	modified from EPA 9045D, MCKEAGUE 3.11 E3137	PC TITRATE

Method Summary

SAMPLED BY:ML

CLIENT NAME: BLUMETRIC ENVIRONMENTAL INC.

AGAT WORK ORDER: 22P983391

PROJECT: 220509

ATTENTION TO: Paul Bandler

PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE
Trace Organics Analysis			
Formaldehyde	ORG-100-5126F	Standard Methods 6252B; MA. 400 - HCHO 1.0	GC/MS
2,3,5,6-Tetrafluorobenzaldehyde	ORG-100-5126F	Standard Methods 6252B	GC/MS
Naphthalene	ORG-91-5114	modified from EPA 3510C, 8270E & ON MOECC E3265	GC/MS
Acenaphthylene	ORG-91-5114	modified from EPA 3510C, 8270E & ON MOECC E3265	GC/MS
Acenaphthene	ORG-91-5114	modified from EPA 3510C, 8270E & ON MOECC E3265	GC/MS
Fluorene	ORG-91-5114	modified from EPA 3510C, 8270E & ON MOECC E3265	GC/MS
Phenanthrene	ORG-91-5114	modified from EPA 3510C, 8270E & ON MOECC E3265	GC/MS
Anthracene	ORG-91-5114	modified from EPA 3510C, 8270E & ON MOECC E3265	GC/MS
Fluoranthene	ORG-91-5114	modified from EPA 3510C, 8270E & ON MOECC E3265	GC/MS
Pyrene	ORG-91-5114	modified from EPA 3510C, 8270E & ON MOECC E3265	GC/MS
Benz(a)anthracene	ORG-91-5114	modified from EPA 3510C, 8270E & ON MOECC E3265	GC/MS
Chrysene	ORG-91-5114	modified from EPA 3510C, 8270E & ON MOECC E3265	GC/MS
Benzo(b)fluoranthene	ORG-91-5114	modified from EPA 3510C, 8270E & ON MOECC E3265	GC/MS
Benzo(k)fluoranthene	ORG-91-5114	modified from EPA 3510C, 8270E & ON MOECC E3265	GC/MS
Benzo(a)pyrene	ORG-91-5114	modified from EPA 3510C, 8270E & ON MOECC E3265	GC/MS
Indeno(1,2,3-cd)pyrene	ORG-91-5114	modified from EPA 3510C, 8270E & ON MOECC E3265	GC/MS
Dibenzo(a,h)anthracene	ORG-91-5114	modified from EPA 3510C, 8270E & ON MOECC E3265	GC/MS
Benzo(g,h,i)perylene	ORG-91-5114	modified from EPA 3510C, 8270E & ON MOECC E3265	GC/MS
Phenol	ORG-91-5114	modified from EPA 3510C, 8270E & ON MOECC E3265	GC/MS
Bis(2-chloroethyl)ether	ORG-91-5114	modified from EPA 3510C, 8270E & ON MOECC E3265	GC/MS
2-Chlorophenol	ORG-91-5114	modified from EPA 3510C, 8270E & ON MOECC E3265	GC/MS
o-Cresol	ORG-91-5114	modified from EPA 3510C, 8270E & ON MOECC E3265	GC/MS
Bis(2-chloroisopropyl)ether	ORG-91-5114	modified from EPA 3510C, 8270E & ON MOECC E3265	GC/MS
m & p - Cresol	ORG-91-5114	modified from EPA 3510C, 8270E & ON MOECC E3265	GC/MS
2,4-Dimethylphenol	ORG-91-5114	modified from EPA 3510C, 8270E & ON MOECC E3265	GC/MS
2,4-Dichlorophenol	ORG-91-5114	modified from EPA 3510C, 8270E & ON MOECC E3265	GC/MS
1,2,4-Trichlorobenzene	ORG-91-5114	modified from EPA 3510C, 8270E & ON MOECC E3265	GC/MS
p-Chloroaniline	ORG-91-5114	modified from EPA 3510C, 8270E & ON MOECC E3265	GC/MS

Method Summary

SAMPLED BY:ML

CLIENT NAME: BLUMETRIC ENVIRONMENTAL INC. AGAT WORK ORDER: 22P983391
PROJECT: 220509 ATTENTION TO: Paul Bandler

SAMPLING SITE. Dakente Denevine	;	SAIVIPLED BT.IVIL	=
PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE
1 and 2 Methlynaphthalene	ORG-91-5114	modified from EPA 3510C, 8270E & ON MOECC E3265	CALCULATION
2,4,6-Trichlorophenol	ORG-91-5114	modified from EPA 3510C, 8270E & ON MOECC E3265	GC/MS
2,4,5-Trichlorophenol	ORG-91-5114	modified from EPA 3510C, 8270E & ON MOECC E3265	GC/MS
1,1-Biphenyl	ORG-91-5114	modified from EPA 3510C, 8270E & ON MOECC E3265	GC/MS
Dimethyl Phthalate	ORG-91-5114	modified from EPA 3510C, 8270E & ON MOECC E3265	GC/MS
2,4 and 2,6-Dinitrotoluene	ORG-91-5114	modified from EPA 3510C, 8270E & ON MOECC E3265	CALCULATION
Diethyl Phthalate	ORG-91-5114	modified from EPA 3510C, 8270E & ON MOECC E3265	GC/MS
Pentachlorophenol	ORG-91-5114	modified from EPA 3510C, 8270E & ON MOECC E3265	GC/MS
3,3'-Dichlorobenzidine	ORG-91-5114	modified from EPA 3510C, 8270E & ON MOECC E3265	GC/MS
2,4-Dinitrophenol	ORG-91-5114	modified from EPA 3510C, 8270E & ON MOECC E3265	GC/MS
Bis(2-Ethylhexyl)phthalate	ORG-91-5114	modified from EPA 3510C, 8270E & ON MOECC E3265	GC/MS
phenol-d6 surrogate	ORG-91-5114	modified from EPA 3510C, 8270E & ON MOECC E3265	GC/MS
2-Fluorophenol	ORG-91-5114	modified from EPA 3510C, 8270E & ON MOECC E3265	GC/MS
2,4,6-Tribromophenol	ORG-91-5114	modified from EPA 3510C, 8270E & ON MOECC E3265	GC/MS
Chrysene-d12	ORG-91-5114	modified from EPA 3510C, 8270E & ON MOECC E3265	GC/MS
Moisture Content	VOL-91-5009	modified from CCME Tier 1 Method	BALANCE
wet weight BNA	ORG-91-5114		BALANCE
Naphthalene	ORG-91-5106	modified from EPA 3570 and EPA 8270E	GC/MS
Acenaphthylene	ORG-91-5106	modified from EPA 3570 and EPA 8270E	GC/MS
Acenaphthene	ORG-91-5106	modified from EPA 3570 and EPA 8270E	GC/MS
Fluorene	ORG-91-5106	modified from EPA 3570 and EPA 8270E	GC/MS
Phenanthrene	ORG-91-5106	modified from EPA 3570 and EPA 8270E	GC/MS
Anthracene	ORG-91-5106	modified from EPA 3570 and EPA 8270E	GC/MS
Fluoranthene	ORG-91-5106	modified from EPA 3570 and EPA 8270E	GC/MS
Pyrene	ORG-91-5106	modified from EPA 3570 and EPA 8270E	GC/MS
Benz(a)anthracene	ORG-91-5106	modified from EPA 3570 and EPA 8270E	GC/MS
Chrysene	ORG-91-5106	modified from EPA 3570 and EPA 8270E	GC/MS
Benzo(b)fluoranthene	ORG-91-5106	modified from EPA 3570 and EPA 8270E	GC/MS
Benzo(k)fluoranthene	ORG-91-5106	modified from EPA 3570 and EPA 8270E	GC/MS

Method Summary

SAMPLED BY:ML

CLIENT NAME: BLUMETRIC ENVIRONMENTAL INC. AGAT WORK ORDER: 22P983391
PROJECT: 220509 ATTENTION TO: Paul Bandler

SAMI LING SITE. Dakente Delleville		O/ (IVII EED D1.IVIE	
PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE
Benzo(a)pyrene	ORG-91-5106	modified from EPA 3570 and EPA 8270E	GC/MS
Indeno(1,2,3-cd)pyrene	ORG-91-5106	modified from EPA 3570 and EPA 8270E	GC/MS
Dibenz(a,h)anthracene	ORG-91-5106	modified from EPA 3570 and EPA 8270E	GC/MS
Benzo(g,h,i)perylene	ORG-91-5106	modified from EPA 3570 and EPA 8270E	GC/MS
1 and 2 Methlynaphthalene	ORG-91-5106	modified from EPA 3570 and EPA 8270E	GC/MS
Naphthalene-d8	ORG-91-5106	modified from EPA 3570 and EPA 8270E	GC/MS
Acridine-d9	ORG-91-5106	modified from EPA 3570 and EPA 8270E	GC/MS
Terphenyl-d14	ORG-91-5106	modified from EPA 3570 and EPA 8270E	GC/MS
Polychlorinated Biphenyls	ORG-91-5113	modified from EPA SW-846 3570 & 8082A	GC/ECD
Decachlorobiphenyl	ORG-91-5113	modified from EPA SW-846 3541 & 8082A	GC/ECD
F1 (C6 - C10)	VOL-91-5009	modified from CCME Tier 1 Method	(P&T)GC/FID
F1 (C6 to C10) minus BTEX	VOL-91-5009	modified from CCME Tier 1 Method	P&T GC/FID
Toluene-d8	VOL-91- 5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
F2 (C10 to C16)	VOL-91-5009	modified from CCME Tier 1 Method	GC/FID
F2 (C10 to C16) minus Naphthalene	VOL-91-5009	modified from CCME Tier 1 Method	GC/FID
F3 (C16 to C34)	VOL-91-5009	modified from CCME Tier 1 Method	GC/FID
F3 (C16 to C34) minus PAHs	VOL-91-5009	modified from CCME Tier 1 Method	GC/FID
F4 (C34 to C50)	VOL-91-5009	modified from CCME Tier 1 Method	GC/FID
Gravimetric Heavy Hydrocarbons	VOL-91-5009	modified from CCME Tier 1 Method	BALANCE
Terphenyl	VOL-91-5009	modified from CCME Tier 1 Method	GC/FID
Dichlorodifluoromethane	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS
Vinyl Chloride	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS
Bromomethane	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS
Trichlorofluoromethane	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS
Acetone	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS
1,1-Dichloroethylene	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS
Methylene Chloride	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS
Trans- 1,2-Dichloroethylene	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS
Methyl tert-butyl Ether	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS
1,1-Dichloroethane	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS
Methyl Ethyl Ketone	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS
Cis- 1,2-Dichloroethylene	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS

Method Summary

SAMPLED BY:ML

CLIENT NAME: BLUMETRIC ENVIRONMENTAL INC. AGAT WORK ORDER: 22P983391
PROJECT: 220509 ATTENTION TO: Paul Bandler

SAMPLING SITE: Bakelite Belleville

ANALYTICAL TECHNIQUE **PARAMETER** AGAT S.O.P LITERATURE REFERENCE modified from EPA 5035A and EPA Chloroform VOL-91-5002 (P&T)GC/MS 8260D modified from EPA 5035A and EPA 1,2-Dichloroethane VOL-91-5002 (P&T)GC/MS 8260D modified from EPA 5035A and EPA 1.1.1-Trichloroethane VOL-91-5002 (P&T)GC/MS 8260D modified from EPA 5035A and EPA Carbon Tetrachloride VOL-91-5002 (P&T)GC/MS 8260D modified from EPA 5035A and EPA VOL-91-5002 (P&T)GC/MS Benzene 8260D modified from EPA 5035A and EPA VOL-91-5002 (P&T)GC/MS 1,2-Dichloropropane 8260D modified from EPA 5035A and EPA Trichloroethylene VOL-91-5002 (P&T)GC/MS modified from EPA 5035A and EPA Bromodichloromethane VOL-91-5002 (P&T)GC/MS 8260D modified from EPA 5035A and EPA Methyl Isobutyl Ketone VOL-91-5002 (P&T)GC/MS 8260D modified from EPA 5035A and EPA 1.1.2-Trichloroethane VOL-91-5002 (P&T)GC/MS 8260D modified from EPA 5035A and EPA Toluene VOL-91-5002 (P&T)GC/MS 8260D modified from EPA 5035A and EPA Dibromochloromethane VOL-91-5002 (P&T)GC/MS 8260D modified from EPA 5035A and EPA Ethylene Dibromide VOL-91-5002 (P&T)GC/MS 8260D modified from EPA 5035A and EPA Tetrachloroethylene VOL-91-5002 (P&T)GC/MS 8260D modified from EPA 5035A and EPA 1,1,1,2-Tetrachloroethane VOL-91-5002 (P&T)GC/MS 8260D modified from EPA 5035A and EPA Chlorobenzene VOL-91-5002 (P&T)GC/MS 8260D modified from EPA 5035A and EPA Ethylbenzene VOL-91-5002 (P&T)GC/MS 8260D modified from EPA 5035A and EPA m & p-Xylene VOL-91-5002 (P&T)GC/MS 8260D modified from EPA 5035A and EPA Bromoform VOL-91-5002 (P&T)GC/MS 8260D modified from EPA 5035A and EPA VOL-91-5002 (P&T)GC/MS Styrene 8260D modified from EPA 5035A and EPA 1,1,2,2-Tetrachloroethane VOL-91-5002 (P&T)GC/MS 8260D modified from EPA 5035A and EPA o-Xylene VOL-91-5002 (P&T)GC/MS 8260D modified from EPA 5035A and EPA 1,3-Dichlorobenzene VOL-91-5002 (P&T)GC/MS 8260D modified from EPA 5035A and EPA 1.4-Dichlorobenzene VOL-91-5002 (P&T)GC/MS 8260D modified from EPA 5035A and EPA 1.2-Dichlorobenzene VOL-91-5002 (P&T)GC/MS 8260D modified from EPA 5035A and EPA Xylenes (Total) VOL-91-5002 (P&T)GC/MS 8260D modified from EPA 5035A and EPA (P&T)GC/MS 1,3-Dichloropropene (Cis + Trans) VOL-91-5002 8260D modified from EPA 5035A and EPA VOL-91-5002 n-Hexane (P&T)GC/MS

8260D

Method Summary

CLIENT NAME: BLUMETRIC ENVIRONMENTAL INC.

AGAT WORK ORDER: 22P983391 PROJECT: 220509 ATTENTION TO: Paul Bandler

SAMPLING SITE:Bakelite Belleville		SAMPLED BY:ML	
PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE
Toluene-d8	VOL-91-5002	modified from EPA 5035A & EPA 8260D	(P&T)GC/MS
4-Bromofluorobenzene	VOL-91-5002	modified from EPA 5035A & EPA 8260D	(P&T)GC/MS

5835 Coopers Avenue Mississauga, Ontario L4Z 1Y2 Ph: 905.712.5100 Fax: 905.712.5122 webearth,agatlabs.com

Laboratory Use	Only	<u> </u>
Work Order #: Z	ZP9833	4)
Cooler Quantity:	1	45 5
Arrival Temperatures:	3.5 3.7	13.8
Custody Seal Intact:	☐Yes ☐No	□M/A

CI	าล	in	of	Custody	Record

Chain of Custody Rec		Drinking Wate	r sample, plea	se use Drin	iking Water Chain of Custody Form (pot	able water	consum	ed by h	ımans	6)		1	Arrival T	empera	tures:	3	.5	13.	7	3.8	>
Report Information: Company: Contact:	Environme	ntel la	, c	(Pleas	gulatory Requirements: e check all applicable boxes) tegulation 153/04 Excess Soils F	2400	□ e	wor the					Custody Seal Intact: ☐Yes ☐No ☐NVA Notes: ☐C Pack						√/A		
11	ragui St	reet		100000000000000000000000000000000000000	7		Sanitary Storm					Turnaround Time (TAT) Required:									
Kingsh	1496 Fax.			-	Ind/Com Res/Park			Regio		-		- 11	Regula				5 to 7	Business	Days		
Provide to the same of the sam	, uni				Agriculture Regulation 55	58	Pro Obj	v. Wate ectives					Rush TA								
The Look	Monetric co				Texture (Check One) Coarse Coarse		Oth	er						Busine Days	SS		2 Busi Days	ness	□ Ne	ext Busir ay	ness
	niometric: Ca	~		-]Fine			Indicate						OR Date	Requir	ed (Ru	sh Su	ırcharges	May Ap	oly):	
Project Information: Project: 720509					s this submission for a cord of Site Condition?		eport rtifica						-	Pleas	e provid	de pric	or noti	fication fo	or rush 1	AT	
Site Location:	relleville				Yes 🗆 No		Yes			No								s and sta	1000		
Sampled By: AGAT Quote #: 717248	200		Q- 3-	-		7 0	0.	Reg 15	3			1	0. Reg		g 406		ease	Contact	your Ada	AI CFM	2
	PO:PO:	be billed full price fo	or analysis.	Sar B	nple Matrix Legend Biota	VI, DO			10		-Ri	- 19	-		Package 4	Sulphide		1 23			ion (Y/I
Invoice Information: Company: Contact: Address: Email:	- Tom 87	ill To Same:	Yes⊡r No □	GW O P S SD SW	Ground Water Oil Paint Soil Sediment Surface Water	Field Filtered - Metals, Hg, CrVI, DOC	& Inorganics	- □ CrVI, □ Hg, □ HWSB	F1-F4 PHCs				Audidus Landfill Disposal Characterization TCLP: TCLP: □M&I □VCCs □ABNs □B(a)P□PCBs	Soils SPLP Rainwater Leach	Soils Characterization VIS Metals, BTEX, F1-F	clude Moisture 🗆	Formaldelinde	15, MBDs		told	ly Hazardous or High Concentra
Sample Identification	Date Sampled	Time Sampled	# of Containers	Sample Matrix	Comments/ Special Instructions	Y/N	Metals	Metals -		PAHs	PCBs	200	Landfill TCLP:	Excess SPLP:	Excess 9	Corrosiv	10	5		_	Potential
BH214552	22-12-20		M 4	5	Contract				1					-16						V	
B11214553	22-12-20		M 6	5					/	1	_			301			1,				7-
BH 205 SS 1	22-12-20	11,30		3			V		7												
BH 235 SSI	22-12-20	13:29 A	M 5	5	II (===110)									SHE				3		1	Ų,
BH 235 552	22-11-20	13:38	M 5	5	Carl II		V		1	V	V	V		1 250				V		0	
BH ZIS SSI	22-12-20	14:48	M	5	Market Programme		~	ž.	~	V	~						V	1			-
BH 23255!	22-12-21	8:30 A		5	75			J.S							-				-	~	
BH 232552	22-12-21	8:35 A		5			V		V	_		/					_		-		
BH 234551	22-12-21	9150 A		3	FILTRICE TO A SECOND		V		1	7	レ									V	
samples Relinquished By (Print Name and Sign):	12 21	Date	Time		Samples Brygived By (Print Harm and Sign):	/	m	1		_	Date	0	Tim	10 - 3	D						
Samples Relinquished By (Print Name and Sign):		72-12- Date	-21 6.	30 am	Samples Received By (Print Name and Sun):		1 h	1			是是	De	Tirr	75			Pag	10	of	2_	
iamples Relinquished By (Print Name and Sign):		Date	Time		Samples Received By (Print Name and Sign):	-	-	-			Date	1	122	8:5		Nº:	T -	12	501	2/1	
								-	-								1	ا ا		17	_

5835 Coopers Avenue

Laboratory Use Only

Work Order #: 22 P 98339)

Mississauga, Ontario L4Z 1Y2 Ph: 905.712.5100 Fax: 905.712.5122 webearth.agatlabs.com

		Lacor
Chain o	f Custody Record	If this is a Drinking Water sample, p
Report In	formation: Bluttetric	Environmental Inc.

7 9					
J.O ÚN/A					
lext Business					
Days Days Days OR Date Required (Rush Surcharges May Apply):					
TAT holidays GAT CPM					
OLA III Concentration (V/N)					
Hold Potentially Hazard					
0					
No legy					
Williams.					
2					
2					

CLIENT NAME: BLUMETRIC ENVIRONMENTAL INC. 4 Cataraqui Street Kingston, ON K7K1Z7

(613) 531-2725

ATTENTION TO: Paul Bandler

PROJECT: 220509

AGAT WORK ORDER: 22T982756

SOIL ANALYSIS REVIEWED BY: Chuandi Zhang, Lab Team Lead TRACE ORGANICS REVIEWED BY: Neli Popnikolova, Senior Chemist

DATE REPORTED: Jan 17, 2023

PAGES (INCLUDING COVER): 24 VERSION*: 2

Should you require any information regarding this analysis please contact your client services representative at (905) 712-5100

*Notes
VERSION 2:V2 issued 2023-01-17. Analyses added to sample ID BH208 SS1. Supersedes previous version. (LB)

Disclaimer

- All work conducted herein has been done using accepted standard protocols, and generally accepted practices and methods. AGAT test methods may
 incorporate modifications from the specified reference methods to improve performance.
- All samples will be disposed of within 30 days after receipt unless a Long Term Storage Agreement is signed and returned. Some specialty analysis may
 be exempt, please contact your Client Project Manager for details.
- AGAT's liability in connection with any delay, performance or non-performance of these services is only to the Client and does not extend to any other
 third party. Unless expressly agreed otherwise in writing, AGAT's liability is limited to the actual cost of the specific analysis or analyses included in the
 services.
- This Certificate shall not be reproduced except in full, without the written approval of the laboratory.
- The test results reported herewith relate only to the samples as received by the laboratory.
- Application of guidelines is provided "as is" without warranty of any kind, either expressed or implied, including, but not limited to, warranties of
 merchantability, fitness for a particular purpose, or non-infringement. AGAT assumes no responsibility for any errors or omissions in the guidelines
 contained in this document.
- All reportable information as specified by ISO/IEC 17025:2017 is available from AGAT Laboratories upon request.

AGAT Laboratories (V2)

Page 1 of 24

Member of: Association of Professional Engineers and Geoscientists of Alberta (APEGA)

Western Enviro-Agricultural Laboratory Association (WEALA) Environmental Services Association of Alberta (ESAA) AGAT Laboratories is accredited to ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA) and/or Standards Council of Canada (SCC) for specific tests listed on the scope of accreditation. AGAT Laboratories (Mississauga) is also accredited by the Canadian Association for Laboratory Accreditation Inc. (CALA) for specific drinking water tests. Accreditations are location and parameter specific. A complete listing of parameters for each location is available from www.cala.ca and/or www.scc.ca. The tests in this report may not necessarily be included in the scope of accreditation. Measurement Uncertainty is not taken into consideration when stating conformity with a specified requirement.

Certificate of Analysis

AGAT WORK ORDER: 22T982756

PROJECT: 220509

ATTENTION TO: Paul Bandler

SAMPLED BY:ML

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

CLIENT NAME: BLUMETRIC ENVIRONMENTAL INC. SAMPLING SITE:Bakelite Belleville

O. Reg. 153(511) - Metals & Inorganics (Soil)

DATE RECEIVED: 2022-12-20								[DATE REPORT	ED: 2023-01-17	
		SAMPLE DES	CRIPTION:	BH213 SS2	BH210 SS2	BH208 SS1	BH208 SS2	BH209 SS1	BH209 SS2	BH213 SS2-Dup	
			PLE TYPE:	Soil							
		DATE	SAMPLED:	2022-12-19 08:30	2022-12-19 10:55	2022-12-19 12:45	2022-12-19 12:59	2022-12-19 15:15	2022-12-19 15:30	2022-12-19 08:30	
Parameter	Unit	G/S	RDL	4637728	4637735	4637736	4637738	4637742	4637743	4637744	
Antimony	μg/g	7.5	0.8	<0.8	<0.8	<0.8	<0.8	1.0	<0.8	<0.8	
Arsenic	μg/g	18	1	4	3	2	2	202	63	4	
Barium	μg/g	390	2.0	102	39.9	42.2	38.3	272	199	109	
Beryllium	μg/g	4	0.4	0.5	<0.4	<0.4	<0.4	1.5	1.3	0.5	
Boron	μg/g	120	5	11	12	<5	5	68	20	11	
Boron (Hot Water Soluble)	μg/g	1.5	0.10	0.41	2.05	0.28	0.60	0.52	0.93	0.41	
Cadmium	μg/g	1.2	0.5	<0.5	<0.5	0.6	<0.5	<0.5	<0.5	<0.5	
Chromium	μg/g	160	5	22	19	11	13	20	26	25	
Cobalt	μg/g	22	0.5	7.1	3.5	3.4	3.2	7.7	7.0	7.4	
Copper	μg/g	140	1.0	13.5	24.0	13.5	19.9	34.3	28.0	13.7	
Lead	μg/g	120	1	22	35	14	23	43	34	16	
Molybdenum	μg/g	6.9	0.5	1.5	41.3	12.5	11.2	33.9	33.9	1.4	
Nickel	μg/g	100	1	12	14	11	9	23	19	12	
Selenium	μg/g	2.4	0.8	<0.8	<0.8	<0.8	<0.8	5.5	2.1	<0.8	
Silver	μg/g	20	0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	
Thallium	μg/g	1	0.5	<0.5	<0.5	<0.5	<0.5	2.8	0.9	<0.5	
Uranium	μg/g	23	0.50	<0.50	<0.50	<0.50	0.51	0.87	0.67	<0.50	
Vanadium	μg/g	86	0.4	26.0	16.1	17.0	20.1	62.9	30.3	28.6	
Zinc	μg/g	340	5	46	452	26	33	80	53	40	
Chromium, Hexavalent	μg/g	8	0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	
Cyanide, WAD	μg/g	0.051	0.040	< 0.040	<0.040	<0.040	<0.040	< 0.040	<0.040	<0.040	
Mercury	μg/g	0.27	0.10	<0.10	1.12	0.23	0.72	0.93	5.80	0.13	
Electrical Conductivity (2:1)	mS/cm	0.7	0.005	0.236	0.233	0.135	0.258	0.506	0.339	0.222	
Sodium Adsorption Ratio (2:1) (Calc.)	N/A	5	N/A	0.110	0.152	0.114	0.173	0.046	0.101	0.100	
pH, 2:1 CaCl2 Extraction	pH Units		NA	7.75	7.74	7.76	7.59	7.56	7.63	7.78	

Certified By:

Chumb Than

Certificate of Analysis

AGAT WORK ORDER: 22T982756

PROJECT: 220509

ATTENTION TO: Paul Bandler

FAX (905)712-5122 http://www.agatlabs.com

5835 COOPERS AVENUE

MISSISSAUGA, ONTARIO

CANADA L4Z 1Y2

TEL (905)712-5100

CLIENT NAME: BLUMETRIC ENVIRONMENTAL INC. SAMPLING SITE:Bakelite Belleville

SAMPLED BY:ML

O. Reg. 153(511) - Metals & Inorganics (Soil)

DATE RECEIVED: 2022-12-20 DATE REPORTED: 2023-01-17

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard: Refers to Table 7: Generic Site Condition Standards for Shallow Soils in a Non-Potable Ground Water Condition - Soil - Residential/Parkland/Institutional Property Use - Coarse Textured Soils

Guideline values are for general reference only. The guidelines provided may or may not be relevant for the intended use. Refer directly to the applicable standard for regulatory interpretation.

4637728-4637744 EC was determined on the DI water extract obtained from the 2:1 leaching procedure (2 parts DI water:1 part soil). pH was determined on the 0.01M CaCl2 extract prepared at 2:1 ratio. SAR is a calculated parameter.

Analysis performed at AGAT Toronto (unless marked by *)

Certified By:

Chumb Than

SAMPLING SITE: Bakelite Belleville

Certificate of Analysis

AGAT WORK ORDER: 22T982756

PROJECT: 220509

ATTENTION TO: Paul Bandler

SAMPLED BY:ML

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

Formaldehyde (Soil)												
DATE RECEIVED: 2022-12-20 DATE REPORTED: 2023-01-17												
		SAMPLE DES	CRIPTION:	BH213 SS2	BH210 SS2	BH208 SS2	BH209 SS1	BH209 SS2	BH213 SS2-Dup			
		SAMI	PLE TYPE:	Soil	Soil	Soil	Soil	Soil	Soil			
		DATES	SAMPLED:	2022-12-19 08:30	2022-12-19 10:55	2022-12-19 12:59	2022-12-19 15:15	2022-12-19 15:30	2022-12-19 08:30			
Parameter	Unit	G/S	RDL	4637728	4637735	4637738	4637742	4637743	4637744			
Formaldehyde	mg/Kg		0.5	<0.5	1.2	0.9	<0.5	<0.5	<0.5			
Surrogate	Unit	Acceptab	le Limits									
2,3,5,6-Tetrafluorobenzaldehyde	%	40-1	140	52	45	41	69	60	42			

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard

4637728-4637744 A higher LDR indicates that a dilution was performed to reduce analyte concentration or reduce matrix interference.

Analysis performed at AGAT Montréal (unless marked by *)

Certified By:

Certificate of Analysis

AGAT WORK ORDER: 22T982756

PROJECT: 220509

ATTENTION TO: Paul Bandler

SAMPLED BY:ML

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

SAMPLING SITE:Bakelite Belleville

O Reg. 153(511) - BNA (full) + PAHs (Soil)

			C). Reg. 153	(511) - BNA	(full) + PAF	HS (Soil)			
DATE RECEIVED: 2022-12-20									DATE REPORTED: 2	023-01-17
			CRIPTION: LE TYPE: AMPLED:	BH213 SS2 Soil 2022-12-19 08:30	BH210 SS2 Soil 2022-12-19 10:55	BH208 SS2 Soil 2022-12-19 12:59	BH209 SS1 Soil 2022-12-19 15:15	BH209 SS2 Soil 2022-12-19 15:30	BH213 SS2-Dup Soil 2022-12-19 08:30	
Parameter	Unit	G/S	RDL	4637728	4637735	4637738	4637742	4637743	4637744	
Naphthalene	μg/g	0.6	0.05	< 0.05	0.32	< 0.05	0.41	1.84	<0.05	
Acenaphthylene	μg/g	0.15	0.05	< 0.05	<0.05	<0.05	<0.05	< 0.05	<0.05	
Acenaphthene	μg/g	7.9	0.05	< 0.05	0.48	<0.05	<0.05	< 0.05	<0.05	
Fluorene	μg/g	62	0.05	< 0.05	0.51	<0.05	< 0.05	< 0.05	<0.05	
Phenanthrene	μg/g	6.2	0.05	0.11	3.84	0.08	0.32	< 0.05	0.08	
Anthracene	μg/g	0.67	0.05	< 0.05	1.00	< 0.05	< 0.05	< 0.05	<0.05	
Fluoranthene	μg/g	0.69	0.05	0.18	3.73	0.10	< 0.05	< 0.05	0.16	
Pyrene	μg/g	78	0.05	0.17	2.98	0.08	< 0.05	< 0.05	0.16	
Benz(a)anthracene	μg/g	0.5	0.05	0.07	1.38	<0.05	< 0.05	< 0.05	0.06	
Chrysene	μg/g	7	0.05	0.10	1.42	0.06	< 0.05	< 0.05	0.08	
Benzo(b)fluoranthene	μg/g	0.78	0.05	0.18	2.04	0.08	< 0.05	< 0.05	0.16	
Benzo(k)fluoranthene	μg/g	0.78	0.05	0.10	1.13	<0.05	< 0.05	< 0.05	0.11	
Benzo(a)pyrene	μg/g	0.3	0.05	0.11	1.39	<0.05	< 0.05	< 0.05	0.09	
Indeno(1,2,3-cd)pyrene	μg/g	0.38	0.05	< 0.05	0.51	< 0.05	< 0.05	< 0.05	< 0.05	
Dibenzo(a,h)anthracene	μg/g	0.1	0.05	< 0.05	0.08	< 0.05	< 0.05	< 0.05	<0.05	
Benzo(g,h,i)perylene	μg/g	6.6	0.05	< 0.05	0.46	< 0.05	< 0.05	< 0.05	<0.05	
Phenol	μg/g	9.4	0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	
Bis(2-chloroethyl)ether	μg/g	0.5	0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	
2-Chlorophenol	μg/g	1.6	0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	
o-Cresol	μg/g		0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	
Bis(2-chloroisopropyl)ether	μg/g	0.67	0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	
m & p - Cresol	μg/g		0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	
2,4-Dimethylphenol	μg/g	390	0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	
2,4-Dichlorophenol	μg/g	1.7	0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	
1,2,4-Trichlorobenzene	μg/g		0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	<0.05	
p-Chloroaniline	μg/g	0.5	0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	
1 and 2 Methlynaphthalene	μg/g	0.99	0.05	< 0.05	< 0.05	< 0.05	2.28	7.33	<0.05	
2,4,6-Trichlorophenol	μg/g	3.8	0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	
2,4,5-Trichlorophenol	μg/g	4.4	0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	

Certified By:

NPopukolof

SAMPLING SITE: Bakelite Belleville

Certificate of Analysis

AGAT WORK ORDER: 22T982756

PROJECT: 220509

ATTENTION TO: Paul Bandler

SAMPLED BY:ML

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

O. Rea. 153(511) - BNA (full) + PAHs (Soil)

			_	7. INCG. 100		(Iuii) I I Ai	13 (0011)				
DATE RECEIVED: 2022-12-20									DATE REPORTED:	2023-01-17	
		SAMPLE DES	CRIPTION:	BH213 SS2	BH210 SS2	BH208 SS2	BH209 SS1	BH209 SS2	BH213 SS2-Dup		
		SAM	PLE TYPE:	Soil	Soil	Soil	Soil	Soil	Soil		
		DATE	SAMPLED:	2022-12-19 08:30	2022-12-19 10:55	2022-12-19 12:59	2022-12-19 15:15	2022-12-19 15:30	2022-12-19 08:30		
Parameter	Unit	G/S	RDL	4637728	4637735	4637738	4637742	4637743	4637744		
1,1-Biphenyl	μg/g	0.31	0.05	<0.05	<0.05	< 0.05	<0.05	< 0.05	<0.05		
Dimethyl Phthalate	μg/g	0.5	0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1		
2,4 and 2,6-Dinitrotoluene	μg/g	0.92	0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5		
Diethyl Phthalate	μg/g	0.5	0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1		
Pentachlorophenol	μg/g	0.1	0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1		
3,3'-Dichlorobenzidine	μg/g		0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5		
2,4-Dinitrophenol	μg/g	38	2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0		
Bis(2-Ethylhexyl)phthalate	μg/g	5	0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2		
Moisture Content	%		0.1	15.1	9.3	13.5	16.3	21.3	16.9		
wet weight BNA	g		0.01	10.62	10.46	10.80	10.79	10.12	10.70		
Surrogate	Unit	Acceptab	le Limits								
phenol-d6 surrogate	%	50-	140	66	69	65	80	78	105		
2-Fluorophenol	%	50-	140	77	69	109	97	80	78		
2,4,6-Tribromophenol	%	50-	140	77	74	84	98	99	85		
Chrysene-d12	%	50-	140	68	106	71	89	88	93		

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard: Refers to Table 7: Generic Site Condition Standards for Shallow Soils in a Non-Potable Ground Water Condition - Soil -

Residential/Parkland/Institutional Property Use - Coarse Textured Soils

Guideline values are for general reference only. The guidelines provided may or may not be relevant for the intended use. Refer directly to the applicable standard for regulatory interpretation.

4637728-4637744 Results are based on the dry weight of the soil.

Note: The result for Benzo(b)Fluoranthene is the total of the Benzo(b)&(j)Fluoranthene isomers because the isomers co-elute on the GC column.

Analysis performed at AGAT Toronto (unless marked by *)

Certified By:

Certificate of Analysis

AGAT WORK ORDER: 22T982756

PROJECT: 220509

ATTENTION TO: Paul Bandler

SAMPLED BY:ML

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

CLIENT NAME: BLUMETRIC ENVIRONMENTAL INC.

SAMPLING SITE: Bakelite Belleville

	O. Reg. 153(511) - PCBs (Soil)												
DATE RECEIVED: 2022-12-20									DATE REPORTED	D: 2023-01-17			
		SAMPLE DES	CRIPTION:	BH213 SS2	BH210 SS2	BH208 SS1	BH208 SS2	BH209 SS2	BH213 SS2-Dup				
		SAM	PLE TYPE:	Soil	Soil	Soil	Soil	Soil	Soil				
		DATE	SAMPLED:	2022-12-19 08:30	2022-12-19 10:55	2022-12-19 12:45	2022-12-19 12:59	2022-12-19 15:30	2022-12-19 08:30				
Parameter	Unit	G/S	RDL	4637728	4637735	4637736	4637738	4637743	4637744				
Polychlorinated Biphenyls	μg/g	0.35	0.1	<0.1	0.22	0.28	0.53	<0.1	<0.1				
Moisture Content	%		0.1	15.1	9.3	16.0	13.5	21.3	16.9				
Surrogate	Unit	Acceptab	le Limits										
Decachlorobiphenyl	%	50-1	140	76	80	116	72	72	120				

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard: Refers to Table 7: Generic Site Condition Standards for Shallow Soils in a Non-Potable Ground Water Condition - Soil -

Residential/Parkland/Institutional Property Use - Coarse Textured Soils

Guideline values are for general reference only. The guidelines provided may or may not be relevant for the intended use. Refer directly to the applicable standard for regulatory interpretation.

4637728-4637744 Results are based on the dry weight of soil extracted.

PCB total is a calculated parameter. The calculated value is the sum of Aroclor 1242, Aroclor 1248, Aroclor 1254 and Aroclor 1260.

The calculated parameter is non-accredited. The parameters that are components of the calculation are accredited.

Analysis performed at AGAT Toronto (unless marked by *)

Certified By:

SAMPLING SITE: Bakelite Belleville

Certificate of Analysis

AGAT WORK ORDER: 22T982756

PROJECT: 220509

SAMPLED BY:ML

ATTENTION TO: Paul Bandler

O. Reg. 153(511) - PHCs F1 - F4 (with PAHs and VOC) (Soil)

				33(3.1)		(·	(00)			
DATE RECEIVED: 2022-12-20									DATE REPORTED:	2023-01-17	
		SAMPLE DES	CRIPTION:	BH213 SS2	BH210 SS2	BH208 SS2	BH209 SS1	BH209 SS2	BH213 SS2-Dup		
		SAM	PLE TYPE:	Soil	Soil	Soil	Soil	Soil	Soil		
		DATE	SAMPLED:	2022-12-19 08:30	2022-12-19 10:55	2022-12-19 12:59	2022-12-19 15:15	2022-12-19 15:30	2022-12-19 08:30		
Parameter	Unit	G/S	RDL	4637728	4637735	4637738	4637742	4637743	4637744		
F1 (C6 - C10)	μg/g		5	<5	<5	<5	9	<5	<5		
F1 (C6 to C10) minus BTEX	μg/g	55	5	<5	<5	<5	9	<5	<5		
F2 (C10 to C16)	μg/g	98	10	<10	<10	<10	36	713	<10		
F2 (C10 to C16) minus Naphthalene	μg/g		10	<10	<10	<10	36	711	<10		
F3 (C16 to C34)	μg/g	300	50	<50	<50	298	488	6280	<50		
F3 (C16 to C34) minus PAHs	μg/g		50	<50	<50	298	488	6280	<50		
F4 (C34 to C50)	μg/g	2800	50	<50	<50	100	55	262	<50		
Gravimetric Heavy Hydrocarbons	μg/g	2800	50	NA	NA	NA	NA	NA	NA		
Moisture Content	%		0.1	15.1	9.3	13.5	16.3	21.3	16.9		
Surrogate	Unit	Acceptab	le Limits								
Toluene-d8	%	50-	140	7 5	75	74	72	67	76		·
Terphenyl	%	60-	140	77	74	70	79	93	83		

Comments:

RDL - Reported Detection Limit: G / S - Guideline / Standard: Refers to Table 7: Generic Site Condition Standards for Shallow Soils in a Non-Potable Ground Water Condition - Soil -

Residential/Parkland/Institutional Property Use - Coarse Textured Soils

Guideline values are for general reference only. The guidelines provided may or may not be relevant for the intended use. Refer directly to the applicable standard for regulatory interpretation.

4637728-4637744 Results are based on sample dry weight.

The C6-C10 fraction is calculated using toluene response factor.

C6-C10 (F1 minus BTEX) is a calculated parameter. The calculated value is F1 minus BTEX. The calculated parameter is non-accredited. The parameters that are components of the calculation are

The C10 - C16, C16 - C34, and C34 - C50 fractions are calculated using the average response factor for n-C10, n-C16, and n-C34.

Gravimetric Heavy Hydrocarbons are not included in the Total C16-C50 and are only determined if the chromatogram of the C34 - C50 hydrocarbons indicates that hydrocarbons >C50 are present. The chromatogram has returned to baseline by the retention time of nC50.

Total C6 - C50 results are corrected for BTEX and PAH contributions.

C>10 – C16 (F2- Naphthalene) is a calculated parameter. The calculated value is F2 - Naphthalene.

C>16 - C34 (F3-PAH) is a calculated parameter. The calculated value is F3-PAH (PAH; sum of Phenanthrene, Benzo(a)anthracene, Benzo(b)fluoranthene, Benzo(k)fluoranthene, Benzo(k)fluoranthene, Benzo(a)anthracene, Benzo(b)fluoranthene, Benzo(b)f Fluoranthene, Dibenzo(a,h)anthracene, Indeno(1,2,3-c,d)pyrene and Pyrene).

This method complies with the Reference Method for the CWS PHC and is validated for use in the laboratory.

nC10, nC16 and nC34 response factors are within 10% of their average.

C50 response factor is within 70% of nC10 + nC16 + nC34 average.

Linearity is within 15%.

Extraction and holding times were met for this sample.

Analysis performed at AGAT Toronto (unless marked by *)

Certified By:

NPoprukolej

5835 COOPERS AVENUE

MISSISSAUGA, ONTARIO CANADA L4Z 1Y2

http://www.agatlabs.com

TEL (905)712-5100 FAX (905)712-5122

Certificate of Analysis

AGAT WORK ORDER: 22T982756

PROJECT: 220509

ATTENTION TO: Paul Bandler

SAMPLED BY:ML

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

SAMPLING SITE:Bakelite Belleville

O Reg. 153(511) - VOCs (with PHC) (Soil)

			(). Reg. 153	(511) - VOC	s (with PHC	J) (Soil)			
DATE RECEIVED: 2022-12-20									DATE REPORTED: 20	23-01-17
			CRIPTION: LE TYPE: AMPLED:	BH213 SS2 Soil 2022-12-19 08:30	BH210 SS2 Soil 2022-12-19 10:55	BH208 SS2 Soil 2022-12-19 12:59	BH209 SS1 Soil 2022-12-19 15:15	BH209 SS2 Soil 2022-12-19 15:30	BH213 SS2-Dup Soil 2022-12-19 08:30	
Parameter	Unit	G/S	RDL	4637728	4637735	4637738	4637742	4637743	4637744	
Dichlorodifluoromethane	μg/g	16	0.05	<0.05	<0.05	< 0.05	<0.05	<0.05	<0.05	
Vinyl Chloride	ug/g	0.02	0.02	<0.02	< 0.02	<0.02	<0.02	< 0.02	<0.02	
Bromomethane	ug/g	0.05	0.05	< 0.05	<0.05	<0.05	<0.05	< 0.05	<0.05	
Trichlorofluoromethane	ug/g	4	0.05	< 0.05	< 0.05	<0.05	< 0.05	< 0.05	<0.05	
Acetone	ug/g	16	0.50	<0.50	<0.50	< 0.50	< 0.50	< 0.50	<0.50	
1,1-Dichloroethylene	ug/g	0.05	0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	<0.05	
Methylene Chloride	ug/g	0.1	0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	<0.05	
Trans- 1,2-Dichloroethylene	ug/g	0.084	0.05	< 0.05	< 0.05	<0.05	< 0.05	< 0.05	<0.05	
Methyl tert-butyl Ether	ug/g	0.75	0.05	< 0.05	<0.05	< 0.05	< 0.05	< 0.05	<0.05	
1,1-Dichloroethane	ug/g	3.5	0.02	<0.02	<0.02	<0.02	< 0.02	<0.02	<0.02	
Methyl Ethyl Ketone	ug/g	16	0.50	<0.50	<0.50	< 0.50	< 0.50	< 0.50	<0.50	
Cis- 1,2-Dichloroethylene	ug/g	3.4	0.02	< 0.02	<0.02	<0.02	< 0.02	< 0.02	<0.02	
Chloroform	ug/g	0.05	0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	
1,2-Dichloroethane	ug/g	0.05	0.03	< 0.03	<0.03	< 0.03	< 0.03	< 0.03	<0.03	
1,1,1-Trichloroethane	ug/g	0.38	0.05	< 0.05	<0.05	< 0.05	< 0.05	< 0.05	<0.05	
Carbon Tetrachloride	ug/g	0.05	0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	<0.05	
Benzene	ug/g	0.21	0.02	<0.02	<0.02	< 0.02	< 0.02	0.51	<0.02	
1,2-Dichloropropane	ug/g	0.05	0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	<0.03	
Trichloroethylene	ug/g	0.061	0.03	<0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	
Bromodichloromethane	ug/g	13	0.05	<0.05	<0.05	<0.05	< 0.05	< 0.05	<0.05	
Methyl Isobutyl Ketone	ug/g	1.7	0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	<0.50	
1,1,2-Trichloroethane	ug/g	0.05	0.04	<0.04	< 0.04	<0.04	< 0.04	<0.04	<0.04	
Toluene	ug/g	2.3	0.05	< 0.05	< 0.05	< 0.05	0.21	0.28	< 0.05	
Dibromochloromethane	ug/g	9.4	0.05	<0.05	<0.05	< 0.05	< 0.05	< 0.05	<0.05	
Ethylene Dibromide	ug/g	0.05	0.04	<0.04	<0.04	<0.04	< 0.04	<0.04	<0.04	
Tetrachloroethylene	ug/g	0.28	0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	<0.05	
1,1,1,2-Tetrachloroethane	ug/g	0.058	0.04	<0.04	< 0.04	<0.04	< 0.04	< 0.04	<0.04	
Chlorobenzene	ug/g	2.4	0.05	< 0.05	<0.05	< 0.05	< 0.05	< 0.05	<0.05	
Ethylbenzene	ug/g	2	0.05	< 0.05	< 0.05	< 0.05	<0.05	0.36	<0.05	

Certified By:

NPopukolof

SAMPLING SITE: Bakelite Belleville

Certificate of Analysis

AGAT WORK ORDER: 22T982756

PROJECT: 220509

ATTENTION TO: Paul Bandler

SAMPLED BY:ML

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

O. Reg. 153(511) - VOCs (with PHC) (Soil)

					()	(-, (,			
DATE RECEIVED: 2022-12-20									DATE REPORTED	: 2023-01-17
	S	AMPLE DESC	RIPTION:	BH213 SS2	BH210 SS2	BH208 SS2	BH209 SS1	BH209 SS2	BH213 SS2-Dup	
		SAMP	LE TYPE:	Soil	Soil	Soil	Soil	Soil	Soil	
		DATE S	AMPLED:	2022-12-19 08:30	2022-12-19 10:55	2022-12-19 12:59	2022-12-19 15:15	2022-12-19 15:30	2022-12-19 08:30	
Parameter	Unit	G/S	RDL	4637728	4637735	4637738	4637742	4637743	4637744	
m & p-Xylene	ug/g		0.05	<0.05	<0.05	< 0.05	0.23	0.73	< 0.05	
Bromoform	ug/g	0.27	0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	
Styrene	ug/g	0.7	0.05	< 0.05	< 0.05	<0.05	<0.05	< 0.05	< 0.05	
1,1,2,2-Tetrachloroethane	ug/g	0.05	0.05	< 0.05	< 0.05	<0.05	< 0.05	< 0.05	< 0.05	
o-Xylene	ug/g		0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	
1,3-Dichlorobenzene	ug/g	4.8	0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	
1,4-Dichlorobenzene	ug/g	0.083	0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	
1,2-Dichlorobenzene	ug/g	3.4	0.05	< 0.05	< 0.05	<0.05	< 0.05	< 0.05	< 0.05	
Xylenes (Total)	ug/g	3.1	0.05	< 0.05	<0.05	< 0.05	0.23	0.73	< 0.05	
1,3-Dichloropropene (Cis + Trans)	μg/g	0.05	0.05	<0.05	<0.05	< 0.05	< 0.05	< 0.05	< 0.05	
n-Hexane	μg/g	2.8	0.05	< 0.05	<0.05	< 0.05	< 0.05	< 0.05	< 0.05	
Moisture Content	%		0.1	15.1	9.3	13.5	16.3	21.3	16.9	
Surrogate	Unit	Acceptable	e Limits							
Toluene-d8	% Recovery	50-14	10	75	75	74	72	67	76	
4-Bromofluorobenzene	% Recovery	50-14	40	104	96	100	97	104	109	

Comments:

RDL - Reported Detection Limit; G / S - Guideline / Standard: Refers to Table 7: Generic Site Condition Standards for Shallow Soils in a Non-Potable Ground Water Condition - Soil -Residential/Parkland/Institutional Property Use - Coarse Textured Soils

Guideline values are for general reference only. The guidelines provided may or may not be relevant for the intended use. Refer directly to the applicable standard for regulatory interpretation.

4637728-4637744 The sample was analyzed using the high level technique. The sample was extracted using methanol, a small amount of the methanol extract was diluted in water and the purge & trap GC/MS analysis was performed. Results are based on the dry weight of the soil.

Xylenes total is a calculated parameter. The calculated value is the sum of m&p-Xylene + o-Xylene.

1,3-Dichloropropene total is a calculated parameter. The calculated value is the sum of Cis-1,3-Dichloropropene and Trans-1,3-Dichloropropene.

The calculated parameters are non-accredited. The parameters that are components of the calculation are accredited.

Analysis performed at AGAT Toronto (unless marked by *)

Certified By:

Exceedance Summary

AGAT WORK ORDER: 22T982756

PROJECT: 220509

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

CLIENT NAME: BLUMETRIC ENVIRONMENTAL INC.

ATTENTION TO: Paul Bandler

SAMPLEID	SAMPLE TITLE	GUIDELINE	ANALYSIS PACKAGE	PARAMETER	UNIT	GUIDEVALUE	RESULT
4637735	BH210 SS2	ON T7 S RPI CT	O. Reg. 153(511) - BNA (full) + PAHs (Soil)	Anthracene	μg/g	0.67	1.00
4637735	BH210 SS2	ON T7 S RPI CT	O. Reg. 153(511) - BNA (full) + PAHs (Soil)	Benz(a)anthracene	μg/g	0.5	1.38
4637735	BH210 SS2	ON T7 S RPI CT	O. Reg. 153(511) - BNA (full) + PAHs (Soil)	Benzo(a)pyrene	μg/g	0.3	1.39
4637735	BH210 SS2	ON T7 S RPI CT	O. Reg. 153(511) - BNA (full) + PAHs (Soil)	Benzo(b)fluoranthene	μg/g	0.78	2.04
4637735	BH210 SS2	ON T7 S RPI CT	O. Reg. 153(511) - BNA (full) + PAHs (Soil)	Benzo(k)fluoranthene	μg/g	0.78	1.13
4637735	BH210 SS2	ON T7 S RPI CT	O. Reg. 153(511) - BNA (full) + PAHs (Soil)	Fluoranthene	μg/g	0.69	3.73
4637735	BH210 SS2	ON T7 S RPI CT	O. Reg. 153(511) - BNA (full) + PAHs (Soil)	Indeno(1,2,3-cd)pyrene	μg/g	0.38	0.51
4637735	BH210 SS2	ON T7 S RPI CT	O. Reg. 153(511) - Metals & Inorganics (Soil)	Boron (Hot Water Soluble)	μg/g	1.5	2.05
4637735	BH210 SS2	ON T7 S RPI CT	O. Reg. 153(511) - Metals & Inorganics (Soil)	Mercury	μg/g	0.27	1.12
4637735	BH210 SS2	ON T7 S RPI CT	O. Reg. 153(511) - Metals & Inorganics (Soil)	Molybdenum	μg/g	6.9	41.3
4637735	BH210 SS2	ON T7 S RPI CT	O. Reg. 153(511) - Metals & Inorganics (Soil)	Zinc	μg/g	340	452
4637735	BH210 SS2	ON T7 S RPI CT	O. Reg. 153(511) - PHCs F1 - F4 (with PAHs and VOC) (Soil)	Benzo(a)anthracene	μg/g	0.5	1.38
4637735	BH210 SS2	ON T7 S RPI CT	O. Reg. 153(511) - PHCs F1 - F4 (with PAHs and VOC) (Soil)	Benzo(a)pyrene	μg/g	0.3	1.39
4637735	BH210 SS2	ON T7 S RPI CT	O. Reg. 153(511) - PHCs F1 - F4 (with PAHs and VOC) (Soil)	Benzo(b)fluoranthene	μg/g	0.78	2.04
4637735	BH210 SS2	ON T7 S RPI CT	O. Reg. 153(511) - PHCs F1 - F4 (with PAHs and VOC) (Soil)	Benzo(k)fluoranthene	μg/g	0.78	1.13
4637735	BH210 SS2	ON T7 S RPI CT	O. Reg. 153(511) - PHCs F1 - F4 (with PAHs and VOC) (Soil)	Fluoranthene	μg/g	0.69	3.73
4637735	BH210 SS2	ON T7 S RPI CT	O. Reg. 153(511) - PHCs F1 - F4 (with PAHs and VOC) (Soil)	Indeno(1,2,3-cd)pyrene	μg/g	0.38	0.51
4637736	BH208 SS1	ON T7 S RPI CT	O. Reg. 153(511) - Metals & Inorganics (Soil)	Molybdenum	μg/g	6.9	12.5
4637738	BH208 SS2	ON T7 S RPI CT	O. Reg. 153(511) - Metals & Inorganics (Soil)	Mercury	μg/g	0.27	0.72
4637738	BH208 SS2	ON T7 S RPI CT	O. Reg. 153(511) - Metals & Inorganics (Soil)	Molybdenum	μg/g	6.9	11.2
4637738	BH208 SS2	ON T7 S RPI CT	O. Reg. 153(511) - PCBs (Soil)	Polychlorinated Biphenyls	μg/g	0.35	0.53
4637742	BH209 SS1	ON T7 S RPI CT	O. Reg. 153(511) - BNA (full) + PAHs (Soil)	1 and 2 Methlynaphthalene	μg/g	0.99	2.28
4637742	BH209 SS1	ON T7 S RPI CT	O. Reg. 153(511) - Metals & Inorganics (Soil)	Arsenic	μg/g	18	202
4637742	BH209 SS1	ON T7 S RPI CT	O. Reg. 153(511) - Metals & Inorganics (Soil)	Mercury	μg/g	0.27	0.93
4637742	BH209 SS1	ON T7 S RPI CT	O. Reg. 153(511) - Metals & Inorganics (Soil)	Molybdenum	μg/g	6.9	33.9
4637742	BH209 SS1	ON T7 S RPI CT	O. Reg. 153(511) - Metals & Inorganics (Soil)	Selenium	μg/g	2.4	5.5
4637742	BH209 SS1	ON T7 S RPI CT	O. Reg. 153(511) - Metals & Inorganics (Soil)	Thallium	μg/g	1	2.8
4637742	BH209 SS1	ON T7 S RPI CT	O. Reg. 153(511) - PHCs F1 - F4 (with PAHs and VOC) (Soil)	F3 (C16 to C34)	μg/g	300	488
4637743	BH209 SS2	ON T7 S RPI CT	O. Reg. 153(511) - BNA (full) + PAHs (Soil)	1 and 2 Methlynaphthalene	μg/g	0.99	7.33
4637743	BH209 SS2	ON T7 S RPI CT	O. Reg. 153(511) - BNA (full) + PAHs (Soil)	Naphthalene	μg/g	0.6	1.84
4637743	BH209 SS2	ON T7 S RPI CT	O. Reg. 153(511) - Metals & Inorganics (Soil)	Arsenic	μg/g	18	63
4637743	BH209 SS2	ON T7 S RPI CT	O. Reg. 153(511) - Metals & Inorganics (Soil)	Mercury	μg/g	0.27	5.80
4637743	BH209 SS2	ON T7 S RPI CT	O. Reg. 153(511) - Metals & Inorganics (Soil)	Molybdenum	μg/g	6.9	33.9
4637743	BH209 SS2	ON T7 S RPI CT	O. Reg. 153(511) - PHCs F1 - F4 (with PAHs and VOC) (Soil)	Benzene	μg/g	0.21	0.51
4637743	BH209 SS2	ON T7 S RPI CT	O. Reg. 153(511) - PHCs F1 - F4 (with PAHs and VOC) (Soil)	F2 (C10 to C16)	μg/g	98	713

Exceedance Summary

AGAT WORK ORDER: 22T982756

PROJECT: 220509

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

CLIENT NAME: BLUMETRIC ENVIRONMENTAL INC.

ATTENTION TO: Paul Bandler

SAMPLEID	SAMPLE TITLE	GUIDELINE	ANALYSIS PACKAGE	PARAMETER	UNIT	GUIDEVALUE	RESULT
4637743	BH209 SS2	ON T7 S RPI CT	O. Reg. 153(511) - PHCs F1 - F4 (with PAHs and VOC) (Soil)	F3 (C16 to C34)	µg/g	300	6280
4637743	BH209 SS2	ON T7 S RPI CT	O. Reg. 153(511) - PHCs F1 - F4 (with PAHs and VOC) (Soil)	Naphthalene	μg/g	0.6	1.84
4637743	BH209 SS2	ON T7 S RPI CT	O. Reg. 153(511) - VOCs (with PHC) (Soil)	Benzene	ug/g	0.21	0.51

Quality Assurance

CLIENT NAME: BLUMETRIC ENVIRONMENTAL INC.

AGAT WORK ORDER: 22T982756

PROJECT: 220509

ATTENTION TO: Paul Bandler

SAMPLING SITE:Bakelite Belleville SAMPLED BY:ML

AMIFLING STIE.Bakelite Believille SAMIFLED BT.ML														
Soil Analysis														
RPT Date: Jan 17, 2023			DUPLICAT	E		REFEREN	ICE MA	TERIAL	METHOD	BLANK	SPIKE	MAT	RIX SPI	IKE
PARAMETER	Batch Sample	Dup #1	Dup #2	RPD	Method Blank	Measured		ptable nits	Recovery	Lin	ptable nits	Recovery		eptable mits
	ld ld	''	'			Value	Lower	Upper	,	Lower	Upper	,	Lower	Uppe
O. Reg. 153(511) - Metals & Inorg	ganics (Soil)				,									
Antimony	4636348	<0.8	<0.8	NA	< 0.8	86%	70%	130%	90%	80%	120%	82%	70%	130%
Arsenic	4636348	1	1	NA	< 1	120%	70%	130%	101%	80%	120%	105%	70%	130%
Barium	4636348	27.1	25.8	4.9%	< 2.0	104%	70%	130%	99%	80%	120%	104%	70%	130%
Beryllium	4636348	< 0.4	< 0.4	NA	< 0.4	97%	70%	130%	101%	80%	120%	100%	70%	130%
Boron	4636348	<5	<5	NA	< 5	77%	70%	130%	92%	80%	120%	96%	70%	130%
Boron (Hot Water Soluble)	4644309 4637728	0.13	0.14	NA	< 0.10	91%	60%	140%	93%	70%	130%	97%	60%	140%
Cadmium	4636348	<0.5	<0.5	NA	< 0.5	97%	70%	130%	102%	80%	120%	103%	70%	130%
Chromium	4636348	7	7	NA	< 5	102%	70%	130%	100%	80%	120%	106%	70%	130%
Cobalt	4636348	2.8	2.7	3.6%	< 0.5	104%	70%	130%	96%	80%	120%	99%	70%	130%
Copper	4636348	6.0	6.3	4.9%	< 1.0	97%	70%	130%	100%	80%	120%	94%	70%	130%
Lead	4636348	7	7	0.0%	< 1	107%	70%	130%	95%	80%	120%	94%	70%	130%
Molybdenum	4636348	<0.5	<0.5	NA	< 0.5	118%	70%	130%	109%	80%	120%	117%	70%	130%
Nickel	4636348	4	4	NA	< 1	105%	70%	130%	99%	80%	120%	97%	70%	130%
Selenium	4636348	8.0	<0.8	NA	< 0.8	79%	70%	130%	100%	80%	120%	101%	70%	130%
Silver	4636348	<0.5	<0.5	NA	< 0.5	106%	70%	130%	101%	80%	120%	98%	70%	130%
Thallium	4636348	<0.5	<0.5	NA	< 0.5	115%	70%	130%	98%	80%	120%	99%	70%	130%
Uranium	4636348	<0.50	< 0.50	NA	< 0.50	120%	70%	130%	98%	80%	120%	105%	70%	130%
Vanadium	4636348	13.5	13.2	2.2%	< 0.4	111%	70%	130%	100%	80%	120%	104%	70%	130%
Zinc	4636348	24	22	NA	< 5	104%	70%	130%	100%	80%	120%	101%	70%	130%
Chromium, Hexavalent	4642892	<0.2	<0.2	NA	< 0.2	101%	70%	130%	98%	80%	120%	79%	70%	130%
Cyanide, WAD	4672883	<0.040	<0.040	NA	< 0.040	107%	70%	130%	90%	80%	120%	97%	70%	130%
Mercury	4636348	<0.10	<0.10	NA	< 0.10	115%	70%	130%	100%	80%	120%	106%	70%	130%
Electrical Conductivity (2:1)	4637210	1.22	1.21	0.8%	< 0.005	118%	80%	120%						
Sodium Adsorption Ratio (2:1) (Calc.)	4636348	0.506	0.522	3.1%	NA	NA								
pH, 2:1 CaCl2 Extraction	4647783	7.50	7.50	0.0%	NA	99%	80%	120%						

Comments: NA signifies Not Applicable.

pH duplicates QA acceptance criteria was met relative as stated in Table 5-15 of Analytical Protocol document.

Duplicate NA: results are under 5X the RDL and will not be calculated.

O. Reg. 153(511) - Metals & Inorganics (Soil)														
Antimony	4644309	<0.8	<0.8	NA	< 0.8	106%	70%	130%	84%	80%	120%	75%	70%	130%
Arsenic	4644309	2	2	NA	< 1	123%	70%	130%	96%	80%	120%	100%	70%	130%
Barium	4644309	11.1	12.4	11.1%	< 2.0	107%	70%	130%	99%	80%	120%	100%	70%	130%
Beryllium	4644309	<0.4	< 0.4	NA	< 0.4	104%	70%	130%	92%	80%	120%	103%	70%	130%
Boron	4644309	<5	<5	NA	< 5	98%	70%	130%	99%	80%	120%	108%	70%	130%
Boron (Hot Water Soluble)	4644309	0.13	0.14	NA	< 0.10	91%	60%	140%	93%	70%	130%	97%	60%	140%
Cadmium	4644309	<0.5	< 0.5	NA	< 0.5	90%	70%	130%	105%	80%	120%	106%	70%	130%
Chromium	4644309	7	8	NA	< 5	117%	70%	130%	110%	80%	120%	110%	70%	130%
Cobalt	4644309	1.9	2.2	NA	< 0.5	118%	70%	130%	107%	80%	120%	104%	70%	130%

AGAT QUALITY ASSURANCE REPORT (V2)

Page 13 of 24

Quality Assurance

SAMPLED BY:ML

CLIENT NAME: BLUMETRIC ENVIRONMENTAL INC.

AGAT WORK ORDER: 22T982756

PROJECT: 220509

ATTENTION TO: Paul Bandler

SAMPLING SITE:Bakelite Belleville

Soil Analysis (Continued)															
RPT Date: Jan 17, 2023			С	UPLICAT	E		REFEREN	NCE MA	TERIAL	METHOD	BLANK	SPIKE	MAT	RIX SPI	KE
PARAMETER	Batch	Sample Id	Dup #1	Dup #2	RPD	Method Blank	Measured		ptable nits	Recovery	1 1 1 1 1	ptable nits	Recovery		ptable nits
		la la		.			Value	Lower	Upper	,	Lower	Upper		Lower	Upper
Copper	4644309		4.2	4.7	NA	< 1.0	103%	70%	130%	106%	80%	120%	97%	70%	130%
Lead	4644309		8	9	11.8%	< 1	114%	70%	130%	103%	80%	120%	100%	70%	130%
Molybdenum	4644309		< 0.5	<0.5	NA	< 0.5	115%	70%	130%	109%	80%	120%	114%	70%	130%
Nickel	4644309		3	4	NA	< 1	115%	70%	130%	107%	80%	120%	102%	70%	130%
Selenium	4644309		<0.8	<0.8	NA	< 0.8	128%	70%	130%	104%	80%	120%	106%	70%	130%
Silver	4644309		<0.5	<0.5	NA	< 0.5	121%	70%	130%	105%	80%	120%	96%	70%	130%
Thallium	4644309		<0.5	<0.5	NA	< 0.5	125%	70%	130%	107%	80%	120%	102%	70%	130%
Uranium	4644309		< 0.50	< 0.50	NA	< 0.50	127%	70%	130%	103%	80%	120%	110%	70%	130%
Vanadium	4644309		12.0	15.7	26.7%	< 0.4	125%	70%	130%	105%	80%	120%	113%	70%	130%
Zinc	4644309		35	38	8.2%	< 5	112%	70%	130%	108%	80%	120%	116%	70%	130%
Chromium, Hexavalent	4642892		<0.2	<0.2	NA	< 0.2	101%	70%	130%	98%	80%	120%	79%	70%	130%
Cyanide, WAD	4647779		<0.04	<0.04	NA	< 0.040	99%	70%	130%	107%	80%	120%	101%	70%	130%
Mercury	4644309		<0.10	<0.10	NA	< 0.10	106%	70%	130%	104%	80%	120%	102%	70%	130%
Electrical Conductivity (2:1)	4644309		1.10	1.11	0.9%	< 0.005	111%	80%	120%						
Sodium Adsorption Ratio (2:1) (Calc.)	4644771		5.17	5.59	7.8%	NA	NA								
pH, 2:1 CaCl2 Extraction	4647783		7.5	7.5	0.0%	NA	94%	80%	120%						

Comments: NA signifies Not Applicable.

pH duplicates QA acceptance criteria was met relative as stated in Table 5-15 of Analytical Protocol document.

Duplicate NA: results are under 5X the RDL and will not be calculated.

O. Reg. 153(511) - Metals & Inorg	janics (Soil)													
Antimony	4681192	<0.8	<0.8	NA	< 0.8	107%	70%	130%	84%	80%	120%	90%	70%	130%
Arsenic	4681192	8	8	3.4%	< 1	122%	70%	130%	96%	80%	120%	95%	70%	130%
Barium	4681192	40.9	39.6	3.1%	< 2.0	111%	70%	130%	102%	80%	120%	98%	70%	130%
Beryllium	4681192	1.2	1.2	NA	< 0.4	106%	70%	130%	99%	80%	120%	92%	70%	130%
Boron	4681192	28	27	5.9%	< 5	86%	70%	130%	94%	80%	120%	74%	70%	130%
Boron (Hot Water Soluble)	4676068	<0.1	<0.1	NA	< 0.10	107%	60%	140%	103%	70%	130%	107%	60%	140%
Cadmium	4681192	<0.5	<0.5	NA	< 0.5	89%	70%	130%	100%	80%	120%	100%	70%	130%
Chromium	4681192	35	34	1.1%	< 5	103%	70%	130%	104%	80%	120%	99%	70%	130%
Cobalt	4681192	21.0	20.6	1.7%	< 0.5	103%	70%	130%	100%	80%	120%	99%	70%	130%
Copper	4681192	34.4	34.4	0.1%	< 1.0	99%	70%	130%	102%	80%	120%	97%	70%	130%
Lead	4681192	9	4	NA	< 1	112%	70%	130%	108%	80%	120%	91%	70%	130%
Molybdenum	4681192	<0.5	< 0.5	NA	< 0.5	113%	70%	130%	104%	80%	120%	99%	70%	130%
Nickel	4681192	40	40	0.0%	< 1	102%	70%	130%	97%	80%	120%	92%	70%	130%
Selenium	4681192	<0.8	<0.8	NA	< 0.8	102%	70%	130%	100%	80%	120%	103%	70%	130%
Silver	4681192	<0.5	<0.5	NA	< 0.5	106%	70%	130%	99%	80%	120%	93%	70%	130%
Thallium	4681192	<0.5	<0.5	NA	< 0.5	122%	70%	130%	101%	80%	120%	99%	70%	130%
Uranium	4681192	0.76	0.75	NA	< 0.50	121%	70%	130%	103%	80%	120%	102%	70%	130%
Vanadium	4681192	45.0	43.4	3.6%	< 0.4	107%	70%	130%	100%	80%	120%	92%	70%	130%
Zinc	4681192	86	87	0.4%	< 5	105%	70%	130%	104%	80%	120%	105%	70%	130%

AGAT QUALITY ASSURANCE REPORT (V2)

Page 14 of 24

AGAT Laboratories is accredited to ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA) and/or Standards Council of Canada (SCC) for specific tests listed on the scope of accreditation. AGAT Laboratories (Mississauga) is also accredited by the Canadian Association for Laboratory Accreditation Inc. (CALA) for specific drinking water tests. Accreditations are location and parameter specific. A complete listing of parameters for each location is available from www.cala.ca and/or www.scc.ca. The tests in this report may not necessarily be included in the scope of accreditation. RPDs calculated using raw data. The RPD may not be reflective of duplicate values shown, due to rounding of final results.

Quality Assurance

CLIENT NAME: BLUMETRIC ENVIRONMENTAL INC.

AGAT WORK ORDER: 22T982756

PROJECT: 220509

ATTENTION TO: Paul Bandler

SAMPLING SITE:Bakelite Belleville SAMPLED BY:ML

O/ WIT EIN O OTTE. Darkonto De	THO OTE BURGING BUILDING														
			Soil	Analy	/sis ((Con	tinue	d)							
RPT Date: Jan 17, 2023			С	UPLICAT	E		REFERE	NCE MA	TERIAL	METHOD	BLANK	SPIKE	MAT	RIX SPI	KE
PARAMETER	Batch	Sample	Dup #1	Dup #2	RPD	Method Blank	Measured		ptable nits	Recovery	Lin	ptable nits	Recovery	1 1 1 1 1	ptable nits
		Va	Value	Lower	Upper	ĺ	Lower Uppe			Lower	Upper				
Chromium, Hexavalent	4672791		<0.2	<0.2	NA	< 0.2	88%	70%	130%	108%	80%	120%	101%	70%	130%
Cyanide, WAD	4672883		<0.04	< 0.04	NA	< 0.040	101%	70%	130%	90%	80%	120%	97%	70%	130%
Mercury	4681192		<0.10	<0.10	NA	< 0.10	115%	70%	130%	102%	80%	120%	102%	70%	130%
Electrical Conductivity (2:1)	4671238		3.85	4.21	8.9%	< 0.005	90%	80%	120%						
Sodium Adsorption Ratio (2:1) (Calc.)	4672797		14.4	12.9	11.0%	NA	NA								
pH, 2:1 CaCl2 Extraction	4672883		8.12	8.24	1.5%	NA	98%	80%	120%						

Comments: NA signifies Not Applicable.

pH duplicates QA acceptance criteria was met relative as stated in Table 5-15 of Analytical Protocol document.

Duplicate NA: results are under 5X the RDL and will not be calculated.

Certified By:

Shumb Thung

Quality Assurance

CLIENT NAME: BLUMETRIC ENVIRONMENTAL INC.

AGAT WORK ORDER: 22T982756

PROJECT: 220509

ATTENTION TO: Paul Bandler

SAMPLING SITE:Bakelite Belleville SAMPLED BY:ML

SAMPLING SITE. Bakelite i	Selleville)/\IVIF	LED B	I .IVIL					
			Trac	e Or	gani	cs Ar	nalys	is							
RPT Date: Jan 17, 2023				UPLICAT	E		REFERE	NCE MA	TERIAL	METHOD	BLANK	SPIKE	MAT	RIX SPI	KE
PARAMETER	Batch	Sample Id	Dup #1	Dup #2	RPD	Method Blank	Measured Value		eptable mits	Recovery	Lie	eptable mits	Recovery		ptable nits
								Lower	Upper		Lower	Upper		Lower	Upper
O. Reg. 153(511) - PHCs F1 - F	4 (with PAHs	and VOC)	(Soil)												
F1 (C6 - C10)	4638044		<5	<5	NA	< 5	120%	60%	140%	117%	60%	140%	93%	60%	140%
F2 (C10 to C16)	4644710		<10	<10	NA	< 10	97%	60%	140%	97%	60%	140%	109%	60%	140%
F3 (C16 to C34)	4644710		<50	<50	NA	< 50	101%	60%	140%	95%	60%	140%	127%	60%	140%
F4 (C34 to C50)	4644710		<50	<50	NA	< 50	93%	60%	140%	82%	60%	140%	127%	60%	140%
O. Reg. 153(511) - BNA (full) +	PAHs (Soil)														
Naphthalene	4600978		< 0.05	< 0.05	NA	< 0.05	85%	50%	140%	89%	50%	140%	79%	50%	140%
Acenaphthylene	4600978		< 0.05	< 0.05	NA	< 0.05	79%	50%	140%	85%	50%	140%	85%	50%	140%
Acenaphthene	4600978		< 0.05	< 0.05	NA	< 0.05	85%	50%	140%	84%	50%	140%	84%	50%	140%
Fluorene	4600978		< 0.05	< 0.05	NA	< 0.05	82%	50%	140%	79%	50%	140%	79%	50%	140%
Phenanthrene	4600978		< 0.05	< 0.05	NA	< 0.05	85%	50%	140%	85%	50%	140%	85%	50%	140%
Anthracene	4600978		< 0.05	< 0.05	NA	< 0.05	84%	50%	140%	79%	50%	140%	84%	50%	140%
Fluoranthene	4600978		< 0.05	< 0.05	NA	< 0.05	79%	50%	140%	85%	50%	140%	79%	50%	140%
Pyrene	4600978		< 0.05	< 0.05	NA	< 0.05	85%	50%	140%	84%	50%	140%	85%	50%	140%
Benz(a)anthracene	4600978		< 0.05	< 0.05	NA	< 0.05	79%	50%	140%	79%	50%	140%	82%	50%	140%
Chrysene	4600978		< 0.05	< 0.05	NA	< 0.05	85%	50%	140%	85%	50%	140%	85%	50%	140%
Benzo(b)fluoranthene	4600978		< 0.05	< 0.05	NA	< 0.05	82%	50%	140%	86%	50%	140%	84%	50%	140%
Benzo(k)fluoranthene	4600978		< 0.05	< 0.05	NA	< 0.05	89%	50%	140%	82%	50%	140%	79%	50%	140%
Benzo(a)pyrene	4600978		< 0.05	< 0.05	NA	< 0.05	85%	50%	140%	85%	50%	140%	85%	50%	140%
Indeno(1,2,3-cd)pyrene	4600978		< 0.05	< 0.05	NA	< 0.05	84%	50%	140%	84%	50%	140%	85%	50%	140%
Dibenzo(a,h)anthracene	4600978		< 0.05	< 0.05	NA	< 0.05	79%	50%	140%	79%	50%	140%	60%	50%	140%
Benzo(g,h,i)perylene	4600978		< 0.05	< 0.05	NA	< 0.05	85%	50%	140%	68%	50%	140%	75%	50%	140%
Phenol	4600978		< 0.05	< 0.05	NA	< 0.05	84%	30%	130%	80%	30%	130%	79%	30%	130%
Bis(2-chloroethyl)ether	4600978		< 0.1	< 0.3	NA	< 0.5	114%	50%	140%	81%	50%	140%	118%	50%	140%
2-Chlorophenol	4600978		< 0.1	< 0.1	NA	< 0.1	71%	50%	140%	65%	50%	140%	90%	50%	140%
o-Cresol	4600978		< 0.1	< 0.1	NA	< 0.1	104%	50%	140%	72%	50%	140%	78%	50%	140%
Pic/2 ablaraisanranyl\athar	4600070		- 0.1	-01	NΙΔ	. 0.1	069/	E00/	1.400/	0.40/	E00/	1.400/	620/	E00/	1.400/
Bis(2-chloroisopropyl)ether	4600978		< 0.1	< 0.1	NA	< 0.1	96%	50%	140%	84%	50%	140%	62%	50%	140%
m & p - Cresol	4600978		< 0.1	< 0.1	NA	< 0.1	104%	50%	140%	87%	50%	140%	103%	50%	140%
2,4-Dimethylphenol	4600978 4600978		< 0.2 < 0.1	< 0.2 < 0.1	NA NA	< 0.2 < 0.1	75% 75%	30% 50%	130% 140%	66% 104%	30% 50%	130% 140%	60% 96%	30% 50%	130% 140%
2,4-Dichlorophenol 1,2,4-Trichlorobenzene	4600978		< 0.15	< 0.05	NA	< 0.15	93%	50%	140%	68%	50%	140%	68%	50%	140%
				0.5		0.5	2001	000/		700/	000/		070/	000/	4000/
p-Chloroaniline	4600978		< 0.5	< 0.5	NA	< 0.5	96%	30%		78%	30%	130%	67%	30%	
2,4,6-Trichlorophenol	4600978		< 0.1	< 0.1	NA	< 0.1	111%	50%		114%	50%	140%	89%	50%	
2,4,5-Trichlorophenol	4600978		< 0.1	< 0.1	NA	< 0.1	106%		140%	102%		140%	69%		140%
1,1-Biphenyl	4600978		< 0.05	< 0.05	NA	< 0.05	NA 00%	50%		77%		140%	65%		140%
Dimethyl Phthalate	4600978		< 0.1	< 0.1	NA	< 0.1	90%	50%	140%	67%	50%	140%	62%	50%	140%
Diethyl Phthalate	4600978		< 0.1	< 0.1	NA	< 0.1	117%		140%	72%		140%	85%	50%	
Pentachlorophenol	4600978		< 0.1	< 0.1	NA	< 0.1	90%		140%	73%	50%	140%	76%	50%	
3,3'-Dichlorobenzidine	4600978		< 0.5	< 0.5	NA	< 0.5	96%	30%		104%	30%	130%	60%	30%	
2,4-Dinitrophenol	4600978		< 2.0	< 2.0	NA	< 2.0	96%	30%	130%	89%	30%	130%	88%	30%	130%

AGAT QUALITY ASSURANCE REPORT (V2)

Page 16 of 24

AGAT Laboratories is accredited to ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA) and/or Standards Council of Canada (SCC) for specific tests listed on the scope of accreditation. AGAT Laboratories (Mississauga) is also accredited by the Canadian Association for Laboratory Accreditation Inc. (CALA) for specific drinking water tests. Accreditations are location and parameter specific. A complete listing of parameters for each location is available from www.cala.ca and/or www.scc.ca. The tests in this report may not necessarily be included in the scope of accreditation. RPDs calculated using raw data. The RPD may not be reflective of duplicate values shown, due to rounding of final results.

Quality Assurance

CLIENT NAME: BLUMETRIC ENVIRONMENTAL INC.

AGAT WORK ORDER: 22T982756

PROJECT: 220509

ATTENTION TO: Paul Bandler

SAMPLING SITE:Bakelite Belleville SAMPLED BY:ML

	٦	Trace	Org	anics	Ana	lysis	(Cor	ntin	ued	l)					
RPT Date: Jan 17, 2023			[DUPLICAT	E		REFERE	NCE MA	TERIAL	METHOD	BLANK	SPIKE	MAT	RIX SPI	KE
		Sample				Method Blank	Measured		ptable nits			ptable nits			ptable nits
PARAMETER	Batch	ld	Dup #1	Dup #2	RPD	Dialik	Value	Lower	Upper	Recovery	Lower	Upper	Recovery	Lower	Upper
Bis(2-Ethylhexyl)phthalate	4600978		< 0.2	< 0.2	NA	< 0.2	99%	50%	140%	63%	50%	140%	65%	50%	140%
O. Reg. 153(511) - PCBs (Soil)															
Polychlorinated Biphenyls	4644813		< 0.1	< 0.1	NA	< 0.1	102%	50%	140%	98%	50%	140%	88%	50%	140%
O. Reg. 153(511) - VOCs (with F	PHC) (Soil)														
Dichlorodifluoromethane	4638044		< 0.05	< 0.05	NA	< 0.05	97%	50%	140%	91%	50%	140%	102%	50%	140%
Vinyl Chloride	4638044		< 0.02	< 0.02	NA	< 0.02	117%	50%	140%	86%	50%	140%	95%	50%	140%
Bromomethane	4638044		< 0.05	< 0.05	NA	< 0.05	108%	50%	140%	91%	50%	140%	108%	50%	140%
Trichlorofluoromethane	4638044		< 0.05	< 0.05	NA	< 0.05	118%	50%	140%	101%	50%	140%	97%	50%	140%
Acetone	4638044		<0.50	<0.50	NA	< 0.50	103%	50%	140%	106%	50%	140%	109%	50%	140%
1,1-Dichloroethylene	4638044		<0.05	<0.05	NA	< 0.05	102%	50%	140%	97%	60%	130%	112%	50%	140%
Methylene Chloride	4638044		< 0.05	< 0.05	NA	< 0.05	107%	50%	140%	112%	60%	130%	104%	50%	140%
Trans- 1,2-Dichloroethylene	4638044		< 0.05	< 0.05	NA	< 0.05	107%	50%	140%	83%	60%	130%	103%	50%	140%
Methyl tert-butyl Ether	4638044		< 0.05	< 0.05	NA	< 0.05	95%	50%	140%	100%	60%	130%	104%	50%	140%
1,1-Dichloroethane	4638044		<0.02	<0.02	NA	< 0.02	104%	50%	140%	106%	60%	130%	101%	50%	140%
Methyl Ethyl Ketone	4638044		<0.50	<0.50	NA	< 0.50	100%	50%	140%	89%	50%	140%	95%	50%	140%
Cis- 1,2-Dichloroethylene	4638044		< 0.02	< 0.02	NA	< 0.02	117%	50%	140%	95%	60%	130%	109%	50%	140%
Chloroform	4638044		< 0.04	< 0.04	NA	< 0.04	113%	50%	140%	102%	60%	130%	111%	50%	140%
1,2-Dichloroethane	4638044		< 0.03	< 0.03	NA	< 0.03	91%	50%	140%	114%	60%	130%	107%	50%	140%
1,1,1-Trichloroethane	4638044		<0.05	<0.05	NA	< 0.05	111%	50%	140%	102%	60%	130%	107%	50%	140%
Carbon Tetrachloride	4638044		<0.05	<0.05	NA	< 0.05	88%	50%	140%	100%	60%	130%	107%	50%	140%
Benzene	4638044		<0.02	< 0.02	NA	< 0.02	97%	50%	140%	90%	60%	130%	89%	50%	140%
1,2-Dichloropropane	4638044		<0.03	< 0.03	NA	< 0.03	116%	50%	140%	97%	60%	130%	91%	50%	140%
Trichloroethylene	4638044		< 0.03	< 0.03	NA	< 0.03	99%	50%	140%	105%	60%	130%	102%	50%	140%
Bromodichloromethane	4638044		<0.05	<0.05	NA	< 0.05	118%	50%	140%	109%	60%	130%	81%	50%	140%
Methyl Isobutyl Ketone	4638044		<0.50	<0.50	NA	< 0.50	97%	50%	140%	105%	50%	140%	87%	50%	140%
1,1,2-Trichloroethane	4638044		< 0.04	< 0.04	NA	< 0.04	82%	50%	140%	106%	60%	130%	98%	50%	140%
Toluene	4638044		0.77	0.79	1.9%	< 0.05	85%	50%	140%	112%	60%	130%	116%	50%	140%
Dibromochloromethane	4638044		< 0.05	< 0.05	NA	< 0.05	93%	50%	140%	91%	60%	130%	119%	50%	140%
Ethylene Dibromide	4638044		<0.04	<0.04	NA	< 0.04	78%	50%	140%	89%	60%	130%	77%	50%	140%
Tetrachloroethylene	4638044		<0.05	<0.05	NA	< 0.05	115%	50%	140%	83%	60%	130%	98%	50%	140%
1,1,1,2-Tetrachloroethane	4638044		<0.04	< 0.04	NA	< 0.04	96%	50%	140%	70%	60%	130%	109%	50%	140%
Chlorobenzene	4638044		<0.05	< 0.05	NA	< 0.05	93%	50%	140%	95%	60%	130%	115%	50%	140%
Ethylbenzene	4638044		< 0.05	< 0.05	NA	< 0.05	73%	50%	140%	101%	60%	130%	99%	50%	140%
m & p-Xylene	4638044		<0.05	<0.05	NA	< 0.05	85%	50%	140%	100%		130%	102%	50%	140%
Bromoform	4638044		<0.05	<0.05	NA	< 0.05	93%	50%	140%	78%	60%	130%	101%	50%	140%
Styrene	4638044		< 0.05	< 0.05	NA	< 0.05	74%	50%	140%	92%	60%	130%	75%	50%	140%
1,1,2,2-Tetrachloroethane	4638044		< 0.05	< 0.05	NA	< 0.05	88%	50%	140%	74%		130%	72%	50%	140%
o-Xylene	4638044		< 0.05	<0.05	NA	< 0.05	75%		140%	73%		130%	103%	50%	140%

AGAT QUALITY ASSURANCE REPORT (V2)

Page 17 of 24

Quality Assurance

CLIENT NAME: BLUMETRIC ENVIRONMENTAL INC.

AGAT WORK ORDER: 22T982756

PROJECT: 220509

ATTENTION TO: Paul Bandler

SAMPLING SITE:Bakelite Belleville SAMPLED BY:ML

Trace Organics Analysis (Continued)															
RPT Date: Jan 17, 2023			Г	DUPLICAT	E		REFEREN	NCE MA	TERIAL	METHOD	BLAN	SPIKE	МАТ	TRIX SPI	KE
PARAMETER	Batch	Sample	Dup #1	Dup #2	RPD	Method Blank			Recovery	1 1 1 1 1	ptable nits	Recovery	l lie	ptable nits	
		ld	·	·				Lower	Upper	ĺ	Lower	Upper	ĺ	Lower	Upper
1,3-Dichlorobenzene	4638044		<0.05	<0.05	NA	< 0.05	89%	50%	140%	96%	60%	130%	104%	50%	140%
1,4-Dichlorobenzene	4638044		<0.05	<0.05	NA	< 0.05	90%	50%	140%	105%	60%	130%	99%	50%	140%
1,2-Dichlorobenzene	4638044		< 0.05	< 0.05	NA	< 0.05	82%	50%	140%	74%	60%	130%	109%	50%	140%
n-Hexane	4638044		<0.05	<0.05	NA	< 0.05	107%	50%	140%	111%	60%	130%	116%	50%	140%
Formaldehyde (Soil)															
Formaldehyde		NA	NA	NA	0.0%	< 0.5	NA	70%	130%	87%	70%	130%	NA	70%	130%
2,3,5,6-Tetrafluorobenzaldehyde		NA	NA	NA	0.0%	80	NA	40%	140%	93%	40%	140%	NA	40%	140%

Comments: NA: Not applicable

NA in Duplicate Deviation indicates that the deviation could not be calculated because one or both results are < 5x LDR.

NA in Percent Recovery of Fortified Sample indicates that the result is not provided due to sample heterogeneity or too high concentration relative to spike.

NA in fortified blank or MRC indicates that it is not required by the procedure.

O. Reg. 153(511) - PCBs (Soil)

Polychlorinated Biphenyls 4637736 4637736 0.28 0.23 NA < 0.1 97% 50% 140% 102% 50% 140% 89% 50% 140%

Comments: When the average of the sample and duplicate results is less than 5x the RDL, the Relative Percent Difference (RPD) will be indicated as Not Applicable (NA).

Certified By:

Method Summary

SAMPLED BY:ML

CLIENT NAME: BLUMETRIC ENVIRONMENTAL INC.

AGAT WORK ORDER: 22T982756

PROJECT: 220509

ATTENTION TO: Paul Bandler

PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE
Soil Analysis			
Antimony	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS
Arsenic	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS
Barium	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS
Beryllium	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS
Boron	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS
Boron (Hot Water Soluble)	MET-93-6104	modified from EPA 6010D and MSA PART 3, CH 21	ICP/OES
Cadmium	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS
Chromium	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS
Cobalt	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS
Copper	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS
Lead	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS
Molybdenum	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS
Nickel	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS
Selenium	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS
Silver	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS
Thallium	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS
Uranium	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS
Vanadium	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS
Zinc	MET 93 -6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS
Chromium, Hexavalent	INOR-93-6068	modified from EPA 3060 and EPA 7196	SPECTROPHOTOMETER
Cyanide, WAD	INOR-93-6052	modified from ON MOECC E3015, SM 4500-CN- I, G-387	TECHNICON AUTO ANALYZER
Mercury	MET-93-6103	modified from EPA 7471B and SM 3112 B	ICP-MS
Electrical Conductivity (2:1)	INOR-93-6075	modified from MSA PART 3, CH 14 and SM 2510 B	PC TITRATE
Sodium Adsorption Ratio (2:1) (Calc.)	INOR-93-6007	modified from EPA 6010D & Analytical Protocol	ICP/OES
pH, 2:1 CaCl2 Extraction	INOR-93-6075	modified from EPA 9045D, MCKEAGUE 3.11 E3137	PC TITRATE

Method Summary

SAMPLED BY:ML

CLIENT NAME: BLUMETRIC ENVIRONMENTAL INC.

AGAT WORK ORDER: 22T982756

PROJECT: 220509

ATTENTION TO: Paul Bandler

SAMPLING SITE. Bakente benevine		SAIVIPLED BT.IVIL	-
PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE
Trace Organics Analysis		Standard Mathada COEOD, MA 400	
Formaldehyde	ORG-100-5126F	Standard Methods 6252B; MA. 400 - HCHO 1.0	GC/MS
2,3,5,6-Tetrafluorobenzaldehyde	ORG-100-5126F	Standard Methods 6252B	GC/MS
Naphthalene	ORG-91-5114	modified from EPA 3510C, 8270E & ON MOECC E3265	GC/MS
Acenaphthylene	ORG-91-5114	modified from EPA 3510C, 8270E & ON MOECC E3265	GC/MS
Acenaphthene	ORG-91-5114	modified from EPA 3510C, 8270E & ON MOECC E3265	GC/MS
Fluorene	ORG-91-5114	modified from EPA 3510C, 8270E & ON MOECC E3265	GC/MS
Phenanthrene	ORG-91-5114	modified from EPA 3510C, 8270E & ON MOECC E3265	GC/MS
Anthracene	ORG-91-5114	modified from EPA 3510C, 8270E & ON MOECC E3265	GC/MS
Fluoranthene	ORG-91-5114	modified from EPA 3510C, 8270E & ON MOECC E3265	GC/MS
Pyrene	ORG-91-5114	modified from EPA 3510C, 8270E & ON MOECC E3265	GC/MS
Benz(a)anthracene	ORG-91-5114	modified from EPA 3510C, 8270E & ON MOECC E3265	GC/MS
Chrysene	ORG-91-5114	modified from EPA 3510C, 8270E & ON MOECC E3265	GC/MS
Benzo(b)fluoranthene	ORG-91-5114	modified from EPA 3510C, 8270E & ON MOECC E3265	GC/MS
Benzo(k)fluoranthene	ORG-91-5114	modified from EPA 3510C, 8270E & ON MOECC E3265	GC/MS
Benzo(a)pyrene	ORG-91-5114	modified from EPA 3510C, 8270E & ON MOECC E3265	GC/MS
Indeno(1,2,3-cd)pyrene	ORG-91-5114	modified from EPA 3510C, 8270E & ON MOECC E3265	GC/MS
Dibenzo(a,h)anthracene	ORG-91-5114	modified from EPA 3510C, 8270E & ON MOECC E3265	GC/MS
Benzo(g,h,i)perylene	ORG-91-5114	modified from EPA 3510C, 8270E & ON MOECC E3265	GC/MS
Phenol	ORG-91-5114	modified from EPA 3510C, 8270E & ON MOECC E3265	GC/MS
Bis(2-chloroethyl)ether	ORG-91-5114	modified from EPA 3510C, 8270E & ON MOECC E3265	GC/MS
2-Chlorophenol	ORG-91-5114	modified from EPA 3510C, 8270E & ON MOECC E3265	GC/MS
o-Cresol	ORG-91-5114	modified from EPA 3510C, 8270E & ON MOECC E3265	GC/MS
Bis(2-chloroisopropyl)ether	ORG-91-5114	modified from EPA 3510C, 8270E & ON MOECC E3265	GC/MS
m & p - Cresol	ORG-91-5114	modified from EPA 3510C, 8270E & ON MOECC E3265	GC/MS
2,4-Dimethylphenol	ORG-91-5114	modified from EPA 3510C, 8270E & ON MOECC E3265	GC/MS
2,4-Dichlorophenol	ORG-91-5114	modified from EPA 3510C, 8270E & ON MOECC E3265	GC/MS
1,2,4-Trichlorobenzene	ORG-91-5114	modified from EPA 3510C, 8270E & ON MOECC E3265	GC/MS
p-Chloroaniline	ORG-91-5114	modified from EPA 3510C, 8270E & ON MOECC E3265	GC/MS

Method Summary

SAMPLED BY:ML

CLIENT NAME: BLUMETRIC ENVIRONMENTAL INC. AGAT WORK ORDER: 22T982756
PROJECT: 220509 ATTENTION TO: Paul Bandler

PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE
1 and 2 Methlynaphthalene	ORG-91-5114	modified from EPA 3510C, 8270E & ON MOECC E3265	CALCULATION
2,4,6-Trichlorophenol	ORG-91-5114	modified from EPA 3510C, 8270E & ON MOECC E3265	GC/MS
2,4,5-Trichlorophenol	ORG-91-5114	modified from EPA 3510C, 8270E & ON MOECC E3265	GC/MS
1,1-Biphenyl	ORG-91-5114	modified from EPA 3510C, 8270E & ON MOECC E3265	GC/MS
Dimethyl Phthalate	ORG-91-5114	modified from EPA 3510C, 8270E & ON MOECC E3265	GC/MS
2,4 and 2,6-Dinitrotoluene	ORG-91-5114	modified from EPA 3510C, 8270E & ON MOECC E3265	CALCULATION
Diethyl Phthalate	ORG-91-5114	modified from EPA 3510C, 8270E & ON MOECC E3265	GC/MS
Pentachlorophenol	ORG-91-5114	modified from EPA 3510C, 8270E & ON MOECC E3265	GC/MS
3,3'-Dichlorobenzidine	ORG-91-5114	modified from EPA 3510C, 8270E & ON MOECC E3265	GC/MS
2,4-Dinitrophenol	ORG-91-5114	modified from EPA 3510C, 8270E & ON MOECC E3265	GC/MS
Bis(2-Ethylhexyl)phthalate	ORG-91-5114	modified from EPA 3510C, 8270E & ON MOECC E3265	GC/MS
phenol-d6 surrogate	ORG-91-5114	modified from EPA 3510C, 8270E & ON MOECC E3265	GC/MS
2-Fluorophenol	ORG-91-5114	modified from EPA 3510C, 8270E & ON MOECC E3265	GC/MS
2,4,6-Tribromophenol	ORG-91-5114	modified from EPA 3510C, 8270E & ON MOECC E3265	GC/MS
Chrysene-d12	ORG-91-5114	modified from EPA 3510C, 8270E & ON MOECC E3265	GC/MS
Moisture Content	VOL-91-5009	modified from CCME Tier 1 Method	BALANCE
wet weight BNA	ORG-91-5114		BALANCE
Polychlorinated Biphenyls	ORG-91-5113	modified from EPA SW-846 3570 & 8082A	GC/ECD
Decachlorobiphenyl	ORG-91-5113	modified from EPA SW-846 3541 & 8082A	GC/ECD
F1 (C6 - C10)	VOL-91-5009	modified from CCME Tier 1 Method	(P&T)GC/FID
F1 (C6 to C10) minus BTEX	VOL-91-5009	modified from CCME Tier 1 Method	P&T GC/FID
Toluene-d8	VOL-91- 5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
F2 (C10 to C16)	VOL-91-5009	modified from CCME Tier 1 Method	GC/FID
F2 (C10 to C16) minus Naphthalene	VOL-91-5009	modified from CCME Tier 1 Method	GC/FID
F3 (C16 to C34)	VOL-91-5009	modified from CCME Tier 1 Method	GC/FID
F3 (C16 to C34) minus PAHs	VOL-91-5009	modified from CCME Tier 1 Method	GC/FID
F4 (C34 to C50)	VOL-91-5009	modified from CCME Tier 1 Method	GC/FID
Gravimetric Heavy Hydrocarbons	VOL-91-5009	modified from CCME Tier 1 Method	BALANCE
Terphenyl	VOL-91-5009	modified from CCME Tier 1 Method	GC/FID
Dichlorodifluoromethane	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS
Vinyl Chloride	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS
Bromomethane	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS
Trichlorofluoromethane	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS

Method Summary

SAMPLED BY:ML

CLIENT NAME: BLUMETRIC ENVIRONMENTAL INC.

AGAT WORK ORDER: 22T982756

PROJECT: 220509

ATTENTION TO: Paul Bandler

PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE
Acetone	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS
1,1-Dichloroethylene	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS
Methylene Chloride	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS
Trans- 1,2-Dichloroethylene	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS
Methyl tert-butyl Ether	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS
1,1-Dichloroethane	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS
Methyl Ethyl Ketone	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS
Cis- 1,2-Dichloroethylene	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS
Chloroform	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS
1,2-Dichloroethane	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS
1,1,1-Trichloroethane	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS
Carbon Tetrachloride	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS
Benzene	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS
1,2-Dichloropropane	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS
Trichloroethylene	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS
Bromodichloromethane	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS
Methyl Isobutyl Ketone	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS
1,1,2-Trichloroethane	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS
Toluene	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS
Dibromochloromethane	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS
Ethylene Dibromide	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS
Tetrachloroethylene	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS
1,1,1,2-Tetrachloroethane	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS
Chlorobenzene	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS
Ethylbenzene	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS
m & p-Xylene	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS
Bromoform	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS
Styrene	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS

Method Summary

CLIENT NAME: BLUMETRIC ENVIRONMENTAL INC.

AGAT WORK ORDER: 22T982756

PROJECT: 220509

ATTENTION TO: Paul Bandler

SAMPLING SITE:Bakelite Belleville

SAMPLED BY:ML

SAMPLING SITE. Dakente Denevine		SAIVIPLED BT.IVII	=
PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE
1,1,2,2-Tetrachloroethane	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS
o-Xylene	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS
1,3-Dichlorobenzene	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS
1,4-Dichlorobenzene	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS
1,2-Dichlorobenzene	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS
Xylenes (Total)	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS
1,3-Dichloropropene (Cis + Trans)	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS
n-Hexane	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS
Toluene-d8	VOL-91-5002	modified from EPA 5035A & EPA 8260D	(P&T)GC/MS
4-Bromofluorobenzene	VOL-91-5002	modified from EPA 5035A & EPA 8260D	(P&T)GC/MS

5835 Coopers Avenue Mississauga, Ontario L4Z 1Y2 Ph: 905.712.5100 Fax: 905.712.5122 webearth.agatlabs.com

Laboratory Use Only	
Work Order #: 22 T 9 8 2 7 5 6	*
Cooler Quantity:	
Arrival Temperatures: 7.2.7.5.7.3	
Custody Seal Intact: Tyes No DN7 Notes: Tc Porc F	A

Chain of Custody Recor	d If this is a	Drinking Water	sample, plea	ase use Drin	king Water Chain of Custody Form	(potable wate	r consum	ed by h	umans		-			Quantity empera		7	.7	17.	17	2
Report Information: Company: Blothetic	invivonte		Inc.	Reg (Please	gulatory Requirements: e check all applicable boxes)								Custody Notes:_	Seal In	tact:	Porc	S			- JAMPA
Contact: Address: H Cataragui Street Kings ton OW Gl3 453 5496 Fax: Reports to be sent to: 1. Email: Dandler Chlumetric Ca					Excess So Table	ate One	Sanitary Storm Region			Turnaround Time (TAT) Require Regular TAT 5 to 7 Busines Rush TAT (Rush Surcharges Apply) 3 Business Days 2 Business Days					usiness C					
2, Email: Mloyd Q	numear	icico		=]Fine	F		Indica						OR Date	Require	ed (Rus	sh Sur	charges N	ay Apply):
	Bellevill	e		Re	s this submission for a cord of Site Condition? Yes	Ce	ertification Yes	ate o	f Ana		s			TAT is ex	clusive	of wee	kends	cation for and state ontact ye	tory holi	idays
Sampled By: AGAT Quote #: 747248 Please note: If quotation number	PO: is not provided, client will	be billed full price fo	r analysis.	San	nple Matrix Legend Biota	crvi, Doc	0	. Reg 1	53				zation TCLP:		eg 406	Sulphide				ation (Y/N)
Invoice Information: Company: Contact: Address: Email:	netric (CQ	es No C	GW O P S SD SW	Ground Water Oil Paint Soil Sediment Surface Water	Field Filtered - Metals, Hg.	& Inorganics	3 - □ CrVI, □ Hg, □ HWSB	F1-F4 PHCs			ω	Landfill Disposal Characterization TCLP: TCLP: ☐ M&I ☐ VOCs ☐ ABNS ☐ BIAIP ☐ P	s SPLP Rainwarats □ vocs □	Soils Characterization Package PMS Metals, BTEX, F1-F4	Corrosivity: Include Moisture 🗆 🤅	Tormaldehyde	SMOU , SH	T NOOL	Hold sor High Concent
Sample Identification	Date Sampled	Time Sampled	# of Containers	Sample Matrix	Comments/ Special Instructions	Y/N	Metals	Metals -	BTEX,	PAHS	PCBs	Aroclors	Landfil TCLP: [Exces:	Excess Soi pH, ICPMS	Corros	0	۵ ر	r in	Potenti
B14213551	22-12-19	2.10	M 6	5										-						V
BH 213 SS 2	22-12-19	8:30 A		5			V		V	V	Vi			172				/ /		
BH 210 552	22-12-19	10.55 A		5			V		V	1	20	1		THE R			V	11		mell :
BH 208 SSI	22-12-19	12:45 A		5	The second	No.	9,03							1,000			, 1	,	TO BE STORY	V
BH 308 225	22-12-19	12:59 A		5			V		1	V	VV	10					Y 1	/		
BH 209551	22-12-19	15:15 A		5	PICHOLIN DI	18.											1		14 3	V
BH 209552	22-12-19	15:30 A	M 6	S			V			V	0						_			
BH 213552 - Dup	22-12-19	8:30 A		S			~	-	V	V	1 2						/ 1	10		
		A P A P		100.11																
Samples Relinquished By (Print Name and Sign):				1313-131	Samples Received By (Print Name and Sign):	1) 01		1 =		Date		- T	THE A	10	f m	0	81 24		
Samples Relinquished By (Print Name and Sign):		22-12 Date	-40 6	100cm	Samples Received By (Print Name and Sign):	1	1	7			Date Date			(12) me	18	10			of	711
					The Charles of the	12					211	16/	122	SUL	主張さい		Page		UI _	_

Samples Received By (Print Name and Sign):

Samples Relinquished By (Print Name and Sign):

9770 ROUTE TRANSCANADIENNE ST. LAURENT, QUEBEC CANADA H4S 1V9 TEL (514)337-1000 FAX (514)333-3046 http://www.agatlabs.com

CLIENT NAME: BLUMETRIC ENVIRONMENTAL INC. 4 Cataraqui Street

Kingston, ON K7K1Z7 (613) 531-2725

ATTENTION TO: Paul Bandler

PROJECT: 220509 AGAT WORK ORDER: 22T983450

ULTRA TRACE REVIEWED BY: Roza Makhtari, Chimiste, AGAT Montréal

DATE REPORTED: Jan 17, 2023

PAGES (INCLUDING COVER): 9 VERSION*: 1

Should you require any information regarding this analysis please contact your client services representative at (514) 337-1000

Disclaimer:

- All work conducted herein has been done using accepted standard protocols, and generally accepted practices and methods. AGAT test methods may
 incorporate modifications from the specified reference methods to improve performance.
- All samples will be disposed of within 30 days after receipt unless a Long Term Storage Agreement is signed and returned. Some specialty analysis may
 be exempt, please contact your Client Project Manager for details.
- AGAT's liability in connection with any delay, performance or non-performance of these services is only to the Client and does not extend to any other
 third party. Unless expressly agreed otherwise in writing, AGAT's liability is limited to the actual cost of the specific analysis or analyses included in the
 services.
- This Certificate shall not be reproduced except in full, without the written approval of the laboratory.
- The test results reported herewith relate only to the samples as received by the laboratory.
- Application of guidelines is provided "as is" without warranty of any kind, either expressed or implied, including, but not limited to, warranties of
 merchantability, fitness for a particular purpose, or non-infringement. AGAT assumes no responsibility for any errors or omissions in the guidelines
 contained in this document.
- All reportable information as specified by ISO/IEC 17025:2017 is available from AGAT Laboratories upon request.

AGAT Laboratories (V1)

Page 1 of 9

Member of: Association of Professional Engineers and Geoscientists of Alberta (APEGA)

Western Enviro-Agricultural Laboratory Association (WEALA) Environmental Services Association of Alberta (ESAA) AGAT Laboratories is accredited to ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA) and/or Standards Council of Canada (SCC) for specific tests listed on the scope of accreditation. AGAT Laboratories (Mississauga) is also accredited by the Canadian Association for Laboratory Accreditation Inc. (CALA) for specific drinking water tests. Accreditations are location and parameter specific. A complete listing of parameters for each location is available from www.cala.ca and/or www.scc.ca. The tests in this report may not necessarily be included in the scope of accreditation. Measurement Uncertainty is not taken into consideration when stating conformity with a specified requirement.

SAMPLING SITE:

Certificate of Analysis

AGAT WORK ORDER: 22T983450

PROJECT: 220509

ATTENTION TO: Paul Bandler

SAMPLED BY:

9770 ROUTE TRANSCANADIENNE ST. LAURENT, QUEBEC CANADA H4S 1V9 TEL (514)337-1000 FAX (514)333-3046 http://www.agatlabs.com

Dioxins and Furans (Soil) WHO 2005

			DIOXINS	and Furans (Soil) WHO 2005
DATE RECEIVED: 2022-12-19)			DATE REPORTED: 2023-01-17
Parameter	SA Unit	MPLE DESCRIPTION: SAMPLE TYPE: DATE SAMPLED: G/S RDL	BH219 SS2 Soil 2022-12-15 4643382	
2,3,7,8-Tetra CDD	ng/kg	0.1	<0.1	
1,2,3,7,8-Penta CDD	ng/kg	0.1	0.3	
1,2,3,4,7,8-Hexa CDD	ng/kg	0.1	0.4	
1,2,3,6,7,8-Hexa CDD	ng/kg	0.1	1.1	
1,2,3,7,8,9-Hexa CDD	ng/kg	0.1	0.8	
1,2,3,4,6,7,8-Hepta CDD	ng/kg	0.1	29.8	
Octa CDD	ng/kg	3.0	184	
2,3,7,8-Tetra CDF	ng/kg	0.1	<0.1	
1,2,3,7,8-Penta CDF	ng/kg	0.1	0.1	
2,3,4,7,8-Penta CDF	ng/kg	0.1	0.2	
1,2,3,4,7,8-Hexa CDF	ng/kg	0.1	0.2	
1,2,3,6,7,8-Hexa CDF	ng/kg	0.1	0.3	
2,3,4,6,7,8-Hexa CDF	ng/kg	0.1	0.4	
1,2,3,7,8,9-Hexa CDF	ng/kg	0.1	<0.1	
1,2,3,4,6,7,8-Hepta CDF	ng/kg	0.1	8.1	
1,2,3,4,7,8,9-Hepta CDF	ng/kg	0.1	0.4	
Octa CDF	ng/kg	0.4	29.3	
Total Tetra CDD	ng/kg	0.1	0.4	
Total Penta CDD	ng/kg	0.1	1.1	
Total Hexa CDD	ng/kg	0.1	5.7	
Total Hepta CDD	ng/kg	0.1	44.6	
Total PCDDs	ng/kg	3.0	236	
Total Tetra CDF	ng/kg	0.1	1.9	
Total Penta CDF	ng/kg	0.1	3.5	
Total Hexa CDF	ng/kg	0.1	8.3	
Total Hepta CDF	ng/kg	0.1	28.5	
Total PCDFs	ng/kg	0.4	71.5	
2,3,7,8-Tetra CDD (TEQ)	ng TEQ/Kg		0	
1,2,3,7,8-Penta CDD (TEQ	ng TEQ/Kg		0.300	
1,2,3,4,7,8-Hexa CDD (TEQ)	ng TEQ/Kg		0.0400	

Certified By:

SAMPLING SITE:

Certificate of Analysis

AGAT WORK ORDER: 22T983450

PROJECT: 220509

ATTENTION TO: Paul Bandler

SAMPLED BY:

9770 ROUTE TRANSCANADIENNE ST. LAURENT, QUEBEC CANADA H4S 1V9 TEL (514)337-1000 FAX (514)333-3046 http://www.agatlabs.com

				DIUXIIIS	and Furaits (3011) WHO 2005
DATE RECEIVED: 2022-12-19					DATE REPORTED: 2023-01-17
	SA	MPLE DES	CRIPTION:	BH219 SS2	
		SAM	PLE TYPE:	Soil	
		DATE	SAMPLED:	2022-12-15	
Parameter	Unit	G/S	RDL	4643382	
1,2,3,6,7,8-Hexa CDD (TEQ)	ng TEQ/Kg			0.110	
1,2,3,7,8,9-Hexa CDD (TEQ)	ng TEQ/Kg			0.0800	
1,2,3,4,6,7,8-Hepta CDD (TEQ)	ng TEQ/Kg			0.298	
Octa CDD (TEQ)	ng TEQ/Kg			0.0552	
2,3,7,8-Tetra CDF (TEQ)	ng TEQ/Kg			0	
1,2,3,7,8-Penta CDF (TEQ)	ng TEQ/Kg			0.00300	
2,3,4,7,8-Penta CDF (TEQ)	ng TEQ/Kg			0.0600	
1,2,3,4,7,8-Hexa CDF (TEQ)	ng TEQ/Kg			0.0200	
1,2,3,6,7,8-Hexa CDF (TEQ)	ng TEQ/Kg			0.0300	
1,2,3,7,8,9-Hexa CDF (TEQ)	ng TEQ/Kg			0	
2,3,4,6,7,8-Hexa CDF (TEQ)	ng TEQ/Kg			0.0400	
1,2,3,4,6,7,8-Hepta CDF (TEQ)	ng TEQ/Kg			0.0810	
1,2,3,4,7,8,9-Hepta CDF (TEQ)	ng TEQ/Kg			0.00400	
Octa CDF (TEQ)	ng TEQ/Kg			0.00879	
Total PCDDs and PCDFs (TEQ)	ng TEQ/Kg			1.13	

SAMPLING SITE:

Certificate of Analysis

AGAT WORK ORDER: 22T983450

PROJECT: 220509

ATTENTION TO: Paul Bandler

SAMPLED BY:

9770 ROUTE TRANSCANADIENNE ST. LAURENT, QUEBEC CANADA H4S 1V9 TEL (514)337-1000 FAX (514)333-3046 http://www.agatlabs.com

Dioxins and Furans (Soil) WHO:

DATE RECEIVED: 2022-12-19 DATE REPORTED: 2023-01-17

		SAMPLE DESCRIPTION:	BH219 SS2
		SAMPLE TYPE:	Soil
		DATE SAMPLED:	2022-12-15
Surrogate	Unit	Acceptable Limits	4643382
13C-2,3,7,8-TCDF	%	40-130	80
13C-1,2,3,7,8-PeCDF	%	40-130	83
13C-2,3,4,7,8-PeCDF	%	40-130	84
13C-1,2,3,4,7,8-HxCDF	%	40-130	95
13C-1,2,3,6,7,8-HxCDF	%	40-130	91
13C-2,3,4,6,7,8-HxCDF	%	40-130	92
13C-1,2,3,7,8,9-HxCDF	%	40-130	82
13C-1,2,3,4,6,7,8-HpCDF	%	40-130	83
13C-1,2,3,4,7,8,9-HpCDF	%	40-130	76
13C-2,3,7,8-TCDD	%	40-130	77
13C-1,2,3,7,8-PeCDD	%	40-130	87
13C-1,2,3,4,7,8-HxCDD	%	40-130	89
13C-1,2,3,6,7,8-HxCDD	%	40-130	90
13C-1,2,3,4,6,7,8-HpCDD	%	40-130	83
13C-OCDD	%	40-130	73

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard

4643382 LDR = LDE = Estimated Detection Limit

TEQ = Toxicity Equivalent

Toxicity Equivalency Factors (TEF) based on WHO 2005.

Results reported on a dry basis.

The results were corrected based on the surrogate percent recoveries.

Analysis performed at AGAT Montréal (unless marked by *)

9770 ROUTE TRANSCANADIENNE ST. LAURENT, QUEBEC CANADA H4S 1V9 TEL (514)337-1000 FAX (514)333-3046 http://www.agatlabs.com

Quality Assurance

CLIENT NAME: BLUMETRIC ENVIRONMENTAL INC. AGAT WORK ORDER: 22T983450 PROJECT: 220509 ATTENTION TO: Paul Bandler

SAMPLING SITE: SAMPLED BY:

			UI	tra T	race	Anal	ysis								
RPT Date: Jan 17, 2023				UPLICAT	E		REFERENCE MATERIAL METHOD BLANK SPIKE			MATRIX SPIKE					
PARAMETER	Batch	Sample	Dup #1	Dup #2	RPD	Method Blank	Measured Value			Recovery	Lie	eptable mits	Recovery		ptable nits
		la la	·	·			value	Lower	Upper		Lower	Upper	,	Lower	Upper
Dioxins and Furans (Soil) WHO 2	005														
2,3,7,8-Tetra CDD	1	4643382	< 0.1	< 0.1	NA	< 0.1	NA	70%	130%	97%	70%	130%	96%	70%	130%
1,2,3,7,8-Penta CDD	1	4643382	0.3	0.3	NA	< 0.1	NA	70%	130%	101%	70%	130%	98%	70%	130%
1,2,3,4,7,8-Hexa CDD	1	4643382	0.4	0.4	NA	< 0.1	NA	70%	130%	102%	70%	130%	101%	70%	130%
1,2,3,6,7,8-Hexa CDD	1	4643382	1.1	1.2	8.7%	< 0.1	NA	70%	130%	106%	70%	130%	99%	70%	130%
1,2,3,7,8,9-Hexa CDD	1	4643382	8.0	0.8	0.0%	< 0.1	NA	70%	130%	101%	70%	130%	97%	70%	130%
1,2,3,4,6,7,8-Hepta CDD	1	4643382	29.8	29.0	2.7%	< 0.1	NA	70%	130%	101%	70%	130%	99%	70%	130%
Octa CDD	1	4643382	184	184	0.0%	0.4	NA	70%	130%	102%	70%	130%	101%	70%	130%
2,3,7,8-Tetra CDF	1	4643382	< 0.1	0.1	NA	< 0.1	NA	70%	130%	103%	70%	130%	102%	70%	130%
1,2,3,7,8-Penta CDF	1	4643382	0.1	0.1	NA	< 0.1	NA	70%	130%	99%	70%	130%	98%	70%	130%
2,3,4,7,8-Penta CDF	1	4643382	0.2	0.1	NA	< 0.1	NA	70%	130%	101%	70%	130%	100%	70%	130%
1,2,3,4,7,8-Hexa CDF	1	4643382	0.2	0.2	NA	< 0.1	NA	70%	130%	101%	70%	130%	100%	70%	130%
1,2,3,6,7,8-Hexa CDF	1	4643382	0.3	0.3	NA	< 0.1	NA	70%	130%	106%	70%	130%	102%	70%	130%
2,3,4,6,7,8-Hexa CDF	1	4643382	0.4	0.4	NA	< 0.1	NA	70%	130%	105%	70%	130%	101%	70%	130%
1,2,3,7,8,9-Hexa CDF	1	4643382	< 0.1	< 0.1	NA	< 0.1	NA	70%	130%	102%	70%	130%	98%	70%	130%
1,2,3,4,6,7,8-Hepta CDF	1	4643382	8.1	7.8	3.8%	< 0.1	NA	70%	130%	103%	70%	130%	98%	70%	130%
1,2,3,4,7,8,9-Hepta CDF	1	4643382	0.4	0.5	NA	< 0.1	NA	70%	130%	100%	70%	130%	99%	70%	130%
Octa CDF	1	4643382	29.3	27.5	6.3%	< 0.1	NA	70%	130%	92%	70%	130%	92%	70%	130%
13C-2,3,7,8-TCDF	1	4643382	80	76%	5.1%	67	NA	30%	140%	78%	30%	140%	83%	30%	140%
13C-1,2,3,7,8-PeCDF	1	4643382	83	79%	4.9%	71	NA	30%	140%	87%	30%	140%	87%	30%	140%
13C-2,3,4,7,8-PeCDF	1	4643382	84	84%	0.0%	76	NA	30%	140%	90%	30%	140%	91%	30%	140%
13C-1,2,3,4,7,8-HxCDF	1	4643382	95	87%	8.8%	77	NA	30%	140%	89%	30%	140%	89%	30%	140%
13C-1,2,3,6,7,8-HxCDF	1	4643382	91	86%	5.6%	77	NA	30%	140%	88%	30%	140%	89%	30%	140%
13C-2,3,4,6,7,8-HxCDF	1	4643382	92	87%	5.6%	77	NA	30%	140%	89%	30%	140%	93%	30%	140%
13C-1,2,3,7,8,9-HxCDF	1	4643382	82	81%	1.2%	74	NA	30%	140%	86%	30%	140%	88%	30%	140%
13C-1,2,3,4,6,7,8-HpCDF	1	4643382	83	76%	8.8%	76	NA	30%	140%	88%	30%	140%	83%	30%	140%
13C-1,2,3,4,7,8,9-HpCDF	1	4643382	76	74%	2.7%	74	NA	30%	140%	86%	30%	140%	83%	30%	140%
13C-2,3,7,8-TCDD	1	4643382	77	82%	6.3%	72	NA	30%	140%	83%	30%	140%	86%	30%	140%
13C-1,2,3,7,8-PeCDD	1	4643382	87	83%	4.7%	78	NA	30%	140%	88%	30%	140%	89%	30%	140%
13C-1,2,3,4,7,8-HxCDD	1	4643382	89	85%	4.6%	78	NA	30%	140%	88%	30%	140%	91%	30%	140%
13C-1,2,3,6,7,8-HxCDD	1	4643382	90	86%	4.5%	78	NA	30%	140%	88%	30%	140%	92%	30%	140%
13C-1,2,3,4,6,7,8-HpCDD	1	4643382	83	78%	6.2%	76	NA	30%	140%	90%	30%	140%	88%	30%	140%
13C-OCDD	1	4643382	73	69%	5.6%	75	NA	30%	140%	91%	30%	140%	83%	30%	140%

Page 5 of 9

9770 ROUTE TRANSCANADIENNE ST. LAURENT, QUEBEC CANADA H4S 1V9 TEL (514)337-1000 FAX (514)333-3046 http://www.agatlabs.com

Quality Assurance

CLIENT NAME: BLUMETRIC ENVIRONMENTAL INC. AGAT WORK ORDER: 22T983450 PROJECT: 220509 ATTENTION TO: Paul Bandler

SAMPLING SITE: SAMPLED BY:

Ultra Trace Analysis (Continued)														
RPT Date: Jan 17, 2023			DUPLICATE				REFEREN	NCE MATER	IAL METHO	D BLANK	SPIKE	MATRIX SPIKE		
PARAMETER	Batch	Sample	Dup #1	Dup #2	RPD	Method Blank	Measured	Acceptab Limits	le Recover	Acceptable Limits		Recovery	Acceptable Limits	
	Batch	ld					Value	Lower Up	per	Lower	Upper		Lower	Upper

Comments: NA: Non applicable.

If the RPD value is NA, the results of the duplicates are under 5X the RDL and will not be calculated.

NA as the percentage of recovery for the matrix spike indicates that the result is not provided due to the heterogeneity of the sample or the spiked analyte concentration was lower than the matrix contribution.

NA in the spike blank or CRM indicates that it is not required by the procedure.

Presence of a small contamination in the method blank. The method blank has been subtracted from the samples.

9770 ROUTE TRANSCANADIENNE ST. LAURENT, QUEBEC CANADA H4S 1V9 TEL (514)337-1000 FAX (514)333-3046 http://www.agatlabs.com

Method Summary

CLIENT NAME: BLUMETRIC ENVIRONMENTAL INC.

AGAT WORK ORDER: 22T983450

PROJECT: 220509

ATTENTION TO: Paul Bandler

SAMPLING SITE.		SAMPLED BY.							
PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE						
Ultra Trace Analysis		-							
2,3,7,8-Tetra CDD	HR-151-5400	CEAEQ MA.400 - DF 1.0	APGC						
1,2,3,7,8-Penta CDD	HR-151-5400	CEAEQ MA.400 - DF 1.0	APGC						
1,2,3,4,7,8-Hexa CDD	HR-151-5400	CEAEQ MA.400 - DF 1.0	APGC						
1,2,3,6,7,8-Hexa CDD	HR-151-5400	CEAEQ MA.400 - DF 1.0	APGC						
1,2,3,7,8,9-Hexa CDD	HR-151-5400	CEAEQ MA.400 - DF 1.0	APGC						
1,2,3,4,6,7,8-Hepta CDD	HR-151-5400	CEAEQ MA.400 - DF 1.0	APGC						
Octa CDD	HR-151-5400	CEAEQ MA.400 - DF 1.0	APGC						
2,3,7,8-Tetra CDF	HR-151-5400	CEAEQ MA.400 - DF 1.0	APGC						
1,2,3,7,8-Penta CDF	HR-151-5400	CEAEQ MA.400 - DF 1.0	APGC						
2,3,4,7,8-Penta CDF	HR-151-5400	CEAEQ MA.400 - DF 1.0	APGC						
1,2,3,4,7,8-Hexa CDF	HR-151-5400	CEAEQ MA.400 - DF 1.0	APGC						
1,2,3,6,7,8-Hexa CDF	HR-151-5400	CEAEQ MA.400 - DF 1.0	APGC						
2,3,4,6,7,8-Hexa CDF	HR-151-5400	CEAEQ MA.400 - DF 1.0	APGC						
1,2,3,7,8,9-Hexa CDF	HR-151-5400	CEAEQ MA.400 - DF 1.0	APGC						
1,2,3,4,6,7,8-Hepta CDF	HR-151-5400	CEAEQ MA.400 - DF 1.0	APGC						
1,2,3,4,7,8,9-Hepta CDF	HR-151-5400	CEAEQ MA.400 - DF 1.0	APGC						
Octa CDF	HR-151-5400	CEAEQ MA.400 - DF 1.0	APGC						
Total Tetra CDD	HR-151-5400	CEAEQ MA.400 - DF 1.0	APGC						
Total Penta CDD	HR-151-5400	CEAEQ MA.400 - DF 1.0	APGC						
Total Hexa CDD	HR-151-5400	CEAEQ MA.400 - DF 1.0	APGC						
Total Hepta CDD	HR-151-5400	CEAEQ MA.400 - DF 1.0	APGC						
Total PCDDs	HR-151-5400	CEAEQ MA.400 - DF 1.0	APGC						
Total Tetra CDF	HR-151-5400	CEAEQ MA.400 - DF 1.0	APGC						
Total Penta CDF	HR-151-5400	CEAEQ MA.400 - DF 1.0	APGC						
Total Hexa CDF	HR-151-5400	CEAEQ MA.400 - DF 1.0	APGC						
Total Hepta CDF	HR-151-5400	CEAEQ MA.400 - DF 1.0	APGC						
Total PCDFs	HR-151-5400	CEAEQ MA.400 - DF 1.0	APGC						
2,3,7,8-Tetra CDD (TEQ)	HR-151-5400	CEAEQ MA.400 - DF 1.0	APGC						
1,2,3,7,8-Penta CDD (TEQ	HR-151-5400	CEAEQ MA.400 - DF 1.0	APGC						
1,2,3,4,7,8-Hexa CDD (TEQ)	HR-151-5400	CEAEQ MA.400 - DF 1.0	APGC						
1,2,3,6,7,8-Hexa CDD (TEQ)	HR-151-5400	CEAEQ MA.400 - DF 1.0	APGC						
1,2,3,7,8,9-Hexa CDD (TEQ)	HR-151-5400	CEAEQ MA.400 - DF 1.0	APGC						
1,2,3,4,6,7,8-Hepta CDD (TEQ)	HR-151-5400	CEAEQ MA.400 - DF 1.0	APGC						
Octa CDD (TEQ)	HR-151-5400	CEAEQ MA.400 - DF 1.0	APGC						
2,3,7,8-Tetra CDF (TEQ)	HR-151-5400	CEAEQ MA.400 - DF 1.0	APGC						
1,2,3,7,8-Penta CDF (TEQ)	HR-151-5400	CEAEQ MA.400 - DF 1.0	APGC						
2,3,4,7,8-Penta CDF (TEQ)	HR-151-5400	CEAEQ MA.400 - DF 1.0	APGC						
1,2,3,4,7,8-Hexa CDF (TEQ)	HR-151-5400	CEAEQ MA.400 - DF 1.0	APGC						
1,2,3,6,7,8-Hexa CDF (TEQ)			APGC						
1,2,3,7,8,9-Hexa CDF (TEQ)	HR-151-5400 HR-151-5400	CEAEQ MA.400 - DF 1.0 CEAEQ MA.400 - DF 1.0	APGC						
2,3,4,6,7,8-Hexa CDF (TEQ)			APGC						
1,2,3,4,6,7,8-Hepta CDF (TEQ)	HR-151-5400 HR-151-5400	CEAEQ MA.400 - DF 1.0 CEAEQ MA.400 - DF 1.0	APGC						
		CEAEQ MA.400 - DF 1.0 CEAEQ MA.400 - DF 1.0	APGC						
1,2,3,4,7,8,9-Hepta CDF (TEQ)	HR-151-5400								
Octa CDF (TEQ)	HR-151-5400	CEAEQ MA.400 - DF 1.0	APGC						
Total PCDDs and PCDFs (TEQ)	HR-151-5400	CEAEQ MA.400 - DF 1.0	APGC						
13C-2,3,7,8-TCDF	HR-151-5400	CEAEQ MA.400 - DF 1.0	APGC						
13C-1,2,3,7,8-PeCDF	HR-151-5400	CEAEQ MA.400 - DF 1.0	APGC						
13C-2,3,4,7,8-PeCDF	HR-151-5400	CEAEQ MA.400 - DF 1.0	APGC						
13C-1,2,3,4,7,8-HxCDF	HR-151-5400	CEAEQ MA.400 - DF 1.0	APGC						

9770 ROUTE TRANSCANADIENNE ST. LAURENT, QUEBEC CANADA H4S 1V9 TEL (514)337-1000 FAX (514)333-3046 http://www.agailabs.com

Method Summary

CLIENT NAME: BLUMETRIC ENVIRONMENTAL INC.

AGAT WORK ORDER: 22T983450

PROJECT: 220509

ATTENTION TO: Paul Bandler

PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE
13C-1,2,3,6,7,8-HxCDF	HR-151-5400	CEAEQ MA.400 - DF 1.0	APGC
13C-2,3,4,6,7,8-HxCDF	HR-151-5400	CEAEQ MA.400 - DF 1.0	APGC
13C-1,2,3,7,8,9-HxCDF	HR-151-5400	CEAEQ MA.400 - DF 1.0	APGC
13C-1,2,3,4,6,7,8-HpCDF	HR-151-5400	CEAEQ MA.400 - DF 1.0	APGC
13C-1,2,3,4,7,8,9-HpCDF	HR-151-5400	CEAEQ MA.400 - DF 1.0	APGC
13C-2,3,7,8-TCDD	HR-151-5400	CEAEQ MA.400 - DF 1.0	APGC
13C-1,2,3,7,8-PeCDD	HR-151-5400	CEAEQ MA.400 - DF 1.0	APGC
13C-1,2,3,4,7,8-HxCDD	HR_151-5400	CEAEQ MA.400 - DF 1.0	APGC
13C-1,2,3,6,7,8-HxCDD	HR_151-5400	CEAEQ MA.400 - DF 1.0	APGC
13C-1,2,3,4,6,7,8-HpCDD	HR-151-5400	CEAEQ MA.400 - DF 1.0	APGC
13C-OCDD	HR-151-5400	CEAEQ MA.400 - DF 1.0	APGC

5835 Coopers Avenue Mississauga, Ontario L4Z 1Y2 Ph: 905 712 5100 Fax: 905 712 5122

webearth agatlabs.com

Laboratory Use Only 217935450							
Work Order #: 22	ZP48	3244					
Cooler Quantity:							
Arrival Temperatures:	8.1	18:21	8:1				
Custody Seal Intact:	Yes	□No	DNZA				

Chain	of C	ustody	Record
-------	------	--------	--------

Chain of Custody Reco	rd If this is a i	Orlnking Water	sample, plea	ase use Drin	king Water Chain o	f Custody Form (po	table water	consume	d by hu	mans)			Ar	rival Te	emperat	tures:	8	1.5	18	21	8.	+
Report Information: Company: Contact: Report Information: Contact: Report Information:	Environme	utal h	۷,	(Please	Regulatory Requirements:								stody otes:	Seal Int	act:		4.5 es	- 4	No	8 1	47A	
Address: 4 Cataragus St.		_ Ta	Table Indicate One Table Indicate One			□Sanitary □Storm					Turnaround Time (TAT) Required:											
Phone: 613 453 543 Reports to be sent to:	6 Fax:	40			Agriculture	Regulation 5		☐ Prov Obje		r Qualit (PWQC					(Rush S	_	s Apply)	5 to 7 B				
1. Email: phandles @ hlunetric .ca 2. Email: Mloyd @ blumetric ica			- E	Soil Texture (Check One) COME CCME Indicate One					3 Business 2 Business Next Business Days Days Day OR Date Required (Rush Surcharges May Apply):							ness						
Project Information: Project: 220509 Site Location: Sampled By:	Bakelite			Re	s this submission cord of Site Co		Ce	eport rtifica Yes			ysis			For 'Sa	AT is ex	clusive	of wee	ekends	and sta		TAT holidays	
AGAT Quote #: 747248 Please note: If quotation number	PO: PO:	e billed full price for a	analysis	San	nple Matrix Leg	gend	CrVI, DOC	0.	Reg 15:	3				O. Reg		g 406	Sulphide					ion (Y/N)
Invoice Information: Company: Contact: Address: Email:	1	II To Same: Ye	s [] No [GW O P S SD SW	Ground Water Oil Paint Soil Sediment Surface Water		Field Filtered - Metals, Hg, C	& Inorganics		F1.F4 PHCs				Disposal Characterization TCLP: IM&I □VOCs □ABNS □B(alP□PCBs	Excess Soils SPLP Rainwater Leach SPLP: ☐ Metals ☐ vocs ☐ svocs	Excess Soils Characterization Package pH, ICPMS Metals, BTEX, F1-F4	Corrosivity: Include Moisture □ Su	Formaldehyde	Svins/Furans		40/01	2
Sample Identification	Date Sampled	Time Sampled	# of Containers	Sample Matrix		ments/ nstructions	Y/N	Metals	Metals -	PAHs	PCBs	VOC	Aroclors	Landfill Dispo TCLP: ☐M&I □	Excess:	Excess pH, ICF	Corros	10 र	مّارّ	HQ.		Potentia
BH219552 BH219554 BH224552	22-12-15 22-12-15 22-12-15	AM PM AM PM AM PM	5	Scil				/		V >	/	V						V	/ /	/	V	
1311 224 55 4 1311 211 55 1	22-12-15	AM PM AM PM	5																		V	
BH211 553	22-12-16	AM PM	6					V		/ v	· V	V						V 1	,			1
BH 212551 BH 212554	22-12-16	AM PM AM PM AM PM	6	V				1		/ /	./	1		-				1 "	/		V	-
		AM PM AM PM																				
Samples Relinquished By (Print Name and Sign) Samples Relinquished By (Print Name and Sign):		Date 22-1 2-1 Date	Time	00 am		int Name and Sign):	7	1	7	~	Da Da	n De	22/2	Time	100 200			Page	1	of \		1
Samples Relinquished By (Print Name and Sign):		Date	Time		Samples Received By (Pr	int Name and Sign):					Da	CC i	46/12	Time	7:45)/H*\	Nº:	T -	14	23	13	

CLIENT NAME: BLUMETRIC ENVIRONMENTAL INC. 4 Cataraqui Street Kingston, ON K7K1Z7

(613) 531-2725

ATTENTION TO: Paul Bandler

PROJECT: 220509

AGAT WORK ORDER: 23P990075

TRACE ORGANICS REVIEWED BY: Pinkal Patel, Report Reviewer

WATER ANALYSIS REVIEWED BY: Nivine Basily, Inorganics Report Writer

DATE REPORTED: Jan 31, 2023

PAGES (INCLUDING COVER): 23 VERSION*: 1

Should you require any information regarding this analysis please contact your client services representative at (905) 712-5100

*Notes	

Disclaimer:

- All work conducted herein has been done using accepted standard protocols, and generally accepted practices and methods. AGAT test methods may
 incorporate modifications from the specified reference methods to improve performance.
- All samples will be disposed of within 30 days after receipt unless a Long Term Storage Agreement is signed and returned. Some specialty analysis may
 be exempt, please contact your Client Project Manager for details.
- AGAT's liability in connection with any delay, performance or non-performance of these services is only to the Client and does not extend to any other
 third party. Unless expressly agreed otherwise in writing, AGAT's liability is limited to the actual cost of the specific analysis or analyses included in the
 services.
- This Certificate shall not be reproduced except in full, without the written approval of the laboratory.
- The test results reported herewith relate only to the samples as received by the laboratory.
- Application of guidelines is provided "as is" without warranty of any kind, either expressed or implied, including, but not limited to, warranties of
 merchantability, fitness for a particular purpose, or non-infringement. AGAT assumes no responsibility for any errors or omissions in the guidelines
 contained in this document.
- All reportable information as specified by ISO/IEC 17025:2017 is available from AGAT Laboratories upon request.

AGAT Laboratories (V1)

Page 1 of 23

Member of: Association of Professional Engineers and Geoscientists of Alberta (APEGA)

Western Enviro-Agricultural Laboratory Association (WEALA) Environmental Services Association of Alberta (ESAA) AGAT Laboratories is accredited to ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA) and/or Standards Council of Canada (SCC) for specific tests listed on the scope of accreditation. AGAT Laboratories (Mississauga) is also accredited by the Canadian Association for Laboratory Accreditation Inc. (CALA) for specific drinking water tests. Accreditations are location and parameter specific. A complete listing of parameters for each location is available from www.cala.ca and/or www.scc.ca. The tests in this report may not necessarily be included in the scope of accreditation. Measurement Uncertainty is not taken into consideration when stating conformity with a specified requirement.

SAMPLING SITE:

Certificate of Analysis

AGAT WORK ORDER: 23P990075

PROJECT: 220509

ATTENTION TO: Paul Bandler

SAMPLED BY:ML

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

O. Reg. 153(511) - BNA (full) + PAHs (Water)

DATE RECEIVED: 2023-01-20								DATE REPORTED: 2023-01-31		
			CRIPTION: PLE TYPE: SAMPLED:	MW121 Water 2023-01-19 08:55	MW128R Water 2023-01-19 10:10	MW202 Water 2023-01-19 12:55	MW232 Water 2023-01-19 14:10	MW203 Water 2023-01-19 15:35	MW204 Water 2023-01-19 17:00	
Parameter	Unit	G/S	RDL	4705555	4705557	4705579	4705580	4705581	4705582	
Naphthalene	μg/L	7	0.20	<0.20	<0.20	29.3	<0.20	<0.20	<0.20	
Acenaphthylene	μg/L	1	0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	
Acenaphthene	μg/L	17	0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	
Fluorene	μg/L	290	0.20	<0.20	<0.20	<0.20	0.29	<0.20	<0.20	
Phenanthrene	μg/L	380	0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	
Anthracene	μg/L	1	0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	
Fluoranthene	μg/L	44	0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	
Pyrene	μg/L	5.7	0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	
Benzo(a)anthracene	μg/L	1.8	0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	
Chrysene	μg/L	0.7	0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	
Benzo(b)fluoranthene	μg/L	0.75	0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	
Benzo(k)fluoranthene	μg/L	0.4	0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	
Benzo(a)pyrene	μg/L	0.81	0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	
Indeno(1,2,3-cd)pyrene	μg/L	0.2	0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	
Dibenz(a,h)anthracene	μg/L	0.4	0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	
Benzo(g,h,i)perylene	μg/L	0.2	0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	
Phenol	μg/L	9600	1.0	<1.0	<1.0	<1.0	2.77	<1.0	<1.0	
Bis(2-chloroethyl)ether	μg/L	240000	0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	
2-Chlorophenol	μg/L	2600	0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	
o-Cresol	μg/L		0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	
Bis(2-chloroisopropyl)ether	μg/L	20000	0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	
m&p-Cresol	μg/L		0.6	<0.6	<0.6	<0.6	<0.6	<0.6	<0.6	
2,4-Dimethylphenol	μg/L	31000	0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	
2,4-Dichlorophenol	μg/L	3700	0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	
1,2,4-Trichlorobenzene	μg/L		0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	
p-Chloroaniline	μg/L	320	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	
2-and 1-methyl Naphthalene	μg/L	1500	0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	
2,4,6-Trichlorophenol	μg/L	180	0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	
2,4,5-Trichlorophenol	μg/L	1300	0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	

Certificate of Analysis

AGAT WORK ORDER: 23P990075

PROJECT: 220509

ATTENTION TO: Paul Bandler

SAMPLED BY:ML

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

O. Reg. 153(511) - BNA (full) + PAHs (Water)

			<u> </u>	1109. 100(אוט - נווט	(Iuli) + FAII	3 (Water)			
DATE RECEIVED: 2023-01-20								!	DATE REPORTE	D: 2023-01-31
		SAMPLE DES	CRIPTION:	MW121	MW128R	MW202	MW232	MW203	MW204	
		SAMI	PLE TYPE:	Water	Water	Water	Water	Water	Water	
		DATE S	DATE SAMPLED: 2		2023-01-19 10:10	2023-01-19 12:55	2023-01-19 14:10	2023-01-19 15:35	2023-01-19 17:00	
Parameter	Unit	G/S	RDL	4705555	4705557	4705579	4705580	4705581	4705582	
1,1'-Biphenyl	μg/L	1000	0.50	<0.50	<0.50	< 0.50	<0.50	<0.50	<0.50	
Dimethyl phthalate	μg/L	30	0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	
2,4 and 2,6-Dinitrotoluene	μg/L	2300	0.50	< 0.50	<0.50	<0.50	< 0.50	< 0.50	<0.50	
Diethyl phthalate	μg/L	30	0.50	<0.50	<0.50	<0.50	<0.50	<0.50	< 0.50	
Pentachlorophenol	μg/L	50	0.50	<0.50	<0.50	< 0.50	< 0.50	<0.50	<0.50	
3,3'-dichlorobenzidine	μg/L	500	0.50	< 0.50	< 0.50	<0.50	<0.50	<0.50	<0.50	
Bis(2-Ethylhexyl)phthalate	μg/L	30	0.50	<0.50	< 0.50	<0.50	<0.50	<0.50	<0.50	
2,4-Dinitrophenol	μg/L	9000	10	<10	<10	<10	<10	<10	<10	
Sediment				NO	NO	NO	NO	NO	NO	
Surrogate	Unit	Acceptab	le Limits							
2-Fluorophenol	%	50-1	140	89	68	78	68	89	86	<u> </u>
phenol-d6 surrogate	%	50-1	140	76	99	97	60	76	91	
2,4,6-Tribromophenol	%	50-1	140	83	86	68	109	80	80	
Chrysene-d12	%	50-1	140	88	90	102	81	84	89	

Comments:

SAMPLING SITE:

RDL - Reported Detection Limit; G / S - Guideline / Standard: Refers to Table 7: Generic Site Condition Standards for Shallow Soils in a Non-Potable Ground Water Condition - Non-Potable Ground Water - All Types of Property Uses - Coarse Textured Soils

Guideline values are for general reference only. The guidelines provided may or may not be relevant for the intended use. Refer directly to the applicable standard for regulatory interpretation.

4705555-4705582 To meet the MOE Reporting limits the sample extract was analysed using two separate GC/MS methods. The full scan BNA method is capable of detecting most of the compounds at the RDLs except for several PAHs. The PAHs were analysed using a SIM mode GC/MS method.

Note: The result for Benzo(b)Fluoranthene is the total of the Benzo(b)&(j)Fluoranthene isomers because the isomers co-elute on the GC column.

Sediment parameter is comment only based on visual inspection of the sample prior to extraction and is not an accredited test.

Legend: 1 = no sediment present; 2 = sediment present; 3 = sediment present in trace amount

Analysis performed at AGAT Toronto (unless marked by *)

Certificate of Analysis

AGAT WORK ORDER: 23P990075

PROJECT: 220509

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

CLIENT NAME: BLUMETRIC ENVIRONMENTAL INC.

SAMPLING SITE:

ATTENTION TO: Paul Bandler SAMPLED BY:ML

				O Boo	152/511\ D/	He (Mater)	
				O. Reg	ı. 153(511) - PA	(vvaler)	
DATE RECEIVED: 2023-01-20							DATE REPORTED: 2023-01-3
		SAMPLE DESC	CRIPTION:	MW201	GW-Dup1		
		SAME	PLE TYPE:	Water	Water		
		DATE S	SAMPLED:	2023-01-19 11:45	2023-01-19		
Parameter	Unit	G/S	RDL	4705578	4705583		
Naphthalene	μg/L	7	0.20	<0.20	<0.20		
Acenaphthylene	μg/L	1	0.20	<0.20	<0.20		
Acenaphthene	μg/L	17	0.20	<0.20	<0.20		
Fluorene	μg/L	290	0.20	<0.20	<0.20		
Phenanthrene	μg/L	380	0.10	<0.10	<0.10		
Anthracene	μg/L	1	0.10	<0.10	<0.10		
Fluoranthene	μg/L	44	0.20	<0.20	<0.20		
Pyrene	μg/L	5.7	0.20	<0.20	<0.20		
Benzo(a)anthracene	μg/L	1.8	0.20	<0.20	<0.20		
Chrysene	μg/L	0.7	0.10	<0.10	<0.10		
Benzo(b)fluoranthene	μg/L	0.75	0.10	<0.10	<0.10		
Benzo(k)fluoranthene	μg/L	0.4	0.10	<0.10	<0.10		
Benzo(a)pyrene	μg/L	0.81	0.01	<0.01	<0.01		
Indeno(1,2,3-cd)pyrene	μg/L	0.2	0.20	<0.20	<0.20		
Dibenz(a,h)anthracene	μg/L	0.4	0.20	<0.20	<0.20		
Benzo(g,h,i)perylene	μg/L	0.2	0.20	<0.20	<0.20		
2-and 1-methyl Naphthalene	μg/L	1500	0.20	<0.20	<0.20		
Sediment				NO	NO		
Surrogate	Unit	Acceptab	le Limits				
Naphthalene-d8	%	50-1	40	103	105		
Acridine-d9	%	50-1	40	94	103		
Terphenyl-d14	%	50-1	40	85	92		

SAMPLING SITE:

Certificate of Analysis

AGAT WORK ORDER: 23P990075

PROJECT: 220509

MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

5835 COOPERS AVENUE

ATTENTION TO: Paul Bandler

SAMPLED BY:ML

O. Reg. 153(511) - PAHs (Water)

DATE RECEIVED: 2023-01-20 DATE REPORTED: 2023-01-31

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard: Refers to Table 7: Generic Site Condition Standards for Shallow Soils in a Non-Potable Ground Water Condition - Non-Potable Ground Water - All Types of Property Uses - Coarse Textured Soils

Guideline values are for general reference only. The guidelines provided may or may not be relevant for the intended use. Refer directly to the applicable standard for regulatory interpretation.

4705578-4705583 Sediment parameter is comment only based on visual inspection of the sample prior to extraction and is not an accredited test.

Legend: 1 = no sediment present; 2 = sediment present; 3 = sediment present in trace amount

Note: The result for Benzo(b)Fluoranthene is the total of the Benzo(b)&(j)Fluoranthene isomers because the isomers co-elute on the GC column.

2- and 1-Methyl Naphthalene is a calculated parameter. The calculated value is the sum of 2-Methyl Naphthalene and 1-Methyl Naphthalene. The calculated parameter is non-accredited. The parameters

that are components of the calculation are accredited.

Analysis performed at AGAT Toronto (unless marked by *)

SAMPLING SITE:

Certificate of Analysis

AGAT WORK ORDER: 23P990075

PROJECT: 220509

ATTENTION TO: Paul Bandler

SAMPLED BY:ML

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

	4-0/-4		(1.8.4
O. Re	a. 153(51	1) - PCBs	: (Water)

				<u> </u>	j. 100(011 <i>)</i> -	T ODS (Wat	.01)			
DATE RECEIVED: 2023-01-20								[DATE REPORTE	D: 2023-01-31
		SAMPLE DES	CRIPTION:	MW121	MW128R	MW202	MW232	MW203	MW204	
		SAM	PLE TYPE:	Water	Water	Water	Water	Water	Water	
		DATE	SAMPLED:	2023-01-19 08:55	2023-01-19 10:10	2023-01-19 12:55	2023-01-19 14:10	2023-01-19 15:35	2023-01-19 17:00	
Parameter	Unit	G/S	RDL	4705555	4705557	4705579	4705580	4705581	4705582	
Polychlorinated Biphenyls	μg/L	0.2	0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	
Surrogate	Unit	Acceptab	le Limits							
Decachlorobiphenyl	%	60-	140	88	96	84	86	105	94	

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard: Refers to Table 7: Generic Site Condition Standards for Shallow Soils in a Non-Potable Ground Water Condition - Non-Potable Ground Water - All Types of Property Uses - Coarse Textured Soils

Guideline values are for general reference only. The guidelines provided may or may not be relevant for the intended use. Refer directly to the applicable standard for regulatory interpretation.

4705555-4705582 PCB total is a calculated parameter. The calculated value is the sum of Aroclor 1242, Aroclor 1248, Aroclor 1254 and Aroclor 1260.

The calculated parameter is non-accredited. The parameters that are components of the calculation are accredited.

Analysis performed at AGAT Toronto (unless marked by *)

Jimkal Jotal

Certificate of Analysis

AGAT WORK ORDER: 23P990075

PROJECT: 220509

SAMPLED BY:ML

ATTENTION TO: Paul Bandler

O. Reg. 153(511) - PHCs F1 - F4 (with PAHs and VOC) (Water)

DATE RECEIVED: 2023-01-20								[DATE REPORT	ED: 2023-01-31	
	S	SAMPLE DES	CRIPTION:	MW121	MW128R	MW201	MW202	MW232	MW203	MW204	GW-Dup1
		SAMI	PLE TYPE:	Water	Water						
		DATES	SAMPLED:	2023-01-19 08:55	2023-01-19 10:10	2023-01-19 11:45	2023-01-19 12:55	2023-01-19 14:10	2023-01-19 15:35	2023-01-19 17:00	2023-01-19
Parameter	Unit	G/S	RDL	4705555	4705557	4705578	4705579	4705580	4705581	4705582	4705583
F1 (C6-C10)	μg/L	·	25	<25	<25	<25	292	<25	<25	124	<25
F1 (C6 to C10) minus BTEX	μg/L	420	25	<25	<25	<25	<25	<25	<25	<25	<25
F2 (C10 to C16)	μg/L	150	100	<100	<100	<100	880	<100	<100	<100	<100
F2 (C10 to C16) minus Naphthalene	μg/L		100	<100	<100	<100	851	<100	<100	<100	<100
F3 (C16 to C34)	μg/L	500	100	<100	<100	<100	121	<100	<100	<100	<100
F3 (C16 to C34) minus PAHs	μg/L		100	<100	<100	<100	121	<100	<100	<100	<100
F4 (C34 to C50)	μg/L	500	100	<100	<100	<100	<100	<100	<100	<100	<100
Gravimetric Heavy Hydrocarbons	μg/L		500	NA	NA						
Sediment				3	3	1	1	1	1	1	1
Surrogate	Unit	Acceptab	le Limits								
Toluene-d8	%	50-1	140	99	101	102	96	101	102	96	104
Terphenyl	% Recovery	60-1	140	86	97	95	96	88	72	65	68

Comments:

RDL - Reported Detection Limit: G / S - Guideline / Standard: Refers to Table 7: Generic Site Condition Standards for Shallow Soils in a Non-Potable Ground Water Condition - Non-Potable Ground Water - All Types of Property Uses - Coarse Textured Soils

Guideline values are for general reference only. The guidelines provided may or may not be relevant for the intended use. Refer directly to the applicable standard for regulatory interpretation.

SAMPLING SITE:

4705555-4705583 The C6-C10 fraction is calculated using toluene response factor.

C6-C10 (F1 minus BTEX) is a calculated parameter. The calculated value is F1 minus BTEX. The calculated parameter is non-accredited. The parameters that are components of the calculation are accredited.

The C10 - C16, C16 - C34, and C34 - C50 fractions are calculated using the average response factor for n-C10, n-C16, and n-C34.

Gravimetric Heavy Hydrocarbons are not included in the Total C16-C50 and are only determined if the chromatogram of the C34 - C50 hydrocarbons indicates that hydrocarbons >C50 are present. The chromatogram has returned to baseline by the retention time of nC50.

Total C6 - C50 results are corrected for BTEX and PAH contributions.

C>10 - C16 (F2- Naphthalene) is a calculated parameter. The calculated value is F2 - Naphthalene.

C>16 - C34 (F3-PAH) is a calculated parameter. The calculated value is F3-PAH (PAH: sum of Phenanthrene, Benzo(a)anthracene, Benzo(b)fluoranthene, Benzo(k)fluoranthene, Benzo(a)pyrene,

Fluoranthene, Dibenzo(a,h)anthracene, Indeno(1,2,3-c,d)pyrene and Pyrene).

This method complies with the Reference Method for the CWS PHC and is validated for use in the laboratory.

nC10, nC16 and nC34 response factors are within 10% of their average.

C50 response factor is within 70% of nC10 + nC16 + nC34 average.

Linearity is within 15%.

Extraction and holding times were met for this sample.

Sediment parameter is comment only based on visual inspection of the sample prior to extraction and is not an accredited test.

Analysis performed at AGAT Toronto (unless marked by *)

Certified By:

5835 COOPERS AVENUE

MISSISSAUGA, ONTARIO CANADA L4Z 1Y2

http://www.agatlabs.com

TEL (905)712-5100 FAX (905)712-5122

SAMPLING SITE:

Certificate of Analysis

AGAT WORK ORDER: 23P990075

PROJECT: 220509

ATTENTION TO: Paul Bandler

SAMPLED BY:ML

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

O. Reg. 153(511) - VOCs (with PHC) (Water)

				•	•	•					
DATE RECEIVED: 2023-01-20								Γ	DATE REPORTE		
			CRIPTION: PLE TYPE: SAMPLED:	MW121 Water 2023-01-19 08:55	MW128R Water 2023-01-19 10:10	MW201 Water 2023-01-19 11:45	MW202 Water 2023-01-19 12:55	MW232 Water 2023-01-19 14:10	MW203 Water 2023-01-19 15:35	MW204 Water 2023-01-19 17:00	GW-Dup1 Water 2023-01-19
Parameter	Unit	G/S	RDL	4705555	4705557	4705578	4705579	4705580	4705581	4705582	4705583
Dichlorodifluoromethane	μg/L	3500	0.40	<0.40	<0.40	<0.40	<0.40	<0.40	<0.40	<0.40	<0.40
Vinyl Chloride	μg/L	0.5	0.17	<0.17	<0.17	<0.17	<0.17	<0.17	<0.17	<0.17	<0.17
Bromomethane	μg/L	0.89	0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20
Trichlorofluoromethane	μg/L	2000	0.40	<0.40	<0.40	<0.40	<0.40	<0.40	<0.40	<0.40	< 0.40
Acetone	μg/L	100000	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
1,1-Dichloroethylene	μg/L	0.5	0.30	< 0.30	< 0.30	< 0.30	< 0.30	< 0.30	< 0.30	<0.30	< 0.30
Methylene Chloride	μg/L	26	0.30	< 0.30	< 0.30	< 0.30	< 0.30	< 0.30	< 0.30	< 0.30	< 0.30
trans- 1,2-Dichloroethylene	μg/L	1.6	0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20
Methyl tert-butyl ether	μg/L	15	0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20
1,1-Dichloroethane	μg/L	11	0.30	<0.30	<0.30	< 0.30	<0.30	< 0.30	< 0.30	<0.30	< 0.30
Methyl Ethyl Ketone	μg/L	21000	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
cis- 1,2-Dichloroethylene	μg/L	1.6	0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20
Chloroform	μg/L	2	0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20
1,2-Dichloroethane	μg/L	0.5	0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20
1,1,1-Trichloroethane	μg/L	23	0.30	<0.30	<0.30	< 0.30	< 0.30	< 0.30	<0.30	<0.30	< 0.30
Carbon Tetrachloride	μg/L	0.2	0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20
Benzene	μg/L	0.5	0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20
1,2-Dichloropropane	μg/L	0.58	0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20
Trichloroethylene	μg/L	0.5	0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20
Bromodichloromethane	μg/L	67000	0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20
Methyl Isobutyl Ketone	μg/L	5200	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
1,1,2-Trichloroethane	μg/L	0.5	0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20
Toluene	μg/L	320	0.20	<0.20	<0.20	0.29	317	1.87	1.07	146	0.37
Dibromochloromethane	μg/L	65000	0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
Ethylene Dibromide	μg/L	0.2	0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
Tetrachloroethylene	μg/L	0.5	0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20
1,1,1,2-Tetrachloroethane	μg/L	1.1	0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
Chlorobenzene	μg/L	140	0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
Ethylbenzene	μg/L	54	0.10	<0.10	<0.10	<0.10	0.80	<0.10	<0.10	0.21	< 0.10

Certificate of Analysis

AGAT WORK ORDER: 23P990075

PROJECT: 220509

ATTENTION TO: Paul Bandler

SAMPLED BY:ML

O. Reg. 153(511) - VOCs (with PHC) (Water)

DATE RECEIVED: 2023-01-20									DATE REPORTE	ED: 2023-01-31	
	S	AMPLE DES	CRIPTION:	MW121	MW128R	MW201	MW202	MW232	MW203	MW204	GW-Dup1
		SAM	PLE TYPE:	Water	Water						
		DATES	SAMPLED:	2023-01-19 08:55	2023-01-19 10:10	2023-01-19 11:45	2023-01-19 12:55	2023-01-19 14:10	2023-01-19 15:35	2023-01-19 17:00	2023-01-19
Parameter	Unit	G/S	RDL	4705555	4705557	4705578	4705579	4705580	4705581	4705582	4705583
m & p-Xylene	μg/L		0.20	<0.20	<0.20	1.01	8.72	<0.20	<0.20	0.50	1.19
Bromoform	μg/L	5	0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
Styrene	μg/L	43	0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
1,1,2,2-Tetrachloroethane	μg/L	0.5	0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
o-Xylene	μg/L		0.10	<0.10	<0.10	0.50	3.18	<0.10	<0.10	<0.10	0.56
1,3-Dichlorobenzene	μg/L	7600	0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
1,4-Dichlorobenzene	μg/L	0.5	0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
1,2-Dichlorobenzene	μg/L	150	0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
1,3-Dichloropropene	μg/L	0.5	0.30	< 0.30	<0.30	<0.30	< 0.30	< 0.30	< 0.30	<0.30	< 0.30
Xylenes (Total)	μg/L	72	0.20	<0.20	<0.20	1.51	11.9	<0.20	<0.20	0.50	1.75
n-Hexane	μg/L	5	0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	3.07
Surrogate	Unit	Acceptab	le Limits								
Toluene-d8	% Recovery	50-1	140	99	101	102	96	101	102	96	104
4-Bromofluorobenzene	% Recovery	50-1	140	86	88	89	96	85	88	86	88

Comments:

SAMPLING SITE:

RDL - Reported Detection Limit; G / S - Guideline / Standard: Refers to Table 7: Generic Site Condition Standards for Shallow Soils in a Non-Potable Ground Water Condition - Non-Potable Ground Water - All Types of Property Uses - Coarse Textured Soils

Guideline values are for general reference only. The guidelines provided may or may not be relevant for the intended use. Refer directly to the applicable standard for regulatory interpretation.

4705555-4705583 Xylenes total is a calculated parameter. The calculated value is the sum of m&p-Xylene and o-Xylene.

1,3-Dichloropropene total is a calculated parameter. The calculated value is the sum of Cis-1,3-Dichloropropene and Trans-1,3-Dichloropropene.

The calculated parameter is non-accredited. The parameters that are components of the calculation are accredited.

Analysis performed at AGAT Toronto (unless marked by *)

Certified By:

5835 COOPERS AVENUE

MISSISSAUGA, ONTARIO CANADA L4Z 1Y2

http://www.agatlabs.com

TEL (905)712-5100 FAX (905)712-5122

SAMPLING SITE:

Certificate of Analysis

AGAT WORK ORDER: 23P990075

PROJECT: 220509

ATTENTION TO: Paul Bandler

SAMPLED BY:ML

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

O. Reg. 153(511) - Metals & Inorganics (Water)

DATE RECEIVED: 2023-01-20									DATE REPORTED	D: 2023-01-3	1
	;		CRIPTION: PLE TYPE: SAMPLED:	MW121 Water 2023-01-19 08:55	MW128R Water 2023-01-19 10:10	MW201 Water 2023-01-19 11:45	MW202 Water 2023-01-19 12:55		MW232 Water 2023-01-19 14:10		MW203 Water 2023-01-19 15:35
Parameter	Unit	G/S	RDL	4705555	4705557	4705578	4705579	RDL	4705580	RDL	4705581
Dissolved Antimony	μg/L	16000	1.0	<1.0	<1.0	<1.0	<1.0	1.0	<1.0	1.0	<1.0
Dissolved Arsenic	μg/L	1500	1.0	<1.0	<1.0	<1.0	1.4	1.0	1.4	1.0	1.3
Dissolved Barium	μg/L	23000	2.0	80.2	52.3	461	182	2.0	72.2	2.0	404
Dissolved Beryllium	μg/L	53	0.50	< 0.50	<0.50	<0.50	<0.50	0.50	<0.50	0.50	< 0.50
Dissolved Boron	μg/L	36000	10.0	30.2	40.8	268	39.8	10.0	41.8	10.0	53.8
Dissolved Cadmium	μg/L	2.1	0.20	<0.20	<0.20	<0.20	<0.20	0.20	0.53	0.20	<0.20
Dissolved Chromium	μg/L	640	2.0	<2.0	<2.0	<2.0	<2.0	2.0	<2.0	2.0	<2.0
Dissolved Cobalt	μg/L	52	0.50	< 0.50	<0.50	0.69	<0.50	0.50	<0.50	0.50	< 0.50
Dissolved Copper	μg/L	69	1.0	<1.0	<1.0	<1.0	<1.0	1.0	<1.0	1.0	<1.0
Dissolved Lead	μg/L	20	0.50	<0.50	<0.50	<0.50	<0.50	0.50	<0.50	0.50	<0.50
Dissolved Molybdenum	μg/L	7300	0.50	< 0.50	0.91	5.48	3.00	5.0	1230	0.50	5.88
Dissolved Nickel	μg/L	390	1.0	2.0	1.3	5.4	3.2	1.0	2.3	1.0	1.1
Dissolved Selenium	μg/L	50	1.0	<1.0	<1.0	<1.0	<1.0	1.0	<1.0	1.0	<1.0
Dissolved Silver	μg/L	1.2	0.20	<0.20	<0.20	<0.20	<0.20	0.20	<0.20	0.20	<0.20
Dissolved Thallium	μg/L	400	0.30	<0.30	<0.30	< 0.30	<0.30	0.30	< 0.30	0.30	< 0.30
Dissolved Uranium	μg/L	330	0.50	0.94	1.28	2.01	0.50	0.50	<0.50	0.50	1.09
Dissolved Vanadium	μg/L	200	0.40	<0.40	<0.40	< 0.40	<0.40	0.40	<0.40	0.40	< 0.40
Dissolved Zinc	μg/L	890	5.0	<5.0	<5.0	<5.0	<5.0	5.0	<5.0	5.0	<5.0
Mercury	μg/L	0.1	0.02	<0.02	<0.02	<0.02	< 0.02	0.02	<0.02	0.02	< 0.02
Chromium VI	μg/L	110	2	<2	<2	<2	<2	2	<2	2	<2
Cyanide, WAD	μg/L	52	2	<2	<2	<2	<2	2	<2	2	<2
Dissolved Sodium	μg/L	1800000	50	47700	12200	192000	6670	50	35400	50	63200
Chloride	μg/L	1800000	100	31700	16800	533000	4350	100	83500	100	84100
Electrical Conductivity	uS/cm	NA	2	1440	1460	2520	927	2	1070	2	1030
pH	pH Units		NA	7.40	7.56	7.42	7.26	NA	7.52	NA	7.57

SAMPLING SITE:

Certificate of Analysis

AGAT WORK ORDER: 23P990075

PROJECT: 220509

ATTENTION TO: Paul Bandler

SAMPLED BY:ML

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

O Rea	153/511	\ - Metals	ጲ	Inorganics	(Water)
O. Neg.	. 100(011	, - ivi c tais	œ	IIIUI yaiiius	(vval e i)

DATE RECEIVED: 2023-01-20							DATE REPORTED: 2023-01-31
	5	SAMPLE DESC	RIPTION:	MW204	GW-Dup1		
		SAMP	LE TYPE:	Water	Water		
		DATE S	AMPLED:	2023-01-19 17:00	2023-01-19		
Parameter	Unit	G/S	RDL	4705582	4705583		
Dissolved Antimony	μg/L	16000	1.0	<1.0	<1.0		
Dissolved Arsenic	μg/L	1500	1.0	<1.0	<1.0		
issolved Barium	μg/L	23000	2.0	73.9	476		
issolved Beryllium	μg/L	53	0.50	< 0.50	<0.50		
issolved Boron	μg/L	36000	10.0	13.4	250		
issolved Cadmium	μg/L	2.1	0.20	<0.20	<0.20		
issolved Chromium	μg/L	640	2.0	<2.0	<2.0		
issolved Cobalt	μg/L	52	0.50	< 0.50	1.11		
ssolved Copper	μg/L	69	1.0	<1.0	<1.0		
issolved Lead	μg/L	20	0.50	<0.50	<0.50		
issolved Molybdenum	μg/L	7300	0.50	< 0.50	5.83		
issolved Nickel	μg/L	390	1.0	<1.0	4.3		
issolved Selenium	μg/L	50	1.0	<1.0	<1.0		
Dissolved Silver	μg/L	1.2	0.20	<0.20	<0.20		
issolved Thallium	μg/L	400	0.30	<0.30	<0.30		
issolved Uranium	μg/L	330	0.50	< 0.50	2.00		
issolved Vanadium	μg/L	200	0.40	<0.40	<0.40		
issolved Zinc	μg/L	890	5.0	<5.0	<5.0		
lercury	μg/L	0.1	0.02	<0.02	<0.02		
hromium VI	μg/L	110	2	<2	<2		
yanide, WAD	μg/L	52	2	<2	<2		
ssolved Sodium	μg/L	1800000	50	16300	198000		
hloride	μg/L	1800000	100	27400	540000		
lectrical Conductivity	uS/cm	NA	2	596	2530		
H	pH Units		NA	7.69	7.47		

Certificate of Analysis

AGAT WORK ORDER: 23P990075

PROJECT: 220509

ATTENTION TO: Paul Bandler

SAMPLED BY:ML

MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

5835 COOPERS AVENUE

O. Reg. 153(511) - Metals & Inorganics (Water)

DATE RECEIVED: 2023-01-20 DATE REPORTED: 2023-01-31

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard: Refers to Table 7: Generic Site Condition Standards for Shallow Soils in a Non-Potable Ground Water Condition - Non-Potable Ground

Water - All Types of Property Uses - Coarse Textured Soils

Guideline values are for general reference only. The guidelines provided may or may not be relevant for the intended use. Refer directly to the applicable standard for regulatory interpretation.

4705555-4705583 Metals analysis completed on a filtered sample.

CLIENT NAME: BLUMETRIC ENVIRONMENTAL INC.

SAMPLING SITE:

Dilution required, RDL has been increased accordingly.

Analysis performed at AGAT Toronto (unless marked by *)

ed By:

Exceedance Summary

AGAT WORK ORDER: 23P990075

PROJECT: 220509

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

CLIENT NAME: BLUMETRIC ENVIRONMENTAL INC.

ATTENTION TO: Paul Bandler

SAMPLEID	SAMPLE TITLE	GUIDELINE	ANALYSIS PACKAGE	PARAMETER	UNIT	GUIDEVALUE	RESULT
4705579	MW202	ON T7 NPGW CT	O. Reg. 153(511) - BNA (full) + PAHs (Water)	Naphthalene	μg/L	7	29.3
4705579	MW202	ON T7 NPGW CT	O. Reg. 153(511) - PHCs F1 - F4 (with PAHs and VOC) (Water)	F2 (C10 to C16)	μg/L	150	880
4705579	MW202	ON T7 NPGW CT	O. Reg. 153(511) - PHCs F1 - F4 (with PAHs and VOC) (Water)	Naphthalene	μg/L	7	29.3

Quality Assurance

CLIENT NAME: BLUMETRIC ENVIRONMENTAL INC. AGAT WORK ORDER: 23P990075
PROJECT: 220509 ATTENTION TO: Paul Bandler

SAMPLING SITE: SAMPLED BY:ML

SAMPLING SITE:									LED B	Y:IVIL					
			Trac	ce Or	gani	cs Ar	nalys	is							
RPT Date: Jan 31, 2023			С	DUPLICAT	E		REFERE			METHOD	_		МАТ	RIX SPI	
PARAMETER	Batch	Sample Id	Dup #1	Dup #2	RPD	Method Blank	Measured Value	Lir	ptable nits	Recovery	, Lir	eptable mits	Recovery	Lir	ptable nits
								Lower	Upper		Lower	Upper		Lower	Uppe
O. Reg. 153(511) - PHCs F1 - F	•	and VOC)	. ,												
F1 (C6-C10)	4705184		<25	<25	NA	< 25	85%	60%	140%	95%	60%	140%	90%	60%	140%
F2 (C10 to C16)	4705023		<100	<100	NA	< 100	97%	60%	140%	64%	60%	140%	70%	60%	140%
F3 (C16 to C34)	4705023 4705023		<100 <100	<100 <100	NA NA	< 100 < 100	102% 93%	60%	140%	67% 66%	60%	140%	63% 82%	60% 60%	1409 1409
F4 (C34 to C50)	4703023		<100	<100	INA	< 100	93%	00%	140%	00%	00%	140%	0270	00%	1407
O. Reg. 153(511) - PAHs (Wate	r)														
Naphthalene	4713493		<0.20	<0.20	NA	< 0.20	87%	50%	140%	79%	50%	140%	75%	50%	140%
Acenaphthylene	4713493		<0.20	<0.20	NA	< 0.20	109%	50%	140%	89%	50%	140%	98%	50%	140%
Acenaphthene	4713493		<0.20	<0.20	NA	< 0.20	95%	50%	140%	91%	50%	140%	81%	50%	140%
Fluorene	4713493		<0.20	<0.20	NA	< 0.20	106%	50%	140%	98%	50%	140%	89%	50%	140%
Phenanthrene	4713493		<0.10	<0.10	NA	< 0.10	87%	50%	140%	81%	50%	140%	102%	50%	140%
Anthracene	4713493		<0.10	<0.10	NA	< 0.10	96%	50%	140%	101%	50%	140%	110%	50%	140%
Fluoranthene	4713493		<0.20	<0.20	NA	< 0.20	106%	50%	140%	74%	50%	140%	74%	50%	140%
Pyrene	4713493		<0.20	<0.20	NA	< 0.20	76%	50%	140%	97%	50%	140%	101%	50%	140%
Benzo(a)anthracene	4713493		<0.20	<0.20	NA	< 0.20	116%	50%	140%	88%	50%	140%	110%	50%	140%
Chrysene	4713493		<0.10	<0.10	NA	< 0.10	98%	50%	140%	93%	50%	140%	109%	50%	140%
Benzo(b)fluoranthene	4713493		<0.10	<0.10	NA	< 0.10	117%	50%	140%	86%	50%	140%	103%	50%	140%
Benzo(k)fluoranthene	4713493		<0.10	<0.10	NA	< 0.10	103%	50%	140%	87%	50%	140%	101%	50%	140%
Benzo(a)pyrene	4713493		<0.01	<0.01	NA	< 0.01	105%	50%	140%	101%	50%	140%	99%	50%	140%
Indeno(1,2,3-cd)pyrene	4713493		<0.20	<0.20	NA	< 0.20	80%	50%	140%	81%	50%	140%	103%	50%	140%
Dibenz(a,h)anthracene	4713493		<0.20	<0.20	NA	< 0.20	70%	50%	140%	85%	50%	140%	87%	50%	140%
Benzo(g,h,i)perylene	4713493		<0.20	<0.20	NA	< 0.20	112%	50%	140%	100%	50%	140%	100%	50%	140%
O. Reg. 153(511) - PCBs (Wate	r)														
Polychlorinated Biphenyls	4690921		< 0.1	< 0.1	NA	< 0.1	105%	50%	140%	102%	50%	140%	95%	50%	140%
O. Reg. 153(511) - VOCs (with	PHC) (Water)														
Dichlorodifluoromethane	4705184		< 0.40	< 0.40	NA	< 0.40	96%	50%	140%	114%	50%	140%	75%	50%	140%
Vinyl Chloride	4705184		<0.17	<0.17	NA	< 0.17	82%	50%	140%	74%	50%	140%	71%	50%	140%
Bromomethane	4705184		<0.20	<0.20	NA	< 0.20	92%	50%	140%	101%	50%	140%	75%	50%	140%
Trichlorofluoromethane	4705184		< 0.40	< 0.40	NA	< 0.40	102%	50%	140%	101%	50%	140%	82%	50%	140%
Acetone	4705184		<1.0	<1.0	NA	< 1.0	102%	50%	140%	103%	50%	140%	93%	50%	140%
1,1-Dichloroethylene	4705184		<0.30	<0.30	NA	< 0.30	103%	50%	140%	78%	60%	130%	80%	50%	1409
Methylene Chloride	4705184		<0.30	< 0.30	NA	< 0.30	102%		140%	91%		130%	92%		140%
trans- 1,2-Dichloroethylene	4705184		<0.20	<0.20	NA	< 0.20	100%	50%	140%	75%	60%	130%	82%	50%	140%
Methyl tert-butyl ether	4705184		<0.20	<0.20	NA	< 0.20	78%	50%	140%	83%	60%	130%	85%	50%	140%
1,1-Dichloroethane	4705184		<0.30	<0.30	NA	< 0.30	116%	50%	140%	91%	60%	130%	96%	50%	140%
Methyl Ethyl Ketone	4705184		<1.0	<1.0	NA	< 1.0	104%	50%	140%	86%	50%	140%	87%	50%	140%
cis- 1,2-Dichloroethylene	4705184		<0.20	<0.20	NA	< 0.20	119%		140%	75%		130%	83%		140%
Chloroform	4705184		<0.20	<0.20	NA	< 0.20	115%	50%	140%	80%		130%	84%		140%
1,2-Dichloroethane	4705184		<0.20	<0.20	NA	< 0.20	105%		140%	82%		130%	95%	50%	140%

AGAT QUALITY ASSURANCE REPORT (V1)

Page 14 of 23

AGAT Laboratories is accredited to ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA) and/or Standards Council of Canada (SCC) for specific tests listed on the scope of accreditation. AGAT Laboratories (Mississauga) is also accredited by the Canadian Association for Laboratory Accreditation Inc. (CALA) for specific drinking water tests. Accreditations are location and parameter specific. A complete listing of parameters for each location is available from www.cala.ca and/or www.scc.ca. The tests in this report may not necessarily be included in the scope of accreditation. RPDs calculated using raw data. The RPD may not be reflective of duplicate values shown, due to rounding of final results.

Quality Assurance

CLIENT NAME: BLUMETRIC ENVIRONMENTAL INC.

AGAT WORK ORDER: 23P990075

PROJECT: 220509

ATTENTION TO: Paul Bandler

SAMPLING SITE: SAMPLED BY:ML

SAMPLING SITE:								SAMP	LED B	Y:ML							
	T	race	Org	anics	Ana	alysis	(Cor	ntin	ued)							
RPT Date: Jan 31, 2023			Г	UPLICAT	E		REFEREN			METHOD	METHOD BLANK SPIKE				МАТ	TRIX SPIKE	
PARAMETER	Batch	Sample Id	Dup #1	Dup #2	RPD	Method Blank	Measured Value		Acceptable Limits			eptable mits	Recovery	Lie	eptable mits		
								Lower	Upper		Lower	Upper		Lower	Uppe		
1,1,1-Trichloroethane	4705184		<0.30	<0.30	NA	< 0.30	103%	50%	140%	84%	60%	130%	78%	50%	140%		
Carbon Tetrachloride	4705184		<0.20	<0.20	NA	< 0.20	117%	50%	140%	98%	60%	130%	79%	50%	1409		
Benzene	4705184		<0.20	<0.20	NA	< 0.20	102%	50%	140%	73%	60%	130%	80%	50%	1409		
1,2-Dichloropropane	4705184		<0.20	<0.20	NA	< 0.20	101%	50%	140%	101%	60%	130%	73%	50%	1409		
Trichloroethylene	4705184		<0.20	<0.20	NA	< 0.20	101%	50%	140%	97%	60%	130%	104%	50%	1409		
Bromodichloromethane	4705184		<0.20	<0.20	NA	< 0.20	104%	50%	140%	105%	60%	130%	75%	50%	1409		
Methyl Isobutyl Ketone	4705184		<1.0	<1.0	NA	< 1.0	104%	50%	140%	106%	50%	140%	101%	50%	1409		
1,1,2-Trichloroethane	4705184		<0.20	<0.20	NA	< 0.20	92%	50%	140%	85%	60%	130%	104%	50%	140%		
Toluene	4705184		<0.20	<0.20	NA	< 0.20	111%	50%	140%	77%	60%	130%	84%	50%	1409		
Dibromochloromethane	4705184		<0.10	<0.10	NA	< 0.10	116%	50%	140%	90%	60%	130%	101%	50%	140%		
Ethylene Dibromide	4705184		<0.10	<0.10	NA	< 0.10	108%	50%	140%	95%	60%	130%	107%	50%	140%		
Tetrachloroethylene	4705184		<0.20	<0.20	NA	< 0.20	98%	50%	140%	75%	60%	130%	80%	50%	1409		
1,1,1,2-Tetrachloroethane	4705184		<0.10	<0.10	NA	< 0.10	87%	50%	140%	76%	60%	130%	79%	50%	140%		
Chlorobenzene	4705184		<0.10	<0.10	NA	< 0.10	111%	50%	140%	74%	60%	130%	83%	50%	140%		
Ethylbenzene	4705184		<0.10	<0.10	NA	< 0.10	91%	50%	140%	73%	60%	130%	81%	50%	140%		
m & p-Xylene	4705184		<0.20	<0.20	NA	< 0.20	119%	50%	140%	74%	60%	130%	83%	50%	140%		
Bromoform	4705184		<0.10	<0.10	NA	< 0.10	101%	50%	140%	98%	60%	130%	118%	50%	140%		
Styrene	4705184		< 0.10	<0.10	NA	< 0.10	114%	50%	140%	76%	60%	130%	75%	50%	140%		
1,1,2,2-Tetrachloroethane	4705184		<0.10	< 0.10	NA	< 0.10	113%	50%	140%	93%	60%	130%	108%	50%	140%		
o-Xylene	4705184		<0.10	<0.10	NA	< 0.10	116%	50%	140%	75%	60%	130%	86%	50%	140%		
1,3-Dichlorobenzene	4705184		<0.10	<0.10	NA	< 0.10	108%	50%	140%	79%	60%	130%	88%	50%	140%		
1,4-Dichlorobenzene	4705184		<0.10	<0.10	NA	< 0.10	104%	50%	140%	81%	60%	130%	91%	50%	140%		
1,2-Dichlorobenzene	4705184		<0.10	<0.10	NA	< 0.10	105%	50%	140%	78%	60%	130%	89%	50%	140%		
n-Hexane	4705184		<0.20	<0.20	NA	< 0.20	98%	50%	140%	103%	60%	130%	89%	50%	140%		
O. Reg. 153(511) - BNA (full) +	- PAHs (Water)																
Naphthalene	4468334		< 0.20	< 0.20	NA	< 0.20	89%	50%	140%	88%	50%	140%	115%	50%	140%		
Acenaphthylene	4468334		< 0.20	< 0.20	NA	< 0.20	76%	50%	140%	94%	50%	140%	98%	50%	140%		
Acenaphthene	4468334		< 0.20	< 0.20	NA	< 0.20	80%	50%	140%	80%	50%	140%	65%	50%	140%		
Fluorene	4468334		< 0.20	< 0.20	NA	< 0.20	105%	50%	140%	105%	50%		67%	50%	140%		
Phenanthrene	4468334		< 0.10	< 0.10	NA	< 0.10	101%	50%	140%	83%	50%	140%	75%	50%	140%		
Anthracene	4468334		< 0.10	< 0.10	NA	< 0.10	87%	50%	140%	101%	50%	140%	90%	50%	140%		
Fluoranthene	4468334		< 0.20	< 0.20	NA	< 0.20	85%		140%	85%	50%		101%	50%			
Pyrene	4468334		< 0.20	< 0.20	NA	< 0.20	76%		140%	93%		140%	98%		1409		
Benzo(a)anthracene	4468334		< 0.20	< 0.20	NA	< 0.20	82%		140%	95%		140%	89%	50%			
Chrysene	4468334		< 0.10	< 0.10	NA	< 0.10	101%		140%	98%		140%	85%	50%	1409		
Benzo(b)fluoranthene	4468334		< 0.10	< 0.10	NA	< 0.10	89%	50%	140%	89%	50%	140%	71%	50%	1409		
Benzo(k)fluoranthene	4468334		< 0.10	< 0.10	NA	< 0.10	89%		140%	88%		140%	92%	50%	140%		
Benzo(a)pyrene	4468334		< 0.10	< 0.10	NA	< 0.10	76%	50%		64%		140%	81%	50%	140%		
Indeno(1,2,3-cd)pyrene	4468334		< 0.01	< 0.01	NA	< 0.20	101%		140%	101%		140%	78%		140%		
nueno(1,2,5-cu)pyrene	4400334		< 0.∠0	< 0.20	INA	< 0.20	10170	JU 70	14070	10170	JU 70	140%	1070	JU 70	140		

AGAT QUALITY ASSURANCE REPORT (V1)

Page 15 of 23

AGAT Laboratories is accredited to ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA) and/or Standards Council of Canada (SCC) for specific tests listed on the scope of accreditation. AGAT Laboratories (Mississauga) is also accredited by the Canadian Association for Laboratory Accreditation Inc. (CALA) for specific drinking water tests. Accreditations are location and parameter specific. A complete listing of parameters for each location is available from www.cala.ca and/or www.scc.ca. The tests in this report may not necessarily be included in the scope of accreditation. RPDs calculated using raw data. The RPD may not be reflective of duplicate values shown, due to rounding of final results.

Quality Assurance

CLIENT NAME: BLUMETRIC ENVIRONMENTAL INC.

AGAT WORK ORDER: 23P990075

PROJECT: 220509

ATTENTION TO: Paul Bandler

SAMPLING SITE: SAMPLED BY:ML

	٦	race	Org	anics	Ana	alysis	(Cor	ntin	ued	l)					
RPT Date: Jan 31, 2023				DUPLICAT	E		REFERE	NCE MA	TERIAL	METHOD	BLANK	SPIKE	MAT	RIX SPI	KE
PARAMETER	Batch	Sample Id	Dup #1	Dup #2	RPD	Method Blank	Measured Value			Recovery	Lie	ptable	Recovery	1 1 1 1 1	ptable
		iu					value	Lower	Upper		Lower	Upper		Lower	Upper
Dibenz(a,h)anthracene	4468334		< 0.20	< 0.20	NA	< 0.20	78%	50%	140%	98%	50%	140%	85%	50%	140%
Benzo(g,h,i)perylene	4468334		< 0.20	< 0.20	NA	< 0.20	88%	50%	140%	89%	50%	140%	99%	50%	140%
Phenol	4468334		< 1.0	< 1.0	NA	< 1.0	89%	30%	130%	108%	30%	130%	86%	30%	130%
Bis(2-chloroethyl)ether	4468334		< 0.5	< 0.5	NA	< 0.5	86%	50%	140%	97%	50%	140%	91%	50%	140%
2-Chlorophenol	4468334		< 0.5	< 0.5	NA	< 0.5	91%	50%	140%	68%	50%	140%	80%	50%	140%
o-Cresol	4468334		< 0.5	< 0.5	NA	< 0.5	80%	50%	140%	64%	50%	140%	102%	50%	140%
Bis(2-chloroisopropyl)ether	4468334		< 0.5	< 0.5	NA	< 0.5	102%	50%	140%	83%	50%	140%	67%	50%	140%
m&p-Cresol	4468334		< 0.6	< 0.6	NA	< 0.6	68%	50%	140%	105%	50%	140%	98%	50%	140%
2,4-Dimethylphenol	4468334		< 0.5	< 0.5	NA	< 0.5	94%	30%	130%	98%	30%	130%	106%	30%	130%
2,4-Dichlorophenol	4468334		< 0.3	< 0.3	NA	< 0.3	83%	50%	140%	76%	50%	140%	98%	50%	140%
1,2,4-Trichlorobenzene	4468334		< 0.5	< 0.5	NA	< 0.5	61%	50%	140%	112%	50%	140%	88%	50%	140%
p-Chloroaniline	4468334		< 1.0	< 1.0	NA	< 1.0	86%	30%	130%	91%	30%	130%	73%	30%	130%
2,4,6-Trichlorophenol	4468334		< 0.20	< 0.20	NA	< 0.20	88%	50%	140%	68%	50%	140%	89%	50%	140%
2,4,5-Trichlorophenol	4468334		< 0.20	< 0.20	NA	< 0.20	91%	50%	140%	91%	50%	140%	76%	50%	140%
1,1'-Biphenyl	4468334		< 0.50	< 0.50	NA	< 0.50	80%	50%	140%	83%	50%	140%	88%	50%	140%
Dimethyl phthalate	4468334		< 0.50	< 0.50	NA	< 0.50	102%	50%	140%	64%	50%	140%	106%	50%	140%
Diethyl phthalate	4468334		< 0.50	< 0.50	NA	< 0.50	56%	50%	140%	64%	50%	140%	67%	50%	140%
Pentachlorophenol	4468334		< 0.50	< 0.50	NA	< 0.50	89%	50%	140%	89%	50%	140%	67%	50%	140%
3,3'-dichlorobenzidine	4468334		< 0.50	< 0.50	NA	< 0.50	88%	30%	130%	91%	30%	130%	73%	30%	130%
Bis(2-Ethylhexyl)phthalate	4468334		< 0.50	< 0.50	NA	< 0.50	89%	50%	140%	105%	50%	140%	71%	50%	140%
2,4-Dinitrophenol	4468334		< 10	< 10	NA	< 10	84%	30%	130%	67%	30%	130%	98%	30%	130%

Comments: When the average of the sample and duplicate results is less than 5x the RDL, the Relative Percent Difference (RPD) will be indicated as Not Applicable (NA).

Certified By:

AGAT QUALITY ASSURANCE REPORT (V1)

Page 16 of 23

Quality Assurance

CLIENT NAME: BLUMETRIC ENVIRONMENTAL INC.

AGAT WORK ORDER: 23P990075

PROJECT: 220509

ATTENTION TO: Paul Bandler

SAMPLING SITE: SAMPLED BY:ML

						7/ (1711		I .IVIL					
		Wate	er Ar	nalys	is								
		UPLICATI	Ē		REFEREN	NCE MA	TERIAL	METHOD	BLANK	SPIKE	MAT	RIX SPI	KE
Batch Sample	Dup #1	Dup #2	RPD	Method Blank	Measured			Recovery	Lin		Recovery	Lin	ptable nits
la la		.			value	Lower Upper			Lower	Upper	,	Lower	Upper
organics (Water)				,									
4704289	<1.0	<1.0	NA	< 1.0	99%	70%	130%	109%	80%	120%	102%	70%	130%
4704289	<1.0	1.2	NA	< 1.0	94%	70%	130%	101%	80%	120%	97%	70%	130%
4704289	230	222	3.6%	< 2.0	100%	70%	130%	111%	80%	120%	99%	70%	130%
4704289	< 0.50	< 0.50	NA	< 0.50	92%	70%	130%	102%	80%	120%	105%	70%	130%
4704289	78.5	82.5	5.0%	< 10.0	99%	70%	130%	107%	80%	120%	107%	70%	130%
4704289	<0.20	<0.20	NA	< 0.20	101%	70%	130%	102%	80%	120%	98%	70%	130%
4704289	<2.0	<2.0	NA	< 2.0	99%	70%	130%	100%	80%	120%	93%	70%	130%
4704289	< 0.50	0.76	NA	< 0.50	102%	70%	130%	96%	80%	120%	94%	70%	130%
4704289	<1.0	<1.0	NA	< 1.0	99%	70%	130%	97%	80%	120%	89%	70%	130%
4704289	<0.50	<0.50	NA	< 0.50	96%	70%	130%	104%	80%	120%	99%	70%	130%
4704289	1.95	1.40	NA	< 0.50	102%	70%	130%	100%	80%	120%	97%	70%	130%
4704289	4.2	2.7	NA	< 1.0	102%	70%	130%	97%	80%	120%	94%	70%	130%
4704289	10	<10	NA	< 1.0	97%	70%	130%	100%	80%	120%	98%	70%	130%
4704289	<0.20	< 0.20	NA	< 0.20	103%	70%	130%	97%	80%	120%	89%	70%	130%
4704289	<0.30	< 0.30	NA	< 0.30	97%	70%	130%	106%	80%	120%	101%	70%	130%
4704289	1.15	1.18	NA	< 0.50	98%	70%	130%	108%	80%	120%	103%	70%	130%
4704289	< 0.40	< 0.40	NA	< 0.40	103%	70%	130%	103%	80%	120%	98%	70%	130%
4704289	16.6	19.8	NA	< 5.0	102%	70%	130%	100%	80%	120%	89%	70%	130%
4705555 4705555	< 0.02	< 0.02	NA	< 0.02	102%	70%	130%	103%	80%	120%	98%	70%	130%
4705023	<2	<2	NA	< 2	102%	70%	130%	92%	80%	120%	101%	70%	130%
4705017	<2	<2	NA	< 2	96%	70%	130%	104%	80%	120%	103%	70%	130%
4704289	166000	171000	3.2%	< 50	107%	70%	130%	113%	80%	120%	108%	70%	130%
4705580 4705580	83500	87700	5.0%	< 100	95%	70%	130%	97%	80%	120%	103%	70%	130%
4703317	698	707	1.2%	< 2	106%	90%	110%						
4703317	7.65	7.75	1.3%	NA	100%	90%	110%						
	organics (Water) 4704289 4705555 4705023	Batch Sample Id Dup #1 organics (Water) 4704289	Batch Sample Id Dup #1 Dup #2 organics (Water) 4704289 <1.0	Batch Sample Id Dup #1 Dup #2 RPD organics (Water) 4704289 <1.0	DUPLICATE Dup #1 Dup #2 RPD Method Blank	Batch Sample Id Dup #1 Dup #2 RPD Method Blank Measured Value organics (Water) 4704289 <1.0	Water Analysis DUPLICATE Method Blank REFERENCE Measured Value Acce Light Lower organics (Water) 4704289 <1.0	DUPLICATE	DUPLICATE	Batch Sample Dup #1 Dup #2 RPD Method Blank Measured Acceptable Limits Lower Upper Dup #2 RPD Method Blank Measured Lower Upper Acceptable Limits Lower Upper Dup #2 RPD Method Dup #3 Acceptable Limits Dup #3 Acceptable Dup #3 Acceptable Dup #3 Acceptable Dup #3 Acceptable Dup #3 Dup	DUPLICATE	Batch Sample Dup #1 Dup #2 RPD	Batch Sample Dup #1 Dup #2 RPD Method Blank Measured Acceptable Limits Lower Upper Limits Lower Upper Upper

Comments: NA signifies Not Applicable.

Duplicate NA: results are under 5X the RDL and will not be calculated.

Method Summary

CLIENT NAME: BLUMETRIC ENVIRONMENTAL INC. AGAT WORK ORDER: 23P990075
PROJECT: 220509 ATTENTION TO: Paul Bandler

SAMPLING SITE: SAMPLED BY:ML							
PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE				
Trace Organics Analysis							
Naphthalene	ORG-91-5114	modified from EPA 3510C, 8270E & ON MOECC E3265	GC/MS				
Acenaphthylene	ORG-91-5114	modified from EPA 3510C, 8270E & ON MOECC E3265	GC/MS				
Acenaphthene	ORG-91-5114	modified from EPA 3510C, 8270E & ON MOECC E3265	GC/MS				
Fluorene	ORG-91-5114	modified from EPA 3510C, 8270E & ON MOECC E3265	GC/MS				
Phenanthrene	ORG-91-5114	modified from EPA 3510C, 8270E & ON MOECC E3265	GC/MS				
Anthracene	ORG-91-5114	modified from EPA 3510C, 8270E & ON MOECC E3265	GC/MS				
Fluoranthene	ORG-91-5114	modified from EPA 3510C, 8270E & ON MOECC E3265	GC/MS				
Pyrene	ORG-91-5114	modified from EPA 3510C, 8270E & ON MOECC E3265	GC/MS				
Benzo(a)anthracene	ORG-91-5114	modified from EPA 3510C, 8270E & ON MOECC E3265	GC/MS				
Chrysene	ORG-91-5114	modified from EPA 3510C, 8270E & ON MOECC E3265	GC/MS				
Benzo(b)fluoranthene	ORG-91-5114	modified from EPA 3510C, 8270E & ON MOECC E3265	GC/MS				
Benzo(k)fluoranthene	ORG-91-5114	modified from EPA 3510C, 8270E & ON MOECC E3265	GC/MS				
Benzo(a)pyrene	ORG-91-5114	modified from EPA 3510C, 8270E & ON MOECC E3265	GC/MS				
Indeno(1,2,3-cd)pyrene	ORG-91-5114	modified from EPA 3510C, 8270E & ON MOECC E3265	GC/MS				
Dibenz(a,h)anthracene	ORG-91-5114	modified from EPA 3510C and EPA 8270E	GC/MS				
Benzo(g,h,i)perylene	ORG-91-5114	modified from EPA 3510C, 8270E & ON MOECC E3265	GC/MS				
Phenol	ORG-91-5114	modified from EPA 3510C, 8270E & ON MOECC E3265	GC/MS				
Bis(2-chloroethyl)ether	ORG-91-5114	modified from EPA 3510C, 8270E & ON MOECC E3265	GC/MS				
2-Chlorophenol	ORG-91-5114	modified from EPA 3510C, 8270E & ON MOECC E3265	GC/MS				
o-Cresol	ORG-91-5114	modified from EPA 3510C, 8270E & ON MOECC E3265	GC/MS				
Bis(2-chloroisopropyl)ether	ORG-91-5114	modified from EPA 3510C, 8270E & ON MOECC E3265	GC/MS				
m&p-Cresol	ORG-91-5114	modified from EPA 3510C, 8270E & ON MOECC E3265	GC/MS				
2,4-Dimethylphenol	ORG-91-5114	modified from EPA 3510C, 8270E & ON MOECC E3265	GC/MS				
2,4-Dichlorophenol	ORG-91-5114	modified from EPA 3510C, 8270E & ON MOECC E3265	GC/MS				
1,2,4-Trichlorobenzene	ORG-91-5114	modified from EPA 3510C, 8270E & ON MOECC E3265	GC/MS				
p-Chloroaniline	ORG-91-5114	modified from EPA 3510C, 8270E & ON MOECC E3265	GC/MS				
2-and 1-methyl Naphthalene	ORG-91-5114	modified from EPA 3510C, 8270E & ON MOECC E3265	CALCULATION				

Method Summary

CLIENT NAME: BLUMETRIC ENVIRONMENTAL INC. AGAT WORK ORDER: 23P990075
PROJECT: 220509 ATTENTION TO: Paul Bandler

SAMPLING SITE.		SAIVIPLED BY.IVIL	=
PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE
2,4,6-Trichlorophenol	ORG-91-5114	modified from EPA 3510C, 8270E & ON MOECC E3265	GC/MS
2,4,5-Trichlorophenol	ORG-91-5114	modified from EPA 3510C, 8270E & ON MOECC E3265	GC/MS
1,1'-Biphenyl	ORG-91-5114	modified from EPA 3510C, 8270E & ON MOECC E3265	GC/MS
Dimethyl phthalate	ORG-91-5114	modified from EPA 3510C, 8270E & ON MOECC E3265	GC/MS
2,4 and 2,6-Dinitrotoluene	ORG-91-5114	modified from EPA 3510C, 8270E & ON MOECC E3265	CALCULATION
Diethyl phthalate	ORG-91-5114	modified from EPA 3510C, 8270E & ON MOECC E3265	GC/MS
Pentachlorophenol	ORG-91-5114	modified from EPA 3510C, 8270E & ON MOECC E3265	GC/MS
3,3'-dichlorobenzidine	ORG-91-5114	modified from EPA 3510C, 8270E & ON MOECC E3265	GC/MS
Bis(2-Ethylhexyl)phthalate	ORG-91-5114	modified from EPA 3510C, 8270E & ON MOECC E3265	GC/MS
2,4-Dinitrophenol	ORG-91-5114	modified from EPA 3510C, 8270E & ON MOECC E3265	GC/MS
2-Fluorophenol	ORG-91-5114	modified from EPA 3510C, 8270E & ON MOECC E3265	GC/MS
phenol-d6 surrogate	ORG-91-5114	modified from EPA 3510C, 8270E & ON MOECC E3265	GC/MS
2,4,6-Tribromophenol	ORG-91-5114	modified from EPA 3510C, 8270E & ON MOECC E3265	GC/MS
Chrysene-d12	ORG-91-5114	modified from EPA 3510C, 8270E & ON MOECC E3265	GC/MS
Sediment			N/A
Naphthalene	ORG-91-5105	modified from EPA 3510C and EPA 8270E	GC/MS
Acenaphthylene	ORG-91-5105	modified from EPA 3510C and EPA 8270E	GC/MS
Acenaphthene	ORG-91-5105	modified from EPA 3510C and EPA 8270E	GC/MS
Fluorene	ORG-91-5105	modified from EPA 3510C and EPA 8270E	GC/MS
Phenanthrene	ORG-91-5105	modified from EPA 3510C and EPA 8270E	GC/MS
Anthracene	ORG-91-5105	modified from EPA 3510C and EPA 8270E	GC/MS
Fluoranthene	ORG-91-5105	modified from EPA 3510C and EPA 8270E	GC/MS
Pyrene	ORG-91-5105	modified from EPA 3510C and EPA 8270E	GC/MS
Benzo(a)anthracene	ORG-91-5105	modified from EPA 3510C and EPA 8270E	GC/MS
Chrysene	ORG-91-5105	modified from EPA 3510C and EPA 8270E	GC/MS
Benzo(b)fluoranthene	ORG-91-5105	modified from EPA 3510C and EPA 8270E	GC/MS
Benzo(k)fluoranthene	ORG-91-5105	modified from EPA 3510C and EPA 8270E	GC/MS
Benzo(a)pyrene	ORG-91-5105	modified from EPA 3510C and EPA 8270E	GC/MS

Method Summary

CLIENT NAME: BLUMETRIC ENVIRONMENTAL INC. AGAT WORK ORDER: 23P990075
PROJECT: 220509 ATTENTION TO: Paul Bandler

PARAMETER	AGAT S.O.P	S.O.P LITERATURE REFERENCE ANALYTICA				
Indeno(1,2,3-cd)pyrene	ORG-91-5105	modified from EPA 3510C and EPA 8270E	GC/MS			
Dibenz(a,h)anthracene	ORG-91-5105	modified from EPA 3510C and EPA 8270E	GC/MS			
Benzo(g,h,i)perylene	ORG-91-5105	modified from EPA 3510C and EPA 8270E	GC/MS			
2-and 1-methyl Naphthalene	ORG-91-5105	modified from EPA 3510C and EPA 8270E	GC/MS			
Naphthalene-d8	ORG-91-5105	modified from EPA 3510C and EPA 8270E	GC/MS			
Acridine-d9	ORG-91-5105	modified from EPA 3510C and EPA 8270E	GC/MS			
Terphenyl-d14	ORG-91-5105	modified from EPA 3510C and EPA 8270E	GC/MS			
Polychlorinated Biphenyls	ORG-91-5112	modified from EPA SW-846 3510 & 8082A	GC/ECD			
Decachlorobiphenyl	ORG-91-5112	modified from EPA SW-846 3510 & 8082A	GC/ECD			
F1 (C6-C10)	VOL-91-5010	modified from MOE PHC-E3421	(P&T)GC/FID			
F1 (C6 to C10) minus BTEX	VOL-91-5010	modified from MOE PHC-E3421	P&T GC/FID			
Toluene-d8	VOL-91- 5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS			
F2 (C10 to C16)	VOL-91-5010	modified from MOE PHC-E3421	GC/FID			
F2 (C10 to C16) minus Naphthalene	VOL-91-5010	modified from MOE PHC-E3421	GC/FID			
F3 (C16 to C34)	VOL-91-5010	modified from MOE PHC-E3421	GC/FID			
F3 (C16 to C34) minus PAHs	VOL-91-5010	modified from MOE PHC-E3421	GC/FID			
F4 (C34 to C50)	VOL-91-5010	modified from MOE PHC-E3421	GC/FID			
Gravimetric Heavy Hydrocarbons	VOL-91-5010	modified from MOE PHC-E3421	BALANCE			
Terphenyl	VOL-91-5010	modified from MOE PHC-E3421	GC/FID			
Dichlorodifluoromethane	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS			
Vinyl Chloride	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS			
Bromomethane	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS			
Trichlorofluoromethane	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS			
Acetone	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS			
1,1-Dichloroethylene	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS			
Methylene Chloride	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS			
trans- 1,2-Dichloroethylene	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS			
Methyl tert-butyl ether	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS			
1,1-Dichloroethane	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS			
Methyl Ethyl Ketone	VOL-91-5001	modified from EPA 5030B & EPA (P&T)GC/MS 8260D				
cis- 1,2-Dichloroethylene	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS			
Chloroform	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS			

Method Summary

CLIENT NAME: BLUMETRIC ENVIRONMENTAL INC. AGAT WORK ORDER: 23P990075
PROJECT: 220509 ATTENTION TO: Paul Bandler

AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE
VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
	VOL-91-5001	VOL-91-5001 modified from EPA 5030B & EPA 8260D VOL

5835 COOPERS AVENUE TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

MISSISSAUGA, ONTARIO CANADA L4Z 1Y2

Method Summary

CLIENT NAME: BLUMETRIC ENVIRONMENTAL INC. AGAT WORK ORDER: 23P990075 PROJECT: 220509 ATTENTION TO: Paul Bandler

PARAMETER // 4-Bromofluorobenzene VOL-91-	2001	LITERATURE REFERENCE modified from EPA 5030B & EPA	ANALYTICAL TECHNIQUE	
4-Bromofluorobenzene VOL-91-	2001	modified from EPA 5030B & EPA	J	
		8260D	(P&T)GC/MS	
Water Analysis				
Dissolved Antimony MET-93-	-n 103	modified from EPA 200.8 and EPA 3005A	ICP-MS	
Dissolved Arsenic MET-93-	-n 103	modified from EPA 200.8 and EPA 3005A	ICP-MS	
Dissolved Barium MET-93-	·6103	modified from EPA 200.8 and EPA 3005A	ICP-MS	
Dissolved Beryllium MET-93-	h103	modified from EPA 200.8 and EPA 3005A	ICP-MS	
Dissolved Boron MET-93-	h103	modified from EPA 200.8 and EPA 3005A	ICP-MS	
Dissolved Cadmium MET-93-	-n 103	modified from EPA 200.8 and EPA 3005A	ICP-MS	
Dissolved Chromium MET-93-	-n 103	modified from EPA 200.8 and EPA 3005A	ICP-MS	
Dissolved Cobalt MET-93-		modified from EPA 200.8 and EPA 3005A	ICP-MS	
Dissolved Copper MET-93-		modified from EPA 200.8 and EPA 3005A	ICP-MS	
Dissolved Lead MET-93-		modified from EPA 200.8 and EPA 3005A	ICP-MS	
Dissolved Molybdenum MET-93-	h103	modified from EPA 200.8 and EPA 3005A	ICP-MS	
Dissolved Nickel MET-93-		modified from EPA 200.8 and EPA 3005A	ICP-MS	
Dissolved Selenium MET-93-	h103	modified from EPA 200.8 and EPA 3005A	ICP-MS	
Dissolved Silver MET-93-		modified from EPA 200.8 and EPA 3005A	ICP-MS	
Dissolved Thallium MET-93-	h103	modified from EPA 200.8 and EPA 3005A	ICP-MS	
Dissolved Uranium MET-93-	n103	modified from EPA 200.8 and EPA 3005A	ICP-MS	
Dissolved Vanadium MET-93-	-6103	3005A	ICP-MS	
Dissolved Zinc MET-93-	-0103	3005A	ICP-MS	
Mercury MET-93-	-6100	modified from EPA 245.2 and SM 3112 B	CVAAS	
Chromium VI INOR-93			LACHAT FIA	
Cyanide, WAD INOR-93		modified from ON MOECC E3015, SM 4500-CN- I, G-387	TECHNICON AUTO ANALYZER	
Dissolved Sodium MET-93-	·6103	modified from EPA 200.8 and EPA ICP/MS 3005A		
Chloride INOR-93	3-6004	modified from SM 4110 B	ION CHROMATOGRAPH	
Electrical Conductivity INOR-93			PC TITRATE	
pH INOR-93	3-6000	modified from SM 4500-H+ B	PC TITRATE	

A G	an	ı I al	3.8,3	4,39	3 large loose ice es 4.3,4.44.8h.s	M 905.7:	58 lississaug 12.5100	35 Coc a, Onta Fax: 90	pers A rio L4 05 712	venue Z 1Y2 .5122		.abora	_		_	990075	5	
Chain of Custody Reco		Var -			iking Water Chain of Custody Form (potable	d:	6	_		s com		Cooler Qu			E	3.918.2	186	2
Report Information: Company:	c Enviro	nmental	Inc	Reg (Please	gulatory Requirements: e check all applicable boxes)						11	custody s	7	act:	Y	es	□n/	/A
Address: U Caran Kingst	agui St.			— Та	egulation 153/04	-	Prov. 1	tary Region Water (m	Re	ırnard egular ush TA	TAT		[XÎ 5	(i) Required:	rs	
1. Email: phandler 2. Email: mlloyd	1 .			- -	Texture (Check One) Coarse CCME		Other	ives (F				LJ D	Busines ays R Date			2 Business Days Says Surcharges May	Next Busine Day Apply):	388
Project Information: Project: 72050 Site Location: 8 April 10 Apri	Bellevil	e	100	Re	s this submission for a cord of Site Condition? Yes No	Cei	eport G rtificate Yes	of A		sis			AT is exc	clusive	of wee	or notification for ru ekends and statuto lease contact your	ry holidays	
Sampled By: AGAT Quote #: 747248 Please note: If quotation numb Invoice Information: Company: Contact: Address:		be billed full price for a		B GW O P S	mple Matrix Legend Biota Ground Water Oil Paint Soil	ed Metals, Hg. Crvi., DOC		g 153				Landfill Disposal Characterization TCLP: 35.0 TCLP: □ M&I □ VOCs □ ABNs □ 即はPPCBs 智麗	Rainwater ocs □svo	stenzation Package BTEX, F1-F4	e Moisture □ Suiphide □	IBMs		s or High Concentration (Y/N)
Email: ap 5 blo	Date	Time	# of	SD SW	Sediment Surface Water Comments/	Field Filtered	& Inorga	F1-F4 PH		SB C	Aroclors	Landfill Disposal Cl TCLP: ☐M&I ☐VOC	Soils J Meta	Excess Solls Charac ph, ICPMS Metals,	Corrosivity: Include Moisture	S.d.		entially Hazardou
Sample Identification	Sampled	Sampled	Containers	Matrix	Special Instructions			Metals 8TEX.	PAHs	PCBs VOC	Aro	Lan Tot	SPL	₩ E		0		Pote
MWIZI	23-01-19	8:55 AM		GW		Y	V	V	V	V				Щ				_
MW 128R MW 201		10,10 AM 11,45 AM		GW		6	7	V	100	V	,		- 5					-
Mw 202		12:55 AM		GW		Y	V	V	_	VV	191		360			V		
MW 237		14.10 AM		GW		Y	V	V	V	VV	W		UL.			J 101		
MW203				GW		Y	V	V	U	VV								ij
MW204		15:35 AM PM AM PM	18	GW		Y	V	V		20						V		
GW-Dupl	\$	AM PM AM PM AM PM		GW		Y	V	V	V									
Samples Rollinguished By (Print Name and Signi	an	PM AM PM		:00 am	Samples Received By (Print Name and Sign): Vann Sorts	1	1	1		Date On 2	10/0	Time	841					
Samples Refinquished By (Print Name and Sign): Samples Refinquished By (Print Name and Sign):		an 20/2		600-	Samples Received By (Brint Name and Side):	1	1			Dale	21/2	3 Time	10: ho	AN	No.	Page of	207	

Document ID: DIV-78-1511.022

Nº: **T** −

CLIENT NAME: BLUMETRIC ENVIRONMENTAL INC. 4 Cataraqui Street Kingston, ON K7K1Z7

(613) 531-2725

ATTENTION TO: Paul Bandler

PROJECT: 220509

AGAT WORK ORDER: 23P990590

TRACE ORGANICS REVIEWED BY: Roza Makhtari, Chimiste, AGAT Montréal WATER ANALYSIS REVIEWED BY: Amanjot Bhela, Inorganic Lab Manager

DATE REPORTED: Feb 02, 2023

PAGES (INCLUDING COVER): 24 VERSION*: 1

Should you require any information regarding this analysis please contact your client services representative at (905) 712-5100

-	<u>Notes</u>

Disclaimer:

- All work conducted herein has been done using accepted standard protocols, and generally accepted practices and methods. AGAT test methods may
 incorporate modifications from the specified reference methods to improve performance.
- All samples will be disposed of within 30 days after receipt unless a Long Term Storage Agreement is signed and returned. Some specialty analysis may
 be exempt, please contact your Client Project Manager for details.
- AGAT's liability in connection with any delay, performance or non-performance of these services is only to the Client and does not extend to any other
 third party. Unless expressly agreed otherwise in writing, AGAT's liability is limited to the actual cost of the specific analysis or analyses included in the
 services.
- This Certificate shall not be reproduced except in full, without the written approval of the laboratory.
- The test results reported herewith relate only to the samples as received by the laboratory.
- Application of guidelines is provided "as is" without warranty of any kind, either expressed or implied, including, but not limited to, warranties of
 merchantability, fitness for a particular purpose, or non-infringement. AGAT assumes no responsibility for any errors or omissions in the guidelines
 contained in this document.
- All reportable information as specified by ISO/IEC 17025:2017 is available from AGAT Laboratories upon request.

AGAT Laboratories (V1)

Page 1 of 24

Member of: Association of Professional Engineers and Geoscientists of Alberta (APEGA)

Western Enviro-Agricultural Laboratory Association (WEALA) Environmental Services Association of Alberta (ESAA) AGAT Laboratories is accredited to ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA) and/or Standards Council of Canada (SCC) for specific tests listed on the scope of accreditation. AGAT Laboratories (Mississauga) is also accredited by the Canadian Association for Laboratory Accreditation Inc. (CALA) for specific drinking water tests. Accreditations are location and parameter specific. A complete listing of parameters for each location is available from www.cala.ca and/or www.scc.ca. The tests in this report may not necessarily be included in the scope of accreditation. Measurement Uncertainty is not taken into consideration when stating conformity with a specified requirement.

SAMPLING SITE:

Certificate of Analysis

AGAT WORK ORDER: 23P990590

PROJECT: 220509

ATTENTION TO: Paul Bandler

SAMPLED BY:

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

Formaldéhyde	(eau)
--------------	-------

Formaldenyde (eau)											
DATE RECEIVED: 2023-01-23							DATE REPORTED: 2023-02-02				
		SAMPLE DES	CRIPTION:	MW215	GW-Dup2	MW207					
		SAM	PLE TYPE:	Water	Water	Water					
		DATE SAMPLED:			2023-01-23	2023-01-23 10:15	3				
Parameter	Unit	G/S	RDL	4722042	4722050	4722051					
Formaldéhyde	μg/L		10	<10	<10	<10					
Surrogate	Unit	Acceptable Limits									
2,3,5,6-Tétrafluorobenzaldéhyde	%	40-	140	115	115	116					

RDL - Reported Detection Limit; G / S - Guideline / Standard Comments:

Analysis performed at AGAT Montréal (unless marked by *)

⁴⁷²²⁰⁴²⁻⁴⁷²²⁰⁵¹ Une LDR plus élevée indique qu'une dilution a été effectuée afin de réduire la concentration des analytes ou de réduire l'interférence de la matrice.

SAMPLING SITE:

Certificate of Analysis

AGAT WORK ORDER: 23P990590

PROJECT: 220509

ATTENTION TO: Paul Bandler

SAMPLED BY:

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

O. Reg. 153(511) - BNA (full) + PAHs (Water)

DATE RECEIVED: 2023-01-23								[DATE REPORTE	ED: 2023-02-02	
		SAMPLE DESC	CRIPTION:	MW215	Field Blank	GW-Dup2	MW207	MW205	MW235	MW234	MW228
		SAMF	PLE TYPE:	Water	Water	Water	Water	Water	Water	Water	Water
		DATE S	SAMPLED:	2023-01-23	2023-01-23	2023-01-23	2023-01-23	2023-01-23	2023-01-23	2023-01-23	2023-01-23
		2 / 2		08:40	08:00		10:15	12:00	13:30	15:00	16:30
Parameter	Unit	G/S	RDL	4722042	4722048	4722050	4722051	4722054	4722055	4722056	4722057
Naphthalene	μg/L	7	0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20
Acenaphthylene	μg/L	1	0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20
Acenaphthene	μg/L	17	0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20
Fluorene	μg/L	290	0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20
Phenanthrene	μg/L	380	0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
Anthracene	μg/L	1	0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
Fluoranthene	μg/L	44	0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20
Pyrene	μg/L	5.7	0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20
Benzo(a)anthracene	μg/L	1.8	0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20
Chrysene	μg/L	0.7	0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
Benzo(b)fluoranthene	μg/L	0.75	0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
Benzo(k)fluoranthene	μg/L	0.4	0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
Benzo(a)pyrene	μg/L	0.81	0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Indeno(1,2,3-cd)pyrene	μg/L	0.2	0.20	0.50	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20
Dibenz(a,h)anthracene	μg/L	0.4	0.20	0.57	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20
Benzo(g,h,i)perylene	μg/L	0.2	0.20	0.63	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20
Phenol	μg/L	9600	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Bis(2-chloroethyl)ether	μg/L	240000	0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
2-Chlorophenol	μg/L	2600	0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
o-Cresol	μg/L		0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Bis(2-chloroisopropyl)ether	μg/L	20000	0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
m&p-Cresol	μg/L		0.6	<0.6	<0.6	<0.6	<0.6	<0.6	<0.6	<0.6	<0.6
2,4-Dimethylphenol	μg/L	31000	0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
2,4-Dichlorophenol	μg/L	3700	0.3	<0.3	<0.3	<0.3	<0.3	<0.3	< 0.3	<0.3	<0.3
1,2,4-Trichlorobenzene	μg/L		0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
p-Chloroaniline	μg/L	320	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
2-and 1-methyl Naphthalene	μg/L	1500	0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20
2,4,6-Trichlorophenol	μg/L	180	0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20
2,4,5-Trichlorophenol	μg/L	1300	0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20

Certificate of Analysis

AGAT WORK ORDER: 23P990590

PROJECT: 220509

SAMPLED BY:

ATTENTION TO: Paul Bandler

O. Reg. 153(511) - BNA (full) + PAHs (Water)

DATE RECEIVED: 2023-01-23								[DATE REPORT	ED: 2023-02-02	
		SAMPLE DES	CRIPTION:	MW215	Field Blank	GW-Dup2	MW207	MW205	MW235	MW234	MW228
		SAM	PLE TYPE:	Water	Water	Water	Water	Water	Water	Water	Water
		DATE	SAMPLED:	2023-01-23 08:40	2023-01-23 08:00	2023-01-23	2023-01-23 10:15	2023-01-23 12:00	2023-01-23 13:30	2023-01-23 15:00	2023-01-23 16:30
Parameter	Unit	G/S	RDL	4722042	4722048	4722050	4722051	4722054	4722055	4722056	4722057
1,1'-Biphenyl	μg/L	1000	0.50	<0.50	<0.50	< 0.50	<0.50	<0.50	<0.50	<0.50	<0.50
Dimethyl phthalate	μg/L	30	0.50	< 0.50	<0.50	<0.50	<0.50	<0.50	< 0.50	<0.50	< 0.50
2,4 and 2,6-Dinitrotoluene	μg/L	2300	0.50	<0.50	<0.50	<0.50	< 0.50	<0.50	< 0.50	<0.50	< 0.50
Diethyl phthalate	μg/L	30	0.50	<0.50	<0.50	<0.50	< 0.50	<0.50	< 0.50	<0.50	< 0.50
Pentachlorophenol	μg/L	50	0.50	<0.50	<0.50	<0.50	< 0.50	<0.50	< 0.50	<0.50	< 0.50
3,3'-dichlorobenzidine	μg/L	500	0.50	< 0.50	< 0.50	<0.50	< 0.50	<0.50	< 0.50	<0.50	< 0.50
Bis(2-Ethylhexyl)phthalate	μg/L	30	0.50	< 0.50	< 0.50	<0.50	< 0.50	<0.50	< 0.50	<0.50	< 0.50
2,4-Dinitrophenol	μg/L	9000	10	<10	<10	<10	<10	<10	<10	<10	<10
Sediment				NO	NO	NO	NO	NO	NO	NO	NO
Surrogate	Unit	Acceptab	le Limits								
2-Fluorophenol	%	50-	140	81	77	79	86	79	89	89	71
phenol-d6 surrogate	%	50-	140	72	91	80	97	86	76	77	76
2,4,6-Tribromophenol	%	50-1	140	104	86	105	76	102	77	68	86
Chrysene-d12	%	50-1	140	76	80	113	81	97	90	106	83

Comments:

RDL - Reported Detection Limit; G / S - Guideline / Standard: Refers to Table 7: Generic Site Condition Standards for Shallow Soils in a Non-Potable Ground Water Condition - Non-Potable Ground Water - All Types of Property Uses - Coarse Textured Soils Guideline values are for general reference only. The guidelines provided may or may not be relevant for the intended use. Refer directly to the applicable standard for regulatory interpretation.

SAMPLING SITE:

4722042-4722057 To meet the MOE Reporting limits the sample extract was analysed using two separate GC/MS methods. The full scan BNA method is capable of detecting most of the compounds at the RDLs except for several PAHs. The PAHs were analysed using a SIM mode GC/MS method.

Note: The result for Benzo(b)Fluoranthene is the total of the Benzo(b)&(j)Fluoranthene isomers because the isomers co-elute on the GC column.

Sediment parameter is comment only based on visual inspection of the sample prior to extraction and is not an accredited test.

Legend: 1 = no sediment present; 2 = sediment present; 3 = sediment present in trace amount

Analysis performed at AGAT Toronto (unless marked by *)

5835 COOPERS AVENUE

MISSISSAUGA, ONTARIO CANADA L4Z 1Y2

http://www.agatlabs.com

TEL (905)712-5100 FAX (905)712-5122

SAMPLING SITE:

Certificate of Analysis

AGAT WORK ORDER: 23P990590

PROJECT: 220509

ATTENTION TO: Paul Bandler

SAMPLED BY:

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

\sim	_	450/544	D0D	// // / /
U.	Rea.	153(511)	- PCBS	(vvater)

C. (10) 100(011) 1 000 (Water)												
DATE RECEIVED: 2023-01-23 DATE REPORTED: 2023-02-02												
		SAMPLE DES	CRIPTION:	MW215	Field Blank	GW-Dup2	MW207	MW205	MW235	MW234	MW228	
		SAMPLE TYPE: DATE SAMPLED:			Water 2023-01-23 08:00	Water 2023-01-23	Water 2023-01-23 10:15	Water 2023-01-23 12:00	Water 2023-01-23 13:30	Water 2023-01-23 15:00	Water 2023-01-23 16:30	
Parameter	Unit	G/S	RDL	4722042	4722048	4722050	4722051	4722054	4722055	4722056	4722057	
Polychlorinated Biphenyls	μg/L	0.2	0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	
Surrogate	Unit	Acceptab	ole Limits									
Decachlorobiphenyl	%	60-	140	71	81	89	74	77	82	80	80	

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard: Refers to Table 7: Generic Site Condition Standards for Shallow Soils in a Non-Potable Ground Water Condition - Non-Potable Ground Water - All Types of Property Uses - Coarse Textured Soils

Guideline values are for general reference only. The guidelines provided may or may not be relevant for the intended use. Refer directly to the applicable standard for regulatory interpretation.

4722042-4722057 PCB total is a calculated parameter. The calculated value is the sum of Aroclor 1242, Aroclor 1248, Aroclor 1254 and Aroclor 1260.

The calculated parameter is non-accredited. The parameters that are components of the calculation are accredited.

Analysis performed at AGAT Toronto (unless marked by *)

Roza Mokhtari 2013-120

Certificate of Analysis

AGAT WORK ORDER: 23P990590

PROJECT: 220509

ATTENTION TO: Paul Bandler

SAMPLED BY:

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

CLIENT NAME: BLUMETRIC ENVIRONMENTAL INC.

SAMPLING SITE:

		O. R	Reg. 150	3(511) - PH	Cs F1 - F4 (with PAHs	and VOC) (Water)			
DATE RECEIVED: 2023-01-23								[DATE REPORTI	ED: 2023-02-02	
	S	SAMPLE DESCRIPTION: SAMPLE TYPE: DATE SAMPLED:		MW215 Water 2023-01-23 08:40	Field Blank Water 2023-01-23 08:00	GW-Dup2 Water 2023-01-23	MW207 Water 2023-01-23 10:15	MW205 Water 2023-01-23 12:00	MW235 Water 2023-01-23 13:30	MW234 Water 2023-01-23 15:00	MW228 Water 2023-01-23 16:30
Parameter	Unit	G/S	RDL	4722042	4722048	4722050	4722051	4722054	4722055	4722056	4722057
F1 (C6-C10)	μg/L		25	<25	<25	<25	72	329	<25	<25	<25
F1 (C6 to C10) minus BTEX	μg/L	420	25	<25	<25	<25	<25	<25	<25	<25	<25
F2 (C10 to C16)	μg/L	150	100	<100	<100	<100	<100	<100	<100	<100	<100
F2 (C10 to C16) minus Naphthalene	μg/L		100	<100	<100	<100	<100	<100	<100	<100	<100
F3 (C16 to C34)	μg/L	500	100	<100	<100	<100	<100	<100	<100	<100	<100
F3 (C16 to C34) minus PAHs	μg/L		100	<100	<100	<100	<100	<100	<100	<100	<100
F4 (C34 to C50)	μg/L	500	100	<100	<100	<100	<100	<100	<100	<100	<100
Gravimetric Heavy Hydrocarbons	μg/L		500	NA	NA	NA	NA	NA	NA	NA	NA
Sediment				1	1	1	1	1	3	1	3
Surrogate	Unit	Acceptable	Limits								
Toluene-d8	%	50-14	0	102	106	105	105	108	107	105	108
Terphenyl	% Recovery	60-14	.0	88	83	96	68	72	78	84	70

Certificate of Analysis

AGAT WORK ORDER: 23P990590

PROJECT: 220509

SAMPLED BY:

ATTENTION TO: Paul Bandler

O. Reg. 153(511) - PHCs F1 - F4 (with PAHs and VOC) (Water)

DATE RECEIVED: 2023-01-23 **DATE REPORTED: 2023-02-02**

Comments:

RDL - Reported Detection Limit: G / S - Guideline / Standard: Refers to Table 7: Generic Site Condition Standards for Shallow Soils in a Non-Potable Ground Water Condition - Non-Potable Ground Water - All Types of Property Uses - Coarse Textured Soils

Guideline values are for general reference only. The guidelines provided may or may not be relevant for the intended use. Refer directly to the applicable standard for regulatory interpretation.

4722042-4722057 The C6-C10 fraction is calculated using toluene response factor.

SAMPLING SITE:

C6-C10 (F1 minus BTEX) is a calculated parameter. The calculated value is F1 minus BTEX. The calculated parameter is non-accredited. The parameters that are components of the calculation are

The C10 - C16, C16 - C34, and C34 - C50 fractions are calculated using the average response factor for n-C10, n-C16, and n-C34.

Gravimetric Heavy Hydrocarbons are not included in the Total C16-C50 and are only determined if the chromatogram of the C34 - C50 hydrocarbons indicates that hydrocarbons >C50 are present. The chromatogram has returned to baseline by the retention time of nC50.

Total C6 - C50 results are corrected for BTEX and PAH contributions.

C>10 - C16 (F2- Naphthalene) is a calculated parameter. The calculated value is F2 - Naphthalene.

C>16 - C34 (F3-PAH) is a calculated parameter. The calculated value is F3-PAH (PAH: sum of Phenanthrene, Benzo(a)anthracene, Benzo(b)fluoranthene, Benzo(k)fluoranthene, Benzo(a)pyrene,

Fluoranthene, Dibenzo(a,h)anthracene, Indeno(1,2,3-c,d)pyrene and Pyrene).

This method complies with the Reference Method for the CWS PHC and is validated for use in the laboratory.

nC10, nC16 and nC34 response factors are within 10% of their average.

C50 response factor is within 70% of nC10 + nC16 + nC34 average.

Linearity is within 15%.

Extraction and holding times were met for this sample.

Sediment parameter is comment only based on visual inspection of the sample prior to extraction and is not an accredited test.

Legend: 1 = no sediment present; 2 = sediment present; 3 = sediment present in trace amounts

Analysis performed at AGAT Toronto (unless marked by *)

5835 COOPERS AVENUE

MISSISSAUGA, ONTARIO CANADA L4Z 1Y2

http://www.agatlabs.com

TEL (905)712-5100 FAX (905)712-5122

SAMPLING SITE:

Certificate of Analysis

AGAT WORK ORDER: 23P990590

PROJECT: 220509

ATTENTION TO: Paul Bandler

SAMPLED BY:

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

O. Reg. 153(511) - VOCs (with PHC) (Water)

DATE RECEIVED: 2023-01-23								Ι	DATE REPORTE	ED: 2023-02-02	
			CRIPTION: PLE TYPE: SAMPLED:	MW215 Water 2023-01-23 08:40	Field Blank Water 2023-01-23 08:00	GW-Dup2 Water 2023-01-23	MW207 Water 2023-01-23 10:15	MW205 Water 2023-01-23 12:00	MW235 Water 2023-01-23 13:30	MW234 Water 2023-01-23 15:00	MW228 Water 2023-01-23 16:30
Parameter	Unit	G/S	RDL	4722042	4722048	4722050	4722051	4722054	4722055	4722056	4722057
Dichlorodifluoromethane	μg/L	3500	0.40	<0.40	<0.40	< 0.40	<0.40	<0.40	<0.40	<0.40	<0.40
Vinyl Chloride	μg/L	0.5	0.17	<0.17	<0.17	<0.17	<0.17	<0.17	<0.17	<0.17	<0.17
Bromomethane	μg/L	0.89	0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20
Trichlorofluoromethane	μg/L	2000	0.40	< 0.40	<0.40	<0.40	< 0.40	< 0.40	< 0.40	< 0.40	< 0.40
Acetone	μg/L	100000	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
1,1-Dichloroethylene	μg/L	0.5	0.30	< 0.30	< 0.30	< 0.30	< 0.30	< 0.30	< 0.30	< 0.30	< 0.30
Methylene Chloride	μg/L	26	0.30	< 0.30	< 0.30	< 0.30	< 0.30	< 0.30	< 0.30	< 0.30	< 0.30
trans- 1,2-Dichloroethylene	μg/L	1.6	0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20
Methyl tert-butyl ether	μg/L	15	0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20
1,1-Dichloroethane	μg/L	11	0.30	< 0.30	<0.30	< 0.30	< 0.30	< 0.30	< 0.30	< 0.30	< 0.30
Methyl Ethyl Ketone	μg/L	21000	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
cis- 1,2-Dichloroethylene	μg/L	1.6	0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20
Chloroform	μg/L	2	0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20
1,2-Dichloroethane	μg/L	0.5	0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20
1,1,1-Trichloroethane	μg/L	23	0.30	<0.30	<0.30	< 0.30	< 0.30	< 0.30	< 0.30	< 0.30	< 0.30
Carbon Tetrachloride	μg/L	0.2	0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20
Benzene	μg/L	0.5	0.20	<0.20	<0.20	<0.20	30.6	141	<0.20	<0.20	<0.20
1,2-Dichloropropane	μg/L	0.58	0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20
Trichloroethylene	μg/L	0.5	0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20
Bromodichloromethane	μg/L	67000	0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20
Methyl Isobutyl Ketone	μg/L	5200	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
1,1,2-Trichloroethane	μg/L	0.5	0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20
Toluene	μg/L	320	0.20	<0.20	<0.20	<0.20	2.17	124	<0.20	<0.20	<0.20
Dibromochloromethane	μg/L	65000	0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
Ethylene Dibromide	μg/L	0.2	0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
Tetrachloroethylene	μg/L	0.5	0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20
1,1,1,2-Tetrachloroethane	μg/L	1.1	0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
Chlorobenzene	μg/L	140	0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
Ethylbenzene	μg/L	54	0.10	<0.10	<0.10	<0.10	<0.10	1.83	<0.10	<0.10	<0.10

Certificate of Analysis

AGAT WORK ORDER: 23P990590

PROJECT: 220509

ATTENTION TO: Paul Bandler

SAMPLED BY:

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

O. Reg. 153(511) - VOCs (with PHC) (Water)

DATE RECEIVED: 2023-01-23									DATE REPORTE	ED: 2023-02-02	
	S	AMPLE DES	CRIPTION:	MW215	Field Blank	GW-Dup2	MW207	MW205	MW235	MW234	MW228
		SAMI	PLE TYPE:	Water	Water	Water	Water	Water	Water	Water	Water
		DATES	SAMPLED:	2023-01-23 08:40	2023-01-23 08:00	2023-01-23	2023-01-23 10:15	2023-01-23 12:00	2023-01-23 13:30	2023-01-23 15:00	2023-01-23 16:30
Parameter	Unit	G/S	RDL	4722042	4722048	4722050	4722051	4722054	4722055	4722056	4722057
m & p-Xylene	μg/L		0.20	<0.20	<0.20	<0.20	10.6	29.8	<0.20	<0.20	<0.20
Bromoform	μg/L	5	0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
Styrene	μg/L	43	0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
1,1,2,2-Tetrachloroethane	μg/L	0.5	0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
o-Xylene	μg/L		0.10	<0.10	<0.10	< 0.10	8.68	8.52	<0.10	<0.10	<0.10
1,3-Dichlorobenzene	μg/L	7600	0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
1,4-Dichlorobenzene	μg/L	0.5	0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
1,2-Dichlorobenzene	μg/L	150	0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
1,3-Dichloropropene	μg/L	0.5	0.30	< 0.30	<0.30	<0.30	< 0.30	< 0.30	< 0.30	< 0.30	< 0.30
Xylenes (Total)	μg/L	72	0.20	<0.20	<0.20	<0.20	19.3	38.3	<0.20	<0.20	<0.20
n-Hexane	μg/L	5	0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20
Surrogate	Unit	Acceptab	le Limits								
Toluene-d8	% Recovery	50-1	40	102	106	105	105	108	107	105	108
4-Bromofluorobenzene	% Recovery	50-1	40	83	88	87	96	95	88	90	83

Comments:

SAMPLING SITE:

RDL - Reported Detection Limit; G / S - Guideline / Standard: Refers to Table 7: Generic Site Condition Standards for Shallow Soils in a Non-Potable Ground Water Condition - Non-Potable Ground Water - All Types of Property Uses - Coarse Textured Soils

Guideline values are for general reference only. The guidelines provided may or may not be relevant for the intended use. Refer directly to the applicable standard for regulatory interpretation.

4722042-4722057 Xylenes total is a calculated parameter. The calculated value is the sum of m&p-Xylene and o-Xylene.

1,3-Dichloropropene total is a calculated parameter. The calculated value is the sum of Cis-1,3-Dichloropropene and Trans-1,3-Dichloropropene.

The calculated parameter is non-accredited. The parameters that are components of the calculation are accredited.

Analysis performed at AGAT Toronto (unless marked by *)

Roza Mokhtari 2013-120

SAMPLING SITE:

Certificate of Analysis

AGAT WORK ORDER: 23P990590

PROJECT: 220509

ATTENTION TO: Paul Bandler

SAMPLED BY:

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

O. Reg. 153(511) - Metals & Inorganics (Water)

DATE RECEIVED: 2023-01-23								D	ATE REPORT	ED: 2023-02-02	
		SAMPLE DESC	CRIPTION:	MW215	Field Blank	GW-Dup2		MW207		MW205	MW235
		SAMF	LE TYPE:	Water	Water	Water		Water		Water	Water
		DATE S	SAMPLED:	2023-01-23 08:40	2023-01-23 08:00	2023-01-23		2023-01-23 10:15		2023-01-23 12:00	2023-01-23 13:30
Parameter	Unit	G/S	RDL	4722042	4722048	4722050	RDL	4722051	RDL	4722054	4722055
Dissolved Antimony	μg/L	16000	1.0	<1.0	<1.0	<1.0	1.0	<1.0	1.0	<1.0	<1.0
Dissolved Arsenic	μg/L	1500	1.0	<1.0	<1.0	1.2	1.0	6.4	1.0	2.2	<1.0
Dissolved Barium	μg/L	23000	2.0	78.1	<2.0	78.9	2.0	124	2.0	62.8	210
Dissolved Beryllium	μg/L	53	0.50	<0.50	<0.50	<0.50	0.50	< 0.50	0.50	<0.50	< 0.50
Dissolved Boron	μg/L	36000	10.0	826	<10.0	834	10.0	641	10.0	535	72.2
Dissolved Cadmium	μg/L	2.1	0.20	<0.20	<0.20	<0.20	0.20	<0.20	0.20	<0.20	<0.20
Dissolved Chromium	μg/L	640	2.0	<2.0	<2.0	<2.0	2.0	<2.0	2.0	<2.0	<2.0
Dissolved Cobalt	μg/L	52	0.50	<0.50	<0.50	<0.50	0.50	< 0.50	0.50	< 0.50	< 0.50
Dissolved Copper	μg/L	69	1.0	<1.0	<1.0	<1.0	1.0	<1.0	1.0	<1.0	<1.0
Dissolved Lead	μg/L	20	0.50	<0.50	<0.50	<0.50	0.50	1.08	0.50	0.92	1.87
Dissolved Molybdenum	μg/L	7300	0.50	12.8	<0.50	12.4	0.50	106	0.50	7.14	0.56
Dissolved Nickel	μg/L	390	1.0	1.6	<1.0	1.3	1.0	1.6	1.0	<1.0	<1.0
Dissolved Selenium	μg/L	50	1.0	1.2	<1.0	<1.0	1.0	3.3	1.0	1.0	<1.0
Dissolved Silver	μg/L	1.2	0.20	<0.20	<0.20	<0.20	0.20	<0.20	0.20	<0.20	<0.20
Dissolved Thallium	μg/L	400	0.30	<0.30	<0.30	< 0.30	0.30	< 0.30	0.30	< 0.30	< 0.30
Dissolved Uranium	μg/L	330	0.50	<0.50	<0.50	<0.50	0.50	4.47	0.50	1.70	< 0.50
Dissolved Vanadium	μg/L	200	0.40	<0.40	<0.40	<0.40	0.40	<0.40	0.40	<0.40	< 0.40
Dissolved Zinc	μg/L	890	5.0	<5.0	<5.0	<5.0	5.0	<5.0	5.0	<5.0	<5.0
Mercury	μg/L	0.1	0.02	<0.02	<0.02	<0.02	0.02	<0.02	0.02	< 0.02	< 0.02
Chromium VI	μg/L	110	2.000	<2.000	<2.000	<2.000	2.000	<2.000	2.000	<2.000	<2.000
Cyanide, WAD	μg/L	52	2	<2	<2	<2	2	<2	2	<2	<2
Dissolved Sodium	μg/L	1800000	50	21700	<50	21200	100	669000	50	216000	265000
Chloride	μg/L	1800000	100	12600	<100	12800	122	1060000	100	228000	756000
Electrical Conductivity	uS/cm	NA	2	873	<2	876	2	4500	2	1650	3240
PΗ	pH Units		NA	7.34	6.36	7.24	NA	7.59	NA	7.68	7.46

SAMPLING SITE:

Certificate of Analysis

AGAT WORK ORDER: 23P990590

PROJECT: 220509

ATTENTION TO: Paul Bandler

SAMPLED BY:

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

O. Reg. 153(511) - Metals & Inorganics (Water)

			0.1	Reg. 153(5	11) - Metais &	inorganics	(vvater)	
DATE RECEIVED: 2023-01-23								DATE REPORTED: 2023-02-02
	5	SAMPLE DESC	CRIPTION:	MW234	MW228			
		SAME	PLE TYPE:	Water	Water			
		DATE S	SAMPLED:	2023-01-23 15:00	2023-01-23 16:30			
Parameter	Unit	G/S	RDL	4722056	4722057			
Dissolved Antimony	μg/L	16000	1.0	<1.0	<1.0			
Dissolved Arsenic	μg/L	1500	1.0	<1.0	1.2			
Dissolved Barium	μg/L	23000	2.0	119	98.0			
Dissolved Beryllium	μg/L	53	0.50	<0.50	<0.50			
Dissolved Boron	μg/L	36000	10.0	69.7	49.1			
Dissolved Cadmium	μg/L	2.1	0.20	<0.20	<0.20			
Dissolved Chromium	μg/L	640	2.0	<2.0	<2.0			
Dissolved Cobalt	μg/L	52	0.50	<0.50	3.06			
Dissolved Copper	μg/L	69	1.0	<1.0	3.1			
Dissolved Lead	μg/L	20	0.50	1.01	<0.50			
Dissolved Molybdenum	μg/L	7300	0.50	8.02	7.00			
Dissolved Nickel	μg/L	390	1.0	1.1	2.6			
Dissolved Selenium	μg/L	50	1.0	<1.0	<1.0			
Dissolved Silver	μg/L	1.2	0.20	<0.20	<0.20			
Dissolved Thallium	μg/L	400	0.30	<0.30	<0.30			
Dissolved Uranium	μg/L	330	0.50	<0.50	4.00			
Dissolved Vanadium	μg/L	200	0.40	<0.40	0.80			
Dissolved Zinc	μg/L	890	5.0	<5.0	8.1			
Mercury	μg/L	0.1	0.02	<0.02	<0.02			
Chromium VI	μg/L	110	2.000	<2.000	<2.000			
Cyanide, WAD	μg/L	52	2	<2	<2			
Dissolved Sodium	μg/L	1800000	50	91100	69300			
Chloride	μg/L	1800000	100	247000	85500			
Electrical Conductivity	uS/cm	NA	2	1680	2220			
рН	pH Units		NA	7.42	7.45			

AGAT WORK ORDER: 23P990590

PROJECT: 220509

SAMPLED BY:

ATTENTION TO: Paul Bandler

O. Reg. 153(511) - Metals & Inorganics (Water)

DATE RECEIVED: 2023-01-23 **DATE REPORTED: 2023-02-02**

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard: Refers to Table 7: Generic Site Condition Standards for Shallow Soils in a Non-Potable Ground Water Condition - Non-Potable Ground

Water - All Types of Property Uses - Coarse Textured Soils

Guideline values are for general reference only. The guidelines provided may or may not be relevant for the intended use. Refer directly to the applicable standard for regulatory interpretation.

4722042-4722050 Metals analysis completed on a filtered sample.

CLIENT NAME: BLUMETRIC ENVIRONMENTAL INC.

SAMPLING SITE:

4722051 Metals analysis completed on a filtered sample.

Dilution required, RDL has been increased accordingly.

4722054 Metals analysis completed on a filtered sample. 4722055 Metals analysis completed on a filtered sample.

Dilution required, RDL has been increased accordingly.

4722056-4722057 Metals analysis completed on a filtered sample.

Analysis performed at AGAT Toronto (unless marked by *)

Certified By:

5835 COOPERS AVENUE

MISSISSAUGA, ONTARIO

http://www.agatlabs.com

CANADA L4Z 1Y2

TEL (905)712-5100 FAX (905)712-5122

Exceedance Summary

AGAT WORK ORDER: 23P990590

PROJECT: 220509

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

CLIENT NAME: BLUMETRIC ENVIRONMENTAL INC.

Α	TTF	NTI	NC	ΓO:	Paul	Bandler

SAMPLEID	SAMPLE TITLE	GUIDELINE	ANALYSIS PACKAGE	PARAMETER	UNIT	GUIDEVALUE	RESULT
4722042	MW215	ON T7 NPGW CT	O. Reg. 153(511) - BNA (full) + PAHs (Water)	Benzo(g,h,i)perylene	μg/L	0.2	0.63
4722042	MW215	ON T7 NPGW CT	O. Reg. 153(511) - BNA (full) + PAHs (Water)	Dibenz(a,h)anthracene	μg/L	0.4	0.57
4722042	MW215	ON T7 NPGW CT	O. Reg. 153(511) - BNA (full) + PAHs (Water)	Indeno(1,2,3-cd)pyrene	μg/L	0.2	0.50
4722042	MW215	ON T7 NPGW CT	O. Reg. 153(511) - PHCs F1 - F4 (with PAHs and VOC) (Water)	Dibenzo(a,h)anthracene	μg/L	0.4	0.57
4722042	MW215	ON T7 NPGW CT	O. Reg. 153(511) - PHCs F1 - F4 (with PAHs and VOC) (Water)	Indeno(1,2,3-cd)pyrene	μg/L	0.2	0.50
4722051	MW207	ON T7 NPGW CT	O. Reg. 153(511) - PHCs F1 - F4 (with PAHs and VOC) (Water)	Benzene	μg/L	0.5	30.6
4722051	MW207	ON T7 NPGW CT	O. Reg. 153(511) - VOCs (with PHC) (Water)	Benzene	μg/L	0.5	30.6
4722054	MW205	ON T7 NPGW CT	O. Reg. 153(511) - PHCs F1 - F4 (with PAHs and VOC) (Water)	Benzene	μg/L	0.5	141
4722054	MW205	ON T7 NPGW CT	O. Reg. 153(511) - VOCs (with PHC) (Water)	Benzene	μg/L	0.5	141

Quality Assurance

CLIENT NAME: BLUMETRIC ENVIRONMENTAL INC. AGAT WORK ORDER: 23P990590 PROJECT: 220509 ATTENTION TO: Paul Bandler

SAMPLING SITE: SAMPLED BY:

			Trac	e Or	gani	cs Ar	nalys	is							
RPT Date: Feb 02, 2023			С	UPLICATI	Ē		REFEREN	NCE MA	TERIAL	METHOD	BLANK	SPIKE	MAT	RIX SPI	KE
PARAMETER	Batch	Sample Id	Dup #1	Dup #2	RPD	Method Blank	Measured Value		eptable mits	Recovery		eptable mits	Recovery		ptable
		Iu	·	·			value	Lower	Upper	,	Lower	Upper	,	Lower	Upper
O. Reg. 153(511) - BNA (full) + PA	Hs (Water)														
Naphthalene	4468334		< 0.20	< 0.20	NA	< 0.20	89%	50%	140%	88%	50%	140%	115%	50%	140%
Acenaphthylene	4468334		< 0.20	< 0.20	NA	< 0.20	76%	50%	140%	94%	50%	140%	98%	50%	140%
Acenaphthene	4468334		< 0.20	< 0.20	NA	< 0.20	80%	50%	140%	80%	50%	140%	65%	50%	140%
Fluorene	4468334		< 0.20	< 0.20	NA	< 0.20	105%	50%	140%	105%	50%	140%	67%	50%	140%
Phenanthrene	4468334		< 0.10	< 0.10	NA	< 0.10	101%	50%	140%	83%	50%	140%	75%	50%	140%
Anthracene	4468334		< 0.10	< 0.10	NA	< 0.10	87%	50%	140%	101%	50%	140%	90%	50%	140%
Fluoranthene	4468334		< 0.20	< 0.20	NA	< 0.20	85%	50%	140%	85%	50%	140%	101%	50%	140%
Pyrene	4468334		< 0.20	< 0.20	NA	< 0.20	76%	50%	140%	93%	50%	140%	98%	50%	140%
Benzo(a)anthracene	4468334		< 0.20	< 0.20	NA	< 0.20	82%	50%	140%	95%	50%	140%	89%	50%	140%
Chrysene	4468334		< 0.10	< 0.10	NA	< 0.10	101%	50%	140%	98%	50%	140%	85%	50%	140%
Benzo(b)fluoranthene	4468334		< 0.10	< 0.10	NA	< 0.10	89%	50%	140%	89%	50%	140%	71%	50%	140%
Benzo(k)fluoranthene	4468334		< 0.10	< 0.10	NA	< 0.10	89%	50%	140%	88%	50%	140%	92%	50%	140%
Benzo(a)pyrene	4468334		< 0.01	< 0.01	NA	< 0.01	76%	50%	140%	64%	50%	140%	81%	50%	140%
Indeno(1,2,3-cd)pyrene	4468334		< 0.20	< 0.20	NA	< 0.20	101%	50%	140%	101%	50%	140%	78%	50%	140%
Dibenz(a,h)anthracene	4468334		< 0.20	< 0.20	NA	< 0.20	78%	50%	140%	98%	50%	140%	85%	50%	140%
Benzo(g,h,i)perylene	4468334		< 0.20	< 0.20	NA	< 0.20	88%	50%	140%	89%	50%	140%	99%	50%	140%
Phenol	4468334		< 1.0	< 1.0	NA	< 1.0	89%	30%	130%	108%	30%	130%	86%	30%	130%
Bis(2-chloroethyl)ether	4468334		< 0.5	< 0.5	NA	< 0.5	86%	50%	140%	97%	50%	140%	91%	50%	140%
2-Chlorophenol	4468334		< 0.5	< 0.5	NA	< 0.5	91%	50%	140%	68%	50%	140%	80%	50%	140%
o-Cresol	4468334		< 0.5	< 0.5	NA	< 0.5	80%	50%	140%	64%	50%	140%	102%	50%	140%
Dia/2 ablarainanrany/athar	4400004		.0.5	.0.5	NIA	.0.5	4000/	F00/	4.400/	000/	F00/	4.400/	C70/	F00/	1.400/
Bis(2-chloroisopropyl)ether	4468334		< 0.5	< 0.5	NA	< 0.5	102%	50%	140%	83%	50%	140%	67%	50%	140%
m&p-Cresol	4468334		< 0.6	< 0.6	NA	< 0.6	68%	50%	140%	105%	50%	140%	98%	50%	140%
2,4-Dimethylphenol	4468334		< 0.5	< 0.5	NA	< 0.5	94%	30%	130%	98%	30%	130%	106%	30%	130%
2,4-Dichlorophenol 1,2,4-Trichlorobenzene	4468334 4468334		< 0.3 < 0.5	< 0.3 < 0.5	NA NA	< 0.3 < 0.5	83% 61%	50% 50%	140% 140%	76% 112%	50% 50%	140% 140%	98% 88%	50% 50%	140% 140%
1,2,4-11101110100061126116	4400334		< 0.5	< 0.5	INA	< 0.5	0176	30 /6	140 /6	112/0	30 /6	140 /6	00 /6	30 /6	14070
p-Chloroaniline	4468334		< 1.0	< 1.0	NA	< 1.0	86%	30%	130%	91%	30%	130%	73%	30%	130%
2,4,6-Trichlorophenol	4468334		< 0.20	< 0.20	NA	< 0.20	88%	50%	140%	68%	50%	140%	89%	50%	140%
2,4,5-Trichlorophenol	4468334		< 0.20	< 0.20	NA	< 0.20	91%	50%	140%	91%	50%	140%	76%	50%	140%
1,1'-Biphenyl	4468334		< 0.50	< 0.50	NA	< 0.50	80%	50%	140%	83%	50%	140%	88%	50%	140%
Dimethyl phthalate	4468334		< 0.50	< 0.50	NA	< 0.50	102%	50%	140%	64%	50%	140%	106%	50%	140%
Diethyl phthalate	4468334		< 0.50	< 0.50	NA	< 0.50	56%	50%	140%	64%	50%	140%	67%	50%	140%
Pentachlorophenol	4468334		< 0.50	< 0.50	NA	< 0.50	89%	50%	140%	89%	50%	140%	67%	50%	140%
3,3'-dichlorobenzidine	4468334		< 0.50	< 0.50	NA	< 0.50	88%	30%	130%	91%	30%	130%	73%	30%	130%
Bis(2-Ethylhexyl)phthalate	4468334		< 0.50	< 0.50	NA	< 0.50	89%	50%	140%	105%	50%	140%	71%	50%	140%
2,4-Dinitrophenol	4468334		< 10	< 10	NA	< 10	84%	30%	130%	67%	30%	130%	98%	30%	130%
O. Reg. 153(511) - PCBs (Water)	4700040	700010	0.4	0.4		2.4	0001	5 00/	4.4001	0001	5 00/	4.400*	0521	F00/	4.400/
Polychlorinated Biphenyls	4722042 4	722042	< 0.1	< 0.1	NA	< 0.1	93%	50%	140%	92%	50%	140%	85%	50%	140%

O. Reg. 153(511) - PHCs F1 - F4 (with PAHs and VOC) (Water)

AGAT QUALITY ASSURANCE REPORT (V1)

Page 14 of 24

Quality Assurance

CLIENT NAME: BLUMETRIC ENVIRONMENTAL INC.

AGAT WORK ORDER: 23P990590
PROJECT: 220509

ATTENTION TO: Paul Bandler

SAMPLING SITE: SAMPLED BY:

	٦	Гrасе	Org	anics	Ana	alysis	(Coı	ntin	ued	l)					
RPT Date: Feb 02, 2023			[DUPLICAT	E		REFERE	NCE MA	TERIAL	METHOD	BLANK	SPIKE	MAT	RIX SPI	KE
PARAMETER	Batch	Sample Id	Dup #1	Dup #2	RPD	Method Blank	Measured Value		ptable nits Upper	Recovery	1 1 1 1 1 1	eptable mits Upper	Recovery		ptable nits Upper
F1 (C6-C10)	4705529		<25	<25	NA	< 25	89%		140%	74%	60%	140%	96%	60%	140%
F2 (C10 to C16)	4719247		<100	<100	NA	< 100	97%	60%	140%	61%	60%	140%	63%	60%	140%
F3 (C16 to C34)	4719247		<100	<100	NA	< 100	103%	60%	140%	68%	60%	140%	68%	60%	140%
F4 (C34 to C50)	4719247		<100	<100	NA	< 100	88%	60%	140%	71%	60%	140%	77%	60%	140%
O. Reg. 153(511) - VOCs (with	PHC) (Water)														
Dichlorodifluoromethane	4705529		< 0.40	< 0.40	NA	< 0.40	92%	50%	140%	73%	50%	140%	113%	50%	140%
Vinyl Chloride	4705529		<0.17	<0.17	NA	< 0.17	86%	50%	140%	78%	50%	140%	93%	50%	140%
Bromomethane	4705529		<0.20	<0.20	NA	< 0.20	76%	50%	140%	90%	50%	140%	107%	50%	140%
Trichlorofluoromethane	4705529		< 0.40	< 0.40	NA	< 0.40	80%	50%	140%	79%	50%	140%	64%	50%	140%
Acetone	4705529		<1.0	<1.0	NA	< 1.0	88%	50%	140%	108%	50%	140%	106%	50%	140%
1,1-Dichloroethylene	4705529		<0.30	<0.30	NA	< 0.30	70%	50%	140%	94%	60%	130%	76%	50%	140%
Methylene Chloride	4705529		< 0.30	< 0.30	NA	< 0.30	75%	50%	140%	85%	60%	130%	83%	50%	140%
trans- 1,2-Dichloroethylene	4705529		<0.20	< 0.20	NA	< 0.20	75%	50%	140%	93%	60%	130%	92%	50%	140%
Methyl tert-butyl ether	4705529		<0.20	< 0.20	NA	< 0.20	84%	50%	140%	95%	60%	130%	89%	50%	140%
1,1-Dichloroethane	4705529		0.63	0.61	NA	< 0.30	76%	50%	140%	96%	60%	130%	99%	50%	140%
Methyl Ethyl Ketone	4705529		<1.0	<1.0	NA	< 1.0	90%	50%	140%	100%	50%	140%	112%	50%	140%
cis- 1,2-Dichloroethylene	4705529		<0.20	<0.20	NA	< 0.20	78%	50%	140%	96%	60%	130%	110%	50%	140%
Chloroform	4705529		<0.20	<0.20	NA	< 0.20	86%	50%	140%	99%	60%	130%	112%	50%	140%
1,2-Dichloroethane	4705529		<0.20	<0.20	NA	< 0.20	90%	50%	140%	103%	60%	130%	103%	50%	140%
1,1,1-Trichloroethane	4705529		<0.30	<0.30	NA	< 0.30	74%	50%	140%	89%	60%	130%	73%	50%	140%
Carbon Tetrachloride	4705529		<0.20	<0.20	NA	< 0.20	72%	50%	140%	80%	60%	130%	90%	50%	140%
Benzene	4705529		<0.20	<0.20	NA	< 0.20	82%	50%	140%	95%	60%	130%	105%	50%	140%
1,2-Dichloropropane	4705529		<0.20	<0.20	NA	< 0.20	85%	50%	140%	93%	60%	130%	114%	50%	140%
Trichloroethylene	4705529		<0.20	<0.20	NA	< 0.20	80%	50%	140%	76%	60%	130%	74%	50%	140%
Bromodichloromethane	4705529		<0.20	<0.20	NA	< 0.20	71%	50%	140%	78%	60%	130%	99%	50%	140%
Methyl Isobutyl Ketone	4705529		<1.0	<1.0	NA	< 1.0	111%	50%	140%	108%	50%	140%	110%	50%	140%
1,1,2-Trichloroethane	4705529		<0.20	<0.20	NA	< 0.20	96%	50%	140%	105%	60%	130%	106%	50%	140%
Toluene	4705529		<0.20	<0.20	NA	< 0.20	86%	50%	140%	97%	60%	130%	89%	50%	140%
Dibromochloromethane	4705529		<0.10	<0.10	NA	< 0.10	75%	50%	140%	79%	60%	130%	98%	50%	140%
Ethylene Dibromide	4705529		<0.10	<0.10	NA	< 0.10	91%	50%	140%	99%	60%	130%	101%	50%	140%
Tetrachloroethylene	4705529		<0.20	<0.20	NA	< 0.20	85%	50%	140%	90%	60%	130%	71%	50%	140%
1,1,1,2-Tetrachloroethane	4705529		<0.10	<0.10	NA	< 0.10	76%	50%	140%	87%	60%	130%	90%	50%	140%
Chlorobenzene	4705529		<0.10	<0.10	NA	< 0.10	89%	50%	140%	96%	60%	130%	100%	50%	140%
Ethylbenzene	4705529		0.46	0.42	NA	< 0.10	84%	50%	140%	92%	60%	130%	82%	50%	140%
m & p-Xylene	4705529		0.59	0.59	NA	< 0.20	83%	50%	140%	91%	60%	130%	85%	50%	140%
Bromoform	4705529		<0.10	<0.10	NA	< 0.10	82%		140%	77%		130%	100%		140%
Styrene	4705529		<0.10	<0.10	NA	< 0.10	82%	50%	140%	86%	60%	130%	92%	50%	
1,1,2,2-Tetrachloroethane	4705529		<0.10	<0.10	NA	< 0.10	100%	50%	140%	102%	60%	130%	102%	50%	140%
o-Xylene	4705529		<0.10	<0.10	NA	< 0.10	86%	50%	140%	94%	60%	130%	93%	50%	140%

AGAT QUALITY ASSURANCE REPORT (V1)

Page 15 of 24

AGAT Laboratories is accredited to ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA) and/or Standards Council of Canada (SCC) for specific tests listed on the scope of accreditation. AGAT Laboratories (Mississauga) is also accredited by the Canadian Association for Laboratory Accreditation Inc. (CALA) for specific drinking water tests. Accreditations are location and parameter specific. A complete listing of parameters for each location is available from www.cala.ca and/or www.scc.ca. The tests in this report may not necessarily be included in the scope of accreditation. RPDs calculated using raw data. The RPD may not be reflective of duplicate values shown, due to rounding of final results.

Quality Assurance

CLIENT NAME: BLUMETRIC ENVIRONMENTAL INC.

AGAT WORK ORDER: 23P990590

PROJECT: 220509

ATTENTION TO: Paul Bandler

SAMPLING SITE: SAMPLED BY:

Trace Organics Analysis (Continued)															
RPT Date: Feb 02, 2023			С	UPLICAT	E		REFEREN	NCE MA	TERIAL	METHOD	BLANK	SPIKE	МАТ	RIX SPI	IKE
PARAMETER	Batch	Sample	Dup #1	Dup #2	RPD	Method Blank	Measured		ptable nits	Recovery	Lie	ptable nits	Recovery	1 1 1 1 1	eptable mits
		ld	·	,			Value	Lower	Upper	,	Lower	Upper	j	Lower	Upper
1,3-Dichlorobenzene	4705529		<0.10	<0.10	NA	< 0.10	91%	50%	140%	91%	60%	130%	102%	50%	140%
1,4-Dichlorobenzene	4705529		<0.10	<0.10	NA	< 0.10	88%	50%	140%	93%	60%	130%	107%	50%	140%
1,2-Dichlorobenzene	4705529		<0.10	<0.10	NA	< 0.10	93%	50%	140%	93%	60%	130%	110%	50%	140%
n-Hexane	4705529		<0.20	<0.20	NA	< 0.20	71%	50%	140%	81%	60%	130%	96%	50%	140%
Formaldéhyde (eau) Formaldéhyde		NA	NA	NA	0.0%	< 10	NA	70%	130%	94%	70%	130%	NA	70%	130%
2,3,5,6-Tétrafluorobenzaldéhyde		NA	NA	NA	0.0%	107	NA NA	40%	140%	94% 113%	40%	140%	NA	40%	140%

Comments: NA: Non applicable

NA dans l'écart du duplicata indique que l'écart n'a pu être calculé car l'un ou les deux résultats sont < 5x LDR.

NA dans le pourcentage de récupération de l'échantillon fortifié indique que le résultat n'est pas fourni en raison de l'hétérogénéité de l'échantillon ou de la concentration trop élevée par rapport à l'ajout.

NA dans le blanc fortifié ou le MRC indique qu'il n'est pas requis par la procédure.

Roza Mokhtari 2013-120 QUEBEC

Quality Assurance

CLIENT NAME: BLUMETRIC ENVIRONMENTAL INC.

AGAT WORK ORDER: 23P990590

PROJECT: 220509

ATTENTION TO: Paul Bandler

SAMPLING SITE: SAMPLED BY:

			Wate	er Ar	nalys	is								
RPT Date: Feb 02, 2023			DUPLICATI	E		REFERE	NCE MA	TERIAL	METHOD	BLANK	SPIKE	MAT	RIX SPI	KE
PARAMETER	Batch Sample	Dup #1	Dup #2	RPD	Method Blank	Measured		eptable mits	Recovery	Lie	ptable nits	Recovery	Lie	ptable nits
	Id Id	'	''			Value	Lower	Upper		Lower	Upper		Lower	Upper
O. Reg. 153(511) - Metals & Inc	organics (Water)		,		,									
Dissolved Antimony	4721832	<1.0	<1.0	NA	< 1.0	94%	70%	130%	92%	80%	120%	91%	70%	130%
Dissolved Arsenic	4721832	<1.0	<1.0	NA	< 1.0	99%	70%	130%	94%	80%	120%	104%	70%	130%
Dissolved Barium	4721832	11.3	11.1	1.8%	< 2.0	102%	70%	130%	100%	80%	120%	99%	70%	130%
Dissolved Beryllium	4721832	< 0.50	< 0.50	NA	< 0.50	106%	70%	130%	105%	80%	120%	114%	70%	130%
Dissolved Boron	4721832	37.8	37.8	NA	< 10.0	102%	70%	130%	104%	80%	120%	106%	70%	130%
Dissolved Cadmium	4721832	<0.20	<0.20	NA	< 0.20	98%	70%	130%	95%	80%	120%	89%	70%	130%
Dissolved Chromium	4721832	<2.0	<2.0	NA	< 2.0	94%	70%	130%	98%	80%	120%	99%	70%	130%
Dissolved Cobalt	4721832	1.54	1.50	NA	< 0.50	95%	70%	130%	97%	80%	120%	98%	70%	130%
Dissolved Copper	4721832	2.0	2.0	NA	< 1.0	97%	70%	130%	96%	80%	120%	95%	70%	130%
Dissolved Lead	4721832	<0.50	<0.50	NA	< 0.50	95%	70%	130%	91%	80%	120%	90%	70%	130%
Dissolved Molybdenum	4721832	<0.50	<0.50	NA	< 0.50	97%	70%	130%	101%	80%	120%	101%	70%	130%
Dissolved Nickel	4721832	2.2	1.5	NA	< 1.0	94%	70%	130%	96%	80%	120%	93%	70%	130%
Dissolved Selenium	4721832	<1.0	<1.0	NA	< 1.0	106%	70%	130%	94%	80%	120%	111%	70%	130%
Dissolved Silver	4721832	<0.20	< 0.20	NA	< 0.20	94%	70%	130%	95%	80%	120%	94%	70%	130%
Dissolved Thallium	4721832	<0.30	<0.30	NA	< 0.30	97%	70%	130%	95%	80%	120%	92%	70%	130%
Dissolved Uranium	4721832	<0.50	<0.50	NA	< 0.50	93%	70%	130%	98%	80%	120%	98%	70%	130%
Dissolved Vanadium	4721832	<0.40	< 0.40	NA	< 0.40	97%	70%	130%	99%	80%	120%	101%	70%	130%
Dissolved Zinc	4721832	<5.0	<5.0	NA	< 5.0	104%	70%	130%	107%	80%	120%	116%	70%	130%
Mercury	4722042 4722042	< 0.02	< 0.02	NA	< 0.02	101%	70%	130%	104%	80%	120%	99%	70%	130%
Chromium VI	4722042 4722042	<2.000	<2.000	NA	< 2	103%	70%	130%	99%	80%	120%	101%	70%	130%
Cyanide, WAD	4722042 4722042	<2	<2	NA	< 2	108%	70%	130%	102%	80%	120%	108%	70%	130%
Dissolved Sodium	4721832	57200	58800	2.8%	< 50	107%	70%	130%	100%	80%	120%	102%	70%	130%
Chloride	4722042 4722042	12600	12900	2.4%	< 100	97%	70%	130%	93%	80%	120%	99%	70%	130%
Electrical Conductivity	4722042 4722042	873	877	0.5%	< 2	104%	90%	110%	NA			NA		
pH	4722042 4722042	7.34	7.30	0.5%	NA	99%	90%	110%	NA			NA		

Comments: NA signifies Not Applicable.

Duplicate NA: results are under 5X the RDL and will not be calculated.

mayor Bhells AMANDO BELLS OF CHARTERED STANDARD THELE

Method Summary

CLIENT NAME: BLUMETRIC ENVIRONMENTAL INC. AGAT WORK ORDER: 23P990590 PROJECT: 220509 ATTENTION TO: Paul Bandler

SAMPLING SITE.		SAMPLED BY.	
PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE
Trace Organics Analysis			
Formaldéhyde	ORG-100-5126F	Standard Methods 6252B	GC/MS
2,3,5,6-Tétrafluorobenzaldéhyde	ORG-100-5126F	Standard Methods 6252B	GC/MS
Naphthalene	ORG-91-5114	modified from EPA 3510C, 8270E & ON MOECC E3265	GC/MS
Acenaphthylene	ORG-91-5114	modified from EPA 3510C, 8270E & ON MOECC E3265	GC/MS
Acenaphthene	ORG-91-5114	modified from EPA 3510C, 8270E & ON MOECC E3265	GC/MS
Fluorene	ORG-91-5114	modified from EPA 3510C, 8270E & ON MOECC E3265	GC/MS
Phenanthrene	ORG-91-5114	modified from EPA 3510C, 8270E & ON MOECC E3265	GC/MS
Anthracene	ORG-91-5114	modified from EPA 3510C, 8270E & ON MOECC E3265	GC/MS
Fluoranthene	ORG-91-5114	modified from EPA 3510C, 8270E & ON MOECC E3265	GC/MS
Pyrene	ORG-91-5114	modified from EPA 3510C, 8270E & ON MOECC E3265	GC/MS
Benzo(a)anthracene	ORG-91-5114	modified from EPA 3510C, 8270E & ON MOECC E3265	GC/MS
Chrysene	ORG-91-5114	modified from EPA 3510C, 8270E & ON MOECC E3265	GC/MS
Benzo(b)fluoranthene	ORG-91-5114	modified from EPA 3510C, 8270E & ON MOECC E3265	GC/MS
Benzo(k)fluoranthene	ORG-91-5114	modified from EPA 3510C, 8270E & ON MOECC E3265	GC/MS
Benzo(a)pyrene	ORG-91-5114	modified from EPA 3510C, 8270E & ON MOECC E3265	GC/MS
Indeno(1,2,3-cd)pyrene	ORG-91-5114	modified from EPA 3510C, 8270E & ON MOECC E3265	GC/MS
Dibenz(a,h)anthracene	ORG-91-5114	modified from EPA 3510C and EPA 8270E	GC/MS
Benzo(g,h,i)perylene	ORG-91-5114	modified from EPA 3510C, 8270E & ON MOECC E3265	GC/MS
Phenol	ORG-91-5114	modified from EPA 3510C, 8270E & ON MOECC E3265	GC/MS
Bis(2-chloroethyl)ether	ORG-91-5114	modified from EPA 3510C, 8270E & ON MOECC E3265	GC/MS
2-Chlorophenol	ORG-91-5114	modified from EPA 3510C, 8270E & ON MOECC E3265	GC/MS
o-Cresol	ORG-91-5114	modified from EPA 3510C, 8270E & ON MOECC E3265	GC/MS
Bis(2-chloroisopropyl)ether	ORG-91-5114	modified from EPA 3510C, 8270E & ON MOECC E3265	GC/MS
m&p-Cresol	ORG-91-5114	modified from EPA 3510C, 8270E & ON MOECC E3265	GC/MS
2,4-Dimethylphenol	ORG-91-5114	modified from EPA 3510C, 8270E & ON MOECC E3265	GC/MS
2,4-Dichlorophenol	ORG-91-5114	modified from EPA 3510C, 8270E & ON MOECC E3265	GC/MS
1,2,4-Trichlorobenzene	ORG-91-5114	modified from EPA 3510C, 8270E & ON MOECC E3265	GC/MS
p-Chloroaniline	ORG-91-5114	modified from EPA 3510C, 8270E & ON MOECC E3265	GC/MS

Method Summary

CLIENT NAME: BLUMETRIC ENVIRONMENTAL INC. AGAT WORK ORDER: 23P990590 PROJECT: 220509 ATTENTION TO: Paul Bandler

SAMPLING SITE.		SAMPLED BY.	
PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE
2-and 1-methyl Naphthalene	ORG-91-5114	modified from EPA 3510C, 8270E & ON MOECC E3265	CALCULATION
2,4,6-Trichlorophenol	ORG-91-5114	modified from EPA 3510C, 8270E & ON MOECC E3265	GC/MS
2,4,5-Trichlorophenol	ORG-91-5114	modified from EPA 3510C, 8270E & ON MOECC E3265	GC/MS
1,1'-Biphenyl	ORG-91-5114	modified from EPA 3510C, 8270E & ON MOECC E3265	GC/MS
Dimethyl phthalate	ORG-91-5114	modified from EPA 3510C, 8270E & ON MOECC E3265	GC/MS
2,4 and 2,6-Dinitrotoluene	ORG-91-5114	modified from EPA 3510C, 8270E & ON MOECC E3265	CALCULATION
Diethyl phthalate	ORG-91-5114	modified from EPA 3510C, 8270E & ON MOECC E3265	GC/MS
Pentachlorophenol	ORG-91-5114	modified from EPA 3510C, 8270E & ON MOECC E3265	GC/MS
3,3'-dichlorobenzidine	ORG-91-5114	modified from EPA 3510C, 8270E & ON MOECC E3265	GC/MS
Bis(2-Ethylhexyl)phthalate	ORG-91-5114	modified from EPA 3510C, 8270E & ON MOECC E3265	GC/MS
2,4-Dinitrophenol	ORG-91-5114	modified from EPA 3510C, 8270E & ON MOECC E3265	GC/MS
2-Fluorophenol	ORG-91-5114	modified from EPA 3510C, 8270E & ON MOECC E3265	GC/MS
phenol-d6 surrogate	ORG-91-5114	modified from EPA 3510C, 8270E & ON MOECC E3265	GC/MS
2,4,6-Tribromophenol	ORG-91-5114	modified from EPA 3510C, 8270E & ON MOECC E3265	GC/MS
Chrysene-d12	ORG-91-5114	modified from EPA 3510C, 8270E & ON MOECC E3265	GC/MS
Sediment			N/A
Polychlorinated Biphenyls	ORG-91-5112	modified from EPA SW-846 3510 & 8082A	GC/ECD
Decachlorobiphenyl	ORG-91-5112	modified from EPA SW-846 3510 & 8082A	GC/ECD
F1 (C6-C10)	VOL-91-5010	modified from MOE PHC-E3421	(P&T)GC/FID
F1 (C6 to C10) minus BTEX	VOL-91-5010	modified from MOE PHC-E3421	P&T GC/FID
Toluene-d8	VOL-91- 5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
F2 (C10 to C16)	VOL-91-5010	modified from MOE PHC-E3421	GC/FID
F2 (C10 to C16) minus Naphthalene	VOL-91-5010	modified from MOE PHC-E3421	GC/FID
F3 (C16 to C34)	VOL-91-5010	modified from MOE PHC-E3421	GC/FID
F3 (C16 to C34) minus PAHs	VOL-91-5010	modified from MOE PHC-E3421	GC/FID
F4 (C34 to C50)	VOL-91-5010	modified from MOE PHC-E3421	GC/FID
Gravimetric Heavy Hydrocarbons	VOL-91-5010	modified from MOE PHC-E3421	BALANCE
Terphenyl	VOL-91-5010	modified from MOE PHC-E3421	GC/FID
Dichlorodifluoromethane	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
Vinyl Chloride	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
Bromomethane	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
Trichlorofluoromethane	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS

Method Summary

CLIENT NAME: BLUMETRIC ENVIRONMENTAL INC.

AGAT WORK ORDER: 23P990590
PROJECT: 220509

ATTENTION TO: Paul Bandler

PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE		
Acetone	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS		
1,1-Dichloroethylene	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS		
Methylene Chloride	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS		
trans- 1,2-Dichloroethylene	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS		
Methyl tert-butyl ether	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS		
1,1-Dichloroethane	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS		
Methyl Ethyl Ketone	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS		
cis- 1,2-Dichloroethylene	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS		
Chloroform	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS		
1,2-Dichloroethane	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS		
1,1,1-Trichloroethane	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS		
Carbon Tetrachloride	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS		
Benzene	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS		
1,2-Dichloropropane	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS		
Trichloroethylene	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS		
Bromodichloromethane	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS		
Methyl Isobutyl Ketone	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS		
1,1,2-Trichloroethane	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS		
Toluene	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS		
Dibromochloromethane	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS		
Ethylene Dibromide	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS		
Tetrachloroethylene	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS		
1,1,1,2-Tetrachloroethane	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS		
Chlorobenzene	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS		
Ethylbenzene	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS		
m & p-Xylene	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS		
Bromoform	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS		
Styrene	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS		

Method Summary

CLIENT NAME: BLUMETRIC ENVIRONMENTAL INC.

AGAT WORK ORDER: 23P990590

PROJECT: 220509

ATTENTION TO: Paul Bandler

PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE
1,1,2,2-Tetrachloroethane	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
o-Xylene	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
1,3-Dichlorobenzene	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
1,4-Dichlorobenzene	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
1,2-Dichlorobenzene	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
1,3-Dichloropropene	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
Xylenes (Total)	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
n-Hexane	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
Toluene-d8	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
4-Bromofluorobenzene	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS

Method Summary

CLIENT NAME: BLUMETRIC ENVIRONMENTAL INC. AGAT WORK ORDER: 23P990590 PROJECT: 220509 ATTENTION TO: Paul Bandler

ANIFLING SITE.		SAIVIF LLD DT.				
PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE			
Water Analysis						
Dissolved Antimony	MET-93-6103	modified from EPA 200.8 and EPA 3005A	ICP-MS			
Dissolved Arsenic	MET-93-6103	modified from EPA 200.8 and EPA 3005A	ICP-MS			
Dissolved Barium	MET-93-6103	modified from EPA 200.8 and EPA 3005A	ICP-MS			
Dissolved Beryllium	MET-93-6103	modified from EPA 200.8 and EPA 3005A	ICP-MS			
Dissolved Boron	MET-93-6103	modified from EPA 200.8 and EPA 3005A	ICP-MS			
Dissolved Cadmium	MET-93-6103	modified from EPA 200.8 and EPA 3005A	ICP-MS			
Dissolved Chromium	MET-93-6103	modified from EPA 200.8 and EPA 3005A	ICP-MS			
Dissolved Cobalt	MET-93-6103	modified from EPA 200.8 and EPA 3005A	ICP-MS			
Dissolved Copper	MET-93-6103	modified from EPA 200.8 and EPA 3005A	ICP-MS			
Dissolved Lead	MET-93-6103	modified from EPA 200.8 and EPA 3005A	ICP-MS			
Dissolved Molybdenum	MET-93-6103	modified from EPA 200.8 and EPA 3005A	ICP-MS			
Dissolved Nickel	MET-93-6103	modified from EPA 200.8 and EPA 3005A	ICP-MS			
Dissolved Selenium	MET-93-6103	modified from EPA 200.8 and EPA 3005A	ICP-MS			
Dissolved Silver	MET-93-6103	modified from EPA 200.8 and EPA 3005A	ICP-MS			
Dissolved Thallium	MET-93-6103	modified from EPA 200.8 and EPA 3005A	ICP-MS			
Dissolved Uranium	MET-93-6103	modified from EPA 200.8 and EPA 3005A	ICP-MS			
Dissolved Vanadium	MET-93-6103	modified from EPA 200.8 and EPA 3005A	ICP-MS			
Dissolved Zinc	MET-93-6103	modified from EPA 200.8 and EPA 3005A	ICP-MS			
Mercury	MET-93-6100	modified from EPA 245.2 and SM 3112 B	CVAAS			
Chromium VI	INOR-93-6073	modified from SM 3500-CR B	LACHAT FIA			
Cyanide, WAD	INOR-93-6052	modified from ON MOECC E3015, SM 4500-CN- I, G-387	TECHNICON AUTO ANALYZER			
Dissolved Sodium	MET-93-6103	modified from EPA 200.8 and EPA 3005A	ICP/MS			
Chloride	INOR-93-6004	modified from SM 4110 B	ION CHROMATOGRAPH			
Electrical Conductivity	INOR-93-6000	SM 2510 B	PC TITRATE			
pH	INOR-93-6000	modified from SM 4500-H+ B	PC TITRATE			

Project:

Site Location:

Sampled By:

Sample Identification

5835 Coopers Avenue Mississauga, Ontario L4Z 1Y2 Ph: 905.712.5100 Fax: 905.712.5122 webearth.agatlabs.com

Laboratory (Jse Only
Work Order #:	23/990590

Turnaround Time (TAT) Required:

work Order #.		.00	
Cooler Quantity:	STATE OF	4.	- 5
Arrival Temperatures:	9.6	19.11	87
	Soo	19-Hace	hed
Custody Seal Intact:	□Yes	□No	□N/A

For 'Same Day' analysis, please contact your AGAT CPM

0

Moisture □ Sulphide □

5 to 7 Business Days

Next Business

High Concentration (Y/N)

Chain of Custody Record If this is a Drinking Water sample,	please use Drinking Water Chain of	Custody Form (potable w	ater consumed by humans)
Report Information: Company: Contact: Address: Phone: Reports to be sent to: 1. Email: Phone: Reports to be sent to: 1. Email: Phone: Phone: Address: Phone: Reports to be sent to: Regulatory Requipment (Please check all applicable boxes, Park Agriculture Soil Texture (Check One)		Sewer Use Sanitary Sanitary Region Prov. Water Qua Objectives (PWC) Other	
Project Information:	Is this submissio		Report Guideline

	Reg (Please
E-ula	Tat
a	Soil Te
	ls Red
orice for analysis.	Sam

Regulatory Requ		
Regulation 153/04	Excess Soils R406	Sewer Use
Ind/com ☐Ind/Com	Table Indicate One	Region
☐Res/Park ☐Agriculture	Regulation 558	Prov. Water Quality Objectives (PWQO)
Soil Texture (Check One)	ССМЕ	Other
Fine		Indicate One
Is this submission Record of Site Co		Report Guideline on Certificate of Analysis
PYYes D	No	☐ Yes ☐ No

	3 Business Days	2 Business Days	Next Busin			
te One	OR Date Requi	red (Rush Surcharge	es May Apply):			
deline on	Discourse	iditiGtian	for much TAT			
f Analysis	Please provide prior notification for rush TAT *TAT is exclusive of weekends and statutory holidays					

Rush TAT (Rush Surcharges Apply)

Regular TAT

AGAT Quote #: Please note: If quotation	PO: n number is not provided, client will be billed full price for analysis.
Invoice Information:	Bill To Same: Yes ☐ No ☐
Company:	- 1 E- 200
Contact:	
Address:	
Email: ap@bl	umetricica

Date

Sampled

Time

Sampled

8,00 AM

10:15 AM

12.00AM

13:30 AM

15:00 AM

6:30 AM AM PM

23 01-20 8:40 PM

San	ipie Matrix Lege
В	Biota
GW	Ground Water
0	Oil
P	Paint
S	Soil
SD	Sediment
SW	Surface Water

Sample

Matrix

GW

GW

GW

GW

GW

GW

GW

of

Containers

20

18

20

	00	0.	Reg 1	53		5	88	0. R	eg 406
egend	d Filtered (Metais, Hg, CrVI,)	norganics	CrVI, □ Hg, □ HWSB	4 PHCs		oosal Characterization TCLP:	□vocs □ABNs □B(a)P□PCBs	ils SPLP Rainwater Leach etals □ vocs □ svocs	aracterii als, BTE

BTEX, F1-F

PAHS

V

Metals &

	200	Aroclors	Landfill Disposal C TCLP: ☐ M&I ☐ VOC	Excess Soils SPL SPLP: Metals	Excess Soils Char pH, ICPMS Metals	Corrosivity: Includ	Formal	CP'S 1					Potentially Hazardou	
1	V					i	V	1						
1	~	Du.		. 015				V						
,	V	In.					V	V			-	121		
1	V	-110		123		P	V	V		1	Ю.			
	~			1100				V		Tik	WI A.	87		
,	1			III.				V	U I		t/m2)			
/	ン							V	Ti .		1	100		
1	1	1	- 1 -				99.5	ノ						
									U e	12.10	N. T.			
								-	-					
										1				

		PIVI	manufactured but the best for the	AND THE RESERVE AND THE PARTY OF THE PARTY O			
	4 TE MIN	AM PM					
Samples Relinquished By (Print Name and Sign): M Lloyd M	V	23-01-22	18:00	Samples Received By (Print Name and Sign): (a/ W) > C	Date 10023/23	SGM -	AL DESCRIPTION
Samples Relinquisted By (Print Name and Styr)	Ja	n23/23	lleoo	Samples Received by 0 rint Name and Sign):	28 27 Jm	125 11/1 1000	of
Samples Relinquished By (Print Name and Sign):		Date	Time	Samples Necotived By (Print Name and Slep)	Date	Time N°: T -	138906

Comments/

Special Instructions

Sample Temperature Log

Client	Blunet	57		COC# o	r Work Order #:		1380	106
# of Coolers:	4	laye	2_		# of Submissions:		\	
	Arrival Temper	atures - Br	anch/Driver		Arriva	Tempera	tures - Labo	ratory
	Cooler #1 2.6	12.4	1297	(Cooler #1		/	/
	Cooler #2: 3. 4	13.9	13.6	COOSE TO BE	Cooler #2		/	/
	Cooler #3: 41	13.8	13.2)	Ser	Cooler #3		/	. /
	Cooler #4: 24	1 3.1	1_3.7/		Cooler #4:	· · · · · · · · · · · · · · · · · · ·	/	/
	Cooler #5	/	1		Cooler #5		. /	. /
	Cooler #6	/	/ /		Cooler #6:		. /	/
	Cooler #7	1	1		Cooler #7:		/	/
	Cooler#8	./	1		Cooler #8		/	/
	Cooler #9	/	1		Cooler #9:		, /	. /
	Cooler#10:	/	/		Cooler #10:			./
IR Gun ID	MIS	5-312	1	IR Gun IC);			
Taken By	8.24	Gol	SPR 28	Taken By				
Date (vvvv/mm/dd	1023/01/2	Time: 6	_: <u>\$P_</u> AM / PM	Dat (yyyy/mm/dd		_Time:	.: AM / P	M

Instructions for use of this form: 1) complete all fields of info including total # of coolers and # of submissions rec'd, 2) photocopy and place in each submission prior to giving a WO#, 3) Proceed as normal, write the WO# and scan (please make sure to scan along with the COC)

Document ID: SR-78-9511.003 Date Issued: 2017-2-23

Page:_____ of ____

CLIENT NAME: BLUMETRIC ENVIRONMENTAL INC. 4 Cataraqui Street Kingston, ON K7K1Z7

(613) 531-2725

ATTENTION TO: Paul Bandler

PROJECT: 220509

AGAT WORK ORDER: 23P990757

TRACE ORGANICS REVIEWED BY: Oksana Gushyla, Trace Organics Lab Supervisor

WATER ANALYSIS REVIEWED BY: Amanjot Bhela, Inorganic Lab Manager

DATE REPORTED: Feb 02, 2023

PAGES (INCLUDING COVER): 26 VERSION*: 1

Should you require any information regarding this analysis please contact your client services representative at (905) 712-5100

*Notes	

Disclaimer:

- All work conducted herein has been done using accepted standard protocols, and generally accepted practices and methods. AGAT test methods may
 incorporate modifications from the specified reference methods to improve performance.
- All samples will be disposed of within 30 days after receipt unless a Long Term Storage Agreement is signed and returned. Some specialty analysis may
 be exempt, please contact your Client Project Manager for details.
- AGAT's liability in connection with any delay, performance or non-performance of these services is only to the Client and does not extend to any other
 third party. Unless expressly agreed otherwise in writing, AGAT's liability is limited to the actual cost of the specific analysis or analyses included in the
 services.
- This Certificate shall not be reproduced except in full, without the written approval of the laboratory.
- The test results reported herewith relate only to the samples as received by the laboratory.
- Application of guidelines is provided "as is" without warranty of any kind, either expressed or implied, including, but not limited to, warranties of
 merchantability, fitness for a particular purpose, or non-infringement. AGAT assumes no responsibility for any errors or omissions in the guidelines
 contained in this document.
- All reportable information as specified by ISO/IEC 17025:2017 is available from AGAT Laboratories upon request.

AGAT Laboratories (V1)

Page 1 of 26

Member of: Association of Professional Engineers and Geoscientists of Alberta (APEGA)

Western Enviro-Agricultural Laboratory Association (WEALA) Environmental Services Association of Alberta (ESAA) AGAT Laboratories is accredited to ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA) and/or Standards Council of Canada (SCC) for specific tests listed on the scope of accreditation. AGAT Laboratories (Mississauga) is also accredited by the Canadian Association for Laboratory Accreditation Inc. (CALA) for specific drinking water tests. Accreditations are location and parameter specific. A complete listing of parameters for each location is available from www.cala.ca and/or www.scc.ca. The tests in this report may not necessarily be included in the scope of accreditation. Measurement Uncertainty is not taken into consideration when stating conformity with a specified requirement.

AGAT WORK ORDER: 23P990757

PROJECT: 220509

ATTENTION TO: Paul Bandler

SAMPLED BY:ML

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

CLIENT NAME: BLUMETRIC ENVIRONMENTAL INC.

SAMPLING SITE: Bakelite Belleville

							• === = .	-				
	Formaldehyde (Water)											
DATE RECEIVED: 2023-01-24								DATE REPORTED: 2023-02-02				
		SAMPLE DES	CRIPTION:	MW212	MW209	MW208						
		SAM	PLE TYPE:	Water	Water	Water						
		DATE	SAMPLED:	2023-01-23 10:30	2023-01-23 13:10	2023-01-23 14:55						
Parameter	Unit	G/S	RDL	4715793	4715795	4715796						
Formaldehyde	μg/L		10	<10	<10	<10						
Surrogate	Unit	Acceptab	ole Limits									
2,3,5,6-Tetrafluorobenzaldehyde	%	40-	140	101	99	94						

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard

Analysis performed at AGAT Montréal (unless marked by *)

⁴⁷¹⁵⁷⁹³⁻⁴⁷¹⁵⁷⁹⁶ A higher LDR indicates that a dilution was performed to reduce analyte concentration or reduce matrix interference.

SAMPLING SITE: Bakelite Belleville

Certificate of Analysis

AGAT WORK ORDER: 23P990757

PROJECT: 220509

ATTENTION TO: Paul Bandler

SAMPLED BY:ML

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

O. Reg. 153(511) - BNA (full) + PAHs (Water)

DATE RECEIVED: 2023-01-24								[DATE REPORTE	ED: 2023-02-02	
			CRIPTION: PLE TYPE: SAMPLED:	MW213 Water 2023-01-23 09:15	MW212 Water 2023-01-23 10:30	MW211 Water 2023-01-23 11:55	MW209 Water 2023-01-23 13:10	MW208 Water 2023-01-23 14:55	MW210 Water 2023-01-23 15:55	MW206 Water 2023-01-23 16:55	GW-Dup3 Water 2023-01-23 09:15
Parameter	Unit	G/S	RDL	4715752	4715793	4715794	4715795	4715796	4715797	4715798	4715799
Naphthalene	μg/L	7	0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20
Acenaphthylene	μg/L	1	0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20
Acenaphthene	μg/L	17	0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20
Fluorene	μg/L	290	0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20
Phenanthrene	μg/L	380	0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
Anthracene	μg/L	1	0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
Fluoranthene	μg/L	44	0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20
Pyrene	μg/L	5.7	0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20
Benzo(a)anthracene	μg/L	1.8	0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20
Chrysene	μg/L	0.7	0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
Benzo(b)fluoranthene	μg/L	0.75	0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
Benzo(k)fluoranthene	μg/L	0.4	0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
Benzo(a)pyrene	μg/L	0.81	0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Indeno(1,2,3-cd)pyrene	μg/L	0.2	0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20
Dibenz(a,h)anthracene	μg/L	0.4	0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20
Benzo(g,h,i)perylene	μg/L	0.2	0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20
Phenol	μg/L	9600	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Bis(2-chloroethyl)ether	μg/L	240000	0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
2-Chlorophenol	μg/L	2600	0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
o-Cresol	μg/L		0.5	<0.5	<0.5	<0.5	<0.5	2.23	<0.5	1.37	<0.5
Bis(2-chloroisopropyl)ether	μg/L	20000	0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
m&p-Cresol	μg/L		0.6	<0.6	<0.6	<0.6	<0.6	<0.6	<0.6	<0.6	<0.6
2,4-Dimethylphenol	μg/L	31000	0.5	<0.5	<0.5	<0.5	<0.5	5.07	<0.5	<0.5	<0.5
2,4-Dichlorophenol	μg/L	3700	0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3
1,2,4-Trichlorobenzene	μg/L		0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
p-Chloroaniline	μg/L	320	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
2-and 1-methyl Naphthalene	μg/L	1500	0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20
2,4,6-Trichlorophenol	μg/L	180	0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20
2,4,5-Trichlorophenol	μg/L	1300	0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20

SAMPLING SITE: Bakelite Belleville

Certificate of Analysis

AGAT WORK ORDER: 23P990757

PROJECT: 220509

ATTENTION TO: Paul Bandler

SAMPLED BY:ML

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

O. Reg. 153(511) - BNA (full) + PAHs (Water)

				• •	•	` '	` '				
DATE RECEIVED: 2023-01-24								Ι	DATE REPORTE	ED: 2023-02-02	
		SAMPLE DES	CRIPTION:	MW213	MW212	MW211	MW209	MW208	MW210	MW206	GW-Dup3
		SAM	PLE TYPE:	Water							
		DATE	SAMPLED:	2023-01-23 09:15	2023-01-23 10:30	2023-01-23 11:55	2023-01-23 13:10	2023-01-23 14:55	2023-01-23 15:55	2023-01-23 16:55	2023-01-23 09:15
Parameter	Unit	G/S	RDL	4715752	4715793	4715794	4715795	4715796	4715797	4715798	4715799
1,1'-Biphenyl	μg/L	1000	0.50	<0.50	<0.50	< 0.50	<0.50	<0.50	<0.50	<0.50	<0.50
Dimethyl phthalate	μg/L	30	0.50	< 0.50	< 0.50	< 0.50	<0.50	< 0.50	< 0.50	< 0.50	< 0.50
2,4 and 2,6-Dinitrotoluene	μg/L	2300	0.50	< 0.50	<0.50	<0.50	<0.50	<0.50	< 0.50	<0.50	<0.50
Diethyl phthalate	μg/L	30	0.50	< 0.50	<0.50	<0.50	<0.50	<0.50	< 0.50	<0.50	<0.50
Pentachlorophenol	μg/L	50	0.50	< 0.50	< 0.50	< 0.50	<0.50	< 0.50	<0.50	<0.50	< 0.50
3,3'-dichlorobenzidine	μg/L	500	0.50	<0.50	<0.50	< 0.50	<0.50	<0.50	<0.50	<0.50	<0.50
Bis(2-Ethylhexyl)phthalate	μg/L	30	0.50	0.86	<0.50	0.86	1.09	3.08	0.78	1.10	1.14
2,4-Dinitrophenol	μg/L	9000	10	<10	<10	<10	<10	<10	<10	<10	<10
Sediment				NO	NO	NO	NO	YES	NO	NO	NO
Surrogate	Unit	Acceptab	le Limits								
2-Fluorophenol	%	50-	140	62	88	85	69	73	88	70	98
phenol-d6 surrogate	%	50-	140	107	97	76	99	74	92	96	79
2,4,6-Tribromophenol	%	50-	140	108	61	100	103	56	98	110	106
Chrysene-d12	%	50-	140	94	105	66	82	54	66	92	104

Comments:

RDL - Reported Detection Limit; G / S - Guideline / Standard: Refers to Table 7: Generic Site Condition Standards for Shallow Soils in a Non-Potable Ground Water Condition - Non-Potable Ground Water - All Types of Property Uses - Coarse Textured Soils

Guideline values are for general reference only. The guidelines provided may or may not be relevant for the intended use. Refer directly to the applicable standard for regulatory interpretation.

4715752-4715799 To meet the MOE Reporting limits the sample extract was analysed using two separate GC/MS methods. The full scan BNA method is capable of detecting most of the compounds at the RDLs except for several PAHs. The PAHs were analysed using a SIM mode GC/MS method.

Note: The result for Benzo(b)Fluoranthene is the total of the Benzo(b)&(j)Fluoranthene isomers because the isomers co-elute on the GC column.

Sediment parameter is comment only based on visual inspection of the sample prior to extraction and is not an accredited test.

Legend: 1 = no sediment present; 2 = sediment present; 3 = sediment present in trace amount

Analysis performed at AGAT Toronto (unless marked by *)

AGAT WORK ORDER: 23P990757

PROJECT: 220509

ATTENTION TO: Paul Bandler

SAMPLED BY:ML

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

CLIENT NAME: BLUMETRIC ENVIRONMENTAL INC.

SAMPLING SITE: Bakelite Belleville

				O. Reg	ı. 153(511) -	PCBs (Wat	ter)				
DATE RECEIVED: 2023-01-24								[DATE REPORTI	ED: 2023-02-02	
		SAMPLE DES	CRIPTION:	MW213	MW212	MW211	MW209	MW208	MW210	GW-Dup3	
		SAM	PLE TYPE:	Water	Water	Water	Water	Water	Water	Water	
		DATE	SAMPLED:	2023-01-23 09:15	2023-01-23 10:30	2023-01-23 11:55	2023-01-23 13:10	2023-01-23 14:55	2023-01-23 15:55	2023-01-23 09:15	
Parameter	Unit	G/S	RDL	4715752	4715793	4715794	4715795	4715796	4715797	4715799	
Polychlorinated Biphenyls	μg/L	0.2	0.1	<0.1	<0.1	<0.1	<0.1	0.19	<0.1	<0.1	
Surrogate	Unit	Acceptab	ole Limits								
Decachlorobiphenyl	%	60-	140	94	86	92	101	92	70	74	

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard: Refers to Table 7: Generic Site Condition Standards for Shallow Soils in a Non-Potable Ground Water Condition - Non-Potable Ground Water - All Types of Property Uses - Coarse Textured Soils

Guideline values are for general reference only. The guidelines provided may or may not be relevant for the intended use. Refer directly to the applicable standard for regulatory interpretation.

4715752-4715799 PCB total is a calculated parameter. The calculated value is the sum of Aroclor 1242, Aroclor 1248, Aroclor 1254 and Aroclor 1260.

The calculated parameter is non-accredited. The parameters that are components of the calculation are accredited.

Analysis performed at AGAT Toronto (unless marked by *)

SAMPLING SITE: Bakelite Belleville

Certificate of Analysis

AGAT WORK ORDER: 23P990757

PROJECT: 220509

ATTENTION TO: Paul Bandler

SAMPLED BY:ML

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

O. Reg. 153(511) - PHCs F1 - F4 (with PAHs and VOC) (Water)

DATE RECEIVED: 2023-01-24								[DATE REPORTE	ED: 2023-02-02	
	S	AMPLE DES	CRIPTION:	MW213	MW212	MW211	MW209	MW208	MW210	MW206	GW-Dup3
		SAM	PLE TYPE:	Water							
		DATE	SAMPLED:	2023-01-23 09:15	2023-01-23 10:30	2023-01-23 11:55	2023-01-23 13:10	2023-01-23 14:55	2023-01-23 15:55	2023-01-23 16:55	2023-01-23 09:15
Parameter	Unit	G/S	RDL	4715752	4715793	4715794	4715795	4715796	4715797	4715798	4715799
F1 (C6-C10)	μg/L		25	<25	<25	<25	<25	5170	45	<25	<25
F1 (C6 to C10) minus BTEX	μg/L	420	25	<25	<25	<25	<25	<25	<25	<25	<25
F2 (C10 to C16)	μg/L	150	100	<100	<100	<100	<100	<100	<100	<100	<100
F2 (C10 to C16) minus Naphthalene	μg/L		100	<100	<100	<100	<100	<100	<100	<100	<100
F3 (C16 to C34)	μg/L	500	100	<100	<100	<100	<100	<100	<100	<100	<100
F3 (C16 to C34) minus PAHs	μg/L		100	<100	<100	<100	<100	<100	<100	<100	<100
F4 (C34 to C50)	μg/L	500	100	<100	<100	<100	<100	<100	<100	<100	<100
Gravimetric Heavy Hydrocarbons	μg/L		500	NA							
Sediment				1	1	1	3	3	1	1	1
Surrogate	Unit	Acceptab	le Limits								
Toluene-d8	%	50-	40	108	105	108	106	102	101	106	105
Terphenyl	% Recovery	60-	140	71	85	113	73	84	79	86	63

SAMPLING SITE: Bakelite Belleville

Certificate of Analysis

AGAT WORK ORDER: 23P990757

PROJECT: 220509

SAMPLED BY:ML

ATTENTION TO: Paul Bandler

O. Reg. 153(511) - PHCs F1 - F4 (with PAHs and VOC) (Water)

DATE RECEIVED: 2023-01-24 **DATE REPORTED: 2023-02-02**

Comments:

RDL - Reported Detection Limit: G / S - Guideline / Standard: Refers to Table 7: Generic Site Condition Standards for Shallow Soils in a Non-Potable Ground Water Condition - Non-Potable Ground Water - All Types of Property Uses - Coarse Textured Soils

Guideline values are for general reference only. The guidelines provided may or may not be relevant for the intended use. Refer directly to the applicable standard for regulatory interpretation.

4715752-4715795 The C6-C10 fraction is calculated using toluene response factor.

C6-C10 (F1 minus BTEX) is a calculated parameter. The calculated value is F1 minus BTEX. The calculated parameter is non-accredited. The parameters that are components of the calculation are accredited.

The C10 - C16, C16 - C34, and C34 - C50 fractions are calculated using the average response factor for n-C10, n-C16, and n-C34.

Gravimetric Heavy Hydrocarbons are not included in the Total C16-C50 and are only determined if the chromatogram of the C34 - C50 hydrocarbons indicates that hydrocarbons >C50 are present. The chromatogram has returned to baseline by the retention time of nC50.

Total C6 - C50 results are corrected for BTEX and PAH contributions.

C>10 - C16 (F2- Naphthalene) is a calculated parameter. The calculated value is F2 - Naphthalene.

C>16 - C34 (F3-PAH) is a calculated parameter. The calculated value is F3-PAH (PAH: sum of Phenanthrene, Benzo(a)anthracene, Benzo(b)fluoranthene, Benzo(k)fluoranthene, Benzo(a)pyrene,

Fluoranthene, Dibenzo(a,h)anthracene, Indeno(1,2,3-c,d)pyrene and Pyrene).

This method complies with the Reference Method for the CWS PHC and is validated for use in the laboratory.

nC10, nC16 and nC34 response factors are within 10% of their average.

C50 response factor is within 70% of nC10 + nC16 + nC34 average.

Linearity is within 15%.

Extraction and holding times were met for this sample.

Sediment parameter is comment only based on visual inspection of the sample prior to extraction and is not an accredited test.

4715796

Dilution factor=10

VOC- The sample was diluted to keep the target compounds in the calibration range of the instrument and avoid contaminating the Purge and Trap system. The reporting detection limit has been corrected for the dilution factor used.

The C6-C10 fraction is calculated using toluene response factor.

C6-C10 (F1 minus BTEX) is a calculated parameter. The calculated value is F1 minus BTEX. The calculated parameter is non-accredited. The parameters that are components of the calculation are

The C10 - C16, C16 - C34, and C34 - C50 fractions are calculated using the average response factor for n-C10, n-C16, and n-C34.

Gravimetric Heavy Hydrocarbons are not included in the Total C16-C50 and are only determined if the chromatogram of the C34 - C50 hydrocarbons indicates that hydrocarbons >C50 are present. The chromatogram has returned to baseline by the retention time of nC50.

Total C6 - C50 results are corrected for BTEX and PAH contributions.

C>10 - C16 (F2- Naphthalene) is a calculated parameter. The calculated value is F2 - Naphthalene.

C>16 - C34 (F3-PAH) is a calculated parameter. The calculated value is F3-PAH (PAH: sum of Phenanthrene, Benzo(a)anthracene, Benzo(b)fluoranthene, Benzo(k)fluoranthene, Benzo(k)fluoranthene, Benzo(a)apyrene, Fluoranthene, Dibenzo(a,h)anthracene, Indeno(1,2,3-c,d)pyrene and Pyrene).

This method complies with the Reference Method for the CWS PHC and is validated for use in the laboratory.

nC10, nC16 and nC34 response factors are within 10% of their average.

C50 response factor is within 70% of nC10 + nC16 + nC34 average.

Linearity is within 15%.

Extraction and holding times were met for this sample.

Sediment parameter is comment only based on visual inspection of the sample prior to extraction and is not an accredited test.

4715797-4715799 The C6-C10 fraction is calculated using toluene response factor.

C6-C10 (F1 minus BTEX) is a calculated parameter. The calculated value is F1 minus BTEX. The calculated parameter is non-accredited. The parameters that are components of the calculation are accredited.

Certified By:

5835 COOPERS AVENUE

MISSISSAUGA, ONTARIO CANADA L4Z 1Y2

http://www.agatlabs.com

TEL (905)712-5100 FAX (905)712-5122

SAMPLING SITE: Bakelite Belleville

Certificate of Analysis

AGAT WORK ORDER: 23P990757

PROJECT: 220509

SAMPLED BY:ML

ATTENTION TO: Paul Bandler

O. Reg. 153(511) - PHCs F1 - F4 (with PAHs and VOC) (Water)

DATE RECEIVED: 2023-01-24 DATE REPORTED: 2023-02-02

The C10 - C16, C16 - C34, and C34 - C50 fractions are calculated using the average response factor for n-C10, n-C16, and n-C34.

Gravimetric Heavy Hydrocarbons are not included in the Total C16-C50 and are only determined if the chromatogram of the C34 - C50 hydrocarbons indicates that hydrocarbons > C50 are present.

The chromatogram has returned to baseline by the retention time of nC50.

Total C6 - C50 results are corrected for BTEX and PAH contributions.

C>10 - C16 (F2- Naphthalene) is a calculated parameter. The calculated value is F2 - Naphthalene.

C>16 - C34 (F3-PAH) is a calculated parameter. The calculated value is F3-PAH (PAH: sum of Phenanthrene, Benzo(a)anthracene, Benzo(b)fluoranthene, Benzo(k)fluoranthene, Benzo(a)pyrene,

Fluoranthene, Dibenzo(a,h)anthracene, Indeno(1,2,3-c,d)pyrene and Pyrene).

This method complies with the Reference Method for the CWS PHC and is validated for use in the laboratory.

nC10, nC16 and nC34 response factors are within 10% of their average.

C50 response factor is within 70% of nC10 + nC16 + nC34 average.

Linearity is within 15%.

Extraction and holding times were met for this sample.

Sediment parameter is comment only based on visual inspection of the sample prior to extraction and is not an accredited test.

Analysis performed at AGAT Toronto (unless marked by *)

Certified By:

5835 COOPERS AVENUE

MISSISSAUGA, ONTARIO CANADA L4Z 1Y2

http://www.agatlabs.com

TEL (905)712-5100 FAX (905)712-5122

SAMPLING SITE: Bakelite Belleville

Certificate of Analysis

AGAT WORK ORDER: 23P990757

PROJECT: 220509

ATTENTION TO: Paul Bandler

SAMPLED BY:ML

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

O. Reg. 153(511) - VOCs (with PHC) (Water)

DATE RECEIVED: 2023-01-24									DATE REPORTED	D: 2023-02-0	2
			CRIPTION: PLE TYPE: SAMPLED:	MW213 Water 2023-01-23 09:15	MW212 Water 2023-01-23 10:30	MW211 Water 2023-01-23 11:55	MW209 Water 2023-01-23 13:10		MW208 Water 2023-01-23 14:55		MW210 Water 2023-01-23 15:55
Parameter	Unit	G/S	RDL	4715752	4715793	4715794	4715795	RDL	4715796	RDL	4715797
Dichlorodifluoromethane	μg/L	3500	0.40	<0.40	<0.40	< 0.40	<0.40	4.00	<4.00	0.40	< 0.40
Vinyl Chloride	μg/L	0.5	0.17	<0.17	<0.17	<0.17	<0.17	1.70	<1.70	0.17	<0.17
Bromomethane	μg/L	0.89	0.20	<0.20	<0.20	<0.20	<0.20	2.00	<2.00	0.20	<0.20
Trichlorofluoromethane	μg/L	2000	0.40	< 0.40	< 0.40	<0.40	<0.40	4.00	<4.00	0.40	< 0.40
Acetone	μg/L	100000	1.0	<1.0	<1.0	<1.0	<1.0	10.0	<10.0	1.0	<1.0
1,1-Dichloroethylene	μg/L	0.5	0.30	< 0.30	< 0.30	< 0.30	<0.30	3.00	<3.00	0.30	< 0.30
Methylene Chloride	μg/L	26	0.30	< 0.30	<0.30	<0.30	< 0.30	3.00	<3.00	0.30	< 0.30
trans- 1,2-Dichloroethylene	μg/L	1.6	0.20	<0.20	<0.20	<0.20	<0.20	2.00	<2.00	0.20	<0.20
Methyl tert-butyl ether	μg/L	15	0.20	<0.20	<0.20	<0.20	<0.20	2.00	<2.00	0.20	<0.20
1,1-Dichloroethane	μg/L	11	0.30	< 0.30	<0.30	< 0.30	< 0.30	3.00	<3.00	0.30	0.86
Methyl Ethyl Ketone	μg/L	21000	1.0	<1.0	<1.0	<1.0	<1.0	10.0	<10.0	1.0	<1.0
cis- 1,2-Dichloroethylene	μg/L	1.6	0.20	<0.20	<0.20	<0.20	<0.20	2.00	<2.00	0.20	<0.20
Chloroform	μg/L	2	0.20	<0.20	<0.20	<0.20	<0.20	2.00	<2.00	0.20	<0.20
1,2-Dichloroethane	μg/L	0.5	0.20	<0.20	<0.20	<0.20	<0.20	2.00	<2.00	0.20	<0.20
1,1,1-Trichloroethane	μg/L	23	0.30	<0.30	<0.30	< 0.30	<0.30	3.00	<3.00	0.30	< 0.30
Carbon Tetrachloride	μg/L	0.2	0.20	<0.20	<0.20	<0.20	<0.20	2.00	<2.00	0.20	<0.20
Benzene	μg/L	0.5	0.20	<0.20	<0.20	<0.20	<0.20	2.00	2250	0.20	20.6
1,2-Dichloropropane	μg/L	0.58	0.20	<0.20	<0.20	<0.20	<0.20	2.00	<2.00	0.20	<0.20
Trichloroethylene	μg/L	0.5	0.20	<0.20	<0.20	<0.20	<0.20	2.00	<2.00	0.20	<0.20
Bromodichloromethane	μg/L	67000	0.20	<0.20	<0.20	<0.20	<0.20	2.00	<2.00	0.20	<0.20
Methyl Isobutyl Ketone	μg/L	5200	1.0	<1.0	<1.0	<1.0	<1.0	10.0	<10.0	1.0	<1.0
1,1,2-Trichloroethane	μg/L	0.5	0.20	<0.20	<0.20	<0.20	<0.20	2.00	<2.00	0.20	<0.20
Toluene	μg/L	320	0.20	<0.20	<0.20	<0.20	<0.20	2.00	2170	0.20	15.0
Dibromochloromethane	μg/L	65000	0.10	<0.10	<0.10	<0.10	<0.10	1.00	<1.00	0.10	<0.10
Ethylene Dibromide	μg/L	0.2	0.10	<0.10	<0.10	<0.10	<0.10	1.00	<1.00	0.10	<0.10
Tetrachloroethylene	μg/L	0.5	0.20	<0.20	<0.20	<0.20	<0.20	2.00	<2.00	0.20	<0.20
1,1,1,2-Tetrachloroethane	μg/L	1.1	0.10	<0.10	<0.10	<0.10	<0.10	1.00	<1.00	0.10	<0.10
Chlorobenzene	μg/L	140	0.10	<0.10	<0.10	<0.10	<0.10	1.00	<1.00	0.10	3.55
Ethylbenzene	μg/L	54	0.10	<0.10	<0.10	<0.10	<0.10	1.00	42.2	0.10	<0.10

Certificate of Analysis

AGAT WORK ORDER: 23P990757

PROJECT: 220509

ATTENTION TO: Paul Bandler

SAMPLED BY:ML

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

SAMPLING SITE:Bakelite Belleville

O Reg. 153(511) - VOCs (with PHC) (Water)

DATE RECEIVED: 2023-01-24									DATE REPORTED	D: 2023-02-0	2
	S	AMPLE DES	CRIPTION:	MW213	MW212	MW211	MW209		MW208		MW210
		SAM	PLE TYPE:	Water	Water	Water	Water		Water		Water
		DATE	SAMPLED:	2023-01-23 09:15	2023-01-23 10:30	2023-01-23 11:55	2023-01-23 13:10		2023-01-23 14:55		2023-01-23 15:55
Parameter	Unit	G/S	RDL	4715752	4715793	4715794	4715795	RDL	4715796	RDL	4715797
m & p-Xylene	μg/L		0.20	<0.20	<0.20	<0.20	<0.20	2.00	534	0.20	2.04
Bromoform	μg/L	5	0.10	<0.10	<0.10	<0.10	<0.10	1.00	<1.00	0.10	<0.10
Styrene	μg/L	43	0.10	<0.10	<0.10	<0.10	<0.10	1.00	<1.00	0.10	<0.10
1,1,2,2-Tetrachloroethane	μg/L	0.5	0.10	<0.10	<0.10	<0.10	<0.10	1.00	<1.00	0.10	<0.10
o-Xylene	μg/L		0.10	<0.10	<0.10	< 0.10	<0.10	1.00	166	0.10	0.60
1,3-Dichlorobenzene	μg/L	7600	0.10	<0.10	<0.10	< 0.10	<0.10	1.00	<1.00	0.10	<0.10
1,4-Dichlorobenzene	μg/L	0.5	0.10	<0.10	<0.10	<0.10	<0.10	1.00	<1.00	0.10	<0.10
1,2-Dichlorobenzene	μg/L	150	0.10	<0.10	<0.10	<0.10	<0.10	1.00	<1.00	0.10	<0.10
1,3-Dichloropropene	μg/L	0.5	0.30	< 0.30	<0.30	<0.30	< 0.30	0.30	< 0.30	0.30	< 0.30
Xylenes (Total)	μg/L	72	0.20	<0.20	<0.20	<0.20	<0.20	0.20	700	0.20	2.64
n-Hexane	μg/L	5	0.20	<0.20	<0.20	<0.20	<0.20	2.00	<2.00	0.20	<0.20
Surrogate	Unit	Acceptab	le Limits								
Toluene-d8	% Recovery	50-	140	108	105	108	106	10	102	1	101
4-Bromofluorobenzene	% Recovery	50-	140	89	87	92	84	10	95	1	89

Certificate of Analysis

AGAT WORK ORDER: 23P990757

PROJECT: 220509

ATTENTION TO: Paul Bandler

SAMPLED BY:ML

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

SAMPLING SITE:Bakelite Belleville

O Reg. 153(511) - VOCs (with PHC) (Water)

			U.	Keg. 155(311) - VOCS (with PHC) (Water)	
DATE RECEIVED: 2023-01-24							DATE REPORTED: 2023-02-02
			CRIPTION: PLE TYPE: SAMPLED:	MW206 Water 2023-01-23 16:55	GW-Dup3 Water 2023-01-23 09:15		
Parameter	Unit	G/S	RDL	4715798	4715799		
Dichlorodifluoromethane	μg/L	3500	0.40	<0.40	<0.40		
Vinyl Chloride	μg/L	0.5	0.17	<0.17	<0.17		
Bromomethane	μg/L	0.89	0.20	<0.20	<0.20		
Trichlorofluoromethane	μg/L	2000	0.40	< 0.40	<0.40		
Acetone	μg/L	100000	1.0	<1.0	<1.0		
1,1-Dichloroethylene	μg/L	0.5	0.30	<0.30	< 0.30		
Methylene Chloride	μg/L	26	0.30	<0.30	< 0.30		
rans- 1,2-Dichloroethylene	μg/L	1.6	0.20	<0.20	<0.20		
Methyl tert-butyl ether	μg/L	15	0.20	<0.20	<0.20		
,1-Dichloroethane	μg/L	11	0.30	<0.30	<0.30		
lethyl Ethyl Ketone	μg/L	21000	1.0	<1.0	<1.0		
is- 1,2-Dichloroethylene	μg/L	1.6	0.20	<0.20	<0.20		
Chloroform	μg/L	2	0.20	<0.20	<0.20		
,2-Dichloroethane	μg/L	0.5	0.20	<0.20	<0.20		
,1,1-Trichloroethane	μg/L	23	0.30	<0.30	<0.30		
Carbon Tetrachloride	μg/L	0.2	0.20	<0.20	<0.20		
Benzene	μg/L	0.5	0.20	<0.20	<0.20		
1,2-Dichloropropane	μg/L	0.58	0.20	<0.20	<0.20		
Trichloroethylene	μg/L	0.5	0.20	<0.20	<0.20		
Bromodichloromethane	μg/L	67000	0.20	<0.20	<0.20		
Methyl Isobutyl Ketone	μg/L	5200	1.0	<1.0	<1.0		
1,1,2-Trichloroethane	μg/L	0.5	0.20	<0.20	<0.20		
Toluene	μg/L	320	0.20	<0.20	<0.20		
Dibromochloromethane	μg/L	65000	0.10	<0.10	<0.10		
Ethylene Dibromide	μg/L	0.2	0.10	<0.10	<0.10		
Tetrachloroethylene	μg/L	0.5	0.20	<0.20	<0.20		
1,1,1,2-Tetrachloroethane	μg/L	1.1	0.10	<0.10	<0.10		
Chlorobenzene	μg/L	140	0.10	<0.10	<0.10		
Ethylbenzene	μg/L	54	0.10	<0.10	<0.10		

SAMPLING SITE: Bakelite Belleville

Certificate of Analysis

AGAT WORK ORDER: 23P990757

PROJECT: 220509

ATTENTION TO: Paul Bandler

SAMPLED BY:ML

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

O. Reg. 153(511) - VOCs (with PHC) (Water)

			•		0,	5 (With 1 115) (,			
DATE RECEIVED: 2023-01-24	4							DATE REPORTED: 2023-02-02		
	SA	AMPLE DES	CRIPTION:	MW206	GW-Dup3					
		SAM	PLE TYPE:	Water	Water					
		DATE SAMPLED:		DATE SAMPLED:		2023-01-23 16:55	2023-01-23 09:15			
Parameter	Unit	G/S	RDL	4715798	4715799					
m & p-Xylene	μg/L		0.20	<0.20	<0.20					
Bromoform	μg/L	5	0.10	<0.10	<0.10					
Styrene	μg/L	43	0.10	<0.10	<0.10					
1,1,2,2-Tetrachloroethane	μg/L	0.5	0.10	<0.10	<0.10					
o-Xylene	μg/L		0.10	<0.10	<0.10					
1,3-Dichlorobenzene	μg/L	7600	0.10	<0.10	<0.10					
1,4-Dichlorobenzene	μg/L	0.5	0.10	<0.10	<0.10					
1,2-Dichlorobenzene	μg/L	150	0.10	<0.10	<0.10					
1,3-Dichloropropene	μg/L	0.5	0.30	< 0.30	<0.30					
Xylenes (Total)	μg/L	72	0.20	<0.20	<0.20					
n-Hexane	μg/L	5	0.20	<0.20	<0.20					
Surrogate	Unit	Acceptable Limits								
Toluene-d8	% Recovery	50-	140	106	105					
4-Bromofluorobenzene	% Recovery	50-	140	88	89					

RDL - Reported Detection Limit; G / S - Guideline / Standard: Refers to Table 7: Generic Site Condition Standards for Shallow Soils in a Non-Potable Ground Water Condition - Non-Potable Ground Comments:

Water - All Types of Property Uses - Coarse Textured Soils

Guideline values are for general reference only. The guidelines provided may or may not be relevant for the intended use. Refer directly to the applicable standard for regulatory interpretation.

4715752-4715795 Xylenes total is a calculated parameter. The calculated value is the sum of m&p-Xylene and o-Xylene.

1,3-Dichloropropene total is a calculated parameter. The calculated value is the sum of Cis-1,3-Dichloropropene and Trans-1,3-Dichloropropene.

The calculated parameter is non-accredited. The parameters that are components of the calculation are accredited.

4715796 Dilution factor=10

> VOC- The sample was diluted to keep the target compounds in the calibration range of the instrument and avoid contaminating the Purge and Trap system. The reporting detection limit has been corrected for the dilution factor used.

Xylenes total is a calculated parameter. The calculated value is the sum of m&p-Xylene and o-Xylene.

1.3-Dichloropropene total is a calculated parameter. The calculated value is the sum of Cis-1.3-Dichloropropene and Trans-1.3-Dichloropropene.

The calculated parameter is non-accredited. The parameters that are components of the calculation are accredited.

4715797-4715799 Xylenes total is a calculated parameter. The calculated value is the sum of m&p-Xylene and o-Xylene.

1.3-Dichloropropene total is a calculated parameter. The calculated value is the sum of Cis-1.3-Dichloropropene and Trans-1.3-Dichloropropene.

The calculated parameter is non-accredited. The parameters that are components of the calculation are accredited.

Analysis performed at AGAT Toronto (unless marked by *)

AGAT WORK ORDER: 23P990757

PROJECT: 220509

ATTENTION TO: Paul Bandler

SAMPLED BY:ML

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

CLIENT NAME: BLUMETRIC ENVIRONMENTAL INC. SAMPLING SITE:Bakelite Belleville

O. Reg. 153(511) - Metals & Inorganics (Water)

DATE RECEIVED: 2023-01-24									DATE REPORTE	D: 2023-02-02	2
	\$		CRIPTION: PLE TYPE: SAMPLED:	MW213 Water 2023-01-23 09:15	MW212 Water 2023-01-23 10:30	MW211 Water 2023-01-23 11:55	MW209 Water 2023-01-23 13:10		MW208 Water 2023-01-23 14:55		MW210 Water 2023-01-23 15:55
Parameter	Unit	G/S	RDL	4715752	4715793	4715794	4715795	RDL	4715796	RDL	4715797
Dissolved Antimony	μg/L	16000	1.0	<1.0	<1.0	2.0	<1.0	1.0	<1.0	1.0	<1.0
Dissolved Arsenic	μg/L	1500	1.0	<1.0	<1.0	<1.0	<1.0	1.0	<1.0	1.0	<1.0
Dissolved Barium	μg/L	23000	2.0	99.0	67.5	61.6	77.2	2.0	175	2.0	82.0
Dissolved Beryllium	μg/L	53	0.50	< 0.50	<0.50	<0.50	<0.50	0.50	< 0.50	0.50	< 0.50
Dissolved Boron	μg/L	36000	10.0	335	367	158	186	10.0	808	10.0	412
Dissolved Cadmium	μg/L	2.1	0.20	<0.20	<0.20	<0.20	<0.20	0.20	0.21	0.20	<0.20
Dissolved Chromium	μg/L	640	2.0	<2.0	<2.0	<2.0	<2.0	2.0	<2.0	2.0	<2.0
Dissolved Cobalt	μg/L	52	0.50	< 0.50	1.22	1.98	<0.50	0.50	< 0.50	0.50	< 0.50
Dissolved Copper	μg/L	69	1.0	<1.0	<1.0	1.0	<1.0	1.0	1.3	1.0	1.4
Dissolved Lead	μg/L	20	0.50	<0.50	<0.50	<0.50	<0.50	0.50	<0.50	0.50	<0.50
Dissolved Molybdenum	μg/L	7300	0.50	9.39	12.7	22.2	106	0.50	296	0.50	306
Dissolved Nickel	μg/L	390	1.0	2.0	2.0	7.7	1.4	1.0	1.2	1.0	<1.0
Dissolved Selenium	μg/L	50	1.0	<1.0	1.4	<1.0	<1.0	1.0	7.5	1.0	<1.0
Dissolved Silver	μg/L	1.2	0.20	<0.20	<0.20	<0.20	<0.20	0.20	<0.20	0.20	<0.20
Dissolved Thallium	μg/L	400	0.30	<0.30	<0.30	< 0.30	< 0.30	0.30	< 0.30	0.30	< 0.30
Dissolved Uranium	μg/L	330	0.50	0.92	1.04	0.76	<0.50	0.50	2.24	0.50	0.54
Dissolved Vanadium	μg/L	200	0.40	<0.40	<0.40	< 0.40	1.61	0.40	< 0.40	0.40	< 0.40
Dissolved Zinc	μg/L	890	5.0	<5.0	<5.0	<5.0	8.4	5.0	16.3	5.0	89.1
Mercury	μg/L	0.1	0.02	<0.02	<0.02	<0.02	<0.02	0.02	<0.02	0.02	< 0.02
Chromium VI	μg/L	110	2.000	<2.000	<2.000	<2.000	<2.000	2.000	<2.000	2.000	<2.000
Cyanide, WAD	μg/L	52	2	<2	<2	<2	<2	2	<2	2	<2
Dissolved Sodium	μg/L	1800000	50	31300	20300	42500	26500	500	1110000	50	33400
Chloride	μg/L	1800000	100	10800	8380	15800	15500	244	2170000	100	11700
Electrical Conductivity	uS/cm	NA	2	900	978	717	888	2	7090	2	837
pH	pH Units		NA	7.43	7.35	7.63	7.40	NA	7.74	NA	7.60

AGAT WORK ORDER: 23P990757

PROJECT: 220509

ATTENTION TO: Paul Bandler

SAMPLED BY:ML

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

CLIENT NAME: BLUMETRIC ENVIRONMENTAL INC. SAMPLING SITE:Bakelite Belleville

O. Reg. 153(511) - Metals & Inorganics (Water) DATE RECEIVED: 2023-01-24 **DATE REPORTED: 2023-02-02** SAMPLE DESCRIPTION: MW206 GW-Dup3 SAMPLE TYPE: Water Water DATE SAMPLED: 2023-01-23 2023-01-23 09:15 16:55 Parameter Unit G/S RDL 4715798 **RDL** 4715799 Dissolved Antimony μg/L 16000 1.0 <1.0 1.0 <1.0 1500 Dissolved Arsenic μg/L 1.0 1.9 1.0 2.6 Dissolved Barium μg/L 23000 2.0 656 2.0 98.1 Dissolved Beryllium 53 < 0.50 μg/L 0.50 < 0.50 0.50 Dissolved Boron 36000 10.0 2060 10.0 369 μg/L Dissolved Cadmium μg/L 2.1 0.20 < 0.20 0.20 < 0.20 Dissolved Chromium 2.0 < 2.0 μg/L 640 2.0 <2.0 Dissolved Cobalt µg/L 52 0.50 < 0.50 0.50 < 0.50 Dissolved Copper μg/L 69 1.0 <1.0 1.0 <1.0 20 0.50 < 0.50 Dissolved Lead μg/L 0.50 < 0.50 Dissolved Molybdenum μg/L 7300 0.50 16.7 0.50 10.1 Dissolved Nickel 390 2.8 µg/L 1.0 1.0 1.3 Dissolved Selenium μg/L 50 1.0 <1.0 1.0 1.6 Dissolved Silver μg/L 1.2 0.20 < 0.20 0.20 <0.20 Dissolved Thallium μg/L 400 0.30 < 0.30 0.30 < 0.30 Dissolved Uranium μg/L 330 0.50 0.87 0.50 0.89 Dissolved Vanadium μg/L 200 0.40 0.93 0.40 < 0.40 Dissolved Zinc μg/L 890 5.0 5.2 5.0 < 5.0 Mercury μg/L 0.1 0.02 < 0.02 0.02 < 0.02 110 2.000 <2.000 2.000 <2.000 Chromium VI μg/L Cyanide, WAD 52 2 <2 2 <2 μg/L Dissolved Sodium μg/L 1800000 500 2220000 50 28400 1800000 11300 Chloride μg/L 488 5760000 100 Electrical Conductivity uS/cm NA 2 15800 904

Certified By:

7.55

pH Units

NA

7.24

Ha

NA

AGAT WORK ORDER: 23P990757

PROJECT: 220509

ATTENTION TO: Paul Bandler

SAMPLED BY:ML

O. Reg. 153(511) - Metals & Inorganics (Water)

DATE RECEIVED: 2023-01-24 **DATE REPORTED: 2023-02-02**

RDL - Reported Detection Limit; G / S - Guideline / Standard: Refers to Table 7: Generic Site Condition Standards for Shallow Soils in a Non-Potable Ground Water Condition - Non-Potable Ground Comments: Water - All Types of Property Uses - Coarse Textured Soils

Guideline values are for general reference only. The guidelines provided may or may not be relevant for the intended use. Refer directly to the applicable standard for regulatory interpretation.

4715752-4715799 Metals analysis completed on a filtered sample.

CLIENT NAME: BLUMETRIC ENVIRONMENTAL INC.

Dilution required, RDL has been increased accordingly.

Analysis performed at AGAT Toronto (unless marked by *)

SAMPLING SITE: Bakelite Belleville

Certified By:

5835 COOPERS AVENUE

MISSISSAUGA, ONTARIO

http://www.agatlabs.com

CANADA L4Z 1Y2

TEL (905)712-5100 FAX (905)712-5122

Exceedance Summary

AGAT WORK ORDER: 23P990757

PROJECT: 220509

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

CLIENT NAME: BLUMETRIC ENVIRONMENTAL INC.

ATTENTION TO: Paul Bandler

SAMPLEID	SAMPLE TITLE	GUIDELINE	ANALYSIS PACKAGE	PARAMETER	UNIT	GUIDEVALUE	RESULT
4715796	MW208	ON T7 NPGW CT	O. Reg. 153(511) - Metals & Inorganics (Water)	Chloride	μg/L	1800000	2170000
4715796	MW208	ON T7 NPGW CT	O. Reg. 153(511) - PHCs F1 - F4 (with PAHs and VOC) (Water)	Benzene	μg/L	0.5	2250
4715796	MW208	ON T7 NPGW CT	O. Reg. 153(511) - PHCs F1 - F4 (with PAHs and VOC) (Water)	Toluene	μg/L	320	2170
4715796	MW208	ON T7 NPGW CT	O. Reg. 153(511) - VOCs (with PHC) (Water)	Benzene	μg/L	0.5	2250
4715796	MW208	ON T7 NPGW CT	O. Reg. 153(511) - VOCs (with PHC) (Water)	Toluene	μg/L	320	2170
4715796	MW208	ON T7 NPGW CT	O. Reg. 153(511) - VOCs (with PHC) (Water)	Xylenes (Total)	μg/L	72	700
4715797	MW210	ON T7 NPGW CT	O. Reg. 153(511) - PHCs F1 - F4 (with PAHs and VOC) (Water)	Benzene	μg/L	0.5	20.6
4715797	MW210	ON T7 NPGW CT	O. Reg. 153(511) - VOCs (with PHC) (Water)	Benzene	μg/L	0.5	20.6
4715798	MW206	ON T7 NPGW CT	O. Reg. 153(511) - Metals & Inorganics (Water)	Chloride	μg/L	1800000	5760000
4715798	MW206	ON T7 NPGW CT	O. Reg. 153(511) - Metals & Inorganics (Water)	Dissolved Sodium	μg/L	1800000	2220000

Quality Assurance

CLIENT NAME: BLUMETRIC ENVIRONMENTAL INC.

AGAT WORK ORDER: 23P990757

PROJECT: 220509

ATTENTION TO: Paul Bandler

SAMPLING SITE:Bakelite Belleville SAMPLED BY:ML

PARAMETER Batch Batch Batch Barmylo Id Dup #1 Dup #2 Dup #2 RPD Mathcad Barnylo Dup #1 Dup #2 RPD Mathcad Barnylo Dup #2 RPD Mathcad Mathcad Mathcad Mathcad Mathcad Mathcad Mathcad Mathcad Mathcad Dup #1 Dup #2 Dup #2 Dup #2 RPD Mathcad Mathcad Mathcad Mathcad Mathcad Mathcad Dup #1 Dup #2 Dup #2 Dup #2 RPD Mathcad Mathcad Mathcad Dup #4 Dup #2 Dup #2 Dup #2 Dup #4 Dup #2 Dup #2 Dup #2 Dup #4 Dup #2 Dup #2 Dup #4 Dup #2 Dup #4 Dup #2 Dup #4 Dup #4 Dup #2 Dup #4 D				Trac	ce Or	gani	cs Ar	nalys	is							
PARAMETER Banch Ban	RPT Date: Feb 02, 2023			Г	DUPLICAT	E		REFERENCE MATERIAL			METHOD BLANK SPIKE			MATRIX SPIKE		
Color	PARAMETER	Batch		Dup #1	Dup #2	RPD					Recovery	1 1 1 1 1 1		Recovery	Lin	
FI (CE-CIO) 4705529			lu lu					Value	Lower	Upper		Lower	Upper		Lower	Upper
F2 (C11 to C16)	O. Reg. 153(511) - PHCs F1 - F	4 (with PAHs a	and VOC)	(Water)												
F3 (C16 to C34)	F1 (C6-C10)	4705529		<25	<25	NA	< 25	89%	60%	140%	74%	60%	140%	96%	60%	140%
F4 (C34 to C50) 4714725 < <100 < <100 NA < 100 94% 60% 140% 89% 60% 140% 67% 60% 1 O. Reg. 153(511) - BNA (full) + PAHs (Water) Naphthalene	F2 (C10 to C16)	4714725		<100	<100	NA	< 100	100%	60%	140%	73%	60%	140%	68%	60%	140%
Naphthalene	F3 (C16 to C34)	4714725		<100	<100	NA	< 100	102%	60%	140%	75%	60%	140%	67%	60%	140%
Naphthalene	F4 (C34 to C50)	4714725		<100	<100	NA	< 100	94%	60%	140%	89%	60%	140%	67%	60%	140%
Acenaphthylene	O. Reg. 153(511) - BNA (full) +	PAHs (Water)														
Acenaphthene	Naphthalene	4468334		< 0.20	< 0.20	NA	< 0.20	89%	50%	140%	88%	50%	140%	115%	50%	140%
Fluorenne	Acenaphthylene	4468334		< 0.20	< 0.20	NA	< 0.20	76%	50%	140%	94%	50%	140%	98%	50%	140%
Phenanthrene	Acenaphthene	4468334		< 0.20	< 0.20	NA	< 0.20	80%	50%	140%	80%	50%	140%	65%	50%	140%
Anthracene	Fluorene	4468334		< 0.20	< 0.20	NA	< 0.20	105%	50%	140%	105%	50%	140%	67%	50%	140%
Fluoranthene	Phenanthrene	4468334		< 0.10	< 0.10	NA	< 0.10	101%	50%	140%	83%	50%	140%	75%	50%	140%
Fluoranthene	Anthracene	4468334		< 0.10	< 0.10	NA	< 0.10	87%	50%	140%	101%	50%	140%	90%	50%	140%
Pyrene 4468334 < 0.20 < 0.20 NA < 0.20 76% 50% 140% 98% 98% 50% 140% 98% 50% 140% 98% 50% 140% 98% 50% 140% 98% 50% 140% 98% 50% 140% 98% 50% 140% 98% 50% 140% 98% 50% 140% 98% 50% 140% 98% 50% 140% 98% 50% 140% 98% 50% 140% 98% 50% 140% 88% 50% 140% 88% 50% 140% 88% 50% 140% 98% 50% 140% 88% 50% 140% 98% 50% 140% 98% 50% 140% 88% 50% 140% 89% 50% 140% 89% 50% 140% 89% 50% 140% 89% 50% 140% 89% 50% 140% 89% 50% 140% 89%<	Fluoranthene	4468334		< 0.20	< 0.20	NA	< 0.20	85%	50%	140%	85%	50%	140%	101%	50%	140%
Benzo(a)anthracene	Pyrene	4468334		< 0.20	< 0.20	NA		76%	50%	140%	93%	50%	140%	98%	50%	140%
Chrysene 446834	Benzo(a)anthracene	4468334		< 0.20	< 0.20	NA	< 0.20	82%	50%	140%	95%	50%	140%	89%	50%	140%
Benzo(k)fluoranthene		4468334		< 0.10		NA	< 0.10	101%	50%	140%	98%	50%	140%	85%	50%	140%
Benzo(k)fluoranthene	Benzo(b)fluoranthene	4468334		< 0.10	< 0.10	NA	< 0.10	89%	50%	140%	89%	50%	140%	71%	50%	140%
Benzo(a)pyrene	. ,															140%
Indeno(1,2,3-cd)pyrene	` '															140%
Dibenz(a,h)anthracene 4468334																140%
Phenol 4468334																140%
Phenol 4468334	Benzo(a.h.i)pervlene	4468334		< 0.20	< 0.20	NA	< 0.20	88%	50%	140%	89%	50%	140%	99%	50%	140%
Bis(2-chloroethyl)ether 4468334	· ·· ·· ·															130%
2-Chlorophenol 4468334	Bis(2-chloroethyl)ether															140%
o-Cresol 4468334	` ,															140%
m&p-Cresol 4468334 < 0.6 < 0.6 NA < 0.6 68% 50% 140% 105% 50% 140% 98% 50% 14 2,4-Dimethylphenol 4468334 < 0.5	•															140%
m&p-Cresol 4468334 < 0.6	Bis(2-chloroisopropyl)ether	4468334		< 0.5	< 0.5	NA	< 0.5	102%	50%	140%	83%	50%	140%	67%	50%	140%
2,4-Dimethylphenol 4468334 < 0.5	1 177															140%
2,4-Dichlorophenol 4468334 < 0.3	•															130%
1,2,4-Trichlorobenzene 4468334 < 0.5	• • • • • • • • • • • • • • • • • • • •															140%
2,4,6-Trichlorophenol 4468334 < 0.20	· ·															140%
2,4,6-Trichlorophenol 4468334	p-Chloroaniline	4468334		< 1.0	< 1 0	NΑ	< 1.0	86%	30%	130%	91%	30%	130%	73%	30%	130%
2,4,5-Trichlorophenol 4468334 < 0.20	•															140%
1,1'-Biphenyl 4468334 < 0.50	•															
Dimethyl phthalate 4468334 < 0.50 < 0.50 NA < 0.50 102% 50% 140% 64% 50% 140% 106% 50% 140% 5	•															140%
Pentachlorophenol 4468334 < 0.50 < 0.50 NA < 0.50 89% 50% 140% 89% 50% 140% 67% 50% 140% 3,3'-dichlorobenzidine 4468334 < 0.50 < 0.50 NA < 0.50 88% 30% 130% 91% 30% 130% 73% 30% 130%																140%
Pentachlorophenol 4468334 < 0.50 < 0.50 NA < 0.50 89% 50% 140% 89% 50% 140% 67% 50% 140% 3,3'-dichlorobenzidine 4468334 < 0.50 < 0.50 NA < 0.50 88% 30% 130% 91% 30% 130% 73% 30% 130%	Diethyl phthalate	4468334		< 0.50	< 0.50	NΔ	< 0.50	56%	50%	140%	64%	50%	140%	67%	50%	140%
3,3'-dichlorobenzidine 4468334 < 0.50 < 0.50 NA < 0.50 88% 30% 130% 91% 30% 130% 73% 30% 130%																140%
	·															130%
Bis(2-Ethylhexyl)phthalate 4468334 < 0.50 < 0.50 NA < 0.50 89% 50% 140% 105% 50% 140% 71% 50% 140%																

AGAT QUALITY ASSURANCE REPORT (V1)

Page 17 of 26

AGAT Laboratories is accredited to ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA) and/or Standards Council of Canada (SCC) for specific tests listed on the scope of accreditation. AGAT Laboratories (Mississauga) is also accredited by the Canadian Association for Laboratory Accreditation Inc. (CALA) for specific drinking water tests. Accreditations are location and parameter specific. A complete listing of parameters for each location is available from www.cala.ca and/or www.scc.ca. The tests in this report may not necessarily be included in the scope of accreditation. RPDs calculated using raw data. The RPD may not be reflective of duplicate values shown, due to rounding of final results.

Quality Assurance

CLIENT NAME: BLUMETRIC ENVIRONMENTAL INC.

AGAT WORK ORDER: 23P990757

PROJECT: 220509

ATTENTION TO: Paul Bandler

SAMPLING SITE:Bakelite Belleville

SAMPLED BY:ML

	I	race	Orga	anıcs	Ana	alysis	(Cor	ntın	ued)					
RPT Date: Feb 02, 2023			DUPLICATE				REFERENCE MATERIAL			METHOD	BLANK	SPIKE	MAT	RIX SPI	KE
PARAMETER	Batch	Sample Id	Dup #1	Dup #2	RPD	Method Blank	Measured Value		ptable nits	Recovery	1 1 1 1 1	ptable nits Upper	Recovery		ptable nits
2,4-Dinitrophenol	4468334		< 10	< 10	NA	< 10	84%	30%	130%	67%		130%	98%	30%	l
O. Reg. 153(511) - PCBs (Wate	r)														
Polychlorinated Biphenyls	4722042		< 0.1	< 0.1	0.0%	< 0.1	93%	50%	140%	92%	50%	140%	85%	50%	140%
O. Reg. 153(511) - VOCs (with	PHC) (Water)														
Dichlorodifluoromethane	4705529		< 0.40	< 0.40	NA	< 0.40	92%	50%	140%	73%	50%	140%	113%	50%	140%
Vinyl Chloride	4705529		<0.17	< 0.17	NA	< 0.17	86%	50%	140%	78%	50%	140%	93%	50%	140%
Bromomethane	4705529		<0.20	< 0.20	NA	< 0.20	76%	50%	140%	90%	50%	140%	107%	50%	140%
Trichlorofluoromethane	4705529		< 0.40	< 0.40	NA	< 0.40	80%	50%	140%	79%	50%	140%	64%	50%	140%
Acetone	4705529		<1.0	<1.0	NA	< 1.0	88%	50%	140%	108%	50%	140%	106%	50%	140%
1,1-Dichloroethylene	4705529		<0.30	<0.30	NA	< 0.30	70%	50%	140%	94%	60%	130%	76%	50%	140%
Methylene Chloride	4705529		< 0.30	< 0.30	NA	< 0.30	75%	50%	140%	85%	60%	130%	83%	50%	140%
trans- 1,2-Dichloroethylene	4705529		<0.20	< 0.20	NA	< 0.20	75%	50%	140%	93%	60%	130%	92%	50%	140%
Methyl tert-butyl ether	4705529		<0.20	< 0.20	NA	< 0.20	84%	50%	140%	95%	60%	130%	89%	50%	140%
1,1-Dichloroethane	4705529		0.63	0.61	NA	< 0.30	76%	50%	140%	96%	60%	130%	99%	50%	140%
Methyl Ethyl Ketone	4705529		<1.0	<1.0	NA	< 1.0	90%	50%	140%	100%	50%	140%	112%	50%	140%
cis- 1,2-Dichloroethylene	4705529		<0.20	< 0.20	NA	< 0.20	78%	50%	140%	96%	60%	130%	110%	50%	140%
Chloroform	4705529		<0.20	< 0.20	NA	< 0.20	86%	50%	140%	99%	60%	130%	112%	50%	140%
1,2-Dichloroethane	4705529		< 0.20	<0.20	NA	< 0.20	90%	50%	140%	103%	60%	130%	103%	50%	140%
1,1,1-Trichloroethane	4705529		<0.30	<0.30	NA	< 0.30	74%	50%	140%	89%	60%	130%	73%	50%	140%
Carbon Tetrachloride	4705529		<0.20	<0.20	NA	< 0.20	72%	50%	140%	80%	60%	130%	90%	50%	140%
Benzene	4705529		<0.20	<0.20	NA	< 0.20	82%	50%	140%	95%	60%	130%	105%	50%	140%
1,2-Dichloropropane	4705529		<0.20	<0.20	NA	< 0.20	85%	50%	140%	93%	60%	130%	114%	50%	140%
Trichloroethylene	4705529		<0.20	< 0.20	NA	< 0.20	80%	50%	140%	76%	60%	130%	74%	50%	140%
Bromodichloromethane	4705529		<0.20	<0.20	NA	< 0.20	71%	50%	140%	78%	60%	130%	99%	50%	140%
Methyl Isobutyl Ketone	4705529		<1.0	<1.0	NA	< 1.0	111%	50%	140%	108%	50%	140%	110%	50%	140%
1,1,2-Trichloroethane	4705529		<0.20	<0.20	NA	< 0.20	96%	50%	140%	105%	60%	130%	106%	50%	140%
Toluene	4705529		<0.20	< 0.20	NA	< 0.20	86%	50%	140%	97%	60%	130%	89%	50%	140%
Dibromochloromethane	4705529		<0.10	<0.10	NA	< 0.10	75%	50%	140%	79%	60%	130%	98%	50%	140%
Ethylene Dibromide	4705529		<0.10	<0.10	NA	< 0.10	91%	50%	140%	99%	60%	130%	101%	50%	140%
Tetrachloroethylene	4705529		<0.20	<0.20	NA	< 0.20	85%	50%	140%	90%	60%	130%	71%	50%	140%
1,1,1,2-Tetrachloroethane	4705529		<0.10	<0.10	NA	< 0.10	76%	50%	140%	87%	60%	130%	90%	50%	140%
Chlorobenzene	4705529		<0.10	<0.10	NA	< 0.10	89%	50%	140%	96%	60%	130%	100%	50%	140%
Ethylbenzene	4705529		0.46	0.42	NA	< 0.10	84%	50%	140%	92%	60%	130%	82%	50%	140%
m & p-Xylene	4705529		0.59	0.59	NA	< 0.20	83%	50%	140%	91%	60%	130%	85%	50%	140%
Bromoform	4705529		<0.10	<0.10	NA	< 0.10	82%	50%	140%	77%	60%	130%	100%	50%	140%
Styrene	4705529		<0.10	<0.10	NA	< 0.10	82%	50%	140%	86%	60%	130%	92%	50%	140%
1,1,2,2-Tetrachloroethane	4705529		<0.10	<0.10	NA	< 0.10	100%	50%	140%	102%	60%	130%	102%	50%	140%
o-Xylene	4705529		<0.10	<0.10	NA	< 0.10	86%	50%	140%	94%	60%	130%	93%	50%	140%

AGAT QUALITY ASSURANCE REPORT (V1)

Page 18 of 26

AGAT Laboratories is accredited to ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA) and/or Standards Council of Canada (SCC) for specific tests listed on the scope of accreditation. AGAT Laboratories (Mississauga) is also accredited by the Canadian Association for Laboratory Accreditation Inc. (CALA) for specific drinking water tests. Accreditations are location and parameter specific. A complete listing of parameters for each location is available from www.cala.ca and/or www.scc.ca. The tests in this report may not necessarily be included in the scope of accreditation. RPDs calculated using raw data. The RPD may not be reflective of duplicate values shown, due to rounding of final results.

Quality Assurance

CLIENT NAME: BLUMETRIC ENVIRONMENTAL INC.

AGAT WORK ORDER: 23P990757

PROJECT: 220509

ATTENTION TO: Paul Bandler

SAMPLING SITE:Bakelite Belleville SAMPLED BY:ML

Trace Organics Analysis (Continued)															
RPT Date: Feb 02, 2023 DUPLICATE			REFEREN	NCE MA	TERIAL	METHOD	BLANK	SPIKE	MAT	RIX SPI	KE				
PARAMETER	Batch	Sample	Dup #1	Dup #2	RPD	Method Blank	Measured	Accept Measured Limit Value		Recovery	Lin	ptable nits	Recovery	Lie	ptable nits
TANAMETER		ld	·	·			value	Lower	Upper	,	Lower	Upper	, , ,	Lower	Upper
1,3-Dichlorobenzene	4705529		<0.10	<0.10	NA	< 0.10	91%	50%	140%	91%	60%	130%	102%	50%	140%
1,4-Dichlorobenzene	4705529		<0.10	<0.10	NA	< 0.10	88%	50%	140%	93%	60%	130%	107%	50%	140%
1,2-Dichlorobenzene	4705529		<0.10	<0.10	NA	< 0.10	93%	50%	140%	93%	60%	130%	110%	50%	140%
n-Hexane	4705529		<0.20	<0.20	NA	< 0.20	71%	50%	140%	81%	60%	130%	96%	50%	140%

Comments: When the average of the sample and duplicate results is less than 5x the RDL, the Relative Percent Difference (RPD) will be indicated as Not Applicable (NA).

Formaldehyde (Water)

Formaldehyde NA NA NA 0.0% < 10 NA 70% 130% 96% 70% 130% NA 70% 130% 2,3,5,6-Tetrafluorobenzaldehyde NA NA NA 0.0% 93 NA 40% 140% 98% 40% 140% NA 40% 140%

Comments: NA: Non applicable

NA dans l'écart du duplicata indique que l'écart n'a pu être calculé car l'un ou les deux résultats sont < 5x LDR.

NA dans le pourcentage de récupération de l'échantillon fortifié indique que le résultat n'est pas fourni en raison de l'hétérogénéité de l'échantillon ou de la concentration trop élevée par rapport à l'ajout.

NA dans le blanc fortifié ou le MRC indique qu'il n'est pas requis par la procédure.

Certified By:

Jung

Quality Assurance

CLIENT NAME: BLUMETRIC ENVIRONMENTAL INC. AGAT WORK ORDER: 23P990757
PROJECT: 220509 ATTENTION TO: Paul Bandler

SAMPLING SITE:Bakelite Belleville SAMPLED BY:ML

Water Analysis														
RPT Date: Feb 02, 2023			UPLICATI			REFEREN	NCE MA	TERIAL	METHOD	BLANK	SPIKE	MAT	RIX SPI	KE
PARAMETER	Batch Sample	Dup #1	Dup #2	RPD	Method Blank	Measured		eptable mits	Recovery	Lie	ptable	Recovery	Lie	ptable
	Batch Id					Value	Lower	Upper	,	Lower	Upper	,	Lower	Upper
O. Reg. 153(511) - Metals & Inc	organics (Water)													
Dissolved Antimony	4713485	1.6	1.9	NA	< 1.0	106%	70%	130%	105%	80%	120%	108%	70%	130%
Dissolved Arsenic	4713485	<1.0	<1.0	NA	< 1.0	93%	70%	130%	98%	80%	120%	95%	70%	130%
Dissolved Barium	4713485	106	112	5.5%	< 2.0	106%	70%	130%	111%	80%	120%	116%	70%	130%
Dissolved Beryllium	4713485	< 0.50	< 0.50	NA	< 0.50	91%	70%	130%	100%	80%	120%	102%	70%	130%
Dissolved Boron	4713485	45.2	48.7	NA	< 10.0	98%	70%	130%	99%	80%	120%	105%	70%	130%
Dissolved Cadmium	4713485	<0.20	<0.20	NA	< 0.20	101%	70%	130%	102%	80%	120%	106%	70%	130%
Dissolved Chromium	4713485	<2.0	<2.0	NA	< 2.0	100%	70%	130%	101%	80%	120%	100%	70%	130%
Dissolved Cobalt	4713485	0.85	0.60	NA	< 0.50	99%	70%	130%	102%	80%	120%	97%	70%	130%
Dissolved Copper	4713485	3.3	3.6	NA	< 1.0	101%	70%	130%	97%	80%	120%	97%	70%	130%
Dissolved Lead	4713485	<0.50	<0.50	NA	< 0.50	97%	70%	130%	99%	80%	120%	96%	70%	130%
Dissolved Molybdenum	4713485	4.12	4.68	12.7%	< 0.50	100%	70%	130%	98%	80%	120%	102%	70%	130%
Dissolved Nickel	4713485	3.7	3.8	NA	< 1.0	100%	70%	130%	97%	80%	120%	101%	70%	130%
Dissolved Selenium	4713485	<1.0	<1.0	NA	< 1.0	96%	70%	130%	100%	80%	120%	93%	70%	130%
Dissolved Silver	4713485	<0.20	<0.20	NA	< 0.20	100%	70%	130%	99%	80%	120%	98%	70%	130%
Dissolved Thallium	4713485	<0.30	<0.30	NA	< 0.30	100%	70%	130%	103%	80%	120%	102%	70%	130%
Dissolved Uranium	4713485	2.22	2.17	NA	< 0.50	98%	70%	130%	99%	80%	120%	97%	70%	130%
Dissolved Vanadium	4713485	<0.40	< 0.40	NA	< 0.40	101%	70%	130%	104%	80%	120%	102%	70%	130%
Dissolved Zinc	4713485	11.7	<5.0	NA	< 5.0	98%	70%	130%	92%	80%	120%	102%	70%	130%
Mercury	4715752 4715752	< 0.02	< 0.02	NA	< 0.02	105%	70%	130%	100%	80%	120%	98%	70%	130%
Chromium VI	4715752 4715752	<2.000	<2.000	NA	< 2	102%	70%	130%	97%	80%	120%	96%	70%	130%
Cyanide, WAD	4714914	<2	<2	NA	< 2	105%	70%	130%	97%	80%	120%	108%	70%	130%
Dissolved Sodium	4713485	6650	6190	7.2%	< 50	101%	70%	130%	104%	80%	120%	100%	70%	130%
Chloride	4715752 4715752	10800	10200	5.7%	< 100	90%	70%	130%	94%	80%	120%	98%	70%	130%
Electrical Conductivity	4715743	853	851	0.2%	< 2	101%	90%	110%	NA			NA		
рН	4715743	7.74	7.84	1.3%	NA	99%	90%	110%	NA			NA		

Comments: NA signifies Not Applicable.

Duplicate NA: results are under 5X the RDL and will not be calculated.

mayor Bhells AMANDO BELLS OF CHANTERED STANDARD THELE

Method Summary

SAMPLED BY:ML

CLIENT NAME: BLUMETRIC ENVIRONMENTAL INC. AGAT WORK ORDER: 23P990757
PROJECT: 220509 ATTENTION TO: Paul Bandler

SAMPLING SITE:Bakelite Belleville

OAWI EINO OITE. Dakente Denevine		O/ ((()) 220 D1:(()2								
PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE							
Trace Organics Analysis										
Formaldehyde	ORG-100-5126F	Standard Methods 6252B	GC/MS							
2,3,5,6-Tetrafluorobenzaldehyde	ORG-100-5126F	Standard Methods 6252B	GC/MS							
Naphthalene	ORG-91-5114	modified from EPA 3510C, 8270E & ON MOECC E3265	GC/MS							
Acenaphthylene	ORG-91-5114	modified from EPA 3510C, 8270E & ON MOECC E3265	GC/MS							
Acenaphthene	ORG-91-5114	modified from EPA 3510C, 8270E & ON MOECC E3265	GC/MS							
Fluorene	ORG-91-5114	modified from EPA 3510C, 8270E & ON MOECC E3265	GC/MS							
Phenanthrene	ORG-91-5114	modified from EPA 3510C, 8270E & ON MOECC E3265	GC/MS							
Anthracene	ORG-91-5114	modified from EPA 3510C, 8270E & ON MOECC E3265	GC/MS							
Fluoranthene	ORG-91-5114	modified from EPA 3510C, 8270E & ON MOECC E3265	GC/MS							
Pyrene	ORG-91-5114	modified from EPA 3510C, 8270E & ON MOECC E3265	GC/MS							
Benzo(a)anthracene	ORG-91-5114	modified from EPA 3510C, 8270E & ON MOECC E3265	GC/MS							
Chrysene	ORG-91-5114	modified from EPA 3510C, 8270E & ON MOECC E3265	GC/MS							
Benzo(b)fluoranthene	ORG-91-5114	modified from EPA 3510C, 8270E & ON MOECC E3265	GC/MS							
Benzo(k)fluoranthene	ORG-91-5114	modified from EPA 3510C, 8270E & ON MOECC E3265	GC/MS							
Benzo(a)pyrene	ORG-91-5114	modified from EPA 3510C, 8270E & ON MOECC E3265	GC/MS							
Indeno(1,2,3-cd)pyrene	ORG-91-5114	modified from EPA 3510C, 8270E & ON MOECC E3265	GC/MS							
Dibenz(a,h)anthracene	ORG-91-5114	modified from EPA 3510C and EPA 8270E	GC/MS							
Benzo(g,h,i)perylene	ORG-91-5114	modified from EPA 3510C, 8270E & ON MOECC E3265	GC/MS							
Phenol	ORG-91-5114	modified from EPA 3510C, 8270E & ON MOECC E3265	GC/MS							
Bis(2-chloroethyl)ether	ORG-91-5114	modified from EPA 3510C, 8270E & ON MOECC E3265	GC/MS							
2-Chlorophenol	ORG-91-5114	modified from EPA 3510C, 8270E & ON MOECC E3265	GC/MS							
o-Cresol	ORG-91-5114	modified from EPA 3510C, 8270E & ON MOECC E3265	GC/MS							
Bis(2-chloroisopropyl)ether	ORG-91-5114	modified from EPA 3510C, 8270E & ON MOECC E3265	GC/MS							
m&p-Cresol	ORG-91-5114	modified from EPA 3510C, 8270E & ON MOECC E3265	GC/MS							
2,4-Dimethylphenol	ORG-91-5114	modified from EPA 3510C, 8270E & ON MOECC E3265	GC/MS							
2,4-Dichlorophenol	ORG-91-5114	modified from EPA 3510C, 8270E & ON MOECC E3265	GC/MS							
1,2,4-Trichlorobenzene	ORG-91-5114	modified from EPA 3510C, 8270E & ON MOECC E3265	GC/MS							
p-Chloroaniline	ORG-91-5114	modified from EPA 3510C, 8270E & ON MOECC E3265	GC/MS							

Method Summary

SAMPLED BY:ML

CLIENT NAME: BLUMETRIC ENVIRONMENTAL INC. AGAT WORK ORDER: 23P990757
PROJECT: 220509 ATTENTION TO: Paul Bandler

SAMPLING SITE:Bakelite Belleville

PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE							
2-and 1-methyl Naphthalene	ORG-91-5114	modified from EPA 3510C, 8270E & ON MOECC E3265	CALCULATION							
2,4,6-Trichlorophenol	ORG-91-5114	modified from EPA 3510C, 8270E & ON MOECC E3265	GC/MS							
2,4,5-Trichlorophenol	ORG-91-5114	modified from EPA 3510C, 8270E & ON MOECC E3265	GC/MS							
1,1'-Biphenyl	ORG-91-5114	modified from EPA 3510C, 8270E & ON MOECC E3265	GC/MS							
Dimethyl phthalate	ORG-91-5114	modified from EPA 3510C, 8270E & ON MOECC E3265	GC/MS							
2,4 and 2,6-Dinitrotoluene	ORG-91-5114	modified from EPA 3510C, 8270E & ON MOECC E3265	CALCULATION							
Diethyl phthalate	ORG-91-5114	modified from EPA 3510C, 8270E & ON MOECC E3265	GC/MS							
Pentachlorophenol	ORG-91-5114	modified from EPA 3510C, 8270E & ON MOECC E3265	GC/MS							
3,3'-dichlorobenzidine	ORG-91-5114	modified from EPA 3510C, 8270E & ON MOECC E3265	GC/MS							
Bis(2-Ethylhexyl)phthalate	ORG-91-5114	modified from EPA 3510C, 8270E & ON MOECC E3265	GC/MS							
2,4-Dinitrophenol	ORG-91-5114	modified from EPA 3510C, 8270E & ON MOECC E3265	GC/MS							
2-Fluorophenol	ORG-91-5114	modified from EPA 3510C, 8270E & ON MOECC E3265	GC/MS							
phenol-d6 surrogate	ORG-91-5114	modified from EPA 3510C, 8270E & ON MOECC E3265	GC/MS							
2,4,6-Tribromophenol	ORG-91-5114	RG-91-5114 modified from EPA 3510C, 8270E & ON MOECC E3265								
Chrysene-d12	ORG-91-5114	modified from EPA 3510C, 8270E & ON MOECC E3265	GC/MS							
Sediment			N/A							
Polychlorinated Biphenyls	ORG-91-5112	modified from EPA SW-846 3510 & 8082A	GC/ECD							
Decachlorobiphenyl	ORG-91-5112	modified from EPA SW-846 3510 & 8082A	GC/ECD							
F1 (C6-C10)	VOL-91-5010	modified from MOE PHC-E3421	(P&T)GC/FID							
F1 (C6 to C10) minus BTEX	VOL-91-5010	modified from MOE PHC-E3421	P&T GC/FID							
Toluene-d8	VOL-91- 5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS							
F2 (C10 to C16)	VOL-91-5010	modified from MOE PHC-E3421	GC/FID							
F2 (C10 to C16) minus Naphthalene	VOL-91-5010	modified from MOE PHC-E3421	GC/FID							
F3 (C16 to C34)	VOL-91-5010	modified from MOE PHC-E3421	GC/FID							
F3 (C16 to C34) minus PAHs	VOL-91-5010	modified from MOE PHC-E3421	GC/FID							
F4 (C34 to C50)	VOL-91-5010	modified from MOE PHC-E3421	GC/FID							
Gravimetric Heavy Hydrocarbons	VOL-91-5010	modified from MOE PHC-E3421	BALANCE							
Terphenyl	VOL-91-5010	modified from MOE PHC-E3421	GC/FID							
Dichlorodifluoromethane	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS							
Vinyl Chloride	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS							
Bromomethane	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS							
Trichlorofluoromethane	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS							

Method Summary

CLIENT NAME: BLUMETRIC ENVIRONMENTAL INC.

AGAT WORK ORDER: 23P990757

PROJECT: 220509

ATTENTION TO: Paul Bandler

SAMPLING SITE: Bakelite Belleville

SAMPLED BY:ML

PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE						
Acetone	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS						
1,1-Dichloroethylene	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS						
Methylene Chloride	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS						
trans- 1,2-Dichloroethylene	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS						
Methyl tert-butyl ether	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS						
1,1-Dichloroethane	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS						
Methyl Ethyl Ketone	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS						
cis- 1,2-Dichloroethylene	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS						
Chloroform	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS						
1,2-Dichloroethane	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS						
1,1,1-Trichloroethane	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS						
Carbon Tetrachloride	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS						
Benzene	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS						
1,2-Dichloropropane	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS						
Trichloroethylene	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS						
Bromodichloromethane	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS						
Methyl Isobutyl Ketone	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS						
1,1,2-Trichloroethane	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS						
Toluene	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS						
Dibromochloromethane	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS						
Ethylene Dibromide	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS						
Tetrachloroethylene	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS						
1,1,1,2-Tetrachloroethane	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS						
Chlorobenzene	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS						
Ethylbenzene	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS						
m & p-Xylene	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS						
Bromoform	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS						
Styrene	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS						

Method Summary

CLIENT NAME: BLUMETRIC ENVIRONMENTAL INC.

AGAT WORK ORDER: 23P990757
PROJECT: 220509

ATTENTION TO: Paul Bandler

SAMPLING SITE:Bakelite Belleville

SAMPLED BY:ML

AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE
	LITERATIONE INCIDENCE	ANALYTICAL TECHNIQUE
VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
	VOL-91-5001 VOL-91-5001 VOL-91-5001 VOL-91-5001 VOL-91-5001 VOL-91-5001 VOL-91-5001	VOL-91-5001 8260D VOL-91-5001 modified from EPA 5030B & EPA 8260D

Method Summary

SAMPLED BY:ML

CLIENT NAME: BLUMETRIC ENVIRONMENTAL INC. AGAT WORK ORDER: 23P990757
PROJECT: 220509 ATTENTION TO: Paul Bandler

SAMPLING SITE:Bakelite Belleville

PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE						
Water Analysis									
Dissolved Antimony	MET-93-6103	modified from EPA 200.8 and EPA 3005A	ICP-MS						
Dissolved Arsenic	MET-93-6103	modified from EPA 200.8 and EPA 3005A	ICP-MS						
Dissolved Barium	MET-93-6103	modified from EPA 200.8 and EPA 3005A	ICP-MS						
Dissolved Beryllium	MET-93-6103	modified from EPA 200.8 and EPA 3005A	ICP-MS						
Dissolved Boron	MET-93-6103	ICP-MS							
Dissolved Cadmium	MET-93-6103	modified from EPA 200.8 and EPA 3005A	ICP-MS						
Dissolved Chromium	MET-93-6103	modified from EPA 200.8 and EPA 3005A	ICP-MS						
Dissolved Cobalt	MET-93-6103	modified from EPA 200.8 and EPA 3005A	ICP-MS						
Dissolved Copper	MET-93-6103	modified from EPA 200.8 and EPA 3005A	ICP-MS						
Dissolved Lead	MET-93-6103	modified from EPA 200.8 and EPA 3005A	ICP-MS						
Dissolved Molybdenum	MET-93-6103	modified from EPA 200.8 and EPA 3005A	ICP-MS						
Dissolved Nickel	MET-93-6103	modified from EPA 200.8 and EPA 3005A	ICP-MS						
Dissolved Selenium	MET-93-6103	modified from EPA 200.8 and EPA 3005A	ICP-MS						
Dissolved Silver	MET-93-6103	modified from EPA 200.8 and EPA 3005A	ICP-MS						
Dissolved Thallium	MET-93-6103	modified from EPA 200.8 and EPA 3005A	ICP-MS						
Dissolved Uranium	MET-93-6103	modified from EPA 200.8 and EPA 3005A	ICP-MS						
Dissolved Vanadium	MET-93-6103	modified from EPA 200.8 and EPA 3005A	ICP-MS						
Dissolved Zinc	MET-93-6103	modified from EPA 200.8 and EPA 3005A	ICP-MS						
Mercury	MET-93-6100	modified from EPA 245.2 and SM 3112 B	CVAAS						
Chromium VI	INOR-93-6073	modified from SM 3500-CR B	LACHAT FIA						
Cyanide, WAD	INOR-93-6052	modified from ON MOECC E3015, SM 4500-CN- I, G-387	TECHNICON AUTO ANALYZER						
Dissolved Sodium	MET-93-6103	modified from EPA 200.8 and EPA 3005A	ICP/MS						
Chloride	INOR-93-6004	modified from SM 4110 B	ION CHROMATOGRAPH						
Electrical Conductivity	INOR-93-6000	SM 2510 B	PC TITRATE						
рН	INOR-93-6000	modified from SM 4500-H+ B	PC TITRATE						

5835 Coopers Avenue Mississauga, Ontario L4Z 1Y2 Ph: 905.712.5100 Fax: 905.712.5122 webearth.agatlabs.com

Laboratory		
Work Order #:	23999075	7

Turnaround Time (TAT) Required:

Regular TAT

I Characterization TCLP: ocs □ABNs □ B(a)P□PCBs

Rush TAT (Rush Surcharges Apply

3 Business

O. Reg 406

aracterization Package

tals, BTEX, F1-F4 Moisture

□ vocs □ svocs

Days

Cooler Quantity:		4.	
Arrival Temperatures:	9.7	19.2	9.4
	6.7	169	7.3
Custody Seal Intact:	∏Yes	ПNо	□N/A

Days OR Date Required (Rush Surcharges May Apply):

Please provide prior notification for rush TAT *TAT is exclusive of weekends and statutory holidays

For 'Same Day' analysis, please contact your AGAT CPM

Sulphide

5 to 7 Business Days

Next Business

dous or High Concentration (Y/N)

Chain of Custody Record If this is a Drinking Water sample, please	se use Drinking Water Chain of Custody Form (po	otable water consumed by humans)
Report Information: Company: Contact: Address: Paul Bandler Address: Catoragui Streek Kingsten ON Phone: Reports to be sent to: 1. Email: Phandler o blurefric.ca 2. Email: Mlaydo blure fric.ca	Regulatory Requirements: (Please check all applicable boxes) Regulation 153/04 Excess Soils Table Indicate Indicate Indicate Indicate	Sanitary S
Project Information: Project: 720569 Site Location: Bake Je Belleville Sampled By: AGAT Quote #: 747 248 PO:	Is this submission for a Record of Site Condition? Yes No	Report Guideline Certificate of Ana Yes O. Reg 153

Please note: If quotation number is not provided, client will be billed full price for analysis.

and blinettic co

mental Inc	Regulatory Requ		
rill be billed full price for analysis. Bill To Same: Yes 🗆 No 🗆	Table		Sewer Use Sanitary Storm Region Prov. Water Quality Objectives (PWQO) Other Indicate One Report Guideline on Pertificate of Analysis
	Sample Matrix Le B Biota GW Ground Water O Oil P Paint S Soil SD Sediment SW Surface Water	9	% inorganics O. Reg 1.53 O. Reg 1.53 O. Reg 1.54 PHCs

Email: ap@blunetricaca		SW Surface Water			& Inorga	- CrVI,	F1-F4 PH				8	Disposal (M&l □vo	Soils SPI	Soils Cha MS Meta	Corrosivity: Inclu	-	male				Potentially Hazardo		
Sample Identification	Date Sampled	Time Sampled	# of Containers	Sample Matrix	Comments/ Special Instructions	Y/N	Metals	Metals		PAHS	PCBs	VOC	Aroclors	Landfill I	Excess SPLP:	Excess Soil pH, ICPMS	Corrosi	C	For				Potentia
Mw 213	23-01-23	9:15 AN	18	GW		Y	V		V	/	V	V						V					
MWZ12		1030 AN	20	GW	ALSO ALL AND A	Y	5		V	U	V	U			1			V	V		1		
MWZII		11.55 AM		GW		Y	1		v	V	V	V	En .		1000			V		. e			
Mw209		13:10 AN		GW	OPPORT - DALMAN - I	Y	V		V	U	U	V	, P. 1		-			U	V	L.			
MWZOS		14:35 AN		GW	02014N7	Y	1		U	-	U	0			PAR			V	0				19
MWZIO		15 155 AN		GW		Y	V	-	V	V	~	1			100			V	101			W.	
MW206		16:55 AN	20	GW	and the second second	Y	J		U	V		Y			Try			V		7 -	MI-I	EUI	
GW-DUD3	V	9:15 AM		6 W	una la companya di managara di managar	Y	1		V	ا	J	V						V				110	
TOT CONTRACT OF THE CONTRACT O		AM PM			I BE A		111				-				Selection of the last of the l			-		- 100		- /	
		AM PM																					
INTERNATION OF STREET OF STREET	n n	AM PM		Ti inc	N SERVICE AND THE SERVICE AND																		
Samples Relinquished By (Print Name and Sign):		Date	Time	100	Samples Received By (Print Name and Sign):	-41	-//			- 1	Date			Tim	10_								

6.00am

Cocument ID, DIV 78 151

Invoice Information:

Company: Contact: Address:

9 4017M

of

Page

Nº:

CLIENT NAME: BLUMETRIC ENVIRONMENTAL INC. 4 Cataraqui Street Kingston, ON K7K1Z7

(613) 531-2725

ATTENTION TO: Paul Bandler

PROJECT: 220509

AGAT WORK ORDER: 23P991368

TRACE ORGANICS REVIEWED BY: Oksana Gushyla, Trace Organics Lab Supervisor ULTRA TRACE REVIEWED BY: Amar Bellahsene, Chimiste, AGAT Montréal WATER ANALYSIS REVIEWED BY: Amanjot Bhela, Inorganic Lab Manager

DATE REPORTED: Feb 17, 2023

PAGES (INCLUDING COVER): 38 VERSION*: 2

Should you require any information regarding this analysis please contact your client services representative at (905) 712-5100

*Notes
VERSION 2:V2 issued 2023-02-17. Complete report. Supersedes previous version. V1 issued 2023-02-06. Partial report excluding Dioxins and Furans. (LB)

Disclaimer:

- All work conducted herein has been done using accepted standard protocols, and generally accepted practices and methods. AGAT test methods may
 incorporate modifications from the specified reference methods to improve performance.
- All samples will be disposed of within 30 days after receipt unless a Long Term Storage Agreement is signed and returned. Some specialty analysis may
 be exempt, please contact your Client Project Manager for details.
- AGAT's liability in connection with any delay, performance or non-performance of these services is only to the Client and does not extend to any other
 third party. Unless expressly agreed otherwise in writing, AGAT's liability is limited to the actual cost of the specific analysis or analyses included in the
 services.
- This Certificate shall not be reproduced except in full, without the written approval of the laboratory.
- The test results reported herewith relate only to the samples as received by the laboratory.
- Application of guidelines is provided "as is" without warranty of any kind, either expressed or implied, including, but not limited to, warranties of
 merchantability, fitness for a particular purpose, or non-infringement. AGAT assumes no responsibility for any errors or omissions in the guidelines
 contained in this document.
- All reportable information as specified by ISO/IEC 17025:2017 is available from AGAT Laboratories upon request.

AGAT Laboratories (V2)

Page 1 of 38

Member of: Association of Professional Engineers and Geoscientists of Alberta (APEGA)

Western Enviro-Agricultural Laboratory Association (WEALA) Environmental Services Association of Alberta (ESAA) AGAT Laboratories is accredited to ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA) and/or Standards Council of Canada (SCC) for specific tests listed on the scope of accreditation. AGAT Laboratories (Mississauga) is also accredited by the Canadian Association for Laboratory Accreditation Inc. (CALA) for specific drinking water tests. Accreditations are location and parameter specific. A complete listing of parameters for each location is available from www.cala.ca and/or www.scc.ca. The tests in this report may not necessarily be included in the scope of accreditation. Measurement Uncertainty is not taken into consideration when stating conformity with a specified requirement.

SAMPLING SITE: Bakelite Belleville

Certificate of Analysis

AGAT WORK ORDER: 23P991368

PROJECT: 220509

ATTENTION TO: Paul Bandler

SAMPLED BY:ML

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

O. Reg. 153(511) - BNA (full) + PAHs (Water)

DATE RECEIVED: 2023-01-25 DATE REPORTED: 2										ED: 2023-02-17	
		SAMPLE DESC	_	MW214	MW223	MW221	MW217	MW218	Trip Blank	MW219	MW220
Parameter	Unit	_	PLE TYPE: SAMPLED: RDL	Water 2023-01-24 08:20 4719230	Water 2023-01-24 10:15 4719247	Water 2023-01-24 12:30 4719271	Water 2023-01-24 14:05 4719284	Water 2023-01-24 16:30 4719310	Water 2023-01-24 4719315	Water 2023-01-25 09:20 4719318	Water 2023-01-25 11:55 4719333
Naphthalene	μg/L	7	0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20
Acenaphthylene	μg/L	1	0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20
Acenaphthene	μg/L	17	0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	0.87
Fluorene	μg/L	290	0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	0.84
Phenanthrene	μg/L	380	0.10	<0.10	0.81	<0.10	<0.10	<0.10	<0.10	<0.10	11.2
Anthracene	μg/L	1	0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	2.43
Fluoranthene	μg/L	44	0.20	<0.20	1.49	<0.20	<0.20	<0.20	<0.20	<0.20	20.6
Pyrene	μg/L	5.7	0.20	<0.20	1.28	<0.20	<0.20	<0.20	<0.20	<0.20	16.5
Benzo(a)anthracene	μg/L	1.8	0.20	<0.20	0.46	<0.20	<0.20	<0.20	<0.20	<0.20	5.64
Chrysene	μg/L	0.7	0.10	<0.10	0.53	<0.10	<0.10	<0.10	<0.10	<0.10	5.85
Benzo(b)fluoranthene	μg/L	0.75	0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	9.68
Benzo(k)fluoranthene	μg/L	0.4	0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	5.36
Benzo(a)pyrene	μg/L	0.81	0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	6.65
Indeno(1,2,3-cd)pyrene	μg/L	0.2	0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	2.89
Dibenz(a,h)anthracene	μg/L	0.4	0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20
Benzo(g,h,i)perylene	μg/L	0.2	0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	4.34
Phenol	μg/L	9600	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Bis(2-chloroethyl)ether	μg/L	240000	0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
2-Chlorophenol	μg/L	2600	0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
o-Cresol	μg/L		0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Bis(2-chloroisopropyl)ether	μg/L	20000	0.5	<0.5	<0.5	4.01	<0.5	<0.5	<0.5	<0.5	<0.5
m&p-Cresol	μg/L		0.6	<0.6	<0.6	<0.6	<0.6	<0.6	<0.6	<0.6	<0.6
2,4-Dimethylphenol	μg/L	31000	0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
2,4-Dichlorophenol	μg/L	3700	0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3
1,2,4-Trichlorobenzene	μg/L		0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
p-Chloroaniline	μg/L	320	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
2-and 1-methyl Naphthalene	μg/L	1500	0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20
2,4,6-Trichlorophenol	μg/L	180	0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20
2,4,5-Trichlorophenol	μg/L	1300	0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20

SAMPLING SITE: Bakelite Belleville

Certificate of Analysis

AGAT WORK ORDER: 23P991368

PROJECT: 220509

ATTENTION TO: Paul Bandler

SAMPLED BY:ML

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

O. Reg. 153(511) - BNA (full) + PAHs (Water)

			Ο.	. 1.0g. 100(011) DIVI	(1411)	o (maior)				
DATE RECEIVED: 2023-01-25								[DATE REPORTI	ED: 2023-02-17	
		SAMPLE DES	CRIPTION:	MW214	MW223	MW221	MW217	MW218	Trip Blank	MW219	MW220
		SAMI	PLE TYPE:	Water	Water	Water	Water	Water	Water	Water	Water
		DATES	SAMPLED:	2023-01-24 08:20	2023-01-24 10:15	2023-01-24 12:30	2023-01-24 14:05	2023-01-24 16:30	2023-01-24	2023-01-25 09:20	2023-01-25 11:55
Parameter	Unit	G/S	RDL	4719230	4719247	4719271	4719284	4719310	4719315	4719318	4719333
1,1'-Biphenyl	μg/L	1000	0.50	< 0.50	< 0.50	4.55	<0.50	< 0.50	< 0.50	< 0.50	<0.50
Dimethyl phthalate	μg/L	30	0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	< 0.50
2,4 and 2,6-Dinitrotoluene	μg/L	2300	0.50	< 0.50	<0.50	<0.50	< 0.50	< 0.50	< 0.50	< 0.50	<0.50
Diethyl phthalate	μg/L	30	0.50	<0.50	<0.50	<0.50	< 0.50	<0.50	<0.50	<0.50	< 0.50
Pentachlorophenol	μg/L	50	0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50
3,3'-dichlorobenzidine	μg/L	500	0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50
Bis(2-Ethylhexyl)phthalate	μg/L	30	0.50	< 0.50	<0.50	<0.50	< 0.50	<0.50	<0.50	<0.50	<0.50
2,4-Dinitrophenol	μg/L	9000	10	<10	<10	<10	<10	<10	<10	<10	<10
Sediment				NO	NO	NO	NO	NO	NO	NO	NO
Surrogate	Unit	Acceptab	le Limits								
2-Fluorophenol	%	50-1	140	88	88	68	71	61	66	76	81
phenol-d6 surrogate	%	50-1	140	94	85	97	98	85	84	98	71
2,4,6-Tribromophenol	%	50-1	140	73	106	108	76	97	94	87	93
Chrysene-d12	%	50-1	140	65	83	90	82	73	80	105	72

Comments:

RDL - Reported Detection Limit; G / S - Guideline / Standard: Refers to Table 7: Generic Site Condition Standards for Shallow Soils in a Non-Potable Ground Water Condition - Non-Potable Ground Water - All Types of Property Uses - Coarse Textured Soils

Guideline values are for general reference only. The guidelines provided may or may not be relevant for the intended use. Refer directly to the applicable standard for regulatory interpretation.

4719230-4719333 To meet the MOE Reporting limits the sample extract was analysed using two separate GC/MS methods. The full scan BNA method is capable of detecting most of the compounds at the RDLs except for several PAHs. The PAHs were analysed using a SIM mode GC/MS method.

Note: The result for Benzo(b)Fluoranthene is the total of the Benzo(b)&(j)Fluoranthene isomers because the isomers co-elute on the GC column.

Sediment parameter is comment only based on visual inspection of the sample prior to extraction and is not an accredited test.

Legend: 1 = no sediment present; 2 = sediment present; 3 = sediment present in trace amount

Analysis performed at AGAT Toronto (unless marked by *)

Certificate of Analysis

AGAT WORK ORDER: 23P991368

PROJECT: 220509

ATTENTION TO: Paul Bandler

SAMPLED BY:ML

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

CLIENT NAME: BLUMETRIC ENVIRONMENTAL INC. SAMPLING SITE: Bakelite Belleville

O. Reg. 153(511) - PAHs (Water)

				O. Neg	j. 100(011 <i>)</i>	i Ai is (Water)	
DATE RECEIVED: 2023-01-25							DATE REPORTED: 2023-02-17
		SAMPLE DES	CRIPTION:	MW222	MW224		
		SAMI	PLE TYPE:	Water	Water		
		DATES	SAMPLED:	2023-01-24 11:15	2023-01-25 10:20		
Parameter	Unit	G/S	RDL	4719248	4719347		
Naphthalene	μg/L	7	0.20	<0.20	<0.20		
Acenaphthylene	μg/L	1	0.20	<0.20	<0.20		
Acenaphthene	μg/L	17	0.20	<0.20	<0.20		
Fluorene	μg/L	290	0.20	<0.20	<0.20		
Phenanthrene	μg/L	380	0.10	<0.10	<0.10		
Anthracene	μg/L	1	0.10	<0.10	<0.10		
Fluoranthene	μg/L	44	0.20	<0.20	<0.20		
Pyrene	μg/L	5.7	0.20	<0.20	<0.20		
Benzo(a)anthracene	μg/L	1.8	0.20	<0.20	<0.20		
Chrysene	μg/L	0.7	0.10	<0.10	<0.10		
Benzo(b)fluoranthene	μg/L	0.75	0.10	<0.10	<0.10		
Benzo(k)fluoranthene	μg/L	0.4	0.10	< 0.10	<0.10		
Benzo(a)pyrene	μg/L	0.81	0.01	<0.01	<0.01		
Indeno(1,2,3-cd)pyrene	μg/L	0.2	0.20	<0.20	<0.20		
Dibenz(a,h)anthracene	μg/L	0.4	0.20	<0.20	<0.20		
Benzo(g,h,i)perylene	μg/L	0.2	0.20	<0.20	<0.20		
2-and 1-methyl Naphthalene	μg/L	1500	0.20	<0.20	<0.20		
Sediment				TRACE	TRACE		
Surrogate	Unit	Acceptab	le Limits				
Naphthalene-d8	%	50-1	40	72	92		
Acridine-d9	%	50-1	40	91	70		
Terphenyl-d14	%	50-1	40	76	99		

SAMPLING SITE: Bakelite Belleville

Certificate of Analysis

AGAT WORK ORDER: 23P991368

PROJECT: 220509

SAMPLED BY:ML

ATTENTION TO: Paul Bandler

O. Reg. 153(511) - PAHs (Water)

DATE RECEIVED: 2023-01-25 **DATE REPORTED: 2023-02-17**

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard: Refers to Table 7: Generic Site Condition Standards for Shallow Soils in a Non-Potable Ground Water Condition - Non-Potable Ground Water - All Types of Property Uses - Coarse Textured Soils

Guideline values are for general reference only. The guidelines provided may or may not be relevant for the intended use. Refer directly to the applicable standard for regulatory interpretation.

4719248-4719347 Sediment parameter is comment only based on visual inspection of the sample prior to extraction and is not an accredited test.

Legend: 1 = no sediment present; 2 = sediment present; 3 = sediment present in trace amount Note: The result for Benzo(b)Fluoranthene is the total of the Benzo(b)&(j)Fluoranthene isomers because the isomers co-elute on the GC column.

2- and 1-Methyl Naphthalene is a calculated parameter. The calculated value is the sum of 2-Methyl Naphthalene and 1-Methyl Naphthalene. The calculated parameter is non-accredited. The parameters

that are components of the calculation are accredited.

Analysis performed at AGAT Toronto (unless marked by *)

Certified By:

5835 COOPERS AVENUE

MISSISSAUGA, ONTARIO CANADA L4Z 1Y2

http://www.agatlabs.com

TEL (905)712-5100 FAX (905)712-5122

SAMPLING SITE: Bakelite Belleville

Certificate of Analysis

AGAT WORK ORDER: 23P991368

PROJECT: 220509

ATTENTION TO: Paul Bandler

SAMPLED BY:ML

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

0 0	450(544)	D0D	/\^/ (

				O. Reg	j. 153(511) ·	- PCBS (Wa	ter)	
DATE RECEIVED: 2023-01-25								DATE REPORTED: 2023-02-17
		SAMPLE DES	CRIPTION:	MW216	MW217	Trip Blank	MW224	
		SAM	PLE TYPE:	Water	Water	Water	Water	
		DATE	SAMPLED:	2023-01-24 09:00	2023-01-24 14:05	2023-01-24	2023-01-25 10:20	
Parameter	Unit	G/S	RDL	4719246	4719284	4719315	4719347	
Polychlorinated Biphenyls	μg/L	0.2	0.1	<0.1	<0.1	<0.1	<0.1	
Surrogate	Unit	Acceptab	ole Limits					
Decachlorobiphenyl	%	60-	140	70	76	70	109	

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard: Refers to Table 7: Generic Site Condition Standards for Shallow Soils in a Non-Potable Ground Water Condition - Non-Potable Ground Water - All Types of Property Uses - Coarse Textured Soils

Guideline values are for general reference only. The guidelines provided may or may not be relevant for the intended use. Refer directly to the applicable standard for regulatory interpretation.

4719246-4719347 PCB total is a calculated parameter. The calculated value is the sum of Aroclor 1242, Aroclor 1248, Aroclor 1254 and Aroclor 1260.

The calculated parameter is non-accredited. The parameters that are components of the calculation are accredited.

Analysis performed at AGAT Toronto (unless marked by *)

Certificate of Analysis

AGAT WORK ORDER: 23P991368

PROJECT: 220509

ATTENTION TO: Paul Bandler

SAMPLED BY:ML

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

CLIENT NAME: BLUMETRIC ENVIRONMENTAL INC. SAMPLING SITE:Bakelite Belleville

O. Reg. 153(511) - PHCs F1 - F4 (with PAHs and VOC) (Water)

DATE RECEIVED: 2023-01-25								Ι	DATE REPORTE	ED: 2023-02-17	
	S	SAMPLE DESCRI	PTION:	MW214	MW223	MW222	MW221	MW217	MW218	Trip Blank	MW219
		SAMPLE	TYPE:	Water	Water	Water	Water	Water	Water	Water	Water
		DATE SAM	IPLED:	2023-01-24 08:20	2023-01-24 10:15	2023-01-24 11:15	2023-01-24 12:30	2023-01-24 14:05	2023-01-24 16:30	2023-01-24	2023-01-25 09:20
Parameter	Unit	G/S I	RDL	4719230	4719247	4719248	4719271	4719284	4719310	4719315	4719318
F1 (C6-C10)	μg/L		25	<25	<25	<25	<25	126	33	<25	<25
F1 (C6 to C10) minus BTEX	μg/L	420	25	<25	<25	<25	<25	126	<25	<25	<25
F2 (C10 to C16)	μg/L	150	100	<100	<100	<100	283	<100	267	<100	315
F2 (C10 to C16) minus Naphthalene	μg/L		100	<100	<100	<100	283	<100	267	<100	315
F3 (C16 to C34)	μg/L	500	100	<100	<100	<100	<100	<100	<100	<100	<100
F3 (C16 to C34) minus PAHs	μg/L		100	<100	<100	<100	<100	<100	<100	<100	<100
F4 (C34 to C50)	μg/L	500	100	<100	<100	<100	<100	<100	<100	<100	<100
Gravimetric Heavy Hydrocarbons	μg/L		500	NA	NA	NA	NA	NA	NA	NA	NA
Sediment				1	1	1	1	3	1	1	1
Surrogate	Unit	Acceptable L	imits.								
Toluene-d8	%	50-140		109	109	121	115	111	108	106	116
Terphenyl	% Recovery	60-140		86	96	92	87	85	90	72	105
1											

SAMPLING SITE: Bakelite Belleville

Certificate of Analysis

AGAT WORK ORDER: 23P991368

PROJECT: 220509

ATTENTION TO: Paul Bandler

SAMPLED BY:ML

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

O. Reg. 153(511) - PHCs F1 - F4 (with PAHs and VOC) (Water)

DATE RECEIVED: 2023-01-25					DATE REPORTED: 2023-02-17
	Si	AMPLE DES	CRIPTION:	MW220	
		SAM	PLE TYPE:	Water	
		DATE	SAMPLED:	2023-01-25 11:55	
Parameter	Unit	G/S	RDL	4719333	
F1 (C6-C10)	μg/L		25	<25	
F1 (C6 to C10) minus BTEX	μg/L	420	25	<25	
F2 (C10 to C16)	μg/L	150	100	<100	
F2 (C10 to C16) minus Naphthalene	μg/L		100	<100	
F3 (C16 to C34)	μg/L	500	100	<100	
F3 (C16 to C34) minus PAHs	μg/L		100	<100	
F4 (C34 to C50)	μg/L	500	100	<100	
Gravimetric Heavy Hydrocarbons	μg/L		500	NA	
Sediment				1	
Surrogate	Unit	Acceptab	le Limits		
Toluene-d8	%	50-	140	107	
Terphenyl	% Recovery	60-	140	85	

Certificate of Analysis

AGAT WORK ORDER: 23P991368

PROJECT: 220509

ATTENTION TO: Paul Bandler

SAMPLED BY:ML

TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

5835 COOPERS AVENUE

MISSISSAUGA, ONTARIO CANADA L4Z 1Y2

SAMPLING SITE:Bakelite Belleville

O. Reg. 153(511) - PHCs F1 - F4 (with PAHs and VOC) (Water)

DATE RECEIVED: 2023-01-25 DATE REPORTED: 2023-02-17

Comments:

RDL - Reported Detection Limit; G / S - Guideline / Standard: Refers to Table 7: Generic Site Condition Standards for Shallow Soils in a Non-Potable Ground Water Condition - Non-Potable Ground Water - All Types of Property Uses - Coarse Textured Soils

Guideline values are for general reference only. The guidelines provided may or may not be relevant for the intended use. Refer directly to the applicable standard for regulatory interpretation.

4719230-4719333 The C6-C10 fraction is calculated using toluene response factor.

C6-C10 (F1 minus BTEX) is a calculated parameter. The calculated value is F1 minus BTEX. The calculated parameter is non-accredited. The parameters that are components of the calculation are

The C10 - C16, C16 - C34, and C34 - C50 fractions are calculated using the average response factor for n-C10, n-C16, and n-C34.

Gravimetric Heavy Hydrocarbons are not included in the Total C16-C50 and are only determined if the chromatogram of the C34 - C50 hydrocarbons indicates that hydrocarbons > C50 are present. The chromatogram has returned to baseline by the retention time of nC50.

Total C6 - C50 results are corrected for BTEX and PAH contributions.

C>10 - C16 (F2- Naphthalene) is a calculated parameter. The calculated value is F2 - Naphthalene.

C>16 - C34 (F3-PAH) is a calculated parameter. The calculated value is F3-PAH (PAH: sum of Phenanthrene, Benzo(a)anthracene, Benzo(b)fluoranthene, Benzo(k)fluoranthene, Benzo(a)pyrene,

Fluoranthene, Dibenzo(a,h)anthracene, Indeno(1,2,3-c,d)pyrene and Pyrene).

This method complies with the Reference Method for the CWS PHC and is validated for use in the laboratory.

nC10, nC16 and nC34 response factors are within 10% of their average.

C50 response factor is within 70% of nC10 + nC16 + nC34 average.

Linearity is within 15%.

Extraction and holding times were met for this sample.

Sediment parameter is comment only based on visual inspection of the sample prior to extraction and is not an accredited test.

Legend: 1 = no sediment present; 2 = sediment present; 3 = sediment present in trace amounts

Analysis performed at AGAT Toronto (unless marked by *)

SAMPLING SITE: Bakelite Belleville

Certificate of Analysis

AGAT WORK ORDER: 23P991368

PROJECT: 220509

ATTENTION TO: Paul Bandler

SAMPLED BY:ML

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

O. Reg. 153(511) - PHCs F1 - F4 (with PAHs) (Water)

			0.10	9. 100(011)	Tricorr (with tritio) (water)
DATE RECEIVED: 2023-01-25					DATE REPORTED: 2023-02-17
	Si	AMPLE DESCI	RIPTION:	MW224	
		SAMPL	E TYPE:	Water	
		DATE SA	AMPLED:	2023-01-25 10:20	
Parameter	Unit	G/S	RDL	4719347	
Benzene	μg/L	0.5	0.20	<0.20	
Toluene	μg/L	320	0.20	<0.20	
Ethylbenzene	μg/L	54	0.10	<0.10	
m & p-Xylene	μg/L		0.20	<0.20	
o-Xylene	μg/L		0.10	<0.10	
Xylenes (Total)	μg/L	72	0.20	<0.20	
F1 (C6-C10)	μg/L		25	<25	
F1 (C6 to C10) minus BTEX	μg/L	420	25	<25	
F2 (C10 to C16)	μg/L	150	100	<100	
F2 (C10 to C16) minus Naphthalene	μg/L		100	<100	
F3 (C16 to C34)	μg/L	500	100	<100	
F3 (C16 to C34) minus PAHs	μg/L		100	<100	
F4 (C34 to C50)	μg/L	500	100	<100	
Gravimetric Heavy Hydrocarbons	μg/L		500	NA	
Sediment				1	
Surrogate	Unit	Acceptable	Limits		
Toluene-d8	% Recovery	60-14	0	78	
Terphenyl	% Recovery	60-14	0	88	

Certificate of Analysis

AGAT WORK ORDER: 23P991368

PROJECT: 220509

ATTENTION TO: Paul Bandler

SAMPLED BY:ML

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

CLIENT NAME: BLUMETRIC ENVIRONMENTAL INC.

SAMPLING SITE: Bakelite Belleville

O. Reg. 153(511) - PHCs F1 - F4 (with PAHs) (Water)

DATE RECEIVED: 2023-01-25 DATE REPORTED: 2023-02-17

Comments: RDL - Reported Detection Limit: G / S - Guideline / Standard: Refers to Table 7: Generic Site Condition Standards for Shallow Soils in a Non-Potable Ground Water Condition - Non-Potable Ground

Water - All Types of Property Uses - Coarse Textured Soils

Guideline values are for general reference only. The guidelines provided may or may not be relevant for the intended use. Refer directly to the applicable standard for regulatory interpretation.

4719347 Sediment parameter is comment only based on visual inspection of the sample prior to extraction and is not an accredited test.

Legend: 1 = no sediment present; 2 = sediment present; 3 = sediment present in trace amount

The C6-C10 fraction is calculated using toluene response factor.

Xylenes total is a calculated parameter. The calculated value is the sum of m&p-Xylene and o-Xylene.

C6-C10 (F1 minus BTEX) is a calculated parameter. The calculated value is F1 minus BTEX.

The calculated parameters are non-accredited. The parameters that are components of the calculation are accredited.

The C10 - C16, C16 - C34, and C34 - C50 fractions are calculated using the average response factor for n-C10, n-C16, and n-C34.

Gravimetric Heavy Hydrocarbons are not included in the Total C16-C50 and are only determined if the chromatogram of the C34 - C50 hydrocarbons indicates that hydrocarbons > C50 are present.

The chromatogram has returned to baseline by the retention time of nC50.

Total C6 - C50 results are corrected for BTEX and PAH contributions.

C>10 - C16 (F2- Naphthalene) is a calculated parameter. The calculated value is F2 - Naphthalene.

C>16 - C34 (F3-PAH) is a calculated parameter. The calculated value is F3-PAH (PAH: sum of Phenanthrene, Benzo(a)anthracene, Benzo(b)fluoranthene, Benzo(k)fluoranthene, Benzo(a)pyrene,

Fluoranthene, Dibenzo(a,h)anthracene, Indeno(1,2,3-c,d)pyrene and Pyrene).

This method complies with the Reference Method for the CWS PHC and is validated for use in the laboratory.

nC10, nC16 and nC34 response factors are within 10% of their average. C50 response factor is within 70% of nC10 + nC16 + nC34 average.

Linearity is within 15%.

Extraction and holding times were met for this sample.

Analysis performed at AGAT Toronto (unless marked by *)

Certified By:

Jung

SAMPLING SITE: Bakelite Belleville

Certificate of Analysis

AGAT WORK ORDER: 23P991368

PROJECT: 220509

ATTENTION TO: Paul Bandler

SAMPLED BY:ML

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

O. Reg. 153(511) - VOCs (with PHC) (Water)

			O.	. Reg. 153(511) - VOCS	(WITH PHC) (vvater)				
DATE RECEIVED: 2023-01-25								Г	DATE REPORTE	ED: 2023-02-17	
		DATE S	PLE TYPE: SAMPLED:	MW214 Water 2023-01-24 08:20	MW223 Water 2023-01-24 10:15	MW222 Water 2023-01-24 11:15	MW221 Water 2023-01-24 12:30	MW217 Water 2023-01-24 14:05	MW218 Water 2023-01-24 16:30	Trip Blank Water 2023-01-24	MW219 Water 2023-01-25 09:20
Parameter	Unit	G/S	RDL	4719230	4719247	4719248	4719271	4719284	4719310	4719315	4719318
Dichlorodifluoromethane	μg/L	3500	0.40	<0.40	<0.40	<0.40	<0.40	<0.40	<0.40	<0.40	<0.40
Vinyl Chloride	μg/L	0.5	0.17	<0.17	<0.17	<0.17	<0.17	<0.17	<0.17	<0.17	<0.17
Bromomethane	μg/L	0.89	0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20
Trichlorofluoromethane	μg/L	2000	0.40	<0.40	<0.40	<0.40	<0.40	<0.40	<0.40	<0.40	<0.40
Acetone	μg/L	100000	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
1,1-Dichloroethylene	μg/L	0.5	0.30	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30
Methylene Chloride	μg/L	26	0.30	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30
trans- 1,2-Dichloroethylene	μg/L	1.6	0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20
Methyl tert-butyl ether	μg/L	15	0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20
1,1-Dichloroethane	μg/L	11	0.30	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30
Methyl Ethyl Ketone	μg/L	21000	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
cis- 1,2-Dichloroethylene	μg/L	1.6	0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20
Chloroform	μg/L	2	0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20
1,2-Dichloroethane	μg/L	0.5	0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20
1,1,1-Trichloroethane	μg/L	23	0.30	< 0.30	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30
Carbon Tetrachloride	μg/L	0.2	0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20
Benzene	μg/L	0.5	0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20
1,2-Dichloropropane	μg/L	0.58	0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20
Trichloroethylene	μg/L	0.5	0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20
Bromodichloromethane	μg/L	67000	0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20
Methyl Isobutyl Ketone	μg/L	5200	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
1,1,2-Trichloroethane	μg/L	0.5	0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	< 0.20
Toluene	μg/L	320	0.20	<0.20	<0.20	<0.20	15.4	0.33	6.88	<0.20	<0.20
Dibromochloromethane	μg/L	65000	0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
Ethylene Dibromide	μg/L	0.2	0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
Tetrachloroethylene	μg/L	0.5	0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20
1,1,1,2-Tetrachloroethane	μg/L	1.1	0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
Chlorobenzene	μg/L	140	0.10	<0.10	<0.10	<0.10	7.36	<0.10	<0.10	<0.10	<0.10
Ethylbenzene	μg/L	54	0.10	<0.10	<0.10	<0.10	<0.10	<0.10	0.62	<0.10	<0.10

SAMPLING SITE: Bakelite Belleville

Certificate of Analysis

AGAT WORK ORDER: 23P991368

PROJECT: 220509

ATTENTION TO: Paul Bandler

SAMPLED BY:ML

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

O. Reg. 153(511) - VOCs (with PHC) (Water)

DATE RECEIVED: 2023-01-25				<u> </u>			, , ,	Г	DATE REPORTI	ED: 2023-02-17	
B/(12 (CO21VED: 2020 01 20	-	AMDLE DEG	ODIDTION	N/1044	MM/000	NAMA	NA14/004				
	S	AMPLE DES		MW214	MW223	MW222	MW221	MW217	MW218	Trip Blank	MW219
		SAM	PLE TYPE:	Water	Water	Water	Water	Water	Water	Water	Water
		DATES	SAMPLED:	2023-01-24 08:20	2023-01-24 10:15	2023-01-24 11:15	2023-01-24 12:30	2023-01-24 14:05	2023-01-24 16:30	2023-01-24	2023-01-25 09:20
Parameter	Unit	G/S	RDL	4719230	4719247	4719248	4719271	4719284	4719310	4719315	4719318
m & p-Xylene	μg/L		0.20	<0.20	<0.20	<0.20	<0.20	<0.20	4.01	<0.20	<0.20
Bromoform	μg/L	5	0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
Styrene	μg/L	43	0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
1,1,2,2-Tetrachloroethane	μg/L	0.5	0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
o-Xylene	μg/L		0.10	<0.10	<0.10	<0.10	<0.10	<0.10	1.51	<0.10	<0.10
1,3-Dichlorobenzene	μg/L	7600	0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	< 0.10
1,4-Dichlorobenzene	μg/L	0.5	0.10	<0.10	<0.10	<0.10	1.70	<0.10	<0.10	<0.10	<0.10
1,2-Dichlorobenzene	μg/L	150	0.10	<0.10	<0.10	<0.10	96.3	0.88	<0.10	<0.10	<0.10
1,3-Dichloropropene	μg/L	0.5	0.30	< 0.30	< 0.30	<0.30	< 0.30	< 0.30	< 0.30	< 0.30	< 0.30
Xylenes (Total)	μg/L	72	0.20	<0.20	<0.20	<0.20	<0.20	<0.20	5.52	<0.20	< 0.20
n-Hexane	μg/L	5	0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	< 0.20
Surrogate	Unit	Acceptab	le Limits								
Toluene-d8	% Recovery	50-1	140	109	109	121	115	111	108	106	116
4-Bromofluorobenzene	% Recovery	50-1	140	98	96	105	107	96	101	95	107

Certificate of Analysis

AGAT WORK ORDER: 23P991368

PROJECT: 220509

ATTENTION TO: Paul Bandler

SAMPLED BY:ML

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

CLIENT NAME: BLUMETRIC ENVIRONMENTAL INC.
SAMPLING SITE:Bakelite Belleville

O. Reg. 153(511) - VOCs (with PHC) (Water)

-				,	(Water)	
DATE RECEIVED: 2023-01-25						DATE REPORTED: 2023-02-17
	:	SAMPLE DESC	CRIPTION:	MW220		
		SAME	PLE TYPE:	Water		
		DATE S	SAMPLED:	2023-01-25		
Parameter	Unit	G/S	RDL	11:55 4719333		
Dichlorodifluoromethane	μg/L	3500	0.40	<0.40		
Vinyl Chloride	μg/L	0.5	0.17	<0.17		
Bromomethane	μg/L	0.89	0.20	<0.20		
Trichlorofluoromethane	μg/L	2000	0.40	<0.40		
Acetone	μg/L	100000	1.0	<1.0		
1,1-Dichloroethylene	μg/L	0.5	0.30	<0.30		
Methylene Chloride	μg/L	26	0.30	<0.30		
trans- 1,2-Dichloroethylene	μg/L	1.6	0.20	<0.20		
Methyl tert-butyl ether	μg/L	15	0.20	<0.20		
1,1-Dichloroethane	μg/L	11	0.30	<0.30		
Methyl Ethyl Ketone	μg/L	21000	1.0	<1.0		
cis- 1,2-Dichloroethylene	μg/L	1.6	0.20	<0.20		
Chloroform	μg/L	2	0.20	<0.20		
1,2-Dichloroethane	μg/L	0.5	0.20	<0.20		
1,1,1-Trichloroethane	μg/L	23	0.30	<0.30		
Carbon Tetrachloride	μg/L	0.2	0.20	<0.20		
Benzene	μg/L	0.5	0.20	<0.20		
1,2-Dichloropropane	μg/L	0.58	0.20	<0.20		
Trichloroethylene	μg/L	0.5	0.20	<0.20		
Bromodichloromethane	μg/L	67000	0.20	<0.20		
Methyl Isobutyl Ketone	μg/L	5200	1.0	<1.0		
1,1,2-Trichloroethane	μg/L	0.5	0.20	<0.20		
Toluene	μg/L	320	0.20	<0.20		
Dibromochloromethane	μg/L	65000	0.10	<0.10		
Ethylene Dibromide	μg/L	0.2	0.10	<0.10		
Tetrachloroethylene	μg/L	0.5	0.20	<0.20		
1,1,1,2-Tetrachloroethane	μg/L	1.1	0.10	<0.10		
Chlorobenzene	μg/L	140	0.10	<0.10		
Ethylbenzene	μg/L	54	0.10	<0.10		

SAMPLING SITE: Bakelite Belleville

Certificate of Analysis

AGAT WORK ORDER: 23P991368

PROJECT: 220509

ATTENTION TO: Paul Bandler

SAMPLED BY:ML

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

O. Reg. 153(511) - VOCs (with PHC) (Water)

			U	. Keg. 155(orr) - vocs (with Phc) (water)	
DATE RECEIVED: 2023-01-25					DA	TE REPORTED: 2023-02-
	S/	AMPLE DES	CRIPTION:	MW220		
		SAM	PLE TYPE:	Water		
		DATE	SAMPLED:	2023-01-25 11:55		
Parameter	Unit	G/S	RDL	4719333		
m & p-Xylene	μg/L		0.20	<0.20		
Bromoform	μg/L	5	0.10	<0.10		
Styrene	μg/L	43	0.10	<0.10		
1,1,2,2-Tetrachloroethane	μg/L	0.5	0.10	<0.10		
o-Xylene	μg/L		0.10	<0.10		
1,3-Dichlorobenzene	μg/L	7600	0.10	<0.10		
1,4-Dichlorobenzene	μg/L	0.5	0.10	<0.10		
1,2-Dichlorobenzene	μg/L	150	0.10	<0.10		
1,3-Dichloropropene	μg/L	0.5	0.30	< 0.30		
Xylenes (Total)	μg/L	72	0.20	<0.20		
n-Hexane	μg/L	5	0.20	<0.20		
Surrogate	Unit	Acceptab	le Limits			
Toluene-d8	% Recovery	50-	140	107		
4-Bromofluorobenzene	% Recovery	50-	140	82		

Comments:

RDL - Reported Detection Limit; G / S - Guideline / Standard: Refers to Table 7: Generic Site Condition Standards for Shallow Soils in a Non-Potable Ground Water Condition - Non-Potable Ground Water - All Types of Property Uses - Coarse Textured Soils

Guideline values are for general reference only. The guidelines provided may or may not be relevant for the intended use. Refer directly to the applicable standard for regulatory interpretation.

4719230-4719333 Xylenes total is a calculated parameter. The calculated value is the sum of m&p-Xylene and o-Xylene.

1,3-Dichloropropene total is a calculated parameter. The calculated value is the sum of Cis-1,3-Dichloropropene and Trans-1,3-Dichloropropene.

The calculated parameter is non-accredited. The parameters that are components of the calculation are accredited.

Analysis performed at AGAT Toronto (unless marked by *)

SAMPLING SITE: Bakelite Belleville

Certificate of Analysis

AGAT WORK ORDER: 23P991368

PROJECT: 220509

ATTENTION TO: Paul Bandler

SAMPLED BY:ML

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

Dioxins and Furans (Waste Water) WHO 2005

DATE RECEIVED: 2023-01-2	5			DATE REPORTED: 2023	-02-17
	SA	MPLE DESCRIPTION: SAMPLE TYPE: DATE SAMPLED:	MW219 Water 2023-01-25 09:20		
Parameter	Unit	G/S RDL	4719318		
2,3,7,8-Tetra CDD	pg/L	0.1	<0.1		
,2,3,7,8-Penta CDD	pg/L	0.1	1.2		
1,2,3,4,7,8-Hexa CDD	pg/L	0.1	8.0		
1,2,3,6,7,8-Hexa CDD	pg/L	0.1	0.9		
1,2,3,7,8,9-Hexa CDD	pg/L	0.1	1.1		
1,2,3,4,6,7,8-Hepta CDD	pg/L	0.1	0.5		
Octa CDD	pg/L	0.1	1.5		
2,3,7,8-Tetra CDF	pg/L	0.1	0.4		
1,2,3,7,8-Penta CDF	pg/L	0.1	1.3		
2,3,4,7,8-Penta CDF	pg/L	0.1	0.9		
1,2,3,4,7,8-Hexa CDF	pg/L	0.1	0.8		
I,2,3,6,7,8-Hexa CDF	pg/L	0.1	0.7		
2,3,4,6,7,8-Hexa CDF	pg/L	0.1	0.7		
1,2,3,7,8,9-Hexa CDF	pg/L	0.1	0.8		
1,2,3,4,6,7,8-Hepta CDF	pg/L	0.1	0.4		
1,2,3,4,7,8,9-Hepta CDF	pg/L	0.1	0.4		
Octa CDF	pg/L	0.1	0.5		
Total Tetra CDD	pg/L	0.1	<0.1		
Total Penta CDD	pg/L	0.1	1.5		
Total Hexa CDD	pg/L	0.1	<0.1		
Total Hepta CDD	pg/L	0.1	0.5		
Total PCDDs	pg/L	0.1	3.5		
Total Tetra CDF	pg/L	0.1	0.8		
Total Penta CDF	pg/L	0.1	2.3		
Total Hexa CDF	pg/L	0.1	3.0		
Total Hepta CDF	pg/L	0.1	0.8		
Total PCDFs	pg/L	0.1	7.5		
2,3,7,8-Tetra CDD (TEQ)	pg TEQ/L		0.0500		
1,2,3,7,8-Penta CDD (TEQ	pg TEQ/L		1.23		

SAMPLING SITE: Bakelite Belleville

Certificate of Analysis

AGAT WORK ORDER: 23P991368

PROJECT: 220509

ATTENTION TO: Paul Bandler

SAMPLED BY:ML

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

Dioxins and Furans (Waste Water) WHO 2005

			Dic	Allio alla	drains (waste water) willo 2000
DATE RECEIVED: 2023-01-25					DATE REPORTED: 2023-02-17
	SA	MPLE DES	CRIPTION:	MW219	
		SAM	PLE TYPE:	Water	
		DATE	SAMPLED:	2023-01-25 09:20	
Parameter	Unit	G/S	RDL	4719318	
1,2,3,4,7,8-Hexa CDD (TEQ)	pg TEQ/L			0.0815	
1,2,3,6,7,8-Hexa CDD (TEQ)	pg TEQ/L			0.0914	
1,2,3,7,8,9-Hexa CDD (TEQ)	pg TEQ/L			0.109	
1,2,3,4,6,7,8-Hepta CDD (TEQ)	pg TEQ/L			0.00462	
Octa CDD (TEQ)	pg TEQ/L			0.000449	
2,3,7,8-Tetra CDF (TEQ)	pg TEQ/L			0.0444	
1,2,3,7,8-Penta CDF (TEQ)	pg TEQ/L			0.0391	
2,3,4,7,8-Penta CDF (TEQ)	pg TEQ/L			0.273	
1,2,3,4,7,8-Hexa CDF (TEQ)	pg TEQ/L			0.0763	
1,2,3,6,7,8-Hexa CDF (TEQ)	pg TEQ/L			0.0738	
1,2,3,7,8,9-Hexa CDF (TEQ)	pg TEQ/L			0.0690	
2,3,4,6,7,8-Hexa CDF (TEQ)	pg TEQ/L			0.0785	
1,2,3,4,6,7,8-Hepta CDF (TEQ)	pg TEQ/L			0.00366	
1,2,3,4,7,8,9-Hepta CDF (TEQ)	pg TEQ/L			0.00366	
Octa CDF (TEQ)	pg TEQ/L			0.000154	
Total PCDDs and PCDFs (TEQ)	pg TEQ/L	100		2.23	

SAMPLING SITE: Bakelite Belleville

Certificate of Analysis

AGAT WORK ORDER: 23P991368

PROJECT: 220509

ATTENTION TO: Paul Bandler

SAMPLED BY:ML

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

Dioxins and Furans (Waste Water) WHO 2005

				(
DATE RECEIVED: 2023-01-25				DATE REPORTED: 2023-02-17
		SAMPLE DESCRIPTION:	MW219	
		SAMPLE TYPE:	Water	
		DATE SAMPLED:	2023-01-25 09:20	
Surrogate	Unit	Acceptable Limits	4719318	
13C-2,3,7,8-TCDF	%	40-130	48	
13C-1,2,3,7,8-PeCDF	%	40-130	59	
13C-2,3,4,7,8-PeCDF	%	40-130	63	
13C-1,2,3,4,7,8-HxCDF	%	40-130	68	
13C-1,2,3,6,7,8-HxCDF	%	40-130	69	
13C-2,3,4,6,7,8-HxCDF	%	40-130	74	
13C-1,2,3,7,8,9-HxCDF	%	40-130	73	
13C-1,2,3,4,6,7,8-HpCDF	%	40-130	70	
13C-1,2,3,4,7,8,9-HpCDF	%	40-130	73	
13C-2,3,7,8-TCDD	%	40-130	51	
13C-1,2,3,7,8-PeCDD	%	40-130	63	
13C-1,2,3,4,7,8-HxCDD	%	40-130	73	
13C-1,2,3,6,7,8-HxCDD	%	40-130	72	
13C-1,2,3,4,6,7,8-HpCDD	%	40-130	75	
13C-OCDD	%	40-130	71	

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard: Refers to Table 7: Generic Site Condition Standards for Shallow Soils in a Non-Potable Ground Water Condition - Non-Potable Ground

Water - All Types of Property Uses - Coarse Textured Soils

Guideline values are for general reference only. The guidelines provided may or may not be relevant for the intended use. Refer directly to the applicable standard for regulatory interpretation.

4719318 LDR = LDE = Estimated Detection Limit

TEQ = Toxicity Equivalent

Toxicity Equivalency Factors (TEF) based on WHO 2005.

The results were corrected based on the surrogate percent recoveries.

The isotopic ratio of 1,2,3,4,7,8-HxCDD, 1,2,3,6,7,8-HxCDD, and 1,2,3,7,8,9-HxCDD failed; they are quantified, but not included in the totals.

Analysis performed at AGAT Montréal (unless marked by *)

Certified By:

Junt -

Amar Bellahsen 2011-214

Certificate of Analysis

AGAT WORK ORDER: 23P991368

PROJECT: 220509

ATTENTION TO: Paul Bandler

SAMPLED BY:ML

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

SAMPLING SITE:Bakelite Belleville

O. Reg. 153(511) - Metals & Inorganics (Water)

DATE RECEIVED: 2023-01-25	5							[DATE REPORTE	ED: 2023-02-17	
	S	AMPLE DESC	CRIPTION:	MW222	MW217	MW218	Trip Blank	MW219	MW220	MW224	
		SAMF	LE TYPE:	Water	Water	Water	Water	Water	Water	Water	
		DATE S	AMPLED:	2023-01-24 11:15	2023-01-24 14:05	2023-01-24 16:30	2023-01-24	2023-01-25 09:20	2023-01-25 11:55	2023-01-25 10:20	
Parameter	Unit	G/S	RDL	4719248	4719284	4719310	4719315	4719318	4719333	4719347	
Dissolved Antimony	μg/L	16000	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	
Dissolved Arsenic	μg/L	1500	1.0	1.9	<1.0	3.6	<1.0	<1.0	1.0	<1.0	
Dissolved Barium	μg/L	23000	2.0	62.2	126	149	<2.0	63.9	85.0	156	
Dissolved Beryllium	μg/L	53	0.50	< 0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	
Dissolved Boron	μg/L	36000	10.0	218	253	310	<10.0	87.5	266	93.5	
Dissolved Cadmium	μg/L	2.1	0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	
Dissolved Chromium	μg/L	640	2.0	5.3	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	
Dissolved Cobalt	μg/L	52	0.50	0.73	0.65	2.21	<0.50	1.46	1.23	<0.50	
Dissolved Copper	μg/L	69	1.0	1.8	1.4	<1.0	<1.0	2.8	1.9	<1.0	
Dissolved Lead	μg/L	20	0.50	0.60	<0.50	< 0.50	<0.50	<0.50	<0.50	<0.50	
Dissolved Molybdenum	μg/L	7300	0.50	46.5	7.08	3.78	<0.50	0.57	14.7	3.48	
Dissolved Nickel	μg/L	390	1.0	2.9	1.6	3.3	<1.0	15.4	5.9	1.8	
Dissolved Selenium	μg/L	50	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	
Dissolved Silver	μg/L	1.2	0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	
Dissolved Thallium	μg/L	400	0.30	<0.30	<0.30	< 0.30	< 0.30	< 0.30	< 0.30	< 0.30	
Dissolved Uranium	μg/L	330	0.50	1.13	0.73	1.00	<0.50	<0.50	4.89	1.74	
Dissolved Vanadium	μg/L	200	0.40	0.82	<0.40	<0.40	<0.40	< 0.40	0.52	0.87	
Dissolved Zinc	μg/L	890	5.0	<5.0	<5.0	<5.0	<5.0	10.2	6.2	<5.0	
Mercury	μg/L	0.1	0.02	<0.02	< 0.02	< 0.02	<0.02	< 0.02	<0.02	<0.02	
Chromium VI	μg/L	110	2.000	5.31	<2.000	<2.000	<2.000	<2.000	<2.000	<2.000	
Cyanide, WAD	μg/L	52	2	<2	<2	<2	<2	<2	<2	<2	
Dissolved Sodium	μg/L	1800000	50	123000	72700	104000	<50	22600	60900	19500	
Chloride	μg/L	1800000	100	147000	30000	47800	<100	3910	27400	21900	
Electrical Conductivity	uS/cm	NA	2	1200	831	1200	<2	1050	1080	735	
рН	pH Units		NA	7.66	7.76	7.67	5.58	7.28	7.75	7.82	

Certificate of Analysis

AGAT WORK ORDER: 23P991368

PROJECT: 220509

ATTENTION TO: Paul Bandler

SAMPLED BY:ML

TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

5835 COOPERS AVENUE

MISSISSAUGA, ONTARIO

CANADA L4Z 1Y2

O. Reg. 153(511) - Metals & Inorganics (Water)

DATE RECEIVED: 2023-01-25 DATE REPORTED: 2023-02-17

Comments:

RDL - Reported Detection Limit; G / S - Guideline / Standard: Refers to Table 7: Generic Site Condition Standards for Shallow Soils in a Non-Potable Ground Water Condition - Non-Potable Ground Water - All Types of Property Uses - Coarse Textured Soils

Guideline values are for general reference only. The guidelines provided may or may not be relevant for the intended use. Refer directly to the applicable standard for regulatory interpretation.

4719248-4719347 Metals analysis completed on a filtered sample.

CLIENT NAME: BLUMETRIC ENVIRONMENTAL INC.

Analysis performed at AGAT Toronto (unless marked by *)

SAMPLING SITE: Bakelite Belleville

mayot Bhells AMMIST BRELLA 2

Exceedance Summary

AGAT WORK ORDER: 23P991368

PROJECT: 220509

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

CLIENT NAME: BLUMETRIC ENVIRONMENTAL INC.

ATTENTION TO: Paul Bandler

SAMPLEID	SAMPLE TITLE	GUIDELINE	ANALYSIS PACKAGE	PARAMETER	UNIT	GUIDEVALUE	RESULT
4719271	MW221	ON T7 NPGW CT	O. Reg. 153(511) - PHCs F1 - F4 (with PAHs and VOC) (Water)	F2 (C10 to C16)	μg/L	150	283
4719271	MW221	ON T7 NPGW CT	O. Reg. 153(511) - VOCs (with PHC) (Water)	1,4-Dichlorobenzene	μg/L	0.5	1.70
4719310	MW218	ON T7 NPGW CT	O. Reg. 153(511) - PHCs F1 - F4 (with PAHs and VOC) (Water)	F2 (C10 to C16)	μg/L	150	267
4719318	MW219	ON T7 NPGW CT	O. Reg. 153(511) - PHCs F1 - F4 (with PAHs and VOC) (Water)	F2 (C10 to C16)	μg/L	150	315
4719333	MW220	ON T7 NPGW CT	O. Reg. 153(511) - BNA (full) + PAHs (Water)	Anthracene	μg/L	1	2.43
4719333	MW220	ON T7 NPGW CT	O. Reg. 153(511) - BNA (full) + PAHs (Water)	Benzo(a)anthracene	μg/L	1.8	5.64
4719333	MW220	ON T7 NPGW CT	O. Reg. 153(511) - BNA (full) + PAHs (Water)	Benzo(a)pyrene	μg/L	0.81	6.65
4719333	MW220	ON T7 NPGW CT	O. Reg. 153(511) - BNA (full) + PAHs (Water)	Benzo(b)fluoranthene	μg/L	0.75	9.68
4719333	MW220	ON T7 NPGW CT	O. Reg. 153(511) - BNA (full) + PAHs (Water)	Benzo(g,h,i)perylene	μg/L	0.2	4.34
4719333	MW220	ON T7 NPGW CT	O. Reg. 153(511) - BNA (full) + PAHs (Water)	Benzo(k)fluoranthene	μg/L	0.4	5.36
4719333	MW220	ON T7 NPGW CT	O. Reg. 153(511) - BNA (full) + PAHs (Water)	Chrysene	μg/L	0.7	5.85
4719333	MW220	ON T7 NPGW CT	O. Reg. 153(511) - BNA (full) + PAHs (Water)	Indeno(1,2,3-cd)pyrene	μg/L	0.2	2.89
4719333	MW220	ON T7 NPGW CT	O. Reg. 153(511) - BNA (full) + PAHs (Water)	Pyrene	μg/L	5.7	16.5
4719333	MW220	ON T7 NPGW CT	O. Reg. 153(511) - PHCs F1 - F4 (with PAHs and VOC) (Water)	Benzo(a)anthracene	μg/L	1.8	5.64
4719333	MW220	ON T7 NPGW CT	O. Reg. 153(511) - PHCs F1 - F4 (with PAHs and VOC) (Water)	Benzo(a)pyrene	μg/L	0.81	6.65
4719333	MW220	ON T7 NPGW CT	O. Reg. 153(511) - PHCs F1 - F4 (with PAHs and VOC) (Water)	Benzo(b)fluoranthene	μg/L	0.75	9.68
4719333	MW220	ON T7 NPGW CT	O. Reg. 153(511) - PHCs F1 - F4 (with PAHs and VOC) (Water)	Benzo(k)fluoranthene	μg/L	0.4	5.36
4719333	MW220	ON T7 NPGW CT	O. Reg. 153(511) - PHCs F1 - F4 (with PAHs and VOC) (Water)	Indeno(1,2,3-cd)pyrene	μg/L	0.2	2.89
4719333	MW220	ON T7 NPGW CT	O. Reg. 153(511) - PHCs F1 - F4 (with PAHs and VOC) (Water)	Pyrene	μg/L	5.7	16.5

Quality Assurance

CLIENT NAME: BLUMETRIC ENVIRONMENTAL INC. AGAT WORK ORDER: 23P991368 PROJECT: 220509 ATTENTION TO: Paul Bandler

O. Reg. 153(511) - PHCs F1 - F4 (with PAHs and VOC) (Water) F1 (C6-C10)	SAMPLING SITE:Bakelite Belleville								SAMP	LED B	Y:ML					
PARAMETER Batch Sample In Dup #1 Dup #2 RPD Method Slave Wessured Sample In Dup #2 RPD Method Slave Wessured Sample In Dup #3 Dup #4 Du				Trac	e Or	ganio	cs Ar	nalys	is							
PARAMETER Batch Samph Dup #1 Dup #2 RPD Sturk Masure Limits Recovery Limits Lower Upper Uppe	RPT Date: Feb 17, 2023				DUPLICATI	E		REFERE	NCE MA	TERIAL	METHOD	BLANK	SPIKE	MAT	RIX SPI	KE
O. Reg. 153(511) - PHCs F1 - F4 (with PAHs) (Water) F2 (C10 to C16) F3 (C16 to C34) F3 (C16 to C34) F4 (C34) F5 (C16 to C34) F7 (C34 to C36) F7	PARAMETER	Batch		Dup #1	Dup #2	RPD			Lir	nits	Recovery	Lir	nits	Recovery	Lir	nits
P2 (C10 to C16)		=							Lower	Opper		Lower	Opper		Lower	Oppe
F3 (C16 to C34)	• , ,	•	,	-100	-100	NIA	- 100	070/	600/	1.400/	640/	600/	1.400/	620/	600/	1.400/
F4 (C34 to C50) 4719247 4719247	,															
O. Reg. 153(511) - PCBs (Water) Polychiominated Biphenyls 4720902 <0.1 lt;	,															
O. Reg. 153(511) - PHCs F1 - F4 (with PAHs and VOC) (Water) F1 (C6-C10)	F4 (C34 t0 C30)	47 19247 4	47 19247	<100	<100	INA	< 100	00%	60%	140%	/ 170	60%	140%	1170	60%	140%
C. Reg. 153(511) - PHCs F1 - F4 (with PAHs and VOC) (Water) FF (C6-C10)	O. Reg. 153(511) - PCBs (Water)															
FI (CG-C10)	Polychlorinated Biphenyls	4720902		< 0.1	< 0.1	NA	< 0.1	98%	50%	140%	91%	50%	140%	85%	50%	140%
FI (CG-C10)	O. Reg. 153(511) - PHCs F1 - F4 (with PAHs :	and VOC)	(Water)												
F2 (C10 to C16)	F1 (C6-C10)			,	<25	NA	< 25	83%	60%	140%	86%	60%	140%	80%	60%	140%
F3 (C16 to C34) 4719247 4719247 < 100 < 100	F2 (C10 to C16)		4719247													140%
F4 (C34 to C50) 4719247 4719247 4719271 47192	F3 (C16 to C34)															140%
Dichlorodifluoromethane 4719271 4719271 < 4719271 4719271 < 4719271 4719271 < 4719271 4719271 < 4719271 4719271 < 	F4 (C34 to C50)															140%
Dichlorodifluoromethane 4719271 4719271 < 4719271 4719271 < 4719271 4719271 < 4719271 4719271 < 4719271 4719271 < 	O Pog 153/511) - \/OCe (with PH	C) (Mator)														
Vinyl Chloride 4719271 4719271	• , , ,	, ,	1710271	-0.40	~0.40	NA	-0.40	710/	50%	1.40%	720/	50%	1/00/	720/	50%	1/100/
Bromomethane 4719271 4719271																
Trichlorofluoromethane 4719271 4719271	•															
Acetone 4719271 4719271 < 1.0																
Methylene Chloride 4719271 4719271 < 0.30	Acetone															140%
Methylene Chloride 4719271 4719271 < 0.30	1 1-Dichloroethylene	4719271 4	4719271	<0.30	<0.30	NA	< 0.30	84%	50%	140%	95%	60%	130%	72%	50%	140%
trans- 1,2-Dichloroethylene	•															140%
Methyl tert-butyl ether 4719271 4719271 <0.20 <0.20 NA <0.20 110% 50% 140% 73% 60% 130% 78% 50% 140% 1,1-Dichloroethane 4719271 4719271 <0.30 <0.30 NA <0.30 70% 50% 140% 105% 60% 130% 95% 50% 140% 105% 60% 130% 95% 50% 140% 105% 60% 130% 95% 50% 140% 105% 60% 130% 95% 50% 140% 105% 60% 130% 95% 50% 140% 105% 60% 130% 95% 50% 140% 105% 60% 130% 74% 50% 140% 105% 60% 130% 75% 50% 140% 1,2-Dichloroethylene 4719271 4719271 <0.20 <0.20 NA <0.20 91% 50% 140% 73% 60% 130% 75% 50% 140% 1,1-Trichloroethane 4719271 4719271 <0.30 <0.30 NA <0.20 81% 50% 140% 75% 60% 130% 83% 50% 140% 1,1-Trichloroethane 4719271 4719271 <0.20 <0.20 NA <0.30 NA <0.30 74% 50% 140% 75% 60% 130% 70% 50% 140% 1,1-Trichloroethane 4719271 4719271 <0.20 <0.20 NA <0.20 NA <0.30 74% 50% 140% 75% 60% 130% 70% 50% 140% 1,1-Trichloroethane 4719271 4719271 <0.20 <0.20 NA <0.20 81% 50% 140% 75% 60% 130% 70% 50% 140% 1,1-Trichloroethylene 4719271 4719271 <0.20 <0.20 NA <0.20 NA <0.20 81% 50% 140% 75% 60% 130% 79% 50% 140% 1,1-Trichloroethylene 4719271 4719271 <0.20 <0.20 NA <0.20 81% 50% 140% 75% 60% 130% 79% 50% 140% 1,1-Trichloroethylene 4719271 4719271 <0.20 <0.20 NA <0.20 81% 50% 140% 105% 60% 130% 83% 50% 140% 1,1-Trichloroethylene 4719271 4719271 <0.20 <0.20 NA <0.20 81% 50% 140% 105% 60% 130% 83% 50% 140% 1,1-Trichloroethylene 4719271 4719271 <0.20 <0.20 NA <0.20 99% 50% 140% 105% 60% 130% 98% 50% 140% 105% 60% 13	•															140%
1,1-Dichloroethane 4719271 4719271	•															140%
cis-1,2-Dichloroethylene Chloroform 4719271 4719271 <0.20 <0.20 NA <0.20 86% 50% 140% 109% 60% 130% 74% 50% 1400 109% 60% 130% 75% 50% 1400 1,2-Dichloroethane 4719271 4719271 <0.20 <0.20 NA <0.20 91% 50% 140% 73% 60% 130% 75% 50% 1400 1,2-Dichloroethane 4719271 4719271 <0.30 <0.30 NA <0.30 74% 50% 140% 75% 60% 130% 83% 50% 1400 1,1,1-Trichloroethane 4719271 4719271 <0.30 <0.30 NA <0.30 74% 50% 140% 75% 60% 130% 70% 50% 1400 1,1,1-Trichloroethane 4719271 4719271 <0.20 <0.20 NA <0.30 74% 50% 140% 75% 60% 130% 70% 50% 1400 1,2-Dichloroptopane 4719271 4719271 <0.20 <0.20 NA <0.20 81% 50% 140% 96% 60% 130% 79% 50% 1400 1,2-Dichloroptopane 4719271 4719271 <0.20 <0.20 NA <0.20 81% 50% 140% 96% 60% 130% 83% 50% 1400 1,2-Dichloroptopane 4719271 4719271 <0.20 <0.20 NA <0.20 99% 50% 140% 96% 60% 130% 83% 50% 1400 1,2-Dichloroptopane 4719271 4719271 <0.20 <0.20 NA <0.20 99% 50% 140% 95% 60% 130% 98% 50% 1400 1,1,2-Trichloroethylene 4719271 4719271 <0.20 <0.20 NA <0.20 97% 50% 140% 95% 60% 130% 78% 50% 1400 1130% 78% 50% 1400 1,1,2-Trichloroethane 4719271 4719271 <0.20 <0.20 NA <0.20 92% 50% 140% 108% 50% 140% 93% 50% 1400 1,1,2-Trichloroethane 4719271 4719271 <0.20 <0.20 NA <0.20 98% 50% 140% 108% 50% 140% 93% 50% 1400 1,1,2-Trichloroethane 4719271 4719271 <0.20 <0.20 NA <0.20 98% 50% 140% 108% 50% 140% 93% 50% 1400 1,1,2-Trichloroethane 4719271 4719271 <0.20 <0.20 NA <0.20 NA <0.20 98% 50% 140% 80% 60% 130% 87% 50% 1400 1,1,2-Trichloroethane 4719271 4719271 <0.10 <0.10 NA <0.10 115% 50% 140% 80% 60% 130% 87% 50% 1400 1,1,2-Trichloroethane 4719271 4719271 <0.10 <0.10 NA <0.10 115% 50% 140% 80% 60% 130% 87% 50% 1400 1,1,2-Trichloroethane 4719271 4719271 <0.10 <0.10 NA <0.10 115% 50% 140% 80% 60% 130% 81% 50% 1400 1,10 1,10 NA <0.10 99% 50% 140% 80% 60% 130% 81% 50% 1400 1,10 1,10 NA <0.10 99% 50% 140% 80% 60% 130% 81% 50% 1400 1,10 1,10 NA <0.10 99% 50% 140% 80% 60% 130% 81% 50% 1400 1,10 1,10 NA <0.10 99% 50% 1400 80% 60% 130% 81% 50% 1400 1,10 1,10 NA <0.10 99% 50% 1400 80% 60% 130% 81% 50% 1400 1,10 1,10 NA <0.10 99% 50%	1,1-Dichloroethane															140%
cis-1,2-Dichloroethylene Chloroform 4719271 4719271 <0.20 <0.20 NA <0.20 86% 50% 140% 109% 60% 130% 74% 50% 1400 109% 60% 130% 75% 50% 1400 1,2-Dichloroethane 4719271 4719271 <0.20 <0.20 NA <0.20 91% 50% 140% 73% 60% 130% 75% 50% 1400 1,2-Dichloroethane 4719271 4719271 <0.30 <0.30 NA <0.30 74% 50% 140% 75% 60% 130% 83% 50% 1400 1,1,1-Trichloroethane 4719271 4719271 <0.30 <0.30 NA <0.30 74% 50% 140% 75% 60% 130% 70% 50% 1400 1,1,1-Trichloroethane 4719271 4719271 <0.20 <0.20 NA <0.30 74% 50% 140% 75% 60% 130% 70% 50% 1400 1,2-Dichloroptopane 4719271 4719271 <0.20 <0.20 NA <0.20 81% 50% 140% 96% 60% 130% 79% 50% 1400 1,2-Dichloroptopane 4719271 4719271 <0.20 <0.20 NA <0.20 81% 50% 140% 96% 60% 130% 83% 50% 1400 1,2-Dichloroptopane 4719271 4719271 <0.20 <0.20 NA <0.20 99% 50% 140% 96% 60% 130% 83% 50% 1400 1,2-Dichloroptopane 4719271 4719271 <0.20 <0.20 NA <0.20 99% 50% 140% 95% 60% 130% 98% 50% 1400 1,1,2-Trichloroethylene 4719271 4719271 <0.20 <0.20 NA <0.20 97% 50% 140% 95% 60% 130% 78% 50% 1400 1130% 78% 50% 1400 1,1,2-Trichloroethane 4719271 4719271 <0.20 <0.20 NA <0.20 92% 50% 140% 108% 50% 140% 93% 50% 1400 1,1,2-Trichloroethane 4719271 4719271 <0.20 <0.20 NA <0.20 98% 50% 140% 108% 50% 140% 93% 50% 1400 1,1,2-Trichloroethane 4719271 4719271 <0.20 <0.20 NA <0.20 98% 50% 140% 108% 50% 140% 93% 50% 1400 1,1,2-Trichloroethane 4719271 4719271 <0.20 <0.20 NA <0.20 NA <0.20 98% 50% 140% 80% 60% 130% 87% 50% 1400 1,1,2-Trichloroethane 4719271 4719271 <0.10 <0.10 NA <0.10 115% 50% 140% 80% 60% 130% 87% 50% 1400 1,1,2-Trichloroethane 4719271 4719271 <0.10 <0.10 NA <0.10 115% 50% 140% 80% 60% 130% 87% 50% 1400 1,1,2-Trichloroethane 4719271 4719271 <0.10 <0.10 NA <0.10 115% 50% 140% 80% 60% 130% 81% 50% 1400 1,10 1,10 NA <0.10 99% 50% 140% 80% 60% 130% 81% 50% 1400 1,10 1,10 NA <0.10 99% 50% 140% 80% 60% 130% 81% 50% 1400 1,10 1,10 NA <0.10 99% 50% 140% 80% 60% 130% 81% 50% 1400 1,10 1,10 NA <0.10 99% 50% 1400 80% 60% 130% 81% 50% 1400 1,10 1,10 NA <0.10 99% 50% 1400 80% 60% 130% 81% 50% 1400 1,10 1,10 NA <0.10 99% 50%	Methyl Ethyl Ketone	4719271 4	4719271	<1.0	<1.0	NA	< 1.0	118%	50%	140%	83%	50%	140%	98%	50%	140%
Chloroform 4719271 4719271 <0.20 <0.20 NA <0.20 91% 50% 140% 73% 60% 130% 75% 50% 1400 1,2-Dichloroethane 4719271 4719271 <0.20 <0.20 NA <0.20 81% 50% 140% 105% 60% 130% 83% 50% 1400 1,1,1-Trichloroethane 4719271 4719271 <0.30 <0.30 NA <0.30 74% 50% 140% 75% 60% 130% 70% 50% 1400 1,1,1-Trichloroethane 4719271 4719271 <0.20 <0.20 NA <0.20 103% 50% 140% 75% 60% 130% 70% 50% 1400 1400 1,1,1-Trichloroethane 4719271 4719271 <0.20 <0.20 NA <0.20 103% 50% 140% 75% 60% 130% 83% 50% 1400 1,1,1-Trichloroethane 4719271 4719271 <0.20 <0.20 NA <0.20 81% 50% 140% 75% 60% 130% 83% 50% 1400 1,1,1-Trichloroethylene 4719271 4719271 <0.20 <0.20 NA <0.20 99% 50% 140% 105% 60% 130% 98% 50% 1400 1,1,1-Trichloroethylene 4719271 4719271 <0.20 <0.20 NA <0.20 99% 50% 140% 105% 60% 130% 98% 50% 1400 1,1,1-Trichloroethylene 4719271 4719271 <0.20 <0.20 NA <0.20 97% 50% 140% 78% 60% 130% 78% 50% 1400 1,1,1,2-Trichloroethane 4719271 4719271 <0.20 <0.20 NA <0.20 92% 50% 140% 78% 60% 130% 78% 50% 1400 1,1,1,2-Trichloroethane 4719271 4719271 <0.20 <0.20 NA <0.20 92% 50% 140% 78% 60% 130% 78% 50% 1400 1,1,1,2-Trichloroethane 4719271 4719271 <0.20 <0.20 NA <0.20 98% 50% 140% 78% 60% 130% 91% 50% 1400 1,1,1,2-Trichloroethane 4719271 4719271 <0.20 <0.20 NA <0.20 98% 50% 140% 78% 60% 130% 87% 50% 1400 1,1,1,2-Trichloroethane 4719271 4719271 <0.20 <0.20 NA <0.20 98% 50% 140% 78% 60% 130% 87% 50% 1400 1,1,1,2-Trichloroethane 4719271 4719271 <0.20 <0.20 NA <0.20 98% 50% 140% 78% 60% 130% 87% 50% 1400 1,1,1,2-Trichloroethane 4719271 4719271 <0.20 <0.20 NA <0.20 98% 50% 140% 78% 60% 130% 87% 50% 1400 1,1,1,2-Trichloroethane 4719271 4719271 <0.10 <0.10 NA <0.10 115% 50% 140% 88% 60% 130% 87% 50% 1400 1,1,1,2-Trichloroethane 4719271 4719271 <0.10 <0.10 NA <0.10 115% 50% 140% 88% 60% 130% 87% 50% 1400 1,1,1,2-Trichloroethane 4719271 4719271 <0.10 <0.10 NA <0.10 115% 50% 140% 88% 60% 130% 87% 50% 1400 1,1,1,2-Trichloroethylene 4719271 4719271 <0.10 <0.10 NA <0.20 88% 50% 140% 88% 60% 130% 81% 50% 1400 1,1,1,2-Trichloroethylene 4719271 4719271 <0.20 <0.20 NA	• •															140%
1,2-Dichloroethane	Chloroform															
1,1,1-Trichloroethane 4719271 4719271 <0.30 <0.30 NA <0.30 74% 50% 140% 75% 60% 130% 70% 50% 140% Carbon Tetrachloride 4719271 4719271 <0.20 <0.20 NA <0.20 103% 50% 140% 73% 60% 130% 79% 50% 140% 1,2-Dichloropropane 4719271 4719271 <0.20 <0.20 NA <0.20 81% 50% 140% 96% 60% 130% 83% 50% 140% 1,2-Dichloropropane 4719271 4719271 <0.20 <0.20 NA <0.20 99% 50% 140% 105% 60% 130% 98% 50% 140% 1,2-Dichloropropane 4719271 4719271 <0.20 <0.20 NA <0.20 97% 50% 140% 95% 60% 130% 130% 98% 50% 140% 105% 60% 130% 105% 105% 105% 105% 105% 105% 105% 10	1,2-Dichloroethane															140%
Benzene 4719271 4719271 <0.20 <0.20 NA <0.20 81% 50% 140% 96% 60% 130% 83% 50% 140% 1,2-Dichloropropane 4719271 4719271 <0.20 <0.20 NA <0.20 99% 50% 140% 105% 60% 130% 98% 50% 140% 1,2-Dichloropropane 4719271 4719271 <0.20 <0.20 NA <0.20 97% 50% 140% 95% 60% 130% 98% 50% 140% 105% 60% 130% 98% 50% 140% 105% 60% 130% 113% 105% 60% 105% 60% 130% 105% 60% 1	1,1,1-Trichloroethane															140%
Benzene 4719271 4719271 <0.20 <0.20 NA <0.20 81% 50% 140% 96% 60% 130% 83% 50% 140% 1,2-Dichloropropane 4719271 4719271 <0.20 <0.20 NA <0.20 99% 50% 140% 105% 60% 130% 98% 50% 140% 1,2-Dichloropropane 4719271 4719271 <0.20 <0.20 NA <0.20 97% 50% 140% 95% 60% 130% 98% 50% 140% 105% 60% 130% 98% 50% 140% 105% 60% 130% 113% 105% 60% 105% 60% 130% 105% 60% 1	Carbon Tetrachloride	4719271	4719271	<0.20	<0.20	NA	< 0.20	103%	50%	140%	73%	60%	130%	79%	50%	140%
1,2-Dichloropropane 4719271 4719271 <0.20 <0.20 NA <0.20 99% 50% 140% 105% 60% 130% 98% 50% 140% Trichloroethylene 4719271 4719271 <0.20 <0.20 NA <0.20 97% 50% 140% 95% 60% 130% 113% 50% 140% Bromodichloromethane 4719271 4719271 <0.20 <0.20 NA <0.20 92% 50% 140% 78% 60% 130% 78% 50% 140% 140% 140% 140% 140% 140% 140% 14																140%
Trichloroethylene 4719271 4719271 <0.20 <0.20 NA <0.20 97% 50% 140% 95% 60% 130% 113% 50% 140% Bromodichloromethane 4719271 4719271 <0.20 <0.20 NA <0.20 92% 50% 140% 78% 60% 130% 78% 50% 140% 93% 50%																140%
Bromodichloromethane 4719271 4719271 <0.20 <0.20 NA <0.20 92% 50% 140% 78% 60% 130% 78% 50% 1406 Methyl Isobutyl Ketone 4719271 4719271 <1.0 <1.0 NA <1.0 104% 50% 140% 108% 50% 140% 93% 50% 140% 1,1,2-Trichloroethane 4719271 4719271 <0.20 <0.20 NA <0.20 98% 50% 140% 72% 60% 130% 91% 50% 1406 Toluene 4719271 4719271 15.4 17.5 12.8% <0.20 104% 50% 140% 80% 60% 130% 87% 50% 1406 Dibromochloromethane 4719271 4719271 <0.10 <0.10 NA <0.10 115% 50% 140% 76% 60% 130% 86% 50% 1406 Toluene 4719271 4719271 <0.10 <0.10 NA <0.10 115% 50% 140% 76% 60% 130% 86% 50% 1406 Toluene 4719271 4719271 <0.10 <0.10 NA <0.10 99% 50% 140% 82% 60% 130% 113% 50% 1406 Toluene 4719271 4719271 <0.20 <0.20 NA <0.20 88% 50% 140% 92% 60% 130% 81% 50% 1406 Toluene 4719271 4719271 <0.20 <0.20 NA <0.20 88% 50% 140% 92% 60% 130% 81% 50% 1406 Toluene 4719271 4719271 <0.20 <0.20 NA <0.20 88% 50% 140% 92% 60% 130% 81% 50% 1406 Toluene 4719271 4719271 <0.20 <0.20 NA <0.20 88% 50% 140% 92% 60% 130% 81% 50% 1406 Toluene 4719271 4719271 <0.20 <0.20 NA <0.20 88% 50% 140% 92% 60% 130% 81% 50% 1406 Toluene 4719271 4719271 <0.20 <0.20 NA <0.20 88% 50% 140% 92% 60% 130% 81% 50% 1406 Toluene 4719271 4719271 <0.20 <0.20 NA <0.20 88% 50% 140% 92% 60% 130% 81% 50% 1406 Toluene 4719271 4719271 <0.20 <0.20 NA <0.20 88% 50% 140% 92% 60% 130% 81% 50% 1406 Toluene 4719271 4719271 <0.20 <0.20 NA <0.20 88% 50% 140% 92% 60% 130% 81% 50% 1406 Toluene 4719271 4719271 <0.20 <0.20 NA <0.20 88% 50% 140% 92% 60% 130% 81% 50% 1406 Toluene 4719271 4719271 <0.20 <0.20 NA <0.20 88% 50% 140% 92% 60% 130% 81% 50% 1406 Toluene 4719271 4719271 <0.20 <0.20 NA <0.20 88% 50% 140% 92% 60% 130% 81% 50% 1406 Toluene 4719271 4719271 <0.20 <0.20 NA <0.20 88% 50% 140% 92% 60% 130% 81% 50% 1406 Toluene 4719271 4719271 <0.20 <0.20 NA <0.20 88% 50% 140% 92% 60% 130% 81% 50% 1406 Toluene 4719271 4719271 <0.20 <0.20 NA <0.20 88% 50% 140% 92% 60% 130% 81% 50% 1406 Toluene 4719271 4719271 <0.20 NA <0.20 88% 50% 140% 92% 60% 130% 81% 50% 1406 Toluene 4719271 4719271 <0.20 NA <0.20 88% 50% 140% 92% 60% 1	Trichloroethylene															140%
1,1,2-Trichloroethane 4719271 4719271 <0.20	Bromodichloromethane															140%
1,1,2-Trichloroethane 4719271 4719271 <0.20	Methyl Isobutyl Ketone	4719271	4719271	<1.0	<1.0	NA	< 1.0	104%	50%	140%	108%	50%	140%	93%	50%	140%
Toluene 4719271 4719271 15.4 17.5 12.8% < 0.20 104% 50% 140% 80% 60% 130% 87% 50% 140% Dibromochloromethane 4719271 4719271 < 0.10 < 0.10 NA < 0.10 115% 50% 140% 76% 60% 130% 86% 50% 140% 50% 140% 76% 60% 130% 86% 50% 140% 50% 1	1,1,2-Trichloroethane															
Dibromochloromethane 4719271 4719271 <0.10 <0.10 NA < 0.10 115% 50% 140% 76% 60% 130% 86% 50% 140% Ethylene Dibromide 4719271 4719271 <0.10 <0.10 NA < 0.10 99% 50% 140% 82% 60% 130% 113% 50% 140% Tetrachloroethylene 4719271 4719271 <0.20 <0.20 NA < 0.20 88% 50% 140% 92% 60% 130% 81% 50% 140%	Toluene															
Ethylene Dibromide 4719271 4719271 <0.10 <0.10 NA < 0.10 99% 50% 140% 82% 60% 130% 113% 50% 140% Tetrachloroethylene 4719271 4719271 <0.20 <0.20 NA < 0.20 88% 50% 140% 92% 60% 130% 81% 50% 140%	Dibromochloromethane															
	Ethylene Dibromide															
	Tetrachloroethylene	4719271	4719271	<0.20	<0.20	NΑ	< 0.20	88%	50%	140%	92%	60%	130%	81%	50%	140%
	1,1,1,2-Tetrachloroethane			<0.10	<0.20	NA	< 0.20	91%			88%			106%		

AGAT QUALITY ASSURANCE REPORT (V2)

Page 22 of 38

AGAT Laboratories is accredited to ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA) and/or Standards Council of Canada (SCC) for specific tests listed on the scope of accreditation. AGAT Laboratories (Mississauga) is also accredited by the Canadian Association for Laboratory Accreditation Inc. (CALA) for specific drinking water tests. Accreditations are location and parameter specific. A complete listing of parameters for each location is available from www.cala.ca and/or www.scc.ca. The tests in this report may not necessarily be included in the scope of accreditation. RPDs calculated using raw data. The RPD may not be reflective of duplicate values shown, due to rounding of final results.

Quality Assurance

CLIENT NAME: BLUMETRIC ENVIRONMENTAL INC.

AGAT WORK ORDER: 23P991368
PROJECT: 220509

ATTENTION TO: Paul Bandler

SAMPLING SITE:Bakelite Belleville

Trace Organics Analysis (Continued)

SAMPLED BY:ML

		Irace	Org	anıcs	Ana	llysis	(Cor	ntın	ued)					
RPT Date: Feb 17, 2023			Г	UPLICAT	E		REFEREN	NCE MA	TERIAL	METHOD	BLANK	SPIKE	MAT	RIX SPI	KE
PARAMETER	Batch	Sample Id	Dup #1	Dup #2	RPD	Method Blank	Measured Value	Lin		Recovery	Lir	ptable nits	Recovery	Lin	ptable nits
								Lower	Upper		Lower	Upper		Lower	Uppe
Chlorobenzene	4719271	4719271	7.36	6.86	7.0%	< 0.10	117%	50%	140%	94%	60%	130%	108%		140%
Ethylbenzene	4719271	4719271	<0.10	<0.10	NA	< 0.10	105%	50%	140%	99%	60%	130%	102%	50%	140%
m & p-Xylene	4719271	4719271	<0.20	<0.20	NA	< 0.20	112%	50%	140%	112%	60%	130%	117%	50%	140%
Bromoform	4719271	4719271	<0.10	<0.10	NA	< 0.10	109%	50%	140%	95%	60%	130%	85%	50%	140%
Styrene	4719271	4719271	<0.10	<0.10	NA	< 0.10	108%	50%	140%	100%	60%	130%	115%	50%	140%
1,1,2,2-Tetrachloroethane	4719271	4719271	<0.10	< 0.10	NA	< 0.10	96%	50%	140%	71%	60%	130%	84%	50%	140%
o-Xylene	4719271	4719271	<0.10	< 0.10	NA	< 0.10	105%	50%	140%	114%	60%	130%	120%	50%	140%
1,3-Dichlorobenzene	4719271	4719271	<0.10	<0.10	NA	< 0.10	110%	50%	140%	104%	60%	130%	108%	50%	140%
1,4-Dichlorobenzene	4719271	4719271	<0.10	<0.10	NA	< 0.10	92%	50%	140%	79%	60%	130%	91%	50%	140%
1,2-Dichlorobenzene	4719271	4719271	<0.10	< 0.10	NA	< 0.10	115%	50%	140%	90%	60%	130%	105%	50%	140%
n-Hexane	4719271	4719271	<0.20	<0.20	NA	< 0.20	88%	50%	140%	91%	60%	130%	78%	50%	140%
O. Reg. 153(511) - BNA (full) +	· PAHs (Water	١													
Naphthalene	4468334	,	< 0.20	< 0.20	NA	< 0.20	89%	50%	140%	88%	50%	140%	115%	50%	140%
Acenaphthylene	4468334		< 0.20	< 0.20	NA	< 0.20	76%	50%	140%	94%	50%	140%	98%		140%
Acenaphthene	4468334		< 0.20	< 0.20	NA	< 0.20	80%	50%	140%	80%	50%	140%	65%	50%	140%
Fluorene	4468334		< 0.20	< 0.20	NA	< 0.20	105%	50%	140%	105%	50%	140%	67%	50%	140%
Phenanthrene	4468334		< 0.10	< 0.10	NA	< 0.10	101%		140%	83%	50%	140%	75%		140%
Anthracene	4468334		< 0.10	< 0.10	NA	< 0.10	87%	50%	140%	101%	50%	140%	90%	50%	140%
Fluoranthene	4468334		< 0.10	< 0.10	NA	< 0.10	85%	50%	140%	85%	50%	140%	101%		140%
Pyrene	4468334		< 0.20	< 0.20	NA	< 0.20	76%		140%	93%	50%	140%	98%		140%
Benzo(a)anthracene	4468334		< 0.20	< 0.20	NA	< 0.20	82%		140%	95%	50%	140%	89%		140%
Chrysene	4468334		< 0.10	< 0.10	NA	< 0.10	101%	50%	140%	98%	50%	140%	85%	50%	140%
Benzo(b)fluoranthene	4468334		< 0.10	< 0.10	NA	< 0.10	89%	50%	140%	89%	50%	140%	71%	50%	140%
Benzo(k)fluoranthene	4468334		< 0.10	< 0.10	NA	< 0.10	89%	50%	140%	88%	50%	140%	92%		140%
Benzo(a)pyrene	4468334		< 0.10	< 0.10	NA	< 0.10	76%	50%	140%	64%	50%	140%	81%		140%
Indeno(1,2,3-cd)pyrene	4468334		< 0.01	< 0.20	NA	< 0.20	101%	50%	140%	101%	50%	140%	78%	50%	140%
Dibenz(a,h)anthracene	4468334		< 0.20	< 0.20	NA	< 0.20	78%		140%	98%	50%	140%	85%		140%
Danasa ki ilaan dana	4.40000.4		0.00	0.00	NIA	0.00	000/	500/	4.400/	000/	500 /	4.400/	000/	500/	4.400/
Benzo(g,h,i)perylene	4468334		< 0.20	< 0.20	NA	< 0.20	88%	50%	140%	89%	50%	140%	99%	50%	140%
Phenol	4468334		< 1.0	< 1.0	NA	< 1.0	89%	30%	130%	108%	30%	130%	86%		130%
Bis(2-chloroethyl)ether	4468334		< 0.5	< 0.5	NA	< 0.5	86%	50%	140%	97%	50%	140%	91%	50%	140%
2-Chlorophenol o-Cresol	4468334 4468334		< 0.5 < 0.5	< 0.5 < 0.5	NA NA	< 0.5 < 0.5	91% 80%	50% 50%	140% 140%	68% 64%	50% 50%	140% 140%	80% 102%		140% 140%
Bis(2-chloroisopropyl)ether	4468334		< 0.5	< 0.5	NA	< 0.5	102%		140%	83%		140%	67%		140%
m&p-Cresol	4468334		< 0.6	< 0.6	NA	< 0.6	68%		140%	105%	50%		98%		140%
2,4-Dimethylphenol	4468334		< 0.5	< 0.5	NA	< 0.5	94%		130%	98%		130%	106%		130%
2,4-Dichlorophenol	4468334		< 0.3	< 0.3	NA	< 0.3	83%		140%	76%		140%	98%		140%
1,2,4-Trichlorobenzene	4468334		< 0.5	< 0.5	NA	< 0.5	61%	50%	140%	112%	50%	140%	88%	50%	140%
p-Chloroaniline	4468334		< 1.0	< 1.0	NA	< 1.0	86%		130%	91%		130%	73%		130%
2,4,6-Trichlorophenol	4468334		< 0.20	< 0.20	NA	< 0.20	88%	50%	140%	68%	50%	140%	89%	50%	140%

AGAT QUALITY ASSURANCE REPORT (V2)

Page 23 of 38

AGAT Laboratories is accredited to ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA) and/or Standards Council of Canada (SCC) for specific tests listed on the scope of accreditation. AGAT Laboratories (Mississauga) is also accredited by the Canadian Association for Laboratory Accreditation Inc. (CALA) for specific drinking water tests. Accreditations are location and parameter specific. A complete listing of parameters for each location is available from www.cala.ca and/or www.scc.ca. The tests in this report may not necessarily be included in the scope of accreditation. RPDs calculated using raw data. The RPD may not be reflective of duplicate values shown, due to rounding of final results.

Quality Assurance

CLIENT NAME: BLUMETRIC ENVIRONMENTAL INC.

AGAT WORK ORDER: 23P991368

PROJECT: 220509

ATTENTION TO: Paul Bandler

SAMPLING SITE:Bakelite Belleville SAMPLED BY:ML

		race								<u>. </u>					
RPT Date: Feb 17, 2023			Г	DUPLICATI	E		REFEREN	NCE MA	TERIAL	METHOD	BLANK	SPIKE	MAT	RIX SPI	KE
		Sample				Method Blank	Measured		ptable nits			ptable nits			eptable mits
PARAMETER	Batch	ld	Dup #1	Dup #2	RPD	Diank	Value	Lower	Upper	Recovery	Lower	Upper	Recovery	Lower	
2,4,5-Trichlorophenol	4468334		< 0.20	< 0.20	NA	< 0.20	91%	50%	140%	91%	50%	140%	76%	50%	140%
1,1'-Biphenyl	4468334		< 0.50	< 0.50	NA	< 0.50	80%	50%	140%	83%	50%	140%	88%	50%	140%
Dimethyl phthalate	4468334		< 0.50	< 0.50	NA	< 0.50	102%	50%	140%	64%	50%	140%	106%	50%	140%
Diethyl phthalate	4468334		< 0.50	< 0.50	NA	< 0.50	56%	50%	140%	64%	50%	140%	67%	50%	140%
Pentachlorophenol	4468334		< 0.50	< 0.50	NA	< 0.50	89%	50%	140%	89%	50%	140%	67%	50%	1409
,3'-dichlorobenzidine	4468334		< 0.50	< 0.50	NA	< 0.50	88%	30%	130%	91%	30%	130%	73%	30%	1309
is(2-Ethylhexyl)phthalate	4468334		< 0.50	< 0.50	NA	< 0.50	89%	50%	140%	105%	50%	140%	71%	50%	1409
2,4-Dinitrophenol	4468334		< 10	< 10	NA	< 10	84%	30%	130%	67%	30%	130%	98%	30%	1309
D. Reg. 153(511) - BNA (full) +	PAHs (Water)														
laphthalene	4719333 47	19333	< 0.20	< 0.20	NA	< 0.20	89%	50%	140%	88%	50%	140%	115%	50%	1409
Acenaphthylene	4719333 47	19333	< 0.20	< 0.20	NA	< 0.20	76%	50%	140%	94%	50%	140%	98%	50%	1409
Acenaphthene	4719333 47	19333	0.87	0.94	NA	< 0.20	80%	50%	140%	80%	50%	140%	65%	50%	140%
Fluorene	4719333 47	19333	0.84	0.90	NA	< 0.20	105%	50%	140%	105%	50%	140%	67%	50%	140%
Phenanthrene	4719333 47	19333	11.2	10.4	7.4%	< 0.10	101%	50%	140%	83%	50%	140%	75%	50%	140%
Anthracene	4719333 47	19333	2.43	2.23	8.6%	< 0.10	87%	50%	140%	101%	50%	140%	90%	50%	1409
luoranthene	4719333 47		20.6	18.6	10.2%	< 0.20	85%	50%	140%	85%	50%	140%	101%	50%	1409
Pyrene	4719333 47		16.5	14.7	11.5%	< 0.20	76%	50%	140%	93%	50%	140%	98%	50%	1409
Benzo(a)anthracene	4719333 47		5.64	5.36	5.1%	< 0.20	82%	50%	140%	95%	50%	140%	89%	50%	1409
Chrysene	4719333 47		5.85	5.45	7.1%	< 0.10	101%	50%	140%	98%	50%	140%	85%	50%	1409
Benzo(b)fluoranthene	4719333 47	19333	9.68	8.45	13.6%	< 0.10	89%	50%	140%	89%	50%	140%	71%	50%	1409
Benzo(k)fluoranthene	4719333 47	19333	5.36	3.97	29.8%	< 0.10	89%	50%	140%	88%	50%	140%	92%	50%	1409
Benzo(a)pyrene	4719333 47	19333	6.65	5.22	24.1%	< 0.01	76%	50%	140%	64%	50%	140%	81%	50%	1409
Indeno(1,2,3-cd)pyrene	4719333 47		2.89	3.73	25.4%	< 0.20	101%	50%	140%	101%	50%	140%	78%	50%	140%
Dibenz(a,h)anthracene	4719333 47		< 0.20	2.31	NA	< 0.20	78%	50%	140%	98%	50%	140%	85%	50%	140%
Benzo(g,h,i)perylene	4719333 47	19333	4.34	5.36	21.0%	< 0.20	88%	50%	140%	89%	50%	140%	99%	50%	1409
Phenol	4719333 47	19333	< 1.0	< 1.0	NA	< 1.0	89%	30%	130%	108%	30%	130%	86%	30%	1309
Bis(2-chloroethyl)ether	4719333 47	19333	< 0.5	< 0.5	NA	< 0.5	86%	50%	140%	97%	50%	140%	91%	50%	1409
2-Chlorophenol	4719333 47	19333	< 0.5	< 0.5	NA	< 0.5	91%	50%	140%	68%	50%	140%	80%	50%	140%
o-Cresol	4719333 47	19333	< 0.5	< 0.5	NA	< 0.5	80%	50%	140%	64%	50%	140%	102%	50%	140%
Bis(2-chloroisopropyl)ether	4719333 47	19333	< 0.5	< 0.5	NA	< 0.5	102%	50%	140%	83%	50%	140%	67%	50%	140%
m&p-Cresol	4719333 47	19333	< 0.6	< 0.6	NA	< 0.6	68%	50%	140%	105%	50%	140%	98%	50%	1409
2,4-Dimethylphenol	4719333 47		< 0.5	< 0.5	NA	< 0.5	94%		130%	98%		130%	106%		
2,4-Dichlorophenol	4719333 47		< 0.3	< 0.3	NA	< 0.3	83%		140%	76%		140%	98%		
1,2,4-Trichlorobenzene	4719333 47		< 0.5	< 0.5	NA	< 0.5	61%		140%	112%		140%	88%		140%
o-Chloroaniline	4719333 47	19333	< 1.0	< 1.0	NA	< 1.0	86%	30%	130%	91%	30%	130%	73%	30%	130%
2,4,6-Trichlorophenol	4719333 47		< 0.20	< 0.20	NA	< 0.20	88%		140%	68%		140%	89%		140%
2,4,5-Trichlorophenol	4719333 47		< 0.20	< 0.20	NA	< 0.20	91%		140%	91%		140%	76%		140%
1,1'-Biphenyl	4719333 47		< 0.50	< 0.50	NA	< 0.50	80%		140%	83%		140%	88%		1409
Dimethyl phthalate	4719333 47		< 0.50	< 0.50	NA	< 0.50	102%		140%	64%		140%	106%		

AGAT QUALITY ASSURANCE REPORT (V2)

Page 24 of 38

Quality Assurance

CLIENT NAME: BLUMETRIC ENVIRONMENTAL INC.

AGAT WORK ORDER: 23P991368
PROJECT: 220509

ATTENTION TO: Paul Bandler

SAMPLING SITE:Bakelite Belleville SAMPLED BY:ML

7 2 2 2 2 2 2 2.															
	7	Trace	Orga	anics	Ana	alysis	(Cor	ntin	ued)					
RPT Date: Feb 17, 2023				UPLICAT	E		REFEREN	NCE MA	TERIAL	METHOD	BLANK	SPIKE	MAT	RIX SPI	KE
PARAMETER	Batch	Sample	Dup #1	Dup #2	RPD	Method Blank	Measured		ptable nits	Recovery	Lin	ptable nits	Recovery	Lin	ptable nits
		ld		.,			Value	Lower	Upper		Lower	Upper	, , ,	Lower	Upper
Diethyl phthalate	4719333 4	4719333	< 0.50	< 0.50	NA	< 0.50	56%	50%	140%	64%	50%	140%	67%	50%	140%
Pentachlorophenol	4719333 4	4719333	< 0.50	< 0.50	NA	< 0.50	89%	50%	140%	89%	50%	140%	67%	50%	140%
3,3'-dichlorobenzidine	4719333 4	4719333	< 0.50	< 0.50	NA	< 0.50	88%	30%	130%	91%	30%	130%	73%	30%	130%
Bis(2-Ethylhexyl)phthalate	4719333 4	4719333	< 0.50	< 0.50	NA	< 0.50	89%	50%	140%	105%	50%	140%	71%	50%	140%
2,4-Dinitrophenol	4719333 4	4719333	< 10	< 10	NA	< 10	84%	30%	130%	67%	30%	130%	98%	30%	130%

Comments: When the average of the sample and duplicate results is less than 5x the RDL, the Relative Percent Difference (RPD) will be indicated as Not Applicable (NA).

								,	,					,
O. Reg. 153(511) - PAHs (Water)														
Naphthalene	4723569	<0.20	<0.20	NA	< 0.20	96%	50%	140%	73%	50%	140%	73%	50%	140%
Acenaphthylene	4723569	< 0.20	< 0.20	NA	< 0.20	98%	50%	140%	90%	50%	140%	84%	50%	140%
Acenaphthene	4723569	<0.20	< 0.20	NA	< 0.20	96%	50%	140%	73%	50%	140%	86%	50%	140%
Fluorene	4723569	<0.20	<0.20	NA	< 0.20	91%	50%	140%	72%	50%	140%	75%	50%	140%
Phenanthrene	4723569	<0.10	<0.10	NA	< 0.10	113%	50%	140%	91%	50%	140%	82%	50%	140%
Anthracene	4723569	<0.10	<0.10	NA	< 0.10	92%	50%	140%	94%	50%	140%	95%	50%	140%
Fluoranthene	4723569	<0.20	<0.20	NA	< 0.20	88%	50%	140%	77%	50%	140%	88%	50%	140%
Pyrene	4723569	<0.20	<0.20	NA	< 0.20	95%	50%	140%	82%	50%	140%	84%	50%	140%
Benzo(a)anthracene	4723569	< 0.20	< 0.20	NA	< 0.20	64%	50%	140%	100%	50%	140%	92%	50%	140%
Chrysene	4723569	< 0.10	<0.10	NA	< 0.10	87%	50%	140%	94%	50%	140%	91%	50%	140%
Benzo(b)fluoranthene	4723569	< 0.10	<0.10	NA	< 0.10	103%	50%	140%	89%	50%	140%	109%	50%	140%
Benzo(k)fluoranthene	4723569	<0.10	< 0.10	NA	< 0.10	66%	50%	140%	104%	50%	140%	94%	50%	140%
Benzo(a)pyrene	4723569	<0.01	< 0.01	NA	< 0.01	99%	50%	140%	89%	50%	140%	82%	50%	140%
Indeno(1,2,3-cd)pyrene	4723569	<0.20	<0.20	NA	< 0.20	66%	50%	140%	93%	50%	140%	75%	50%	140%
Dibenz(a,h)anthracene	4723569	<0.20	<0.20	NA	< 0.20	82%	50%	140%	95%	50%	140%	90%	50%	140%
Benzo(g,h,i)perylene	4723569	<0.20	<0.20	NA	< 0.20	80%	50%	140%	101%	50%	140%	82%	50%	140%

Comments: Comments: When the average of the sample and duplicate results is less than 5x the RDL, the Relative Percent Difference (RPD) will be indicated as Not Applicable (NA).

Certified By:

Jung

AGAT QUALITY ASSURANCE REPORT (V2)

Page 25 of 38

Quality Assurance

CLIENT NAME: BLUMETRIC ENVIRONMENTAL INC.

AGAT WORK ORDER: 23P991368
PROJECT: 220509

ATTENTION TO: Paul Bandler

SAMPLING SITE:Bakelite Belleville SAMPLED BY:ML

			UI	tra T	race	Anal	ysis								
RPT Date: Feb 17, 2023				UPLICAT	E		REFERE	NCE MA	TERIAL	METHOD	BLANK	SPIKE	MAT	RIX SP	KE
PARAMETER	Batch	Sample	Dup #1	Dup #2	RPD	Method Blank	Measured Value		eptable mits	Recovery	Lie	ptable	Recovery		ptable
		lu	-				value	Lower	Upper		Lower	Upper		Lower	Upper
Dioxins and Furans (Waste Wate	er) WHO 200)5													
2,3,7,8-Tetra CDD	1	MR	974	944	3.1%	0.6	NA	70%	130%	97%	70%	130%	NA	70%	130%
1,2,3,7,8-Penta CDD	1	MR	4970	4890	1.6%	0.3	NA	70%	130%	99%	70%	130%	NA	70%	130%
1,2,3,4,7,8-Hexa CDD	1	MR	4860	4850	0.2%	< 0.1	NA	70%	130%	97%	70%	130%	NA	70%	130%
1,2,3,6,7,8-Hexa CDD	1	MR	4970	4890	1.6%	< 0.1	NA	70%	130%	99%	70%	130%	NA	70%	130%
1,2,3,7,8,9-Hexa CDD	1	MR	4900	4860	0.8%	< 0.1	NA	70%	130%	98%	70%	130%	NA	70%	130%
1,2,3,4,6,7,8-Hepta CDD	1	MR	4930	4870	1.2%	0.6	NA	70%	130%	99%	70%	130%	NA	70%	130%
Octa CDD	1	MR	9870	9710	1.6%	0.9	NA	70%	130%	99%	70%	130%	NA	70%	130%
2,3,7,8-Tetra CDF	1	MR	1010	1020	1.0%	< 0.1	NA	70%	130%	101%	70%	130%	NA	70%	130%
1,2,3,7,8-Penta CDF	1	MR	4950	5040	1.8%	0.6	NA	70%	130%	99%	40%	130%	NA	70%	130%
2,3,4,7,8-Penta CDF	1	MR	4990	4960	0.6%	0.3	NA	70%	130%	100%	70%	130%	NA	70%	130%
1,2,3,4,7,8-Hexa CDF	1	MR	4990	4990	0.0%	0.2	NA	70%	130%	100%	70%	130%	NA	70%	130%
1,2,3,6,7,8-Hexa CDF	1	MR	4980	4950	0.6%	0.2	NA	70%	130%	100%	70%	130%	NA	70%	130%
2,3,4,6,7,8-Hexa CDF	1	MR	4990	4960	0.6%	0.2	NA	70%	130%	100%	70%	130%	NA	70%	130%
1,2,3,7,8,9-Hexa CDF	1	MR	5030	5020	0.2%	0.4	NA	70%	130%	101%	70%	130%	NA	70%	130%
1,2,3,4,6,7,8-Hepta CDF	1	MR	4940	4890	1.0%	0.3	NA	70%	130%	99%	70%	130%	NA	70%	130%
1,2,3,4,7,8,9-Hepta CDF	1	MR	4930	4930	0.0%	0.3	NA	70%	130%	99%	70%	130%	NA	70%	130%
Octa CDF	1	MR	9520	9430	0.9%	0.4	NA	70%	130%	95%	70%	130%	NA	70%	130%
13C-2,3,7,8-TCDF	1	MR	46%	49%	6.3%	52	NA	30%	140%	46%	30%	140%	NA	30%	140%
13C-1,2,3,7,8-PeCDF	1	MR	63%	64%	1.6%	62	NA	30%	140%	63%	30%	140%	NA	30%	140%
13C-2,3,4,7,8-PeCDF	1	MR	66%	69%	4.4%	68	NA	30%	140%	66%	30%	140%	NA	30%	140%
13C-1,2,3,4,7,8-HxCDF	1	MR	71%	73%	2.8%	71	NA	30%	140%	71%	30%	140%	NA	30%	140%
13C-1,2,3,6,7,8-HxCDF	1	MR	71%	74%	4.1%	72	NA	30%	140%	71%	30%	140%	NA	30%	140%
13C-2,3,4,6,7,8-HxCDF	1	MR	75%	77%	2.6%	77	NA	30%	140%	75%	30%	140%	NA	30%	140%
13C-1,2,3,7,8,9-HxCDF	1	MR	75%	75%	0.0%	76	NA	30%	140%	75%	30%	140%	NA	30%	140%
13C-1,2,3,4,6,7,8-HpCDF	1	MR	71%	75%	5.5%	74	NA	30%	140%	71%	30%	140%	NA	30%	140%
13C-1,2,3,4,7,8,9-HpCDF	1	MR	77%	77%	0.0%	78	NA	30%	140%	77%	30%	140%	NA	30%	140%
13C-2,3,7,8-TCDD	1	MR	51%	53%	3.8%	54	NA	30%	140%	51%	30%	140%	NA	30%	140%
13C-1,2,3,7,8-PeCDD	1	MR	68%	69%	1.5%	67	NA	30%	140%	68%	30%	140%	NA	30%	140%
13C-1,2,3,4,7,8-HxCDD	1	MR	76%	78%	2.6%	77	NA	30%	140%	76%	30%	140%	NA	30%	140%
13C-1,2,3,6,7,8-HxCDD	1	MR	77%	78%	1.3%	77	NA	30%	140%	77%	30%	140%	NA	30%	140%
13C-1,2,3,4,6,7,8-HpCDD	1	MR	77%	79%	2.6%	80	NA	30%	140%	77%	30%	140%	NA	30%	140%
13C-OCDD	1	MR	72%	64%	11.8%	75	NA	30%	140%	72%	30%	140%	NA	30%	140%

Quality Assurance

CLIENT NAME: BLUMETRIC ENVIRONMENTAL INC.

AGAT WORK ORDER: 23P991368
PROJECT: 220509

ATTENTION TO: Paul Bandler

SAMPLING SITE:Bakelite Belleville SAMPLED BY:ML

Ultra Trace Analysis (Continued)															
RPT Date: Feb 17, 2023			DUPLICATE				REFERENCE MATERIAL			METHOD BLANK SPIKE			MATRIX SPIKE		
PARAMETER	Batch	Sample Id	Dup #1	Dup #2	RPD	Method Blank	Measured		ptable nits	Recovery	Acceptable Limits		Recovery	Acceptable Limits	
							Value	Lower	Upper	,	Lower	Upper	,	Lower	Upper

Comments: NA: Non applicable.

If the RPD value is NA, the results of the duplicates are under 5X the RDL and will not be calculated.

NA as the percentage of recovery for the matrix spike indicates that the result is not provided due to the heterogeneity of the sample or the spiked analyte concentration was lower than the matrix contribution.

NA in the spike blank or CRM indicates that it is not required by the procedure.

Presence of a small contamination in the method blank. The method blank has been subtracted from the samples.

Certified By:

Amar Bellahser 2011-214 400

Quality Assurance

CLIENT NAME: BLUMETRIC ENVIRONMENTAL INC. AGAT WORK ORDER: 23P991368 PROJECT: 220509 ATTENTION TO: Paul Bandler

SAMPLING SITE:Bakelite Belleville						SAMPLED BY:ML										
Water Analysis																
RPT Date: Feb 17, 2023				DUPLICATE			REFERENCE MATERIAL			METHOD BLANK SPIKE			MATRIX SPIKE			
PARAMETER	Batch	Sample	Dup #1	Dup #2	RPD	Method Blank	Measured Value	Acceptable Limits		Recovery	Acceptable Limits		Recovery	Lie	eptable mits	
		lu lu					Value	Lower	Upper		Lower	Upper		Lower	Upper	
O. Reg. 153(511) - Metals & In	organics (Wate	er)														
Dissolved Antimony	4719248 4	4719248	<1.0	<1.0	NA	< 1.0	96%	70%	130%	94%	80%	120%	92%	70%	130%	
Dissolved Arsenic	4719248 4	4719248	1.9	2.0	NA	< 1.0	98%	70%	130%	101%	80%	120%	104%	70%	130%	
Dissolved Barium	4719248 4	4719248	62.2	61.3	1.5%	< 2.0	100%	70%	130%	100%	80%	120%	97%	70%	130%	
Dissolved Beryllium	4719248 4	4719248	<0.50	< 0.50	NA	< 0.50	109%	70%	130%	113%	80%	120%	110%	70%	130%	
Dissolved Boron	4719248 4	4719248	218	219	0.5%	< 10.0	108%	70%	130%	111%	80%	120%	102%	70%	130%	
Dissolved Cadmium	4719248 4	4719248	<0.20	<0.20	NA	< 0.20	100%	70%	130%	100%	80%	120%	86%	70%	130%	
Dissolved Chromium	4719248 4	4719248	5.3	5.0	NA	< 2.0	101%	70%	130%	99%	80%	120%	100%	70%	130%	
Dissolved Cobalt	4719248 4	4719248	0.73	0.59	NA	< 0.50	92%	70%	130%	102%	80%	120%	98%	70%	130%	
Dissolved Copper	4719248 4	4719248	1.8	1.9	NA	< 1.0	100%	70%	130%	99%	80%	120%	98%	70%	130%	
Dissolved Lead	4719248 4	4719248	0.60	0.66	NA	< 0.50	93%	70%	130%	91%	80%	120%	89%	70%	130%	
Dissolved Molybdenum	4719248 4	4719248	46.5	45.1	3.1%	< 0.50	103%	70%	130%	103%	80%	120%	105%	70%	130%	
Dissolved Nickel	4719248 4	4719248	2.9	2.5	NA	< 1.0	91%	70%	130%	99%	80%	120%	97%	70%	130%	
Dissolved Selenium	4719248 4	4719248	1.6	2.2	NA	< 1.0	102%	70%	130%	105%	80%	120%	107%	70%	130%	
Dissolved Silver	4719248 4	4719248	<0.20	<0.20	NA	< 0.20	93%	70%	130%	98%	80%	120%	94%	70%	130%	
Dissolved Thallium	4719248 4	4719248	<0.30	<0.30	NA	< 0.30	96%	70%	130%	94%	80%	120%	91%	70%	130%	
Dissolved Uranium	4719248 4	4719248	1.13	1.11	NA	< 0.50	91%	70%	130%	95%	80%	120%	95%	70%	130%	
Dissolved Vanadium	4719248 4	4719248	0.82	0.97	NA	< 0.40	94%	70%	130%	102%	80%	120%	103%	70%	130%	
Dissolved Zinc	4719248 4	4719248	<5.0	<5.0	NA	< 5.0	97%	70%	130%	102%	80%	120%	101%	70%	130%	
Mercury	4722042		< 0.02	< 0.02	NA	< 0.02	101%	70%	130%	104%	80%	120%	99%	70%	130%	
Chromium VI	4713492		<2.000	<2.000	NA	< 2	104%	70%	130%	98%	80%	120%	96%	70%	130%	
Cyanide, WAD	4719248	4719248	<2	<2	NA	< 2	108%	70%	130%	102%	80%	120%	111%	70%	130%	
Dissolved Sodium	4719248 4	4719248	123000	119000	3.3%	< 50	100%	70%	130%	103%	80%	120%	101%	70%	130%	
Chloride	4715752		10800	10200	5.7%	< 100	90%	70%	130%	94%	80%	120%	98%	70%	130%	
Electrical Conductivity	4719248 4	4719248	1200	1200	0.0%	< 2	94%	90%	110%	NA			NA			
pH	4719248 4	4719248	7.66	7.79	1.7%	NA	99%	90%	110%	NA			NA			

Comments: NA signifies Not Applicable.

Duplicate NA: results are under 5X the RDL and will not be calculated.

Certified By:

Method Summary

SAMPLED BY:ML

CLIENT NAME: BLUMETRIC ENVIRONMENTAL INC.

AGAT WORK ORDER: 23P991368
PROJECT: 220509

ATTENTION TO: Paul Bandler

SAMPLING SITE:Bakelite Belleville

		• • • • • • • • • • • • • • • • • • • •					
PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE				
Trace Organics Analysis							
Naphthalene	ORG-91-5114	modified from EPA 3510C, 8270E & ON MOECC E3265	GC/MS				
Acenaphthylene	ORG-91-5114	modified from EPA 3510C, 8270E & ON MOECC E3265	GC/MS				
Acenaphthene	ORG-91-5114	modified from EPA 3510C, 8270E & ON MOECC E3265	GC/MS				
Fluorene	ORG-91-5114	modified from EPA 3510C, 8270E & ON MOECC E3265	GC/MS				
Phenanthrene	ORG-91-5114	modified from EPA 3510C, 8270E & ON MOECC E3265	GC/MS				
Anthracene	ORG-91-5114	modified from EPA 3510C, 8270E & ON MOECC E3265	GC/MS				
Fluoranthene	ORG-91-5114	modified from EPA 3510C, 8270E & ON MOECC E3265	GC/MS				
Pyrene	ORG-91-5114	modified from EPA 3510C, 8270E & ON MOECC E3265	GC/MS				
Benzo(a)anthracene	ORG-91-5114	modified from EPA 3510C, 8270E & ON MOECC E3265	GC/MS				
Chrysene	ORG-91-5114	modified from EPA 3510C, 8270E & ON MOECC E3265	GC/MS				
Benzo(b)fluoranthene	ORG-91-5114	modified from EPA 3510C, 8270E & ON MOECC E3265	GC/MS				
Benzo(k)fluoranthene	ORG-91-5114	modified from EPA 3510C, 8270E & ON MOECC E3265	GC/MS				
Benzo(a)pyrene	ORG-91-5114	modified from EPA 3510C, 8270E & ON MOECC E3265	GC/MS				
Indeno(1,2,3-cd)pyrene	ORG-91-5114	modified from EPA 3510C, 8270E & ON MOECC E3265	GC/MS				
Dibenz(a,h)anthracene	ORG-91-5114	modified from EPA 3510C and EPA 8270E	GC/MS				
Benzo(g,h,i)perylene	ORG-91-5114	modified from EPA 3510C, 8270E & ON MOECC E3265	GC/MS				
Phenol	ORG-91-5114	modified from EPA 3510C, 8270E & ON MOECC E3265	GC/MS				
Bis(2-chloroethyl)ether	ORG-91-5114	modified from EPA 3510C, 8270E & ON MOECC E3265	GC/MS				
2-Chlorophenol	ORG-91-5114	modified from EPA 3510C, 8270E & ON MOECC E3265	GC/MS				
o-Cresol	ORG-91-5114	modified from EPA 3510C, 8270E & ON MOECC E3265	GC/MS				
Bis(2-chloroisopropyl)ether	ORG-91-5114	modified from EPA 3510C, 8270E & ON MOECC E3265	GC/MS				
m&p-Cresol	ORG-91-5114	modified from EPA 3510C, 8270E & ON MOECC E3265	GC/MS				
2,4-Dimethylphenol	ORG-91-5114	modified from EPA 3510C, 8270E & ON MOECC E3265	GC/MS				
2,4-Dichlorophenol	ORG-91-5114	modified from EPA 3510C, 8270E & ON MOECC E3265	GC/MS				
1,2,4-Trichlorobenzene	ORG-91-5114	modified from EPA 3510C, 8270E & ON MOECC E3265	GC/MS				
p-Chloroaniline	ORG-91-5114	modified from EPA 3510C, 8270E & ON MOECC E3265	GC/MS				
2-and 1-methyl Naphthalene	ORG-91-5114	modified from EPA 3510C, 8270E & ON MOECC E3265	CALCULATION				

Method Summary

SAMPLED BY:ML

CLIENT NAME: BLUMETRIC ENVIRONMENTAL INC. AGAT WORK ORDER: 23P991368
PROJECT: 220509 ATTENTION TO: Paul Bandler

SAMPLING SITE: Bakelite Belleville

OAMI LING OT L. Dakente Denevine		OAIVII EED DT.IVIE	
PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE
2,4,6-Trichlorophenol	ORG-91-5114	modified from EPA 3510C, 8270E & ON MOECC E3265	GC/MS
2,4,5-Trichlorophenol	ORG-91-5114	modified from EPA 3510C, 8270E & ON MOECC E3265	GC/MS
1,1'-Biphenyl	ORG-91-5114	modified from EPA 3510C, 8270E & ON MOECC E3265	GC/MS
Dimethyl phthalate	ORG-91-5114	modified from EPA 3510C, 8270E & ON MOECC E3265	GC/MS
2,4 and 2,6-Dinitrotoluene	ORG-91-5114	modified from EPA 3510C, 8270E & ON MOECC E3265	CALCULATION
Diethyl phthalate	ORG-91-5114	modified from EPA 3510C, 8270E & ON MOECC E3265	GC/MS
Pentachlorophenol	ORG-91-5114	modified from EPA 3510C, 8270E & ON MOECC E3265	GC/MS
3,3'-dichlorobenzidine	ORG-91-5114	modified from EPA 3510C, 8270E & ON MOECC E3265	GC/MS
Bis(2-Ethylhexyl)phthalate	ORG-91-5114	modified from EPA 3510C, 8270E & ON MOECC E3265	GC/MS
2,4-Dinitrophenol	ORG-91-5114	modified from EPA 3510C, 8270E & ON MOECC E3265	GC/MS
2-Fluorophenol	ORG-91-5114	modified from EPA 3510C, 8270E & ON MOECC E3265	GC/MS
phenol-d6 surrogate	ORG-91-5114	modified from EPA 3510C, 8270E & ON MOECC E3265	GC/MS
2,4,6-Tribromophenol	ORG-91-5114	modified from EPA 3510C, 8270E & ON MOECC E3265	GC/MS
Chrysene-d12	ORG-91-5114	modified from EPA 3510C, 8270E & ON MOECC E3265	GC/MS
Sediment			N/A
Naphthalene	ORG-91-5105	modified from EPA 3510C and EPA 8270E	GC/MS
Acenaphthylene	ORG-91-5105	modified from EPA 3510C and EPA 8270E	GC/MS
Acenaphthene	ORG-91-5105	modified from EPA 3510C and EPA 8270E	GC/MS
Fluorene	ORG-91-5105	modified from EPA 3510C and EPA 8270E	GC/MS
Phenanthrene	ORG-91-5105	modified from EPA 3510C and EPA 8270E	GC/MS
Anthracene	ORG-91-5105	modified from EPA 3510C and EPA 8270E	GC/MS
Fluoranthene	ORG-91-5105	modified from EPA 3510C and EPA 8270E	GC/MS
Pyrene	ORG-91-5105	modified from EPA 3510C and EPA 8270E	GC/MS
Benzo(a)anthracene	ORG-91-5105	modified from EPA 3510C and EPA 8270E	GC/MS
Chrysene	ORG-91-5105	modified from EPA 3510C and EPA 8270E	GC/MS
Benzo(b)fluoranthene	ORG-91-5105	modified from EPA 3510C and EPA 8270E	GC/MS
Benzo(k)fluoranthene	ORG-91-5105	modified from EPA 3510C and EPA 8270E	GC/MS
Benzo(a)pyrene	ORG-91-5105	modified from EPA 3510C and EPA 8270E	GC/MS
-			

Method Summary

SAMPLED BY:ML

CLIENT NAME: BLUMETRIC ENVIRONMENTAL INC.

AGAT WORK ORDER: 23P991368
PROJECT: 220509

ATTENTION TO: Paul Bandler

SAMPLING SITE: Bakelite Belleville

PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE
Indeno(1,2,3-cd)pyrene	ORG-91-5105	modified from EPA 3510C and EPA 8270E	GC/MS
Dibenz(a,h)anthracene	ORG-91-5105	modified from EPA 3510C and EPA 8270E	GC/MS
Benzo(g,h,i)perylene	ORG-91-5105	modified from EPA 3510C and EPA 8270E	GC/MS
2-and 1-methyl Naphthalene	ORG-91-5105	modified from EPA 3510C and EPA 8270E	GC/MS
Naphthalene-d8	ORG-91-5105	modified from EPA 3510C and EPA 8270E	GC/MS
Acridine-d9	ORG-91-5105	modified from EPA 3510C and EPA 8270E	GC/MS
Terphenyl-d14	ORG-91-5105	modified from EPA 3510C and EPA 8270E	GC/MS
Polychlorinated Biphenyls	ORG-91-5112	modified from EPA SW-846 3510 & 8082A	GC/ECD
Decachlorobiphenyl	ORG-91-5112	modified from EPA SW-846 3510 & 8082A	GC/ECD
F1 (C6-C10)	VOL-91-5010	modified from MOE PHC-E3421	(P&T)GC/FID
F1 (C6 to C10) minus BTEX	VOL-91-5010	modified from MOE PHC-E3421	P&T GC/FID
Toluene-d8	VOL-91- 5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
F2 (C10 to C16)	VOL-91-5010	modified from MOE PHC-E3421	GC/FID
F2 (C10 to C16) minus Naphthalene	VOL-91-5010	modified from MOE PHC-E3421	GC/FID
F3 (C16 to C34)	VOL-91-5010	modified from MOE PHC-E3421	GC/FID
F3 (C16 to C34) minus PAHs	VOL-91-5010	modified from MOE PHC-E3421	GC/FID
F4 (C34 to C50)	VOL-91-5010	modified from MOE PHC-E3421	GC/FID
Gravimetric Heavy Hydrocarbons	VOL-91-5010	modified from MOE PHC-E3421	BALANCE
Terphenyl	VOL-91-5010	modified from MOE PHC-E3421	GC/FID
Benzene	VOL-91-5010	modified from MOE PHC-E3421	(P&T)GC/MS
Toluene	VOL-91-5010	modified from MOE PHC-E3421	(P&T)GC/MS
Ethylbenzene	VOL-91-5010	modified from MOE PHC-E3421	(P&T)GC/MS
m & p-Xylene	VOL-91-5010	modified from MOE PHC-E3421	(P&T)GC/MS
o-Xylene	VOL-91-5010	modified from MOE PHC-E3421	(P&T)GC/MS
Xylenes (Total)	VOL-91-5010	modified from MOE PHC-E3421	(P&T)GC/MS
F1 (C6-C10)	VOL-91- 5010	modified from MOE PHC-E3421	(P&T)GC/FID
F1 (C6 to C10) minus BTEX	VOL-91-5010	modified from MOE PHC-E3421	P&T GC/FID
Toluene-d8	VOL-91-5010	modified from MOE PHC-E3421	(P&T)GC/MS
F2 (C10 to C16)	VOL-91-5010	modified from MOE PHC-E3421	GC/FID
F2 (C10 to C16) minus Naphthalene	VOL-91-5010	modified from MOE PHC-E3421	GC/FID
F3 (C16 to C34)	VOL-91-5010	modified from MOE PHC-E3421	GC/FID
F3 (C16 to C34) minus PAHs	VOL-91-5010	modified from MOE PHC-E3421	GC/FID
F4 (C34 to C50)	VOL-91-5010	modified from MOE PHC-E3421	GC/FID
Gravimetric Heavy Hydrocarbons	VOL-91-5010	modified from MOE PHC-E3421	BALANCE
Terphenyl Dichlorodifluoromethane	VOL-91-5010 VOL-91-5001	modified from MOE PHC-E3421 modified from EPA 5030B & EPA 8260D	GC/FID (P&T)GC/MS
Vinyl Chloride	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
Bromomethane	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
Trichlorofluoromethane	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS

Method Summary

CLIENT NAME: BLUMETRIC ENVIRONMENTAL INC.

AGAT WORK ORDER: 23P991368
PROJECT: 220509

ATTENTION TO: Paul Bandler

SAMPLING SITE:Bakelite Belleville

SAMPLED BY:ML

PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE
Acetone	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
1,1-Dichloroethylene	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
Methylene Chloride	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
trans- 1,2-Dichloroethylene	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
Methyl tert-butyl ether	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
1,1-Dichloroethane	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
Methyl Ethyl Ketone	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
cis- 1,2-Dichloroethylene	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
Chloroform	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
1,2-Dichloroethane	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
1,1,1-Trichloroethane	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
Carbon Tetrachloride	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
Benzene	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
1,2-Dichloropropane	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
Trichloroethylene	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
Bromodichloromethane	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
Methyl Isobutyl Ketone	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
1,1,2-Trichloroethane	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
Toluene	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
Dibromochloromethane	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
Ethylene Dibromide	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
Tetrachloroethylene	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
1,1,1,2-Tetrachloroethane	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
Chlorobenzene	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
Ethylbenzene	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
m & p-Xylene	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
Bromoform	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
Styrene	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS

Method Summary

CLIENT NAME: BLUMETRIC ENVIRONMENTAL INC. AGAT WORK ORDER: 23P991368 PROJECT: 220509 ATTENTION TO: Paul Bandler

SAMPLING SITE: Bakelite Belleville

PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE
1,1,2,2-Tetrachloroethane	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
o-Xylene	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
1,3-Dichlorobenzene	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
1,4-Dichlorobenzene	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
1,2-Dichlorobenzene	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
1 3 Dichloropropopo	VOL 01 5001	modified from EPA 5030B & EPA	(D&T)CC/MS

SAMPLED BY:ML

Method Summary

CLIENT NAME: BLUMETRIC ENVIRONMENTAL INC.

AGAT WORK ORDER: 23P991368
PROJECT: 220509

ATTENTION TO: Paul Bandler

SAMPLING SITE: Bakelite Belleville

SAMPLED BY:ML

PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE		
Ultra Trace Analysis		-	-		
2,3,7,8-Tetra CDD	HR-151-5400	CEAEQ MA.400 - DF 1.0	APGC		
1,2,3,7,8-Penta CDD	HR-151-5400	CEAEQ MA.400 - DF 1.0	APGC		
1,2,3,4,7,8-Hexa CDD	HR-151-5400	CEAEQ MA.400 - DF 1.0	APGC		
1,2,3,6,7,8-Hexa CDD	HR-151-5400	CEAEQ MA.400 - DF 1.0	APGC		
1,2,3,7,8,9-Hexa CDD	HR-151-5400	CEAEQ MA.400 - DF 1.0	APGC		
1,2,3,4,6,7,8-Hepta CDD	HR-151-5400	CEAEQ MA.400 - DF 1.0	APGC		
Octa CDD	HR-151-5400	CEAEQ MA.400 - DF 1.0	APGC		
2,3,7,8-Tetra CDF	HR-151-5400	CEAEQ MA.400 - DF 1.0	APGC		
1,2,3,7,8-Penta CDF	HR-151-5400	CEAEQ MA.400 - DF 1.0	APGC		
2,3,4,7,8-Penta CDF	HR-151-5400	CEAEQ MA.400 - DF 1.0	APGC		
1,2,3,4,7,8-Hexa CDF	HR-151-5400	CEAEQ MA.400 - DF 1.0	APGC		
1,2,3,6,7,8-Hexa CDF	HR-151-5400	CEAEQ MA.400 - DF 1.0	APGC		
2,3,4,6,7,8-Hexa CDF	HR-151-5400	CEAEQ MA.400 - DF 1.0	APGC		
1,2,3,7,8,9-Hexa CDF	HR-151-5400	CEAEQ MA.400 - DF 1.0	APGC		
1,2,3,4,6,7,8-Hepta CDF	HR-151-5400	CEAEQ MA.400 - DF 1.0	APGC		
1,2,3,4,7,8,9-Hepta CDF	HR-151-5400	CEAEQ MA.400 - DF 1.0	APGC		
Octa CDF	HR-151-5400	CEAEQ MA.400 - DF 1.0	APGC		
Total Tetra CDD	HR-151-5400	CEAEQ MA.400 - DF 1.0	APGC		
Total Penta CDD	HR-151-5400	CEAEQ MA.400 - DF 1.0	APGC		
Total Hexa CDD	HR-151-5400	CEAEQ MA.400 - DF 1.0	APGC		
Total Hepta CDD	HR-151-5400	CEAEQ MA.400 - DF 1.0	APGC		
Total PCDDs	HR-151-5400	CEAEQ MA.400 - DF 1.0	APGC		
Total Tetra CDF	HR-151-5400	CEAEQ MA.400 - DF 1.0	APGC		
Total Penta CDF	HR-151-5400	CEAEQ MA.400 - DF 1.0	APGC		
Total Hexa CDF	HR-151-5400	CEAEQ MA.400 - DF 1.0	APGC		
Total Hepta CDF	HR-151-5400	CEAEQ MA.400 - DF 1.0	APGC		
Total PCDFs	HR-151-5400	CEAEQ MA.400 - DF 1.0	APGC		
2,3,7,8-Tetra CDD (TEQ)	HR-151-5400	CEAEQ MA.400 - DF 1.0	APGC		
1,2,3,7,8-Penta CDD (TEQ	HR-151-5400	CEAEQ MA.400 - DF 1.0	APGC		
1,2,3,4,7,8-Hexa CDD (TEQ)	HR-151-5400	CEAEQ MA.400 - DF 1.0	APGC		
1,2,3,6,7,8-Hexa CDD (TEQ)	HR-151-5400	CEAEQ MA.400 - DF 1.0	APGC		
1,2,3,7,8,9-Hexa CDD (TEQ)	HR-151-5400	CEAEQ MA.400 - DF 1.0	APGC		
1,2,3,4,6,7,8-Hepta CDD (TEQ)	HR-151-5400	CEAEQ MA.400 - DF 1.0	APGC		
Octa CDD (TEQ)	HR-151-5400	CEAEQ MA.400 - DF 1.0	APGC		
2,3,7,8-Tetra CDF (TEQ)	HR-151-5400	CEAEQ MA.400 - DF 1.0	APGC		
1,2,3,7,8-Penta CDF (TEQ)	HR-151-5400	CEAEQ MA.400 - DF 1.0	APGC		
2,3,4,7,8-Penta CDF (TEQ)	HR-151-5400	CEAEQ MA.400 - DF 1.0	APGC		
1,2,3,4,7,8-Hexa CDF (TEQ)	HR-151-5400	CEAEQ MA.400 - DF 1.0	APGC		
1,2,3,6,7,8-Hexa CDF (TEQ)	HR-151-5400	CEAEQ MA.400 - DF 1.0	APGC		
1,2,3,7,8,9-Hexa CDF (TEQ)	HR-151-5400	CEAEQ MA.400 - DF 1.0	APGC		
2,3,4,6,7,8-Hexa CDF (TEQ)	HR-151-5400	CEAEQ MA.400 - DF 1.0	APGC		
2,3,4,6,7,8-nexa CDF (TEQ) 1,2,3,4,6,7,8-Hepta CDF (TEQ)	HR-151-5400 HR-151-5400	CEAEQ MA.400 - DF 1.0 CEAEQ MA.400 - DF 1.0	APGC		
1,2,3,4,0,7,6-періа СБР (ТЕQ) 1,2,3,4,7,8,9-Hepta CDF (TEQ)	HR-151-5400 HR-151-5400	CEAEQ MA.400 - DF 1.0 CEAEQ MA.400 - DF 1.0	APGC		
Octa CDF (TEQ)	HR-151-5400 HR-151-5400	CEAEQ MA.400 - DF 1.0 CEAEQ MA.400 - DF 1.0	APGC		
Total PCDDs and PCDFs (TEQ)	HR-151-5400 HR-151-5400	CEAEQ MA.400 - DF 1.0 CEAEQ MA.400 - DF 1.0	APGC		
		CEAEQ MA.400 - DF 1.0 CEAEQ MA.400 - DF 1.0	APGC		
13C-2,3,7,8-TCDF	HR-151-5400				
13C-1,2,3,7,8-PeCDF	HR-151-5400	CEAEQ MA.400 - DF 1.0	APGC		
13C-2,3,4,7,8-PeCDF	HR-151-5400	CEAEQ MA.400 - DF 1.0	APGC		
13C-1,2,3,4,7,8-HxCDF	HR-151-5400	CEAEQ MA.400 - DF 1.0	APGC		

5835 COOPERS AVENUE http://www.agatlabs.com

MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122

Method Summary

CLIENT NAME: BLUMETRIC ENVIRONMENTAL INC. AGAT WORK ORDER: 23P991368 PROJECT: 220509 ATTENTION TO: Paul Bandler

SAMPLING SITE:Bakelite Belleville		SAMPLED BY:M	L
PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE
13C-1,2,3,6,7,8-HxCDF	HR-151-5400	CEAEQ MA.400 - DF 1.0	APGC
13C-2,3,4,6,7,8-HxCDF	HR-151-5400	CEAEQ MA.400 - DF 1.0	APGC
13C-1,2,3,7,8,9-HxCDF	HR-151-5400	CEAEQ MA.400 - DF 1.0	APGC
13C-1,2,3,4,6,7,8-HpCDF	HR-151-5400	CEAEQ MA.400 - DF 1.0	APGC
13C-1,2,3,4,7,8,9-HpCDF	HR-151-5400	CEAEQ MA.400 - DF 1.0	APGC
13C-2,3,7,8-TCDD	HR-151-5400	CEAEQ MA.400 - DF 1.0	APGC
13C-1,2,3,7,8-PeCDD	HR-151-5400	CEAEQ MA.400 - DF 1.0	APGC
13C-1,2,3,4,7,8-HxCDD	HR_151-5400	CEAEQ MA.400 - DF 1.0	APGC
13C-1,2,3,6,7,8-HxCDD	HR_151-5400	CEAEQ MA.400 - DF 1.0	APGC
13C-1,2,3,4,6,7,8-HpCDD	HR-151-5400	CEAEQ MA.400 - DF 1.0	APGC
13C OCDD	UD 151 5400	CEAEO MA 400 DE 1.0	ARCC

Method Summary

SAMPLED BY:ML

CLIENT NAME: BLUMETRIC ENVIRONMENTAL INC.

AGAT WORK ORDER: 23P991368
PROJECT: 220509

ATTENTION TO: Paul Bandler

SAMPLING SITE:Bakelite Belleville

PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE		
Water Analysis					
Dissolved Antimony	MET-93-6103	modified from EPA 200.8 and EPA 3005A	ICP-MS		
Dissolved Arsenic	MET-93-6103	modified from EPA 200.8 and EPA 3005A	ICP-MS		
Dissolved Barium	MET-93-6103	modified from EPA 200.8 and EPA 3005A	ICP-MS		
Dissolved Beryllium	MET-93-6103	modified from EPA 200.8 and EPA 3005A	ICP-MS		
Dissolved Boron	MET-93-6103	modified from EPA 200.8 and EPA 3005A	ICP-MS		
Dissolved Cadmium	MET-93-6103	modified from EPA 200.8 and EPA 3005A	ICP-MS		
Dissolved Chromium	MET-93-6103	modified from EPA 200.8 and EPA 3005A	ICP-MS		
Dissolved Cobalt	MET-93-6103	modified from EPA 200.8 and EPA 3005A	ICP-MS		
Dissolved Copper	MET-93-6103	modified from EPA 200.8 and EPA 3005A	ICP-MS		
Dissolved Lead	MET-93-6103	modified from EPA 200.8 and EPA 3005A	ICP-MS		
Dissolved Molybdenum	MET-93-6103	modified from EPA 200.8 and EPA 3005A	ICP-MS		
Dissolved Nickel	MET-93-6103	modified from EPA 200.8 and EPA 3005A	ICP-MS		
Dissolved Selenium	MET-93-6103	modified from EPA 200.8 and EPA 3005A	ICP-MS		
Dissolved Silver	MET-93-6103	modified from EPA 200.8 and EPA 3005A	ICP-MS		
Dissolved Thallium	MET-93-6103	modified from EPA 200.8 and EPA 3005A	ICP-MS		
Dissolved Uranium	MET-93-6103	modified from EPA 200.8 and EPA 3005A	ICP-MS		
Dissolved Vanadium	MET-93-6103	modified from EPA 200.8 and EPA 3005A	ICP-MS		
Dissolved Zinc	MET-93-6103	modified from EPA 200.8 and EPA 3005A	ICP-MS		
Mercury	MET-93-6100	modified from EPA 245.2 and SM 3112 B	CVAAS		
Chromium VI	INOR-93-6073	modified from SM 3500-CR B	LACHAT FIA		
Cyanide, WAD	INOR-93-6052	modified from ON MOECC E3015, SM 4500-CN- I, G-387	TECHNICON AUTO ANALYZER		
Dissolved Sodium	MET-93-6103	modified from EPA 200.8 and EPA 3005A	ICP/MS		
Chloride	INOR-93-6004	modified from SM 4110 B	ION CHROMATOGRAPH		
Electrical Conductivity	INOR-93-6000	SM 2510 B	PC TITRATE		
рН	INOR-93-6000	modified from SM 4500-H+ B	PC TITRATE		

5835 Coopers Avenue Mississauga, Ontario L4Z 1Y2 Ph: 905.712.5100 Fax: 905.712.5122 webearth.agatlabs.com

Laboratory Use	Only		
Work Order #:	23PG	79130	a8 -
Cooler Quantity: Arrival Temperatures:	7.6	16.91	7.2
Custody Seal Intact:	Yes	□No	□N/A

hain of Custody Recor	d If this is a D	rinking Water s	ample, pleas	e use Drink	ing Water Chain of Custody Form (pota	able water	consumed	by huma	ns)			Arrival Tem	peratures:	7	ا ها.	6.8	17.2	
Report Information: Company: Contact: Address: Report Information: BluMrfic Paul Ban Address: H Catagas	dler		Inc.	(Please	ulatory Requirements: check all applicable boxes) gulation 153/04		☐ Sewe	r Use	_] Storr	n		Custody Se Notes:	iu	□Yes		□No uired:		N/A
Address: 4 Cataros Kivasto	ON ON			Tat	ole	ne	-	Region	-			Regular 1	AT	K 5	o 7 Bu	siness Da	vs	121
612 453 54					Regulation 55	18	Prov.		uality			Rush TAT	(Rush Surcharg		.0 1 00		, -	
Reports to be sent to:	1 0.10				exture (Check One)			tives (P	WQO)			3 B	usiness	_ 2	Busine	ss	Next Busin	ness
					Coarse		Other					□ Day	'S	L Da	iys	_	Day	
2. Email: Mloyd @	blundric	ica			Fine		Ti II	ndicate On	•		- 11	OR	Date Requi	red (Rus	h Surci	narges Ma	y Apply):	
Project Information: Project: 720509 Site Location:	selleville		7.7%	Red	this submission for a cord of Site Condition? Yes □ No	Ce	eport G rtificat Yes	e of A		is		*TAT	Please prov is exclusive	of weel	ends a	and statut		
Sampled By: AGAT Quote #: 747248					PATER	7 0	0. F	eg 153				0. Reg 558	O. Reg 406					ĝ
Please note: If quotation number Invoice Information: Company:		the billed full price for a		Sam B GW O	ple Matrix Legend Biota Ground Water Oil Paint	Field Filtered - Metals, Hg. CM) DOC		□ HWSB				88	SPLP: ☐ Metals ☐ VOCs ☐ SVOCs Excess Soils Characterization Package HICPMS Metals RTFX F1-F4	isture ☐ Sulphide ☐	2	Furans		Potentially Hazardous or High Concentration (Y/
Contact:				S	Soil	Po		Hg.	1144		100	naract	vocs acteriza	e Mo	J	Ш		S or H
Address: Email: apa blum	etic.ca	MU		SD SW	Sediment Surface Water	Field Filter	∞	s - Crvi, CHg, F1-F4 PHCs				ors fill Disposal Cl M& □ VOC	SPLP: C Metals C V	Corrosivity: Include Moisture	AISNS IN	Dienins		ially Hazardou
Sample Identification	Date Sampled	Time Sampled	# of Containers	Sample Matrix	Comments/ Special Instructions	Y/N	Metals	Metals BTEX. F	PAHs	PCBs	VOC	Aroclors Landfill [TCLP: □≀	SPLP SPLP	Corro	12	2		Poteni
MW214	23-01-24	8:20 AM		GW	- ball			V			V			1				
MW 216		9:00 AM		Gw		a digital				V								
Mw223		10'15 AM		GW	THE STATE OF THE S	.,	83,	L			V		14.5		4			
Mw222		11:15 AM		GW	THE RESERVE OF THE PARTY OF THE	Y	V	V			V			130			10177	
MW 221	on many selection	12'30 AM	11	GW	part productions	V		V			V		ULF T					
Mw 217		14:05 AM		Glu		7	V	U			V		7101		V			
MWS18		16:30 AM		GW	DO 1011	1	~	V		1	V		7013					
Trip Blank	10 11 25	AN PN	-			Y	V		V	V	/				V	/	11 -5 -1 25 72	
Mw 219	13-01-25	9:20 AN		600		V	V	V			1							
Mw 220		11.55 AN		GW		J	V	V	3	5	V)				3/		7	
MW 224	U	Date	Time	GW	Samples Received By (Print Name and Sign)	7		1		Date	01	Time						J
Samples Refinquished By (Print Name appl 5(n): M Lloyd L. L.	2	23-01-	25 13	100	Kartin Jones	6-1		11	1	Jan	25	123 13	30					
Samples Relinquished By (Print Name and Sign):	i.	Date 25/	23 16	200	Samples Received By (First Name and Sign):		11			To	126	5/23 8	50		Page		f	
Samples Relinquished By (Print Namer and Sign):		Date	Time		Samples Received By (Print Name and Sign):					Date		Time		Nº:	-	138	817	
100 PRIV 70 1884 072		ATTACAMA TAN		NAME OF THE OWNER, OWNE	Control of the Contro	- AV AV AV	WANT	Pin	Copy	- Clier	t I Ye	llow Copy - A	GAT Whit	e Copy-	GAT	Pag	937 of 38	2022

Sample Temperature Log

Client:	Blume	etric		COC# or Work Order #:			
# of Coolers:	6 Arrival	Temperatures - Br	anch/Driver	# of Submissions: Arrival	Tempera	atures - Lab	oratory
		/		Cooler #1:	3.4	13.6	1 39
		/		Cooler #2	4.1	13.9	1 4.2
				Cooler#3	5.4	1 2.4	1 4.6
	Cooler #4	1	1	Cooler #4:	26	/_1.8	1 2.4
		11		Cooler #5:	3.4	1_3.3	1 4.1
	Cooler #6;	/		Cooler #6:	5.6	1 4.3	1 4.4
	Cooler #7		1	Cooler #7:		_/	_/
		1		Cooler #8		/	_ /
	Cooler#9:	. /	_//	Cooler #9:		_/	_1
	Cooler#10:	1	_/	Cooler #10:		_/	_ /
IR Gun ID				IR Gun ID:			
				Taken By:			
Date (yyyy/mm/dd):	Time:	: AM / PI		_Time:	: AM /	PM

Instructions for use of this form: 1) complete all fields of info including total # of coolers and # of submissions rec'd, 2) photocopy and place in each submission prior to giving a WO#, 3) Proceed as normal, write the WO# and scan (please make sure to scan along with the COC)

Document ID: SR-78-9511.003

Date Issued: 2017-2-23

Page:_____of ____

11 Morris Drive, Unit 122 Dartmouth, Nova Scotia CANADA B3B 1M2 TEL (902)468-8718 FAX (902)468-8924 http://www.agatlabs.com

CLIENT NAME: BLUMETRIC ENVIRONMENTAL INC. 4 Cataraqui Street

4 Cataraqui Street Kingston, ON K7K1Z7 (613) 531-2725

ATTENTION TO: Paul Bandler

PROJECT: 220509

AGAT WORK ORDER: 23T000256

SOIL ANALYSIS REVIEWED BY: Ashley Dussault, Report Writer

DATE REPORTED: Mar 24, 2023

PAGES (INCLUDING COVER): 4 VERSION*: 1

Should you require any information regarding this analysis please contact your client services representative at (902) 468-8718

Disclaimer:

- All work conducted herein has been done using accepted standard protocols, and generally accepted practices and methods. AGAT test methods may
 incorporate modifications from the specified reference methods to improve performance.
- All samples will be disposed of within 30 days after receipt unless a Long Term Storage Agreement is signed and returned. Some specialty analysis may
 be exempt, please contact your Client Project Manager for details.
- AGAT's liability in connection with any delay, performance or non-performance of these services is only to the Client and does not extend to any other
 third party. Unless expressly agreed otherwise in writing, AGAT's liability is limited to the actual cost of the specific analysis or analyses included in the
 services.
- · This Certificate shall not be reproduced except in full, without the written approval of the laboratory.
- The test results reported herewith relate only to the samples as received by the laboratory.
- Application of guidelines is provided "as is" without warranty of any kind, either expressed or implied, including, but not limited to, warranties of
 merchantability, fitness for a particular purpose, or non-infringement. AGAT assumes no responsibility for any errors or omissions in the guidelines
 contained in this document.
- All reportable information as specified by ISO/IEC 17025:2017 is available from AGAT Laboratories upon request.
- For environmental samples in the Province of Quebec: The analysis is performed on and results apply to samples as received. A temperature above 6°C upon receipt, as indicated in the Sample Reception Notification (SRN), could indicate the integrity of the samples has been compromised if the delay between sampling and submission to the laboratory could not be minimized.

AGAT Laboratories (V1)

Page 1 of 4

Member of: Association of Professional Engineers and Geoscientists of Alberta (APEGA)

Western Enviro-Agricultural Laboratory Association (WEALA) Environmental Services Association of Alberta (ESAA) AGAT Laboratories is accredited to ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA) and/or Standards Council of Canada (SCC) for specific tests listed on the scope of accreditation. AGAT Laboratories (Mississauga) is also accredited by the Canadian Association for Laboratory Accreditation Inc. (CALA) for specific drinking water tests. Accreditations are location and parameter specific. A complete listing of parameters for each location is available from www.cala.ca and/or www.scc.ca. The tests in this report may not necessarily be included in the scope of accreditation. Measurement Uncertainty is not taken into consideration when stating conformity with a specified requirement.

Certificate of Analysis

AGAT WORK ORDER: 23T000256

PROJECT: 220509

ATTENTION TO: Paul Bandler

SAMPLED BY:

TEL (902)468-8718 FAX (902)468-8924 http://www.agatlabs.com

11 Morris Drive, Unit 122

Dartmouth, Nova Scotia CANADA B3B 1M2

CLIENT NAME: BLUMETRIC ENVIRONMENTAL INC.

SAMPLING SITE:Bakelite, Belleville

	Methylmercury in Soil												
DATE RECEIVED: 2023-02-23 DATE REPORTED: 2023-03-24													
	CRIPTION:	BH210 SS2	BH208 SS1	BH208 SS2	BH209 SS1	BH209 SS2	BH232 SS1	BH232 SS2					
	SAMPLE TYPE:					Soil	Soil	Soil	Soil	Soil			
	DATE SAMPLED:					2022-12-19 12:59	2022-12-19 15:15	2022-12-19 15:30	2022-12-22 08:30	2022-12-22 08:35			
Parameter	Unit	G/S	RDL	4801164	4801165	4801166	4801167	4801168	4801199	4801200			
Methyl Mercury	ng/g		0.4	<0.4	<0.4	<0.4	0.8	3.3	8.2	2.0			

Comments:

RDL - Reported Detection Limit; G / S - Guideline / Standard

4801164-4801200 Analysis completed outside holding time. Analysis performed at AGAT Halifax (unless marked by *)

Certified By:

11 Morris Drive, Unit 122 Dartmouth, Nova Scotia CANADA B3B 1M2 TEL (902)468-8718 FAX (902)468-8924 http://www.agatlabs.com

Quality Assurance

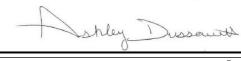
CLIENT NAME: BLUMETRIC ENVIRONMENTAL INC.

AGAT WORK ORDER: 23T000256

PROJECT: 220509

ATTENTION TO: Paul Bandler

SAMPLING SITE:Bakelite, Belleville


SAMPLED BY:

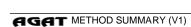
				Soi	l Ana	alysis	3								
RPT Date: Mar 24, 2023			С	UPLICAT	E		REFEREN	ICE MAT	TERIAL	METHOD	BLANK	SPIKE	MAT	RIX SPI	KE
PARAMETER	Batch	Sample	Dup #1	Dup #2	RPD	Method Blank	Measured	Accep Lim	ite	Recovery	Lin	ptable nits	Recovery		ptable nits
		Id	.,	.,			Value	Lower	Upper		Lower	Upper		Lower	Upper

Methylmercury in Soil

Methyl Mercury 1164 < 0.4 < 0.4 NA < 0.4 91% 65% 135% 110% 65% 135% 77% 65% 135%

Certified By:

11 Morris Drive, Unit 122 Dartmouth, Nova Scotia CANADA B3B 1M2 TEL (902)468-8718 FAX (902)468-8924 http://www.agatlabs.com


Method Summary

CLIENT NAME: BLUMETRIC ENVIRONMENTAL INC.

AGAT WORK ORDER: 23T000256 ATTENTION TO: Paul Bandler

PROJECT: 220509 SAMPLING SITE:Bakelite, Belleville SAMPLED BY:

PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE
Soil Analysis			
Methyl Mercury	MET-121-6116 & MET-121-6117	EPA 1630	CV/AFS

APPENDIX D

Summary of Analytical Results

Table 1 Analytical	Chemist	ry Results:		Sample ID	BH/MW 22-SS2	BH/MW 23-SS1	BH/MW 24-SS2	24-SS2.1 (BH/M\	BH/MW 25-SS1	BH/MW 26-SS1	BH/MW 50-SS7	BH/MW 78-SS2	BH/MW 79-SS1	BH/MW 79-SS2	BH/MW 80-SS1	BH/MW 81-SS1	31-SS1.1 (BH/M ¹	-SS2.1 (BH/MW	BH/MW 84-SS4	BH/MW 121-SS4	BH/MW 130-SS3
ABNs, C	Ps, PAH	s in Soil		Sample Date	2011-Jun-23	2011-Jun-24	2011-Jun-24	2011-Jun-24	2011-Jun-24	2011-Jun-24	2011-Jul-05	2011-Jul-08	2011-Jul-08	2011-Jul-11	2011-Jul-11	2011-Jul-11	2011-Jul-11	2011-Jul-18	2011-Jul-13	2011-Jul-22	2011-Jul-25
Parameter	Units	Max Concentratio	MECP-2011- S-T7-RPI-	Sample Depth	0.6 - 0.9	0.0 - 0.6	0.6 - 1.2	0.6 - 1.2	0.0 - 0.6	0.0 - 0.6	3.7 - 4.3	0.6 - 0.9	0.3 - 1.1	1.1 - 1.4	0.6 - 1.2	0.0 - 0.9	0.0 - 0.9	0.0 - 0.9	1.8 - 2.2	1.9 - 2.5	1.2 - 1.8
Acids, Bases, Neutrals			0 17 1 1	Detection Limit																	
Biphenyl, 1,1-	ug/g	<5	1.1	0.05	-	-	-	-	-	-	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	-	< 0.05	<0.05	<0.05
Bis(2-chloro-1-methylethyl)eth	ug/g	<10	1.8	0.1, 0.2	<0.2	<4	<0.2	<0.2	<1	<0.2	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	-	<0.1	<0.1	<0.1
Bis(2-chloroethyl)ether	ug/g	10.2	0.5	0.1, 0.3	<0.3	<6	<0.3	<0.3	<2	<0.3	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	-	<0.1	<0.1	<0.1
Bis(2-ethylhexyl)phthalate	ug/g	12.3	5	0.2, 0.4	<0.4	<8	<0.4	<0.4	<2	<0.4	<0.1	<0.1	<0.1	<0.1	<0.1	0.1	<0.1	-	<0.1	<0.1	<0.1
Chloroaniline, p-	ug/g	<10	0.53	0.1, 0.5	-	-	-	-	-	-	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	-	-	<0.1	<0.1
Dichlorobenzidine, 3,3-	ug/g	<10	1	0.5, 0.6	<0.6	<10	<0.6	<0.6	<3	<0.6	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	-	<0.1	<0.1	<0.1
Diethyl phthalate	ug/g	<10	0.5	0.1, 0.2	<0.2	<4	<0.2	<0.2	<1	<0.2	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	-	<0.1	<0.1	<0.1
Dimethylphenol, 2,4-	ug/g	12	420	0.1, 0.2	<0.2	<4	<0.2	<0.2	<1	<0.2	<0.1	<0.1	<0.1	<0.1	0.1	<0.1	<0.1	-	<0.1	<0.1	<0.1
Dimethyl phthalate	ug/g	<10	0.5	0.1, 0.2	<0.2	<4	<0.2	<0.2	<1	<0.2	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	-	<0.1	<0.1	<0.1
Dinitrophenol, 2,4-	ug/g	<10	38	0.2, 2	<0.2	<4	<0.2	<0.2	<1	<0.2	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	-	<0.1	<0.1	<0.1
Dinitrotoluene, 2,4+2,6-	ug/g	<24	0.92	0.2, 0.5	<1.2	<24	<1.2	<1.2	<6	<1.2	-	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Phenol	ug/g	88.3	9.4	0.1, 0.5	<0.1	<2	<0.1	<0.1	0.6	<0.1	<0.1	<0.1	1.3	1.5	0.4	<0.1	0.3	-	<0.1	<0.1	<0.1
Trichlorobenzene, 1,2,4-	ug/g	<10	1.4	0.04, 0.05	<0.2	<4	<0.2	<0.2	<1	<0.2	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	-	<0.1	<0.1	<0.1
Chlorophenols																					
Chlorophenol, 2-	ug/g	<10	2	0.1, 0.2	<0.1	<2	<0.1	<0.1	<0.5	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	-	<0.1	<0.1	<0.1
Dichlorophenol, 2,4-	ug/g	<10	2.1	0.1	<0.1	<2	<0.1	<0.1	<0.5	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	-	<0.1	<0.1	<0.1
Pentachlorophenol	ug/g	<10	0.1	0.1, 0.2	<0.1	<2	<0.1	<0.1	<0.5	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	-	<0.1	<0.1	<0.1
Trichlorophenol, 2,4,5-	ug/g	<10	5.5	0.1	-	-	-	-	-	-	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	-	<0.1	<0.1	<0.1
Trichlorophenol, 2,4,6-	ug/g	<10	4.2	0.1, 0.2	<0.1	<2	<0.1	<0.1	<0.5	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	-	<0.1	<0.1	<0.1
Polycyclic Aromatic Hydrocark	ons																				
Acenaphthene	ug/g	31	58	0.05	<0.07	<1	<0.07	<0.07	0.9	<0.07	<0.05	< 0.05	0.7	0.2	<0.05	<0.05	<0.05	-	<0.05	<0.05	<0.05
Acenaphthylene	ug/g	<5	0.17	0.05	<0.08	<2	<0.08	<0.08	<0.4	<0.08	<0.05	<0.05	0.3	0.1	<0.05	<0.05	<0.05	-	<0.05	<0.05	<0.05
Anthracene	ug/g	69	0.74	0.05	<0.1	<2	<0.1	<0.1	2.9	<0.1	<0.05	< 0.05	1.5	0.8	0.3	<0.05	<0.05	-	<0.05	<0.05	<0.05
Benzo[a]anthracene	ug/g	128	0.63	0.05	<0.1	<2	<0.1	0.1	6.3	<0.1	<0.05	0.08	<0.05	1.6	0.1	<0.05	<0.05	-	<0.05	<0.05	<0.05
Benzo[a]pyrene	ug/g	135	0.3	0.05	<0.1	<2	<0.1	0.1	5.9	<0.1	<0.05	<0.05	3.2	1.2	0.08	<0.05	<0.05	-	<0.05	<0.05	<0.05
Benzo[b]fluoranthene	ug/g	118	0.78	0.05	<0.1	<2	<0.1	<0.1	4.6	<0.1	<0.05	<0.05	7.5	1.6	0.09	<0.05	<0.05	-	<0.05	<0.05	<0.05
Benzo[g,h,i]perylene	ug/g	83	7.8	0.05	<0.1	<2	<0.1	<0.1	3.6	<0.1	<0.05	< 0.05	2.7	0.6	<0.05	<0.05	<0.05	-	<0.05	<0.05	<0.05
Benzo[k]fluoranthene	ug/g	111	0.78	0.05	<0.1	<2	<0.1	<0.1	3.6	<0.1	<0.05	<0.05	2.8	0.9	0.06	<0.05	<0.05	-	<0.05	<0.05	<0.05
Chrysene	ug/g	126	7.8	0.05	<0.1	<2	<0.1	0.2	5.9	<0.1	<0.05	0.08	<0.05	1.7	0.1	<0.05	<0.05	-	<0.05	<0.05	<0.05
Dibenzo[a,h]anthracene	ug/g	40	0.1	0.05	<0.1	<2	<0.1	<0.1	2.1	<0.1	<0.1	<0.1	1	0.2	<0.1	<0.1	<0.1	-	<0.1	<0.1	<0.1
Fluoranthene	ug/g	230	0.69	0.05	<0.1	<2	<0.1	0.2	16.6	<0.1	< 0.05	0.07	4.3	3.5	0.09	<0.05	<0.05	-	<0.05	<0.05	<0.05
Fluorene	ug/g	30	69	0.05	<0.1	<2	<0.1	<0.1	1	<0.1	< 0.05	<0.05	0.7	0.2	<0.05	<0.05	<0.05	-	<0.05	<0.05	<0.05
Indeno[1,2,3-cd]pyrene	ug/g	80	0.48	0.05	<0.1	<2	<0.1	<0.1	3.8	<0.1	<0.05	<0.05	0.4	0.5	<0.05	<0.05	<0.05	-	<0.05	<0.05	<0.05
Methylnaphthalene, 1+2-	ug/g	18	3.4	0.05	-	-	-	-	-	-	<0.1	<0.1	0.7	0.28	0.6	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Methylnaphthalene, 1-	ug/g	9	3.4	0.05	-	-	-	-	-	-	<0.05	<0.05	0.3	0.08	0.3	<0.05	<0.05	-	<0.05	<0.05	<0.05
Methylnaphthalene, 2-	ug/g	9	3.4	0.05	-	-		-		· ·	<0.05	<0.05	0.4	0.2	0.3	<0.05	<0.05	-	<0.05	<0.05	<0.05
Naphthalene	ug/g	32.8	0.75	0.05	<0.09	<2	0.18	0.2	0.5	<0.09	<0.05	<0.05	0.5	0.2	0.2	<0.05	<0.05	-	<0.05	<0.05	<0.05
Phenanthrene	ug/g	172	7.8	0.05	<0.1	<2	0.2	0.3	9.2	<0.1	<0.05	0.08	3.2	4.7	0.2	<0.05	<0.05	-	<0.05	<0.05	<0.05
Pyrene	ug/g	203	78	0.05	<0.1	<2	<0.1	0.2	13.4	<0.1	<0.05	<0.05	4	1.8	0.07	<0.05	<0.05	-	<0.05	<0.05	<0.05

Detection Limit DL exceeds criteria DL: May vary between sample locations and events

Soil, Ground Water and Sediment Standards for Uses Concentration exceeds MECP2011-S-T7-RPI-FMT
Under Part XV.1 of the Environmental Protection Act
(MECP, 2011) Table 7 SCS (Soil)
Residential/Parkland/Institutional Use with Fine/Medium-Textured soils

Table 1 Analytical	Chemist	ry Results:		Sample ID	30-SS3.1 (BH/M\	BH/MW 146-SS4	BH/MW 148-SS3	BH/MW 149-SS2	49-SS2.1 (BH/M)	BH/MW 151-SS3	BH/MW 152-SS4	BH16-SS2	BH16-SS3	BH17-SS3	BH49-SS2	BH51-SS6	BH52-SS2	BH52-SS3	BH53-SS1	BH53-SS2	BH59-SS2
ABNs, C	Ps, PAH	s in Soil		Sample Date	2011-Jul-25	2011-Jul-28	2011-Jul-28	2011-Jul-28	2011-Jul-28	2011-Jul-29	2011-Jul-29	2011-Jun-22	2011-Jun-22	2011-Jun-22	2011-Jul-05	2011-Jul-05	2011-Jul-05	2011-Jul-05	2011-Jul-05	2011-Jul-05	2011-Jul-07
Parameter	Units	Max Concentratio	MECP-2011- S-T7-RPI-	Sample Depth	1.2 - 1.8	1.9 - 2.5	1.2 - 1.8	0.9 - 1.5	0.9 - 1.5	1.2 - 1.5	1.8 - 2.2	0.6 - 1.2	1.2 - 1.6	1.2 - 1.9	0.6 - 1.2	3.2 - 3.8	0.6 - 1.2	1.2 - 1.5	0.0 - 0.6	0.6 - 1.3	0.9 - 1.3
Acids, Bases, Neutrals				Detection Limit																	
Biphenyl, 1,1-	ug/g	<5	1.1	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	-	-	-	<0.05	<0.05	-	<1	-	<2.5	<0.05
Bis(2-chloro-1-methylethyl)eth	ug/g	<10	1.8	0.1, 0.2	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.2	<0.2	<0.2	<0.1	<0.1	-	<2	-	<5	<0.1
Bis(2-chloroethyl)ether	ug/g	10.2	0.5	0.1, 0.3	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.3	<0.3	<0.3	<0.1	<0.1	-	<2	-	<5	<0.1
Bis(2-ethylhexyl)phthalate	ug/g	12.3	5	0.2, 0.4	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.4	<0.4	<0.4	<0.1	<0.1	-	<2	-	<5	<0.1
Chloroaniline, p-	ug/g	<10	0.53	0.1, 0.5	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	-	-	-	<0.1	<0.1	-	<2	-	<5	<0.1
Dichlorobenzidine, 3,3-	ug/g	<10	1	0.5, 0.6	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.6	<0.6	<0.6	<0.1	<0.1	-	<2	-	<5	<0.1
Diethyl phthalate	ug/g	<10	0.5	0.1, 0.2	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.2	<0.2	<0.2	<0.1	<0.1	-	<2	-	<5	<0.1
Dimethylphenol, 2,4-	ug/g	12	420	0.1, 0.2	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.2	<0.2	<0.2	<0.1	<0.1	-	<2		<5	<0.1
Dimethyl phthalate	ug/g	<10	0.5	0.1, 0.2	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.2	<0.2	<0.2	<0.1	<0.1	-	<2	-	<5	<0.1
Dinitrophenol, 2,4-	ug/g	<10	38	0.2, 2	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.2	<0.2	<0.2	<0.1	<0.1	-	<2	-	<5	<0.1
Dinitrotoluene, 2,4+2,6-	ug/g	<24	0.92	0.2, 0.5	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<1.2	<1.2	<1.2	-	-	-			-	-
Phenol	ug/g	88.3	9.4	0.1, 0.5	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	-	88.3	-	<5	<0.1
Trichlorobenzene, 1,2,4-	ug/g	<10	1.4	0.04, 0.05	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.2	<0.2	<0.2	<0.1	<0.1	-	<2	-	<5	<0.1
Chlorophenols																					
Chlorophenol, 2-	ug/g	<10	2	0.1, 0.2	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	-	<2	-	<5	<0.1
Dichlorophenol, 2,4-	ug/g	<10	2.1	0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	-	<2	-	<5	<0.1
Pentachlorophenol	ug/g	<10	0.1	0.1, 0.2	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	-	<2	-	<5	<0.1
Trichlorophenol, 2,4,5-	ug/g	<10	5.5	0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	-	-	-	<0.1	<0.1	-	<2	-	<5	<0.1
Trichlorophenol, 2,4,6-	ug/g	<10	4.2	0.1, 0.2	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	-	<2	-	<5	<0.1
Polycyclic Aromatic Hydrocark	ons																				
Acenaphthene	ug/g	31	58	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.07	<0.07	<0.07	<0.05	<0.05	<0.07	1.3	0.21	<2.5	<0.05
Acenaphthylene	ug/g	<5	0.17	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.08	<0.08	<0.08	<0.05	<0.05	<0.08	<1	<0.08	<2.5	<0.05
Anthracene	ug/g	69	0.74	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	0.2	0.1	<0.1	0.1	<0.05	<0.1	3.8	0.3	<2.5	<0.05
Benzo[a]anthracene	ug/g	128	0.63	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	0.6	0.3	<0.1	0.08	<0.05	<0.1	7.4	<0.1	5.3	<0.05
Benzo[a]pyrene	ug/g	135	0.3	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	0.4	0.3	<0.1	0.09	<0.05	0.1	6.1	<0.1	4.5	<0.05
Benzo[b]fluoranthene	ug/g	118	0.78	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	0.3	0.2	<0.1	0.08	<0.05	<0.1	8.9	<0.1	6.8	<0.05
Benzo[g,h,i]perylene	ug/g	83	7.8	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	0.3	0.2	<0.1	0.05	<0.05	<0.1	5.3	<0.1	<0.05	<0.05
Benzo[k]fluoranthene	ug/g	111	0.78	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	0.3	0.2	<0.1	<0.05	<0.05	0.1	4.6	<0.1	4.7	<0.05
Chrysene	ug/g	126	7.8	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	0.5	0.3	<0.1	0.1	<0.05	<0.1	6.9	<0.1	5.6	<0.05
Dibenzo[a,h]anthracene	ug/g	40	0.1	0.05	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<5	<0.1
Fluoranthene	ug/g	230	0.69	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	< 0.05	< 0.05	1.1	0.6	<0.1	0.1	<0.05	0.2	21.8	1	12.8	<0.05
Fluorene	ug/g	30	69	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	< 0.05	<0.1	<0.1	<0.1	<0.05	<0.05	<0.1	1.4	0.1	<2.5	<0.05
Indeno[1,2,3-cd]pyrene	ug/g	80	0.48	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	0.2	0.2	<0.1	<0.05	<0.05	<0.1	4.1	<0.1	3.7	<0.05
Methylnaphthalene, 1+2-	ug/g	18	3.4	0.05	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	-	-	-	<0.1	<0.1	0.2	<2	<0.2	<5	<0.1
Methylnaphthalene, 1-	ug/g	9	3.4	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	-	-	-	<0.05	<0.05	<0.1	<1	<0.1	<2.5	<0.05
Methylnaphthalene, 2-	ug/g	9	3.4	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	-	-	-	<0.05	<0.05	0.1	<1	<0.1	<2.5	<0.05
Naphthalene	ug/g	32.8	0.75	0.05	<0.05	<0.05	0.1	<0.05	<0.05	<0.05	<0.05	<0.09	<0.09	<0.09	<0.05	<0.05	1.53	4.6	<0.09	<2.5	<0.05
Phenanthrene	ug/g	172	7.8	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	0.7	0.2	<0.1	0.1	<0.05	0.2	16.9	1.9	8.9	<0.05
Pyrene	ug/g	203	78	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	0.9	0.5	<0.1	0.1	<0.05	<0.1	16.4	0.8	10.6	<0.05

Detection Limit DL exceeds criteria

2011-S-T7-RPI-FMT

DL: May vary between sample locations and events

Soil, Ground Water and Sediment Standards for Uses Concentration exceeds MECPUnder Part XV.1 of the Environmental Protection Act
(MECP, 2011) Table 7 SCS (Soil) Residential/Parkland/Institutional Use with Fine/Medium-Textured soils

Analytical		ry Results:		Sample ID	BH71-SS1	BH72-SS1	BH73-SS1	BH74-SS1	BH75-SS1	BH76-SS2	ВН77-SS4	BH85-SS3	BH86-SS5	BH87-SS3	37-SS3.1 (BH87-S	BH88-SS2	BH88-SS3	BH89-SS1	BH89-SS2	BH90-SS1	BH91-SS2
ABNS, C	Ps, PAH	s in Soil		Sample Date	2011-Jul-08	2011-Jul-13	2011-Jul-13	2011-Jul-13	2011-Jul-13	2011-Jul-13	2011-Jul-13	2011-Jul-13	2011-Jul-13	2011-Jul-13	2011-Jul-14						
Parameter	Units	Max Concentratio	MECP-2011- S-T7-RPI-	Sample Depth	0.0 - 0.4	0.0 - 0.3	0.0 - 0.3	0.0 - 0.2	0.0 - 0.3	0.6 - 0.9	2.0 - 2.6	1.2 - 1.9	2.5 - 3.0	1.2 - 1.9	1.2 - 1.9	0.6 - 0.8	1.1 - 1.6	0.4 - 1.0	1.0 - 1.5	0.0 - 0.6	0.6 - 1.2
Acids, Bases, Neutrals			0 17 1 1	Detection Limit																	
Biphenyl, 1,1-	ug/g	<5	1.1	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	-	<0.05	-	<1	<0.05	<0.05
Bis(2-chloro-1-methylethyl)eth	ug/g	<10	1.8	0.1, 0.2	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	-	<0.1	-	<2	<0.1	<0.1
Bis(2-chloroethyl)ether	ug/g	10.2	0.5	0.1, 0.3	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	-	<0.1		<1	<0.1	<0.1
Bis(2-ethylhexyl)phthalate	ug/g	12.3	5	0.2, 0.4	<0.1	0.1	<0.1	<0.1	0.2	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	-	<0.1	-	<2	<0.1	<0.1
Chloroaniline, p-	ug/g	<10	0.53	0.1, 0.5	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	-	-	-	-	-	-	-	-	-	-
Dichlorobenzidine, 3,3-	ug/g	<10	1	0.5, 0.6	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	-	<0.1	-	<2	<0.1	<0.1
Diethyl phthalate	ug/g	<10	0.5	0.1, 0.2	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	-	<0.1	-	<2	<0.1	<0.1
Dimethylphenol, 2,4-	ug/g	12	420	0.1, 0.2	0.2	<0.1	0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	-	<0.1	-	<2	<0.1	<0.1
Dimethyl phthalate	ug/g	<10	0.5	0.1, 0.2	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	1	<0.1	-	<2	<0.1	<0.1
Dinitrophenol, 2,4-	ug/g	<10	38	0.2, 2	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	-	<0.1	-	<2	<0.1	<0.1
Dinitrotoluene, 2,4+2,6-	ug/g	<24	0.92	0.2, 0.5	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	-	<0.2	-	<4	<0.2	<0.2
Phenol	ug/g	88.3	9.4	0.1, 0.5	<0.1	<0.1	0.3	<0.1	<0.1	0.1	<0.1	<0.1	<0.1	<0.1	<0.1	-	<0.1	-	<2	<0.1	<0.1
Trichlorobenzene, 1,2,4-	ug/g	<10	1.4	0.04, 0.05	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	-	<0.1	-	<2	<0.1	<0.1
Chlorophenols																					
Chlorophenol, 2-	ug/g	<10	2	0.1, 0.2	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	-	<0.1	-	<2	<0.1	<0.1
Dichlorophenol, 2,4-	ug/g	<10	2.1	0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	-	<0.1	-	<2	<0.1	<0.1
Pentachlorophenol	ug/g	<10	0.1	0.1, 0.2	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	-	<0.1	-	<2	<0.1	<0.1
Trichlorophenol, 2,4,5-	ug/g	<10	5.5	0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	-	<0.1	-	<2	<0.1	<0.1
Trichlorophenol, 2,4,6-	ug/g	<10	4.2	0.1, 0.2	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	1	<0.1	-	<2	<0.1	<0.1
Polycyclic Aromatic Hydrocark	oons																				
Acenaphthene	ug/g	31	58	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	0.2	0.1	9	2	<0.05	<0.05
Acenaphthylene	ug/g	<5	0.17	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.08	<0.05	<4	<1	<0.05	0.05
Anthracene	ug/g	69	0.74	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	< 0.05	<0.05	< 0.05	<0.05	0.4	1.6	28	4.9	<0.05	0.08
Benzo[a]anthracene	ug/g	128	0.63	0.05	0.09	<0.05	0.2	0.1	<0.05	<0.05	<0.05	<0.05	<0.05	< 0.05	<0.05	0.9	0.5	66	10.3	<0.05	0.3
Benzo[a]pyrene	ug/g	135	0.3	0.05	0.07	<0.05	0.2	0.1	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	0.9	0.4	72	7	<0.05	0.2
Benzo[b]fluoranthene	ug/g	118	0.78	0.05	0.09	<0.05	0.3	0.2	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	0.7	0.5	47	9.5	<0.05	0.3
Benzo[g,h,i]perylene	ug/g	83	7.8	0.05	<0.05	<0.05	0.09	0.08	<0.05	<0.05	<0.05	< 0.05	<0.05	<0.05	<0.05	0.6	0.2	43	5.4	<0.05	0.2
Benzo[k]fluoranthene	ug/g	111	0.78	0.05	<0.05	<0.05	0.2	0.1	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	0.7	0.3	47	6.8	<0.05	0.2
Chrysene	ug/g	126	7.8	0.05	0.1	<0.05	0.3	0.2	< 0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	0.5	0.5	65	9	<0.05	0.3
Dibenzo[a,h]anthracene	ug/g	40	0.1	0.05	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	0.3	<0.1	26	<2	<0.1	<0.1
Fluoranthene	ug/g	230	0.69	0.05	0.1	<0.05	0.2	0.1	<0.05	< 0.05	< 0.05	<0.05	<0.05	<0.05	<0.05	2.2	1.1	153	10	<0.05	0.3
Fluorene	ug/g	30	69	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	< 0.05	<0.05	<0.05	<0.05	<0.05	0.2	0.1	8	1.8	<0.05	<0.05
Indeno[1,2,3-cd]pyrene	ug/g	80	0.48	0.05	<0.05	<0.05	0.1	0.08	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	0.6	0.2	39	5.1	<0.05	0.2
Methylnaphthalene, 1+2-	ug/g	18	3.4	0.05	<0.1	<0.1	0.8	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	2.2	0.7	<10	<2	<0.1	0.16
Methylnaphthalene, 1-	ug/g	9	3.4	0.05	<0.05	<0.05	0.4	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	0.9	0.3	<5	<1	<0.05	0.06
Methylnaphthalene, 2-	ug/g	9	3.4	0.05	<0.05	<0.05	0.4	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	1.3	0.4	<5	1	<0.05	0.1
Naphthalene	ug/g	32.8	0.75	0.05	0.07	<0.05	0.3	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	0.53	0.3	<4	<1	<0.05	0.08
Phenanthrene	ug/g	172	7.8	0.05	0.2	<0.05	0.3	0.2	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	1.7	1.6	94	23.3	<0.05	0.2
Pyrene	ug/g	203	78	0.05	0.1	<0.05	0.1	0.1	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	1.8	0.8	131	6.5	<0.05	0.2

Detection Limit DL exceeds criteria DL: May vary between sample locations and events

Soil, Ground Water and Sediment Standards for Uses Concentration exceeds MECP2011-S-T7-RPI-FMT
Under Part XV.1 of the Environmental Protection Act
(MECP, 2011) Table 7 SCS (Soil)
Residential/Parkland/Institutional Use with Fine/Medium-Textured soils

Analytical		ry Results:		Sample ID	BH92-SS1	BH92-SS2	ВН93-SS2	BH94-SS2	BH95-SS1	BH96-SS1	ВН97-SS1	BH98-SS1	BH100-SS1	BH101-SS3	BH101-SS4	BH102-SS2	BH103-SS2	BH104-SS2	04-SS2.1 (BH104	BH105-SS2	BH106-SS2
ABNS, C	Ps, PAH	s in Soil		Sample Date	2011-Jul-14	2011-Jul-14	2011-Jul-14	2011-Jul-14	2011-Jul-15	2011-Jul-15	2011-Jul-15	2011-Jul-15	2011-Jul-15	2011-Jul-18	2011-Jul-18	2011-Jul-18	2011-Jul-18	2011-Jul-18	2011-Jul-18	2011-Jul-18	2011-Jul-18
Parameter	Units	Max Concentratio	MECP-2011- S-T7-RPI-	Sample Depth	0.0 - 0.6	0.6 - 1.1	0.6 - 1.1	0.6 - 1.3	0.0 - 0.6	0.0 - 0.6	0.0 - 0.6	0.0 - 0.6	0.0 - 0.6	1.5 - 2.2	2.2 - 2.3	0.9 - 1.5	0.9 - 1.1	0.8 - 1.4	0.8 - 1.4	0.8 - 1.4	0.9 - 1.4
Acids, Bases, Neutrals			0 17 1 1	Detection Limit																	
Biphenyl, 1,1-	ug/g	<5	1.1	0.05	<0.05	-	<0.05	<0.05	0.05	<0.05	<0.05	<0.05	<0.05	<1	<0.05	<0.05	<1	<0.05	<0.05	<0.05	<0.05
Bis(2-chloro-1-methylethyl)eth	ug/g	<10	1.8	0.1, 0.2	<0.1	-	<0.1	<0.1	0.1	<0.1	<0.1	<0.1	<0.1	<2	<0.1	<0.1	<2	<0.1	<0.1	<0.1	<0.1
Bis(2-chloroethyl)ether	ug/g	10.2	0.5	0.1, 0.3	<0.1	-	<0.1	<0.1	0.1	<0.1	<0.1	<0.1	<0.1	<2	<0.1	<0.1	<2	<0.1	<0.1	<0.1	<0.1
Bis(2-ethylhexyl)phthalate	ug/g	12.3	5	0.2, 0.4	<0.1	-	<0.1	<0.1	0.1	<0.1	<0.1	<0.1	<0.1	<2	<0.1	<0.1	<2	<0.1	<0.1	<0.1	<0.1
Chloroaniline, p-	ug/g	<10	0.53	0.1, 0.5	-	-	1	-	0.1	<0.1	<0.1	<0.1	<0.1	<2	<0.1	<0.1	<2	<0.1	<0.1	<0.1	<0.1
Dichlorobenzidine, 3,3-	ug/g	<10	1	0.5, 0.6	<0.1	-	<0.1	<0.1	0.1	<0.1	<0.1	<0.1	<0.1	<2	<0.1	<0.1	<2	<0.1	<0.1	<0.1	<0.1
Diethyl phthalate	ug/g	<10	0.5	0.1, 0.2	<0.1	-	<0.1	<0.1	0.1	<0.1	<0.1	<0.1	<0.1	<2	<0.1	<0.1	<2	<0.1	<0.1	<0.1	<0.1
Dimethylphenol, 2,4-	ug/g	12	420	0.1, 0.2	<0.1	-	<0.1	<0.1	0.1	<0.1	<0.1	<0.1	0.1	<2	<0.1	<0.1	12	<0.1	<0.1	<0.1	<0.1
Dimethyl phthalate	ug/g	<10	0.5	0.1, 0.2	<0.1	-	<0.1	<0.1	0.1	<0.1	<0.1	<0.1	<0.1	<2	<0.1	<0.1	<2	<0.1	<0.1	<0.1	<0.1
Dinitrophenol, 2,4-	ug/g	<10	38	0.2, 2	<0.1	-	<0.1	<0.1	0.1	<0.1	<0.1	<0.1	<0.1	<2	<0.1	<0.1	<2	<0.1	<0.1	<0.1	<0.1
Dinitrotoluene, 2,4+2,6-	ug/g	<24	0.92	0.2, 0.5	<0.2	-	<0.2	<0.2	0.2	<0.2	<0.2	<0.2	<0.2	<4	<0.2	<0.2	<4	<0.2	-	<0.2	<0.2
Phenol	ug/g	88.3	9.4	0.1, 0.5	<0.1	-	<0.1	<0.1	0.1	<0.1	<0.1	0.2	1.1	<2	<0.1	<0.1	<2	0.1	<0.1	<0.1	<0.1
Trichlorobenzene, 1,2,4-	ug/g	<10	1.4	0.04, 0.05	<0.1	-	<0.1	<0.1	0.1	<0.1	<0.1	<0.1	<0.1	<2	<0.1	<0.1	<2	<0.1	<0.1	<0.1	<0.1
Chlorophenols																					
Chlorophenol, 2-	ug/g	<10	2	0.1, 0.2	<0.1	-	<0.1	<0.1	0.1	<0.1	<0.1	<0.1	<0.1	<2	<0.1	<0.1	<2	<0.1	<0.1	<0.1	<0.1
Dichlorophenol, 2,4-	ug/g	<10	2.1	0.1	<0.1	-	<0.1	<0.1	0.1	<0.1	<0.1	<0.1	<0.1	<2	<0.1	<0.1	<2	<0.1	<0.1	<0.1	<0.1
Pentachlorophenol	ug/g	<10	0.1	0.1, 0.2	<0.1	-	<0.1	<0.1	0.1	<0.1	<0.1	<0.1	0.1	<2	<0.1	<0.1	<2	<0.1	<0.1	<0.1	<0.1
Trichlorophenol, 2,4,5-	ug/g	<10	5.5	0.1	<0.1	-	<0.1	<0.1	0.1	<0.1	<0.1	<0.1	<0.1	<2	<0.1	<0.1	<2	<0.1	<0.1	<0.1	<0.1
Trichlorophenol, 2,4,6-	ug/g	<10	4.2	0.1, 0.2	<0.1	-	<0.1	<0.1	0.1	<0.1	<0.1	<0.1	<0.1	<2	<0.1	<0.1	<2	<0.1	<0.1	<0.1	<0.1
Polycyclic Aromatic Hydrocarb	ons																				
Acenaphthene	ug/g	31	58	0.05	<0.05	0.08	0.06	<0.05	0.05	<0.05	<0.05	<0.05	<0.05	<1	<0.05	<0.05	<1	<0.05	<0.05	<0.05	<0.05
Acenaphthylene	ug/g	<5	0.17	0.05	<0.05	<0.08	<0.05	<0.05	0.05	<0.05	<0.05	<0.05	<0.05	<1	<0.05	<0.05	<1	<0.05	<0.05	<0.05	<0.05
Anthracene	ug/g	69	0.74	0.05	0.5	<0.1	<0.05	<0.05	0.05	<0.05	0.05	< 0.05	0.06	<1	<0.05	<0.05	<1	<0.05	<0.05	<0.05	<0.05
Benzo[a]anthracene	ug/g	128	0.63	0.05	0.1	0.1	<0.05	<0.05	0.05	<0.05	0.07	<0.05	0.2	<1	<0.05	<0.05	<1	<0.05	<0.05	<0.05	<0.05
Benzo[a]pyrene	ug/g	135	0.3	0.05	<0.05	0.2	<0.05	<0.05	0.05	<0.05	<0.05	<0.05	0.2	<1	<0.05	<0.05	<1	<0.05	<0.05	<0.05	<0.05
Benzo[b]fluoranthene	ug/g	118	0.78	0.05	<0.05	0.1	<0.05	<0.05	0.05	<0.05	0.06	<0.05	0.2	<1	<0.05	<0.05	<1	<0.05	<0.05	<0.05	<0.05
Benzo[g,h,i]perylene	ug/g	83	7.8	0.05	<0.05	0.1	<0.05	<0.05	0.05	<0.05	<0.05	<0.05	0.08	<1	<0.05	<0.05	<1	<0.05	<0.05	<0.05	<0.05
Benzo[k]fluoranthene	ug/g	111	0.78	0.05	<0.05	0.1	<0.05	<0.05	0.05	<0.05	<0.05	<0.05	0.1	<1	<0.05	<0.05	<1	<0.05	<0.05	<0.05	<0.05
Chrysene	ug/g	126	7.8	0.05	0.1	0.2	<0.05	<0.05	0.05	<0.05	0.08	<0.05	0.2	<1	<0.05	<0.05	<1	<0.05	<0.05	<0.05	<0.05
Dibenzo[a,h]anthracene	ug/g	40	0.1	0.05	<0.1	<0.1	<0.1	<0.1	0.1	<0.1	<0.1	<0.1	<0.1	<2	<0.1	<0.1	<2	<0.1	<0.1	<0.1	<0.1
Fluoranthene	ug/g	230	0.69	0.05	0.2	0.3	0.08	<0.05	0.05	<0.05	0.2	<0.05	0.4	<1	<0.05	<0.05	<1	<0.05	<0.05	<0.05	<0.05
Fluorene	ug/g	30	69	0.05	<0.05	<0.1	<0.05	<0.05	0.05	<0.05	<0.05	<0.05	<0.05	<1	<0.05	<0.05	<1	<0.05	<0.05	<0.05	<0.05
Indeno[1,2,3-cd]pyrene	ug/g	80	0.48	0.05	<0.05	0.1	<0.05	<0.05	0.05	<0.05	<0.05	<0.05	0.07	<1	<0.05	<0.05	<1	<0.05	<0.05	<0.05	<0.05
Methylnaphthalene, 1+2-	ug/g	18	3.4	0.05	2.1	2.1	<0.1	<0.1	0.1	0.4	0.4	<0.1	0.13	11.4	<0.1	<0.1	<2	<0.1	-	<0.1	<0.1
Methylnaphthalene, 1-	ug/g	9	3.4	0.05	1.1	1.1	<0.05	<0.05	0.05	0.2	0.2	<0.05	0.05	5.1	<0.05	<0.05	<1	<0.05	<0.05	<0.05	<0.05
Methylnaphthalene, 2-	ug/g	9	3.4	0.05	1	1	<0.05	<0.05	0.05	0.2	0.2	<0.05	0.08	6.3	<0.05	<0.05	<1	<0.05	<0.05	<0.05	<0.05
Naphthalene	ug/g	32.8	0.75	0.05	0.4	0.32	<0.05	<0.05	0.05	0.1	0.2	0.09	0.06	3.8	<0.05	<0.05	<1	<0.05	<0.05	<0.05	<0.05
Phenanthrene	ug/g	172	7.8	0.05	0.5	94	0.07	<0.05	0.05	0.1	0.3	<0.05	0.3	2.4	<0.05	<0.05	<1	<0.05	<0.05	<0.05	<0.05
Pyrene	ug/g	203	78	0.05	0.2	131	0.06	<0.05	0.05	<0.05	0.1	<0.05	0.3	<1	<0.05	<0.05	<1	<0.05	<0.05	<0.05	<0.05

Detection Limit DL exceeds criteria DL: May vary between sample locations and events

Soil, Ground Water and Sediment Standards for Uses Concentration exceeds MECP2011-S-T7-RPI-FMT
Under Part XV.1 of the Environmental Protection Act
(MECP, 2011) Table 7 SCS (Soil)
Residential/Parkland/Institutional Use with

Table 1 - Analytical (ABNs, Ci	Chemistr	y Results:		Sample ID	BH107-SS1	BH108-SS2	BH109-SS1	BH111-SS1	BH112-SS1	BH113-SS1	BH114-SS2	BH116-SS1	16-SS1.1 (BH116	BH117-SS1	BH118-SS2	BH119-SS4	BH120-SS3	BH122-SS2	22-SS2.1 (BH122	BH123-SS2	BH124-SS3
ABNS, C	гэ, гапз			Sample Date	2011-Jul-18	2011-Jul-18	2011-Jul-18	2011-Jul-19	2011-Jul-19	2011-Jul-20	2011-Jul-20	2011-Jul-20	2011-Jul-20	2011-Jul-20	2011-Jul-21	2011-Jul-21	2011-Jul-22	2011-Jul-22	2011-Jul-22	2011-Jul-22	2011-Jul-22
Parameter	Units	Max Concentratio	MECP-2011- S-T7-RPI-	Sample Depth	0.0 - 0.6	0.6 - 1.2	0.0 - 0.6	0.0 - 0.6	0.0 - 0.6	0.0 - 0.6	0.6 - 1.1	0.0 - 0.8	0.0 - 0.8	0.0 - 0.6	0.6 - 1.1	1.8 - 2.5	1.3 - 1.9	1.3 - 1.9	1.3 - 1.9	0.6 - 1.3	1.2 - 1.9
Acids, Bases, Neutrals				Detection Limit																	
Biphenyl, 1,1-	ug/g	<5	1.1	0.05	<0.05	<1	<2.5	<0.05	<0.05	<1	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
Bis(2-chloro-1-methylethyl)eth	ug/g	<10	1.8	0.1, 0.2	<0.1	<2	<5	<0.1	<0.1	<2	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Bis(2-chloroethyl)ether	ug/g	10.2	0.5	0.1, 0.3	<0.1	<2	<5	<0.1	<0.1	<2	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Bis(2-ethylhexyl)phthalate	ug/g	12.3	5	0.2, 0.4	<0.1	<2	<5	0.1	<0.1	<2	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Chloroaniline, p-	ug/g	<10	0.53	0.1, 0.5	<0.1	-	<5	<0.1	<0.1	<2	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Dichlorobenzidine, 3,3-	ug/g	<10	1	0.5, 0.6	<0.1	<2	<5	<0.1	<0.1	<2	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Diethyl phthalate	ug/g	<10	0.5	0.1, 0.2	<0.1	<2	<5	<0.1	<0.1	<2	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Dimethylphenol, 2,4-	ug/g	12	420	0.1, 0.2	<0.1	<2	<5	0.1	<0.1	<2	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Dimethyl phthalate	ug/g	<10	0.5	0.1, 0.2	<0.1	<2	<5	<0.1	<0.1	<2	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Dinitrophenol, 2,4-	ug/g	<10	38	0.2, 2	<0.1	<2	<5	<0.1	<0.1	<2	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Dinitrotoluene, 2,4+2,6-	ug/g	<24	0.92	0.2, 0.5	<0.2	<4	<10	<0.2	<0.2	<4	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Phenol	ug/g	88.3	9.4	0.1, 0.5	<0.1	<2	<5	0.6	0.5	<2	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Trichlorobenzene, 1,2,4-	ug/g	<10	1.4	0.04, 0.05	<0.1	<2	<5	<0.1	<0.1	<2	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Chlorophenols																					
Chlorophenol, 2-	ug/g	<10	2	0.1, 0.2	<0.1	<2	<5	<0.1	<0.1	<2	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Dichlorophenol, 2,4-	ug/g	<10	2.1	0.1	<0.1	<2	<5	<0.1	<0.1	<2	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Pentachlorophenol	ug/g	<10	0.1	0.1, 0.2	<0.1	<2	<5	<0.1	<0.1	<2	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Trichlorophenol, 2,4,5-	ug/g	<10	5.5	0.1	<0.1	<2	<5	<0.1	<0.1	<2	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Trichlorophenol, 2,4,6-	ug/g	<10	4.2	0.1, 0.2	<0.1	<2	<5	<0.1	<0.1	<2	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Polycyclic Aromatic Hydrocarb	ons																				
Acenaphthene	ug/g	31	58	0.05	<0.05	<1	2.9	<0.05	<0.05	<1	<0.05	< 0.05	< 0.05	<0.05	<0.05	<0.05	<0.05	< 0.05	<0.05	<0.05	<0.05
Acenaphthylene	ug/g	<5	0.17	0.05	<0.05	<1	<2.5	<0.05	<0.05	<1	<0.05	< 0.05	< 0.05	<0.05	<0.05	<0.05	<0.05	< 0.05	<0.05	<0.05	<0.05
Anthracene	ug/g	69	0.74	0.05	<0.05	<1	8.6	0.1	0.06	<1	<0.05	<0.05	< 0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	< 0.05	<0.05
Benzo[a]anthracene	ug/g	128	0.63	0.05	<0.05	<1	19.3	0.3	0.1	<1	<0.05	< 0.05	<0.05	<0.05	<0.05	<0.05	<0.05	< 0.05	<0.05	<0.05	<0.05
Benzo[a]pyrene	ug/g	135	0.3	0.05	<0.05	<1	16.2	0.3	0.1	<1	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	< 0.05	<0.05	<0.05	<0.05
Benzo[b]fluoranthene	ug/g	118	0.78	0.05	<0.05	<1	16.8	0.4	0.2	<1	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	< 0.05	<0.05
Benzo[g,h,i]perylene	ug/g	83	7.8	0.05	<0.05	<1	8.7	0.1	0.06	<1	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	< 0.05	<0.05	<0.05	<0.05
Benzo[k]fluoranthene	ug/g	111	0.78	0.05	<0.05	<1	10	0.3	0.07	<1	<0.05	< 0.05	<0.05	<0.05	<0.05	<0.05	<0.05	< 0.05	<0.05	<0.05	<0.05
Chrysene	ug/g	126	7.8	0.05	<0.05	<1	18.7	0.4	0.2	<1	<0.05	<0.05	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
Dibenzo[a,h]anthracene	ug/g	40	0.1	0.05	<0.1	<2	<5	<0.1	<0.1	<2	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Fluoranthene	ug/g	230	0.69	0.05	<0.05	1.8	45.2	0.8	0.3	<1	< 0.05	0.06	0.08	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
Fluorene	ug/g	30	69	0.05	<0.05	<1	2.9	<0.05	<0.05	<1	< 0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
Indeno[1,2,3-cd]pyrene	ug/g	80	0.48	0.05	<0.05	<1	7.5	0.1	0.05	<1	<0.05	<0.05	< 0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	< 0.05
Methylnaphthalene, 1+2-	ug/g	18	3.4	0.05	<0.1	<2	<5	0.6	0.9	5.3	<0.1	<0.1	0.11	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Methylnaphthalene, 1-	ug/g	9	3.4	0.05	<0.05	<1	<2.5	0.3	0.4	2.6	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
Methylnaphthalene, 2-	ug/g	9	3.4	0.05	<0.05	<1	<2.5	0.3	0.5	2.7	<0.05	<0.05	0.06	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
Naphthalene	ug/g	32.8	0.75	0.05	<0.05	<1	<2.5	0.2	0.4	1.6	<0.05	0.1	0.2	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
Phenanthrene	ug/g	172	7.8	0.05	<0.05	1.4	34.7	0.6	0.4	1.6	<0.05	<0.05	0.08	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
Pyrene	ug/g	203	78	0.05	<0.05	1.5	38.4	0.7	0.3	<1	<0.05	0.05	0.07	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05

Detection Limit DL exceeds criteria DL: May vary between sample locations and events

Soil, Ground Water and Sediment Standards for Uses Concentration exceeds MECP2011-S-T7-RPI-FMT
Under Part XV.1 of the Environmental Protection Act
(MECP, 2011) Table 7 SCS (Soil)
Residential/Parkland/Institutional Use with Fine/Medium-Textured soils

Table 1 Analytical	Chemist	ry Results:		Sample ID	BH125-SS5	BH126-SS3	BH127-SS3	BH128-SS1	BH128R SS2	BH129-SS3	BH131-SS2	BH133-SS2	BH133-SS4	BH134-SS1	BH134-SS2	BH140-SS2	BH140-SS5	BH141-SS2	41-SS2.1 (BH141	BH142-SS3	BH143-SS3
ABNs, C	PS, PAH	s in Soii		Sample Date	2011-Jul-22	2011-Jul-25	2011-Jul-25	2011-Jul-25	2022-Dec-22	2011-Jul-25	2011-Jul-26	2011-Jul-26	2011-Jul-26	2011-Jul-26	2011-Jul-26	2011-Jul-27	2011-Jul-27	2011-Jul-27	2011-Jul-27	2011-Jul-27	2011-Jul-27
Parameter	Units	Max Concentratio	MECP-2011- S-T7-RPI-	Sample Depth	2.5 - 3.0	1.2 - 1.9	1.3 - 1.9	0.0 - 0.6	1.5 - 3.0	1.2 - 1.9	0.6 - 1.2	0.6 - 1.2	1.9 - 2.1	0.0 - 0.6	0.6 - 1.2	0.6 - 1.2	2.5 - 2.7	0.6 - 1.2	0.6 - 1.2	1.2 - 1.9	1.2 - 1.8
Acids, Bases, Neutrals				Detection Limit																	
Biphenyl, 1,1-	ug/g	<5	1.1	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.2	<0.05	<5	<0.05	<0.05	< 0.05	< 0.05	< 0.05	<0.05	<0.05
Bis(2-chloro-1-methylethyl)eth	ug/g	<10	1.8	0.1, 0.2	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.5	<0.1	<10	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Bis(2-chloroethyl)ether	ug/g	10.2	0.5	0.1, 0.3	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.5	<0.1	<10	10.2	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Bis(2-ethylhexyl)phthalate	ug/g	12.3	5	0.2, 0.4	<0.1	<0.1	<0.1	<0.1	<0.2	<0.1	<0.1	<0.5	<0.1	12.3	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Chloroaniline, p-	ug/g	<10	0.53	0.1, 0.5	<0.1	<0.1	<0.1	<0.1	<0.5	<0.1	<0.1	<0.5	<0.1	<10	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Dichlorobenzidine, 3,3-	ug/g	<10	1	0.5, 0.6	<0.1	<0.1	<0.1	<0.1	<0.5	<0.1	<0.1	<0.5	<0.1	<10	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Diethyl phthalate	ug/g	<10	0.5	0.1, 0.2	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.5	<0.1	<10	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Dimethylphenol, 2,4-	ug/g	12	420	0.1, 0.2	<0.1	0.1	<0.1	<0.1	<0.2	<0.1	<0.1	4.4	0.3	11.8	2.9	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Dimethyl phthalate	ug/g	<10	0.5	0.1, 0.2	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.5	<0.1	<10	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Dinitrophenol, 2,4-	ug/g	<10	38	0.2, 2	<0.1	<0.1	<0.1	<0.1	<2	<0.1	<0.1	<0.5	0.2	<10	0.4	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Dinitrotoluene, 2,4+2,6-	ug/g	<24	0.92	0.2, 0.5	<0.2	<0.2	<0.2	<0.2	<0.5	<0.2	<0.2	<0.2	<0.2	<20	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Phenol	ug/g	88.3	9.4	0.1, 0.5	<0.1	0.5	0.1	0.1	<0.5	<0.1	<0.1	39	6.7	65.4	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Trichlorobenzene, 1,2,4-	ug/g	<10	1.4	0.04, 0.05	<0.1	<0.1	<0.1	<0.1	<0.05	<0.1	<0.1	<0.5	<0.1	<10	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Chlorophenols																					
Chlorophenol, 2-	ug/g	<10	2	0.1, 0.2	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.5	<0.1	<10	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Dichlorophenol, 2,4-	ug/g	<10	2.1	0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.5	<0.1	<10	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Pentachlorophenol	ug/g	<10	0.1	0.1, 0.2	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.5	<0.1	<10	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Trichlorophenol, 2,4,5-	ug/g	<10	5.5	0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.5	<0.1	<10	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Trichlorophenol, 2,4,6-	ug/g	<10	4.2	0.1, 0.2	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.5	<0.1	<10	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Polycyclic Aromatic Hydrocark	ons																				
Acenaphthene	ug/g	31	58	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.2	<0.05	<5	0.06	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
Acenaphthylene	ug/g	<5	0.17	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.2	<0.05	<5	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
Anthracene	ug/g	69	0.74	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	0.9	<0.05	<5	0.2	<0.05	<0.05	< 0.05	<0.05	<0.05	<0.05
Benzo[a]anthracene	ug/g	128	0.63	0.05	<0.05	<0.05	<0.05	0.07	<0.05	<0.05	<0.05	1.6	<0.05	<5	0.6	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
Benzo[a]pyrene	ug/g	135	0.3	0.05	<0.05	0.05	<0.05	0.05	<0.05	<0.05	<0.05	1.2	<0.05	<5	0.6	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
Benzo[b]fluoranthene	ug/g	118	0.78	0.05	<0.05	0.09	<0.05	0.06	<0.05	<0.05	<0.05	11	<0.05	<5	1.2	<0.05	<0.05	<0.05	<0.05	<0.05	< 0.05
Benzo[g,h,i]perylene	ug/g	83	7.8	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	0.6	<0.05	<5	0.3	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
Benzo[k]fluoranthene	ug/g	111	0.78	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	0.8	<0.05	<5	1.1	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
Chrysene	ug/g	126	7.8	0.05	<0.05	0.1	<0.05	0.08	<0.05	<0.05	<0.05	1.5	<0.05	<5	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
Dibenzo[a,h]anthracene	ug/g	40	0.1	0.05	<0.1	<0.1	<0.1	<0.1	<0.05	<0.1	<0.1	<0.5	<0.1	<10	0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Fluoranthene	ug/g	230	0.69	0.05	<0.05	0.1	<0.05	0.2	<0.05	<0.05	< 0.05	4.2	<0.05	<5	0.7	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
Fluorene	ug/g	30	69	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	< 0.05	<0.2	<0.05	<5	0.07	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
Indeno[1,2,3-cd]pyrene	ug/g	80	0.48	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	0.9	<0.05	<5	0.3	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
Methylnaphthalene, 1+2-	ug/g	18	3.4	0.05	<0.1	<0.1	<0.1	<0.1	<0.05	<0.1	<0.1	0.5	<0.1	<10	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Methylnaphthalene, 1-	ug/g	9	3.4	0.05	<0.05	<0.05	<0.05	<0.05	-	<0.05	<0.05	<0.2	<0.05	<5	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
Methylnaphthalene, 2-	ug/g	9	3.4	0.05	<0.05	<0.05	<0.05	<0.05		<0.05	<0.05	0.3	<0.05	<5	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
Naphthalene	ug/g	32.8	0.75	0.05	<0.05	<0.05	<0.05	<0.05	< 0.05	<0.05	<0.05	0.7	<0.05	<5	0.2	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
Phenanthrene	ug/g	172	7.8	0.05	<0.05	0.06	<0.05	0.1	<0.05	<0.05	<0.05	3.1	<0.05	<5	0.2	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
Pyrene	ug/g	203	78	0.05	<0.05	0.1	<0.05	0.1	<0.05	<0.05	<0.05	3.4	<0.05	<5	0.8	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05

Detection Limit

DL: May vary between sample locations and events

DL exceeds criteria

Soil, Ground Water and Sediment Standards for Uses Concentration exceeds MECP2011-S-T7-RPI-FMT
Under Part XV.1 of the Environmental Protection Act
(MECP, 2011) Table 7 SCS (Soil)
Residential/Parkland/Institutional Use with

Table 1 -	Chemisti	ry Results:		Sample ID	BH144-SS2	BH144-SS3	BH145-SS3	BH145-SS4	BH147-SS3	BH150-SS3	BH155-SS3	BH201 SS3	BH202 SS2	! SS2-Dup (BH20	BH202 SS4	BH203 SS3	BH204 SS1	BH205 SS1	BH207 SS1	BH208 SS2	BH209 SS1
ABNs, C	PS, PAHS	s in Soii		Sample Date	2011-Jul-27	2011-Jul-27	2011-Jul-28	2011-Jul-28	2011-Jul-28	2011-Jul-28	2001-Aug-02	2022-Dec-23	2022-Dec-22	2022-Dec-22	2022-Dec-22	2022-Dec-22	2022-Dec-22	2022-Dec-22	2022-Dec-22	2022-Dec-19	2022-Dec-19
Parameter	Units	Max Concentratio	MECP-2011- S-T7-RPI-	Sample Depth	0.6 - 1.2	1.2 - 1.8	1.2 - 1.9	1.9 - 2.2	1.4 - 1.9	1.2 - 1.8	1.2 - 1.7	1.5 - 2.1	0.8 - 1.4	0.8 - 1.4	2.3 - 2.9	1.5 - 2.1	0.0 - 0.6	0.0 - 0.6	0.0 - 0.6	0.8 - 1.4	0.0 - 0.6
Acids, Bases, Neutrals				Detection Limit																	
Biphenyl, 1,1-	ug/g	<5	1.1	0.05	<0.05	<2.5	<1	<0.05	<0.05	<0.05	<0.05	-	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	0.98	<0.05	<0.05
Bis(2-chloro-1-methylethyl)eth	ug/g	<10	1.8	0.1, 0.2	<0.1	<5	<2	<0.1	<0.1	<0.1	<0.1	-	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Bis(2-chloroethyl)ether	ug/g	10.2	0.5	0.1, 0.3	<0.1	<5	<2	<0.1	<0.1	<0.1	<0.1	-	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Bis(2-ethylhexyl)phthalate	ug/g	12.3	5	0.2, 0.4	<0.1	<5	<2	<0.1	<0.1	<0.1	<0.1	-	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Chloroaniline, p-	ug/g	<10	0.53	0.1, 0.5	<0.1	<5	<2	<0.1	<0.1	<0.1	<0.1	-	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Dichlorobenzidine, 3,3-	ug/g	<10	1	0.5, 0.6	<0.1	<5	<2	<0.1	<0.1	<0.1	<0.1	-	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Diethyl phthalate	ug/g	<10	0.5	0.1, 0.2	<0.1	<5	<2	<0.1	<0.1	<0.1	<0.1	-	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Dimethylphenol, 2,4-	ug/g	12	420	0.1, 0.2	<0.1	<5	<2	<0.1	<0.1	<0.1	<0.1	-	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Dimethyl phthalate	ug/g	<10	0.5	0.1, 0.2	<0.1	<5	<2	<0.1	<0.1	<0.1	<0.1	-	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Dinitrophenol, 2,4-	ug/g	<10	38	0.2, 2	<0.1	<5	<2	<0.1	<0.1	<0.1	<0.1	=	<2	<2	<2	<2	<2	<2	<2	<2	<2
Dinitrotoluene, 2,4+2,6-	ug/g	<24	0.92	0.2, 0.5	<0.2	<10	<4	<0.2	<0.2	<0.2	<0.2	-	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Phenol	ug/g	88.3	9.4	0.1, 0.5	0.9	<5	3	<0.1	0.6	<0.1	<0.1	-	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Trichlorobenzene, 1,2,4-	ug/g	<10	1.4	0.04, 0.05	<0.1	<5	<2	<0.1	<0.1	<0.1	<0.1	-	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
Chlorophenols																					
Chlorophenol, 2-	ug/g	<10	2	0.1, 0.2	<0.1	<5	<2	<0.1	<0.1	<0.1	<0.1	-	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Dichlorophenol, 2,4-	ug/g	<10	2.1	0.1	<0.1	<5	<2	<0.1	<0.1	<0.1	<0.1	-	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Pentachlorophenol	ug/g	<10	0.1	0.1, 0.2	<0.1	<5	<2	<0.1	<0.1	<0.1	<0.1	-	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Trichlorophenol, 2,4,5-	ug/g	<10	5.5	0.1	<0.1	<5	<2	<0.1	<0.1	<0.1	<0.1	-	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Trichlorophenol, 2,4,6-	ug/g	<10	4.2	0.1, 0.2	<0.1	<5	<2	<0.1	<0.1	<0.1	<0.1	-	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Polycyclic Aromatic Hydrocarb	ons																				
Acenaphthene	ug/g	31	58	0.05	<0.05	<2.5	<1	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
Acenaphthylene	ug/g	<5	0.17	0.05	<0.05	<2.5	<1	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
Anthracene	ug/g	69	0.74	0.05	<0.05	<2.5	<1	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	0.22	<0.05	<0.05	<0.05	<0.05	<0.05
Benzo[a]anthracene	ug/g	128	0.63	0.05	0.09	<2.5	<1	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	0.13	<0.05	<0.05	<0.05	<0.05	<0.05
Benzo[a]pyrene	ug/g	135	0.3	0.05	<0.05	<2.5	<1	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
Benzo[b]fluoranthene	ug/g	118	0.78	0.05	0.2	<2.5	<1	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	0.08	<0.05
Benzo[g,h,i]perylene	ug/g	83	7.8	0.05	<0.05	<2.5	<1	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
Benzo[k]fluoranthene	ug/g	111	0.78	0.05	0.2	<2.5	<1	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
Chrysene	ug/g	126	7.8	0.05	<0.05	<2.5	<1	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	0.19	<0.05	<0.05	<0.05	0.06	<0.05
Dibenzo[a,h]anthracene	ug/g	40	0.1	0.05	<0.1	<5	<2	<0.1	<0.1	<0.1	<0.1	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
Fluoranthene	ug/g	230	0.69	0.05	<0.05	<2.5	<1	<0.05	<0.05	< 0.05	< 0.05	<0.05	<0.05	<0.05	<0.05	0.64	<0.05	<0.05	0.09	0.1	<0.05
Fluorene	ug/g	30	69	0.05	<0.05	<2.5	<1	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
Indeno[1,2,3-cd]pyrene	ug/g	80	0.48	0.05	<0.05	<2.5	<1	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
Methylnaphthalene, 1+2-	ug/g	18	3.4	0.05	<0.1	<5	<2	<0.1	<0.1	<0.1	<0.1	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	2.28
Methylnaphthalene, 1-	ug/g	9	3.4	0.05	<0.05	<2.5	<1	<0.05	<0.05	<0.05	<0.05	-	1	-	-	-	-	-	-	-	-
Methylnaphthalene, 2-	ug/g	9	3.4	0.05	<0.05	<2.5	<1	<0.05	<0.05	<0.05	<0.05	-	1	-	-	-	-	-	-	-	-
Naphthalene	ug/g	32.8	0.75	0.05	0.6	32.8	8.7	<0.05	0.06	< 0.05	<0.05	<0.05	<0.05	<0.05	0.45	<0.05	<0.05	<0.05	0.08	<0.05	0.41
Phenanthrene	ug/g	172	7.8	0.05	<0.05	<2.5	<1	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	0.19	<0.05	<0.05	0.08	0.08	0.32
Pyrene	ug/g	203	78	0.05	<0.05	<2.5	<1	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	0.44	<0.05	<0.05	0.08	0.08	<0.05

Detection Limit DL exceeds criteria

2011-S-T7-RPI-FMT

DL: May vary between sample locations and events

Soil, Ground Water and Sediment Standards for Uses Concentration exceeds MECPUnder Part XV.1 of the Environmental Protection Act
(MECP, 2011) Table 7 SCS (Soil)

Residential/Parkland/Institutional Use with Fine/Medium-Textured soils

Analytical		ry Results:		Sample ID	BH209 SS2	BH210 SS2	BH211 SS1	BH211 SS3	BH212 SS1	BH212 SS4	BH213 SS2	SS2-Dup (BH21	BH214 SS2	BH214 SS3	BH215 SS1	BH216 SS1	BH217 SS1	BH218 SS1	BH219 SS2	BH220 SS1) SS1-DUP (BH22
ABNS, C	Ps, PAH	s in Soil		Sample Date	2022-Dec-19	2022-Dec-19	2022-Dec-15	2022-Dec-15	2022-Dec-15	2022-Dec-15	2022-Dec-19	2022-Dec-19	2022-Dec-22	2022-Dec-22	2022-Dec-22	2022-Dec-22	2022-Dec-22	2022-Dec-22	2022-Dec-15	2022-Dec-22	2022-Dec-22
Parameter	Units	Max Concentratio	MECP-2011- S-T7-RPI-	Sample Depth	0.8 - 1.4	0.8 - 1.4	0.0 - 0.6	1.5 - 2.1	0.0 - 0.6	2.3 - 2.9	0.8 - 1.4	0.8 - 1.4	0.8 - 1.4	1.5 - 2.1	0.0 - 0.6	0.0 - 0.6	0.0 - 1.4	0.0 - 1.5	0.8 - 1.4	0.0 - 1.2	0.0 - 1.2
Acids, Bases, Neutrals			0 17 1 1	Detection Limit																	
Biphenyl, 1,1-	ug/g	<5	1.1	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	-	<0.05	<0.05	<0.05	0.15	0.09
Bis(2-chloro-1-methylethyl)eth	ug/g	<10	1.8	0.1, 0.2	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	-	<0.1	<0.1	<0.1	<0.1	<0.1
Bis(2-chloroethyl)ether	ug/g	10.2	0.5	0.1, 0.3	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	-	<0.1	<0.1	<0.1	<0.1	<0.1
Bis(2-ethylhexyl)phthalate	ug/g	12.3	5	0.2, 0.4	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	-	<0.2	<0.2	<0.2	<0.2	<0.2
Chloroaniline, p-	ug/g	<10	0.53	0.1, 0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	-	<0.5	<0.5	<0.5	<0.5	<0.5
Dichlorobenzidine, 3,3-	ug/g	<10	1	0.5, 0.6	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	-	<0.5	<0.5	<0.5	<0.5	<0.5
Diethyl phthalate	ug/g	<10	0.5	0.1, 0.2	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	-	<0.1	<0.1	<0.1	<0.1	<0.1
Dimethylphenol, 2,4-	ug/g	12	420	0.1, 0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	-	<0.2	<0.2	<0.2	<0.2	<0.2
Dimethyl phthalate	ug/g	<10	0.5	0.1, 0.2	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	-	<0.1	<0.1	<0.1	<0.1	<0.1
Dinitrophenol, 2,4-	ug/g	<10	38	0.2, 2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	-	<2	<2	<2	<2	<2
Dinitrotoluene, 2,4+2,6-	ug/g	<24	0.92	0.2, 0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	-	<0.5	<0.5	<0.5	<0.5	<0.5
Phenol	ug/g	88.3	9.4	0.1, 0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	-	<0.5	<0.5	<0.5	<0.5	<0.5
Trichlorobenzene, 1,2,4-	ug/g	<10	1.4	0.04, 0.05	<0.05	< 0.05	<0.05	< 0.05	<0.05	<0.05	< 0.05	<0.05	<0.05	< 0.05	<0.05	-	< 0.05	< 0.05	< 0.05	< 0.05	<0.05
Chlorophenols																					
Chlorophenol, 2-	ug/g	<10	2	0.1, 0.2	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	-	<0.1	<0.1	<0.1	<0.1	<0.1
Dichlorophenol, 2,4-	ug/g	<10	2.1	0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	-	<0.1	<0.1	<0.1	<0.1	<0.1
Pentachlorophenol	ug/g	<10	0.1	0.1, 0.2	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	-	<0.1	<0.1	<0.1	<0.1	<0.1
Trichlorophenol, 2,4,5-	ug/g	<10	5.5	0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	-	<0.1	<0.1	<0.1	<0.1	<0.1
Trichlorophenol, 2,4,6-	ug/g	<10	4.2	0.1, 0.2	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	-	<0.1	<0.1	<0.1	<0.1	<0.1
Polycyclic Aromatic Hydrocark	oons																				
Acenaphthene	ug/g	31	58	0.05	<0.05	0.48	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	0.31	<0.05	2.23	< 0.05	< 0.05	<0.05	2.18	1.53
Acenaphthylene	ug/g	<5	0.17	0.05	<0.05	<0.05	0.08	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	0.36	<0.05	< 0.05	<0.05	0.11	0.09
Anthracene	ug/g	69	0.74	0.05	<0.05	1	0.31	< 0.05	<0.05	< 0.05	<0.05	< 0.05	<0.05	1.06	<0.05	5.84	< 0.05	0.21	< 0.05	7.19	4.29
Benzo[a]anthracene	ug/g	128	0.63	0.05	<0.05	1.38	1.04	<0.05	<0.05	<0.05	0.07	0.06	<0.05	1.74	<0.05	12.9	< 0.05	0.2	<0.05	4.32	3.01
Benzo[a]pyrene	ug/g	135	0.3	0.05	<0.05	1.39	1.2	<0.05	<0.05	<0.05	0.11	0.09	<0.05	1.57	<0.05	10.3	<0.05	< 0.05	<0.05	1.9	1.57
Benzo[b]fluoranthene	ug/g	118	0.78	0.05	<0.05	2.04	2	<0.05	<0.05	<0.05	0.18	0.16	<0.05	2.48	<0.05	11.9	<0.05	0.2	<0.05	7.59	5.92
Benzo[g,h,i]perylene	ug/g	83	7.8	0.05	<0.05	0.46	0.5	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	0.54	<0.05	7.14	< 0.05	< 0.05	< 0.05	4.95	3.58
Benzo[k]fluoranthene	ug/g	111	0.78	0.05	<0.05	1.13	1.1	<0.05	<0.05	<0.05	0.1	0.11	<0.05	1.32	<0.05	5.08	<0.05	0.08	<0.05	3.12	2.28
Chrysene	ug/g	126	7.8	0.05	<0.05	1.42	0.95	<0.05	< 0.05	<0.05	0.1	0.08	<0.05	1.74	0.06	10.9	<0.05	0.2	<0.05	4.35	5.18
Dibenzo[a,h]anthracene	ug/g	40	0.1	0.05	<0.05	0.08	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	0.13	<0.05	1.29	< 0.05	< 0.05	<0.05	0.58	0.48
Fluoranthene	ug/g	230	0.69	0.05	<0.05	3.73	2.29	< 0.05	<0.05	< 0.05	0.18	0.16	<0.05	4.32	0.11	41.2	0.09	0.7	<0.05	29.6	22.8
Fluorene	ug/g	30	69	0.05	<0.05	0.51	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	0.57	<0.05	2.88	<0.05	<0.05	<0.05	2.42	1.99
Indeno[1,2,3-cd]pyrene	ug/g	80	0.48	0.05	<0.05	0.51	0.55	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	0.59	<0.05	6.14	< 0.05	<0.05	<0.05	3.58	3.27
Methylnaphthalene, 1+2-	ug/g	18	3.4	0.05	7.33	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	1.07	< 0.05	<0.05	<0.05	0.49	0.34
Methylnaphthalene, 1-	ug/g	9	3.4	0.05	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Methylnaphthalene, 2-	ug/g	9	3.4	0.05	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Naphthalene	ug/g	32.8	0.75	0.05	1.84	0.32	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	0.11	<0.05	0.82	<0.05	<0.05	<0.05	0.36	0.27
Phenanthrene	ug/g	172	7.8	0.05	<0.05	3.84	0.92	<0.05	<0.05	<0.05	0.11	0.08	<0.05	4.06	0.07	29.1	<0.05	0.37	<0.05	21.5	18
Pyrene	ug/g	203	78	0.05	<0.05	2.98	1.98	<0.05	<0.05	<0.05	0.17	0.16	<0.05	3.54	0.1	36.8	0.09	0.56	<0.05	23.4	21.7

Detection Limit DL exceeds criteria DL: May vary between sample locations and events

Soil, Ground Water and Sediment Standards for Uses Concentration exceeds MECP2011-S-T7-RPI-FMT
Under Part XV.1 of the Environmental Protection Act
(MECP, 2011) Table 7 SCS (Soil)
Residential/Parkland/Institutional Use with

Table 1 -	Chemistr	y Results:		Sample ID	BH221 SS1	BH222 SS1	BH223 SS1	SS1-DUP (BH22	BH224 SS2	BH228 SS1	TP8-3	TP9-2	TP10-2	AQCF12-1 (TP10-	TP10-3	TP11-2	TP12-1	TP13-1	TP14-1	TP14-2	TP15-1
ABNS, C	Ps, PAHs	In Soil		Sample Date	2022-Dec-22	2022-Dec-22	2022-Dec-22	2022-Dec-22	2022-Dec-15	2022-Dec-22	2012-Nov-27	2012-Nov-27	2012-Nov-28	2012-Nov-28	2012-Nov-28	2012-Nov-28	2012-Nov-28	2012-Nov-28	2012-Nov-28	2012-Nov-28	2012-Nov-28
Parameter	Units	Max Concentratio	MECP-2011- S-T7-RPI-	Sample Depth	0.0 - 1.5	0.0 - 1.2	0.0 - 0.6	0.0 - 0.6	0.8 - 1.4	0.0 - 0.6	1.5 - 2.8	0.4 - 2.8	1.3 - 1.5	1.3 - 1.5	1.5 - 2.5	1.4 - 1.9	0.0 - 0.5	0.0 - 1.0	0.0 - 1.1	1.1 - 2.3	0.0 - 2.5
Acids, Bases, Neutrals				Detection Limit																	
Biphenyl, 1,1-	ug/g	<5	1.1	0.05	<0.05	-	0.62	0.55	-	<0.05	-	-	-	-	-	-	-	-	-	-	-
Bis(2-chloro-1-methylethyl)eth	ug/g	<10	1.8	0.1, 0.2	<0.1	-	<0.1	<0.1	-	<0.1	-	-	<0.2	<0.2	-	-	-	-	-	-	-
Bis(2-chloroethyl)ether	ug/g	10.2	0.5	0.1, 0.3	<0.1	-	<0.1	<0.1	-	<0.1	-	-	<0.3	<0.3	-	-	-	-	-	-	-
Bis(2-ethylhexyl)phthalate	ug/g	12.3	5	0.2, 0.4	<0.2	-	<0.2	<0.2		<0.2	-	-	<0.4	<0.4	-	-	-	-	-	-	-
Chloroaniline, p-	ug/g	<10	0.53	0.1, 0.5	<0.5	-	<0.5	<0.5	-	<0.5	-	-	-	-	-	-	-	-	-	-	-
Dichlorobenzidine, 3,3-	ug/g	<10	1	0.5, 0.6	<0.5	-	<0.5	<0.5	-	<0.5	-	-	<0.6	<0.6	-	-	-	-	-	-	-
Diethyl phthalate	ug/g	<10	0.5	0.1, 0.2	<0.1	-	<0.1	<0.1	-	<0.1	-	-	<0.2	<0.2	-	-	-	-	-	-	-
Dimethylphenol, 2,4-	ug/g	12	420	0.1, 0.2	<0.2	-	<0.2	<0.2		<0.2	-	-	<0.2	<0.2	-	-	-	-	-	-	-
Dimethyl phthalate	ug/g	<10	0.5	0.1, 0.2	<0.1	-	<0.1	<0.1	-	<0.1	-	-	<0.2	<0.2	-	-	-	-	-	-	-
Dinitrophenol, 2,4-	ug/g	<10	38	0.2, 2	<2	-	<2	<2	-	<2	-	-	<0.2	<0.2	-	-	-	-	-	-	-
Dinitrotoluene, 2,4+2,6-	ug/g	<24	0.92	0.2, 0.5	<0.5	-	<0.5	<0.5		<0.5	-	-	<0.22	-	-	-	-	-	-	-	-
Phenol	ug/g	88.3	9.4	0.1, 0.5	<0.5	-	<0.5	<0.5	-	<0.5	-	-	<0.1	<0.1	-	-	-	-	-	-	-
Trichlorobenzene, 1,2,4-	ug/g	<10	1.4	0.04, 0.05	<0.05	-	<0.05	<0.05	-	<0.05	-	-	<0.04	<0.04	-	-	-	-	-	-	-
Chlorophenols																					
Chlorophenol, 2-	ug/g	<10	2	0.1, 0.2	<0.1	-	<0.1	<0.1		<0.1	-	-	<0.1	<0.1	-	-	-	-	-	-	-
Dichlorophenol, 2,4-	ug/g	<10	2.1	0.1	<0.1	-	<0.1	<0.1	-	<0.1		-	<0.1	<0.1	-	-	-	-	-	-	-
Pentachlorophenol	ug/g	<10	0.1	0.1, 0.2	<0.1	-	<0.1	<0.1	-	<0.1	-	-	<0.1	<0.1	-	-	-	-	-	-	-
Trichlorophenol, 2,4,5-	ug/g	<10	5.5	0.1	<0.1	-	<0.1	<0.1		<0.1	-		-	-	-	-	-	-	-	-	-
Trichlorophenol, 2,4,6-	ug/g	<10	4.2	0.1, 0.2	<0.1	-	<0.1	<0.1	-	<0.1	-	-	<0.1	<0.1	-	-	-	-	-	-	-
Polycyclic Aromatic Hydrocarb	ons																				
Acenaphthene	ug/g	31	58	0.05	<0.05	<0.05	9.51	9.97	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	3.8	19	5.4	1.2	3.4
Acenaphthylene	ug/g	<5	0.17	0.05	<0.05	<0.05	0.48	0.53	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.5	4.4	0.6	<0.5	<0.5
Anthracene	ug/g	69	0.74	0.05	0.11	<0.05	22.3	21.3	<0.05	<0.05	<0.05	< 0.05	<0.05	<0.05	<0.05	<0.05	8.7	45.7	12.4	4.4	8.6
Benzo[a]anthracene	ug/g	128	0.63	0.05	0.22	<0.05	36	24	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	26.4	91.1	38.5	10.9	20
Benzo[a]pyrene	ug/g	135	0.3	0.05	<0.05	<0.05	27.8	22.8	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	25.1	74.6	41.7	10.7	19.7
Benzo[b]fluoranthene	ug/g	118	0.78	0.05	0.28	<0.05	54.6	35.9	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	24.2	67.2	34.3	9.6	16.3
Benzo[g,h,i]perylene	ug/g	83	7.8	0.05	<0.05	<0.05	10.4	11.8	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	12	37.2	27.4	7.8	12.3
Benzo[k]fluoranthene	ug/g	111	0.78	0.05	0.06	<0.05	20.2	20.9	<0.05	<0.05	<0.05	< 0.05	<0.05	<0.05	<0.05	<0.05	19.3	63.4	31.6	8.5	13.6
Chrysene	ug/g	126	7.8	0.05	0.4	<0.05	38	27.9	< 0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	26.3	87.2	39.7	10.8	20.2
Dibenzo[a,h]anthracene	ug/g	40	0.1	0.05	<0.05	<0.05	1.72	2.41	<0.05	< 0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	4.8	11.7	8.4	3.4	5.3
Fluoranthene	ug/g	230	0.69	0.05	0.84	0.11	105	90.7	<0.05	0.09	< 0.05	<0.05	<0.05	<0.05	<0.05	<0.05	53.2	197	81.2	27	36.2
Fluorene	ug/g	30	69	0.05	<0.05	<0.05	13	9.53	< 0.05	<0.05	< 0.05	<0.05	<0.05	<0.05	<0.05	<0.05	3.7	26	5.2	1.5	3.3
Indeno[1,2,3-cd]pyrene	ug/g	80	0.48	0.05	<0.05	<0.05	10.9	11.8	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	11.4	40.1	24.5	7.2	11.6
Methylnaphthalene, 1+2-	ug/g	18	3.4	0.05	<0.05	<0.05	4.07	3.11	<0.05	<0.05	<0.1	<0.1	<0.1	-	<0.1	<0.1	1.5	8.3	2.8	<0.1	0.11
Methylnaphthalene, 1-	ug/g	9	3.4	0.05	-	-	-	-	-	-	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	0.7	3.3	1.4	<0.5	0.5
Methylnaphthalene, 2-	ug/g	9	3.4	0.05	-	-	-	-	1	-	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	0.8	5	1.4	<0.5	0.6
Naphthalene	ug/g	32.8	0.75	0.05	<0.05	<0.05	5.23	5.26	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	1	19.5	2.5	1.1	1
Phenanthrene	ug/g	172	7.8	0.05	0.34	<0.05	95.5	66.8	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	39.3	167	55	19.2	25.7
Pyrene	ug/g	203	78	0.05	0.85	0.09	94.7	73.3	<0.05	0.08	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	45.6	165	69.5	22.2	32.2

Detection Limit DL exceeds criteria DL: May vary between sample locations and events

Soil, Ground Water and Sediment Standards for Uses Concentration exceeds MECP2011-S-T7-RPI-FMT
Under Part XV.1 of the Environmental Protection Act
(MECP, 2011) Table 7 SCS (Soil)
Residential/Parkland/Institutional Use with

Analytical		y Results:		Sample ID	TP16-2	TP16-3	TP17-1	TP18-1	TP18-2	TP19-1	TP19-2	TP21-2	TP22-1	TP23-1	TP30-1	TP30-2	TP225a	TP227a	TP229b	TP230b	TP231b
ABNS, C	Ps, PAHs	in Soil		Sample Date	2012-Nov-28	2012-Nov-29	2012-Nov-29	2022-Dec-13	2022-Dec-14	2022-Dec-14	2022-Dec-14	2022-Dec-13									
Parameter	Units	Max Concentratio	MECP-2011- S-T7-RPI-	Sample Depth	0.5 - 1.1	1.1 - 2.1	0.0 - 1.1	0.0 - 0.7	0.7 - 1.2	0.0 - 0.5	0.5 - 0.9	0.8 - 1.1	0.0 - 1.0	0.0 - 1.8	0.8 - 1.3	1.3 - 2.0	0.1 - 1.0	0.0 - 0.9	1.0 - 2.0	1.1 - 2.2	1.2 - 2.2
Acids, Bases, Neutrals				Detection Limit																	
Biphenyl, 1,1-	ug/g	<5	1.1	0.05	-	-	-	-	-	-	-	-	-	-	-	-	<0.05	<0.05	<0.05	<0.05	<0.05
Bis(2-chloro-1-methylethyl)eth	ug/g	<10	1.8	0.1, 0.2	-	-	-	-	-	-	-	-	0.3	<0.2	-	-	<0.1	<0.1	<0.1	<0.1	<0.1
Bis(2-chloroethyl)ether	ug/g	10.2	0.5	0.1, 0.3	-	-	-	-		-	-	-	0.5	<0.3	-	-	<0.1	<0.1	<0.1	<0.1	<0.1
Bis(2-ethylhexyl)phthalate	ug/g	12.3	5	0.2, 0.4	-	-	-	-		-	-	-	<0.4	<0.4	-	-	<0.2	<0.2	<0.2	<0.2	<0.2
Chloroaniline, p-	ug/g	<10	0.53	0.1, 0.5	-	-	-	-	-	-	-	-	-	-	-	-	<0.5	<0.5	<0.5	<0.5	<0.5
Dichlorobenzidine, 3,3-	ug/g	<10	1	0.5, 0.6	-	-	-	-	-	-	-	-	<0.6	<0.6	-	-	<0.5	<0.5	<0.5	<0.5	<0.5
Diethyl phthalate	ug/g	<10	0.5	0.1, 0.2	-	-	-	-		-	-	-	<0.2	<0.2	-	-	<0.1	<0.1	<0.1	<0.1	<0.1
Dimethylphenol, 2,4-	ug/g	12	420	0.1, 0.2	-	-	-	-	-	-	-	-	<0.2	1.7	-	-	<0.2	<0.2	<0.2	<0.2	<0.2
Dimethyl phthalate	ug/g	<10	0.5	0.1, 0.2	-	-	-	-	-	-	-	-	<0.2	<0.2	-	-	<0.1	<0.1	<0.1	<0.1	<0.1
Dinitrophenol, 2,4-	ug/g	<10	38	0.2, 2	-	-	-	-	-	-	-	-	<0.2	1	-	-	<2	<2	<2	<2	<2
Dinitrotoluene, 2,4+2,6-	ug/g	<24	0.92	0.2, 0.5	-	-	-	-		-	-	-	<0.22	<0.22	-	-	<0.5	<0.5	<0.5	<0.5	<0.5
Phenol	ug/g	88.3	9.4	0.1, 0.5	-	-	-	-	-	-	-	-	0.5	<0.1	-	-	<0.5	<0.5	<0.5	<0.5	<0.5
Trichlorobenzene, 1,2,4-	ug/g	<10	1.4	0.04, 0.05	-	-	-	-	-	-	-	-	<0.04	<0.04	-	-	< 0.05	<0.05	< 0.05	<0.05	<0.05
Chlorophenols																					
Chlorophenol, 2-	ug/g	<10	2	0.1, 0.2	-	-	-	-		-	-	-	<0.1	<0.1	-	-	<0.1	<0.1	<0.1	<0.1	<0.1
Dichlorophenol, 2,4-	ug/g	<10	2.1	0.1	-	-	-	-	-	-	-	-	<0.1	<0.1	-	-	<0.1	<0.1	<0.1	<0.1	<0.1
Pentachlorophenol	ug/g	<10	0.1	0.1, 0.2	-	-	-	-		-	-	-	<0.1	<0.1	-	-	<0.1	<0.1	<0.1	<0.1	<0.1
Trichlorophenol, 2,4,5-	ug/g	<10	5.5	0.1	-	-	-	-	-	-	-	-	-	-	-	-	<0.1	<0.1	<0.1	<0.1	<0.1
Trichlorophenol, 2,4,6-	ug/g	<10	4.2	0.1, 0.2	-	-	-	-	-	-	-	-	<0.1	<0.1	-	-	<0.1	<0.1	<0.1	<0.1	<0.1
Polycyclic Aromatic Hydrocarb	ons																				
Acenaphthene	ug/g	31	58	0.05	3.5	<0.05	0.38	3.2	0.17	31	<0.05	<0.05	<0.05	<0.05	9.9	<1	<0.05	<0.05	<0.05	<0.05	<0.05
Acenaphthylene	ug/g	<5	0.17	0.05	1.8	<0.05	0.14	0.6	<0.05	2	<0.05	<0.05	<0.05	<0.05	1.1	<1	<0.05	<0.05	<0.05	<0.05	<0.05
Anthracene	ug/g	69	0.74	0.05	7.9	0.1	0.92	6.9	0.35	69	0.07	< 0.05	0.05	0.41	36.6	5	< 0.05	<0.05	< 0.05	<0.05	<0.05
Benzo[a]anthracene	ug/g	128	0.63	0.05	28.8	0.33	2.3	14.8	0.65	128	0.13	0.09	0.09	1.67	74	9	<0.05	<0.05	<0.05	<0.05	<0.05
Benzo[a]pyrene	ug/g	135	0.3	0.05	31.2	0.35	2.48	15	0.62	135	0.14	0.12	0.14	1.82	75.2	9	<0.05	<0.05	<0.05	<0.05	<0.05
Benzo[b]fluoranthene	ug/g	118	0.78	0.05	30	0.31	2.63	12.9	0.56	118	0.12	0.12	0.12	1.63	63.4	8	<0.05	<0.05	<0.05	<0.05	<0.05
Benzo[g,h,i]perylene	ug/g	83	7.8	0.05	19.4	0.25	1.78	9.7	0.45	83	0.09	0.1	0.1	1.19	47.3	6	<0.05	<0.05	<0.05	<0.05	<0.05
Benzo[k]fluoranthene	ug/g	111	0.78	0.05	23.3	0.28	1.35	12	0.5	111	0.12	0.1	0.11	0.77	56.9	7	<0.05	<0.05	<0.05	<0.05	<0.05
Chrysene	ug/g	126	7.8	0.05	28.3	0.34	2.54	14.7	0.66	126	0.12	0.12	0.1	1.79	74.2	9	<0.05	<0.05	<0.05	<0.05	<0.05
Dibenzo[a,h]anthracene	ug/g	40	0.1	0.05	5.8	0.1	0.74	3.5	0.11	40	<0.05	<0.05	<0.05	0.27	12.1	2	<0.05	<0.05	<0.05	<0.05	<0.05
Fluoranthene	ug/g	230	0.69	0.05	60.9	0.78	4.76	43	1.37	222	0.36	0.21	0.25	4.16	230	21	<0.05	<0.05	<0.05	<0.05	<0.05
Fluorene	ug/g	30	69	0.05	4.4	<0.05	0.44	3.5	0.18	30	<0.05	<0.05	<0.05	0.07	11.3	<1	<0.05	<0.05	<0.05	<0.05	<0.05
Indeno[1,2,3-cd]pyrene	ug/g	80	0.48	0.05	13.6	0.22	1.69	9	0.43	80	0.08	0.08	0.09	0.85	39.8	5	<0.05	<0.05	<0.05	<0.05	<0.05
Methylnaphthalene, 1+2-	ug/g	18	3.4	0.05	2.6	<0.1	0.26	2.6	0.11	18	<0.1	0.19	0.21	0.77	5.8	<2	<0.05	<0.05	<0.05	<0.05	<0.05
Methylnaphthalene, 1-	ug/g	9	3.4	0.05	1.3	<0.05	0.11	1.3	<0.05	9	<0.05	0.08	0.12	0.36	2.9	<1	-	-	-	-	-
Methylnaphthalene, 2-	ug/g	9	3.4	0.05	1.3	<0.05	0.15	1.3	0.06	9	<0.05	0.11	0.09	0.41	2.9	<1	-	-	-	-	-
Naphthalene	ug/g	32.8	0.75	0.05	3.3	<0.05	0.8	2.8	0.14	18	0.05	0.08	0.14	0.31	4.8	<1	<0.05	<0.05	<0.05	<0.05	<0.05
Phenanthrene	ug/g	172	7.8	0.05	41.3	0.51	3.6	36.7	1.23	172	0.26	0.1	0.16	2.47	154	10	<0.05	<0.05	<0.05	<0.05	<0.05
Pyrene	ug/g	203	78	0.05	51.7	0.66	4.1	32.3	1.18	198	0.29	0.18	0.22	3.34	203	18	<0.05	<0.05	<0.05	<0.05	<0.05

Detection Limit DL exceeds criteria DL: May vary between sample locations and events

Soil, Ground Water and Sediment Standards for Uses Concentration exceeds MECP2011-S-T7-RPI-FMT
Under Part XV.1 of the Environmental Protection Act
(MECP, 2011) Table 7 SCS (Soil)
Residential/Parkland/Institutional Use with

Table 1 - Analytical (y Results:		Sample ID	231b-dup (TP23:	TP233a	TP236a
ADIVS, C	rs, raiis	111 3011		Sample Date	2022-Dec-13	2022-Dec-14	2022-Dec-13
Parameter	Units	Max Concentratio	MECP-2011- S-T7-RPI-	Sample Depth	1.2 - 2.2	0.0 - 1.1	0.1 - 1.1
Acids, Bases, Neutrals				Detection Limit			
Biphenyl, 1,1-	ug/g	<5	1.1	0.05	<0.05	<0.05	<0.05
Bis(2-chloro-1-methylethyl)eth	ug/g	<10	1.8	0.1, 0.2	<0.1	<0.1	<0.1
Bis(2-chloroethyl)ether	ug/g	10.2	0.5	0.1, 0.3	<0.1	<0.1	<0.1
Bis(2-ethylhexyl)phthalate	ug/g	12.3	5	0.2, 0.4	<0.2	<0.2	<0.2
Chloroaniline, p-	ug/g	<10	0.53	0.1, 0.5	<0.5	<0.5	<0.5
Dichlorobenzidine, 3,3-	ug/g	<10	1	0.5, 0.6	<0.5	<0.5	<0.5
Diethyl phthalate	ug/g	<10	0.5	0.1, 0.2	<0.1	<0.1	<0.1
Dimethylphenol, 2,4-	ug/g	12	420	0.1, 0.2	<0.2	<0.2	<0.2
Dimethyl phthalate	ug/g	<10	0.5	0.1, 0.2	<0.1	<0.1	<0.1
Dinitrophenol, 2,4-	ug/g	<10	38	0.2, 2	<2	<2	<2
Dinitrotoluene, 2,4+2,6-	ug/g	<24	0.92	0.2, 0.5	<0.5	<0.5	<0.5
Phenol	ug/g	88.3	9.4	0.1, 0.5	<0.5	<0.5	<0.5
Trichlorobenzene, 1,2,4-	ug/g	<10	1.4	0.04, 0.05	<0.05	<0.05	<0.05
Chlorophenols							
Chlorophenol, 2-	ug/g	<10	2	0.1, 0.2	<0.1	<0.1	<0.1
Dichlorophenol, 2,4-	ug/g	<10	2.1	0.1	<0.1	<0.1	<0.1
Pentachlorophenol	ug/g	<10	0.1	0.1, 0.2	<0.1	<0.1	<0.1
Trichlorophenol, 2,4,5-	ug/g	<10	5.5	0.1	<0.1	<0.1	<0.1
Trichlorophenol, 2,4,6-	ug/g	<10	4.2	0.1, 0.2	<0.1	<0.1	<0.1
Polycyclic Aromatic Hydrocarb	ons						
Acenaphthene	ug/g	31	58	0.05	<0.05	<0.05	<0.05
Acenaphthylene	ug/g	<5	0.17	0.05	<0.05	<0.05	<0.05
Anthracene	ug/g	69	0.74	0.05	<0.05	<0.05	<0.05
Benzo[a]anthracene	ug/g	128	0.63	0.05	<0.05	<0.05	<0.05
Benzo[a]pyrene	ug/g	135	0.3	0.05	<0.05	<0.05	<0.05
Benzo[b]fluoranthene	ug/g	118	0.78	0.05	<0.05	<0.05	<0.05
Benzo[g,h,i]perylene	ug/g	83	7.8	0.05	<0.05	<0.05	<0.05
Benzo[k]fluoranthene	ug/g	111	0.78	0.05	<0.05	<0.05	<0.05
Chrysene	ug/g	126	7.8	0.05	<0.05	<0.05	<0.05
Dibenzo[a,h]anthracene	ug/g	40	0.1	0.05	<0.05	<0.05	<0.05
Fluoranthene	ug/g	230	0.69	0.05	<0.05	<0.05	<0.05
Fluorene	ug/g	30	69	0.05	<0.05	<0.05	<0.05
Indeno[1,2,3-cd]pyrene	ug/g	80	0.48	0.05	<0.05	<0.05	<0.05
Methylnaphthalene, 1+2-	ug/g	18	3.4	0.05	<0.05	<0.05	<0.05
Methylnaphthalene, 1-	ug/g	9	3.4	0.05	-	-	-
Methylnaphthalene, 2-	ug/g	9	3.4	0.05	-	-	
Naphthalene	ug/g	32.8	0.75	0.05	<0.05	<0.05	<0.05
Phenanthrene -	ug/g	172	7.8	0.05	<0.05	<0.05	<0.05
Pyrene	ug/g	203	78	0.05	<0.05	<0.05	<0.05

Detection Limit

DL: May vary between sample locations and events

DL exceeds criteria

Soil, Ground Water and Sediment Standards for Uses Concentration exceeds MECP2011-S-T7-RPI-FMT
Under Part XV.1 of the Environmental Protection Act
(MECP, 2011) Table 7 SCS (Soil)
Residential/Parkland/Institutional Use with

Analytical	- Osprey Chemistr , Metals i	y Results:		Sample ID																	3BH/MW 152-SS4
	1			Sample Date	2011-Jun-24	2011-Jun-24	2011-Jun-24	2011-Jun-24	2011-Jun-24	2011-Jun-24	2011-Jul-11	2011-Jul-11	2011-Jul-22	2011-Jul-25	2011-Jul-25	2011-Jul-28	2011-Jul-28	2011-Jul-28	2011-Jul-28	2011-Jul-29	2011-Jul-29
Parameter	Units	Max Concentratio	MECP-2011- S-T7-RPI-	Sample Depth	0.0 - 0.6	0.0 - 0.6	0.6 - 1.2	0.6 - 1.2	0.0 - 0.6	0.0 - 0.6	0.6 - 1.2	1.2 - 1.8	1.9 - 2.5	1.2 - 1.8	1.2 - 1.8	1.9 - 2.5	1.2 - 1.8	0.9 - 1.5	0.9 - 1.5	1.2 - 1.5	1.8 - 2.2
Hydride-Forming Metals				Detection Limit																	
Antimony, total	ug/g	7.4	7.5	0.8	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Arsenic, total	ug/g	202	18	0.1, 1	3	8	51	39	10	5	4	6	<1	<1	1	1	1	1	1	<1	1
Selenium, total	ug/g	5.5	2.4	0.8	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Metals																					
Barium, total	ug/g	1010	390	0.1, 1, 2	90	110	227	242	114	73	72	78	26	41	41	17	15	19	18	34	75
Beryllium, total	ug/g	1.5	5	0.4, 0.5, 1	<1	<1	1	1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
Boron, total	ug/g	68	120	5	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Cadmium, total	ug/g	3.5	1.2	0.1, 0.5	0.6	0.6	0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Chromium, total	ug/g	85	160	0.2, 1, 5	21	25	28	33	25	14	16	22	8	11	14	9	9	7	6	11	22
Cobalt, total	ug/g	17	22	0.5, 1, 5	6	6	7	7	10	7	5	6	3	3	3	2	3	3	2	4	6
Copper, total	ug/g	267	180	0.1, 1	20	93	31	32	75	16	18	23	4	5	7	5	3	4	3	6	14
Lead, total	ug/g	287	120	1, 50	26	43	18	16	24	15	24	25	6	4	5	5	5	4	4	5	4
Molybdenum, total	ug/g	153	6.9	0.5, 1	119	14	73	42	20	6	3	4	<1	<1	<1	<1	<1	<1	<1	<1	<1
Nickel, total	ug/g	632	130	1, 50	18	92	55	48	22	16	15	18	7	9	12	7	8	7	6	10	16
Silver, total	ug/g	1.2	25	0.2, 0.5	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Thallium, total	ug/g	2.8	1	0.5, 1, 20	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
Uranium, total	ug/g	0.87	23	0.5	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Vanadium, total	ug/g	2220	86	0.4, 1, 2	28	420	851	799	67	27	18	22	6	14	16	7	11	6	5	12	36
Zinc, total	ug/g	935	340	0.005, 2, 5	50	107	49	45	101	37	102	148	7	10	12	7	8	5	5	10	25

DL: May vary between sample locations and events **Detection Limit**

DL exceeds criteria

Soil, Ground Water and Sediment Standards for Uses

Concentration exceeds MECPUnder Part XV.1 of the Environmental Protection Act
(MECP, 2011) Table 7 SCS (Soil)

2011-S-T7-RPI-FMT

Residential/Parkland/Institutional Use with

Analytica	: - Osprey Chemistr	y Results:		Sample ID	BH3-SS1	BH5-SS2	BH13-SS4	BH16-SS2	BH17-SS3	BH18-SS4	BH31-SS4	BH73-SS1	BH74-SS1	BH75-SS1	BH77-SS4	BH85-SS3	BH86-SS5	BH87-SS3	37-SS3.1 (BH87-S	BH88-SS2	BH89-SS1
HFIVE	, ivietais i			Sample Date	2011-Jun-20	2011-Jun-20	2011-Jun-22	2011-Jun-22	2011-Jun-22	2011-Jun-22	2011-Jun-27	2011-Jul-08	2011-Jul-08	2011-Jul-08	2011-Jul-08	2011-Jul-13	2011-Jul-13	2011-Jul-13	2011-Jul-13	2011-Jul-13	2011-Jul-13
Parameter	Units	Max Concentratio	MECP-2011- S-T7-RPI-	Sample Depth	0.0 - 0.1	0.6 - 0.9	1.9 - 2.4	0.6 - 1.2	1.2 - 1.9	1.9 - 2.5	1.8 - 2.3	0.0 - 0.3	0.0 - 0.2	0.0 - 0.3	2.0 - 2.6	1.2 - 1.9	2.5 - 3.0	1.2 - 1.9	1.2 - 1.9	0.6 - 0.8	0.4 - 1.0
Hydride-Forming Metals				Detection Limit																	
Antimony, total	ug/g	7.4	7.5	0.8	-	-	-	-	-	-	-	ı	-	-	-	1	-	1	-	ı	-
Arsenic, total	ug/g	202	18	0.1, 1	3	2	1	3	2	2	<1	10	6	3	2	1	1	2	2	6	9
Selenium, total	ug/g	5.5	2.4	0.8	-	-	-	-	-	-	-	ı	-	-	-	1	-	1	-	ı	-
Metals																					
Barium, total	ug/g	1010	390	0.1, 1, 2	125	37	28	96	95	68	36	83	111	83	87	58	33	124	142	58	73
Beryllium, total	ug/g	1.5	5	0.4, 0.5, 1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
Boron, total	ug/g	68	120	5	-	-	-	-	-	-	-	1	-	-	-	-	-		-	1	-
Cadmium, total	ug/g	3.5	1.2	0.1, 0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Chromium, total	ug/g	85	160	0.2, 1, 5	35	15	8	19	19	12	20	19	30	17	16	14	13	25	28	17	16
Cobalt, total	ug/g	17	22	0.5, 1, 5	11	4	2	6	6	4	3	13	10	6	4	4	3	8	8	7	6
Copper, total	ug/g	267	180	0.1, 1	12	7	4	13	15	9	5	33	13	10	12	7	4	16	17	15	16
Lead, total	ug/g	287	120	1,50	27	8	6	16	16	9	6	26	16	14	13	6	6	12	12	19	37
Molybdenum, total	ug/g	153	6.9	0.5, 1	<1	<1	<1	<1	<1	<1	<1	6	<1	1	<1	<1	<1	<1	<1	2	2
Nickel, total	ug/g	632	130	1, 50	18	9	8	19	17	11	15	24	23	14	13	15	12	21	24	16	15
Silver, total	ug/g	1.2	25	0.2, 0.5	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Thallium, total	ug/g	2.8	1	0.5, 1, 20	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
Uranium, total	ug/g	0.87	23	0.5	-	-	-	-	-	-	-	-	-		-	-	-	-	-	-	-
Vanadium, total	ug/g	2220	86	0.4, 1, 2	33	15	6	48	21	18	11	46	36	21	15	13	8	32	34	19	20
Zinc, total	ug/g	935	340	0.005, 2, 5	46	14	6	41	30	20	10	49	48	81	21	15	8	42	45	34	60

DL: May vary between sample locations and events **Detection Limit**

DL exceeds criteria

Soil, Ground Water and Sediment Standards for Uses

Concentration exceeds MECPUnder Part XV.1 of the Environmental Protection Act
(MECP, 2011) Table 7 SCS (Soil) 2011-S-T7-RPI-FMT

Residential/Parkland/Institutional Use with

Analytica	: - Osprey Chemistr	y Results:		Sample ID	BH89-SS2	BH90-SS1	BH91-SS1	BH91-SS2	BH91-SS3	BH92-SS1	BH92-SS2	BH93-SS1	BH93-SS2	BH94-SS1	BH94-SS2	BH94-SS3	BH95-SS1	BH96-SS1	BH96-SS2	BH97-SS1	BH97-SS2
HFIVI	, ivietais i	11 3011		Sample Date	2011-Jul-13	2011-Jul-13	2011-Jul-14	2011-Jul-15	2011-Jul-15	2011-Jul-15	2011-Jul-15	2011-Jul-15									
Parameter	Units	Max Concentratio	MECP-2011- S-T7-RPI-	Sample Depth	1.0 - 1.5	0.0 - 0.6	0.0 - 0.6	0.6 - 1.2	1.2 - 1.9	0.0 - 0.6	0.6 - 1.1	0.0 - 0.6	0.6 - 1.1	0.0 - 0.6	0.6 - 1.3	1.3 - 1.9	0.0 - 0.6	0.0 - 0.6	0.6 - 0.9	0.0 - 0.6	0.6 - 1.2
Hydride-Forming Metals				Detection Limit																	
Antimony, total	ug/g	7.4	7.5	0.8	-	-	-	-	-	-	1	-	-	-	-	-	-	i	-	i	-
Arsenic, total	ug/g	202	18	0.1, 1	9	45	10	9	6	38	33	18	14	28	81	93	5	5	6	2	2
Selenium, total	ug/g	5.5	2.4	0.8	-	-	-	-	-	-	1	-	-	-	-	-	-	i	-	i	-
Metals																					
Barium, total	ug/g	1010	390	0.1, 1, 2	84	99	109	117	88	421	201	73	92	83	68	34	78	217	245	56	54
Beryllium, total	ug/g	1.5	5	0.4, 0.5, 1	<1	<1	<1	<1	<1	1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
Boron, total	ug/g	68	120	5	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	-
Cadmium, total	ug/g	3.5	1.2	0.1, 0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Chromium, total	ug/g	85	160	0.2, 1, 5	17	24	22	45	22	29	41	12	21	25	18	14	18	36	48	10	18
Cobalt, total	ug/g	17	22	0.5, 1, 5	6	7	8	8	6	7	11	4	5	12	13	4	5	15	17	3	5
Copper, total	ug/g	267	180	0.1, 1	16	32	18	20	16	34	32	10	12	39	41	26	14	36	37	12	9
Lead, total	ug/g	287	120	1,50	47	38	16	17	12	159	37	7	17	149	41	15	7	39	36	11	10
Molybdenum, total	ug/g	153	6.9	0.5, 1	3	2	12	7	8	42	18	109	79	7	4	<1	1	48	38	13	8
Nickel, total	ug/g	632	130	1,50	17	20	111	163	61	60	632	10	22	31	36	16	14	123	99	10	14
Silver, total	ug/g	1.2	25	0.2, 0.5	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Thallium, total	ug/g	2.8	1	0.5, 1, 20	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
Uranium, total	ug/g	0.87	23	0.5	-	-	-	-	-	-	- /	-	-	-	-	-	-	-	-	-	
Vanadium, total	ug/g	2220	86	0.4, 1, 2	17	39	741	871	402	2020	2220	29	102	84	45	39	30	465	375	14	24
Zinc, total	ug/g	935	340	0.005, 2, 5	89	41	29	38	27	41	16	21	39	129	79	40	29	74	101	33	32

DL: May vary between sample locations and events **Detection Limit**

DL exceeds criteria

Soil, Ground Water and Sediment Standards for Uses Concentration exceeds MECPUnder Part XV.1 of the Environmental Protection Act
(MECP, 2011) Table 7 SCS (Soil)

2011-S-T7-RPI-FMT

Residential/Parkland/Institutional Use with

Analytica	: - Osprey Chemistr	y Results:		Sample ID	BH98-SS1	BH98-SS2	BH100-SS1	BH101-SS3	BH102-SS2	BH103-SS2	BH104-SS2	04-SS2.1 (BH104	BH105-SS2	BH106-SS2	BH107-SS1	BH108-SS2	BH109-SS1	BH111-SS1	BH112-SS1	BH113-SS1	BH113-SS2
HFIVE	, ivietais i			Sample Date	2011-Jul-15	2011-Jul-15	2011-Jul-15	2011-Jul-18	2011-Jul-18	2011-Jul-18	2011-Jul-18	2011-Jul-18	2011-Jul-18	2011-Jul-18	2011-Jul-18	2011-Jul-18	2011-Jul-18	2011-Jul-19	2011-Jul-19	2011-Jul-20	2011-Jul-20
Parameter	Units	Max Concentratio	MECP-2011- S-T7-RPI-	Sample Depth	0.0 - 0.6	0.6 - 0.8	0.0 - 0.6	1.5 - 2.2	0.9 - 1.5	0.9 - 1.1	0.8 - 1.4	0.8 - 1.4	0.8 - 1.4	0.9 - 1.4	0.0 - 0.6	0.6 - 1.2	0.0 - 0.6	0.0 - 0.6	0.0 - 0.6	0.0 - 0.6	0.6 - 0.8
Hydride-Forming Metals				Detection Limit																	
Antimony, total	ug/g	7.4	7.5	0.8	-	-	-	-	-	-	-	-	-	-	-	-	-	i	-	ı	-
Arsenic, total	ug/g	202	18	0.1, 1	2	5	9	2	1	1	2	2	2	1	<1	<1	3	3	3	43	12
Selenium, total	ug/g	5.5	2.4	0.8	-	-	-	-	-	-	-	-	-	-	-	-	-	ı	-	ı	-
Metals																					
Barium, total	ug/g	1010	390	0.1, 1, 2	50	100	67	63	53	34	67	66	78	51	137	142	163	86	107	286	130
Beryllium, total	ug/g	1.5	5	0.4, 0.5, 1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
Boron, total	ug/g	68	120	5	-	-	-	-	-	-	-	-	-	-	-	-	-		-	1	-
Cadmium, total	ug/g	3.5	1.2	0.1, 0.5	<0.5	0.6	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	2	<0.5
Chromium, total	ug/g	85	160	0.2, 1, 5	85	73	14	13	10	9	15	13	17	14	6	9	15	17	24	45	39
Cobalt, total	ug/g	17	22	0.5, 1, 5	4	5	6	4	2	3	5	5	5	4	2	3	5	5	7	10	9
Copper, total	ug/g	267	180	0.1, 1	16	51	65	12	7	6	6	6	10	8	4	6	15	14	20	70	30
Lead, total	ug/g	287	120	1, 50	17	41	36	60	4	6	6	6	7	16	14	31	21	15	22	287	60
Molybdenum, total	ug/g	153	6.9	0.5, 1	24	81	2	<1	<1	<1	<1	<1	<1	<1	<1	<1	1	1	2	29	17
Nickel, total	ug/g	632	130	1, 50	62	40	15	14	8	9	12	11	16	12	7	8	14	16	18	33	34
Silver, total	ug/g	1.2	25	0.2, 0.5	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	0.3	<0.2
Thallium, total	ug/g	2.8	1	0.5, 1, 20	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
Uranium, total	ug/g	0.87	23	0.5	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	
Vanadium, total	ug/g	2220	86	0.4, 1, 2	10	14	29	15	11	13	20	17	20	15	4	7	18	21	26	29	37
Zinc, total	ug/g	935	340	0.005, 2, 5	50	79	38	20	10	14	17	16	23	18	33	32	47	33	65	138	62

DL: May vary between sample locations and events **Detection Limit**

DL exceeds criteria

Soil, Ground Water and Sediment Standards for Uses Concentration exceeds MECPUnder Part XV.1 of the Environmental Protection Act
(MECP, 2011) Table 7 SCS (Soil)

2011-S-T7-RPI-FMT

Residential/Parkland/Institutional Use with

Analytical	- Osprey Chemistr	y Results:		Sample ID	BH114-SS2	BH116-SS1	L6-SS1.1 (BH116	BH117-SS1	BH118-SS2	BH119-SS4	BH120-SS2	BH120-SS3	BH120-SS4	BH122-SS2	22-SS2.1 (BH122	BH123-SS2	BH124-SS3	BH125-SS5	BH126-SS2	BH126-SS3	BH126-SS4
TIFIVIS	, ivictais i	11 3011		Sample Date	2011-Jul-20	2011-Jul-20	2011-Jul-20	2011-Jul-20	2011-Jul-21	2011-Jul-21	2011-Jul-22	2011-Jul-22	2011-Jul-22	2011-Jul-22	2011-Jul-22	2011-Jul-22	2011-Jul-22	2011-Jul-22	2011-Jul-25	2011-Jul-25	2011-Jul-25
Parameter	Units	Max Concentratio	MECP-2011- S-T7-RPI-	Sample Depth	0.6 - 1.1	0.0 - 0.8	0.0 - 0.8	0.0 - 0.6	0.6 - 1.1	1.8 - 2.5	0.6 - 1.3	1.3 - 1.9	1.9 - 2.5	1.3 - 1.9	1.3 - 1.9	0.6 - 1.3	1.2 - 1.9	2.5 - 3.0	0.6 - 1.2	1.2 - 1.9	1.9 - 2.5
Hydride-Forming Metals				Detection Limit																	
Antimony, total	ug/g	7.4	7.5	0.8	-	-	-	-	-	-	1	-	-	-	-	-	-	i	-	-	-
Arsenic, total	ug/g	202	18	0.1, 1	4	4	3	3	2	1	2	3	2	2	1	<1	1	<1	4	5	2
Selenium, total	ug/g	5.5	2.4	0.8	-	-	-	-	-	-	1	-	-	-	-	-	-	i	-	-	-
Metals																					
Barium, total	ug/g	1010	390	0.1, 1, 2	64	147	150	162	51	87	64	240	138	42	39	30	76	204	113	141	75
Beryllium, total	ug/g	1.5	5	0.4, 0.5, 1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
Boron, total	ug/g	68	120	5	-	-	-	-	-	-	1	-	-	-	-	-	-	-	-	-	-
Cadmium, total	ug/g	3.5	1.2	0.1, 0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Chromium, total	ug/g	85	160	0.2, 1, 5	16	22	24	30	12	19	14	38	26	9	9	10	19	25	20	27	21
Cobalt, total	ug/g	17	22	0.5, 1, 5	5	7	8	10	4	6	4	13	9	4	4	3	6	8	5	6	6
Copper, total	ug/g	267	180	0.1, 1	11	19	18	20	8	9	9	20	18	8	10	7	10	16	34	30	15
Lead, total	ug/g	287	120	1,50	20	18	12	14	7	6	11	9	5	6	5	3	4	4	50	157	5
Molybdenum, total	ug/g	153	6.9	0.5, 1	2	19	12	<1	<1	<1	1	<1	<1	1	<1	<1	<1	<1	2	2	<1
Nickel, total	ug/g	632	130	1,50	14	20	21	20	11	17	11	29	23	11	10	9	14	20	15	19	16
Silver, total	ug/g	1.2	25	0.2, 0.5	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Thallium, total	ug/g	2.8	1	0.5, 1, 20	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
Uranium, total	ug/g	0.87	23	0.5	-	-	-		-	-	-	-	-	-	-	-	-	-	-		-
Vanadium, total	ug/g	2220	86	0.4, 1, 2	17	27	29	40	15	20	17	47	40	12	11	19	28	35	21	24	34
Zinc, total	ug/g	935	340	0.005, 2, 5	22	44	43	58	18	20	25	60	40	14	10	10	21	36	88	262	27

DL: May vary between sample locations and events **Detection Limit**

DL exceeds criteria

Soil, Ground Water and Sediment Standards for Uses Concentration exceeds MECP2011-S-T7-RPI-FMT
Under Part XV.1 of the Environmental Protection Act
(MECP, 2011) Table 7 SCS (Soil)
Residential/Parkland/Institutional Use with

Analytical	- Osprey Chemistr	y Results:		Sample ID	BH127-SS3	BH128-SS1	BH128R SS2	BH129-SS3	BH131-SS2	BH133-SS2	BH133-SS4	BH134-SS1	BH134-SS2	BH140-SS2	BH141-SS2	41-SS2.1 (BH141	BH142-SS3	BH143-SS3	BH144-SS3	BH145-SS3	BH147-SS3
HFIVIS	, ivietais i	11 3011		Sample Date	2011-Jul-25	2011-Jul-25	2022-Dec-22	2011-Jul-25	2011-Jul-26	2011-Jul-26	2011-Jul-26	2011-Jul-26	2011-Jul-26	2011-Jul-27	2011-Jul-27	2011-Jul-27	2011-Jul-27	2011-Jul-27	2011-Jul-27	2011-Jul-28	2011-Jul-28
Parameter	Units	Max Concentratio	MECP-2011- S-T7-RPI-	Sample Depth	1.3 - 1.9	0.0 - 0.6	1.5 - 3.0	1.2 - 1.9	0.6 - 1.2	0.6 - 1.2	1.9 - 2.1	0.0 - 0.6	0.6 - 1.2	0.6 - 1.2	0.6 - 1.2	0.6 - 1.2	1.2 - 1.9	1.2 - 1.8	1.2 - 1.8	1.2 - 1.9	1.4 - 1.9
Hydride-Forming Metals				Detection Limit																	
Antimony, total	ug/g	7.4	7.5	0.8	-	-	<0.8	-	-	-	-	-	-	-	1	-	-	-	-	-	-
Arsenic, total	ug/g	202	18	0.1, 1	1	2	2	2	3	8	<1	5	6	1	2	1	1	1	2	2	1
Selenium, total	ug/g	5.5	2.4	0.8	-	-	<0.8	ı	ı	-	1	-	-	-	ı	-	-	-	-	-	-
Metals																					
Barium, total	ug/g	1010	390	0.1, 1, 2	54	113	37.2	135	46	252	27	881	1010	30	27	31	19	29	32	40	17
Beryllium, total	ug/g	1.5	5	0.4, 0.5, 1	<1	<1	<0.4	<1	<1	<1	<0.5	<1	<0.5	<1	<1	<1	<1	<1	<1	<1	<1
Boron, total	ug/g	68	120	5	-	-	10	-	1	-	1	-	-	-	1	-	-	-	-	-	-
Cadmium, total	ug/g	3.5	1.2	0.1, 0.5	<0.5	<0.5	<0.5	<0.5	<0.5	0.8	<0.5	1.1	3.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Chromium, total	ug/g	85	160	0.2, 1, 5	13	23	17	16	48	42	<5	54	34	9	9	9	5	8	9	12	10
Cobalt, total	ug/g	17	22	0.5, 1, 5	4	6	3.5	4	16	8	2	9	9	3	3	4	2	3	3	4	3
Copper, total	ug/g	267	180	0.1, 1	9	14	3.6	10	22	267	<5	257	225	7	4	5	4	5	5	9	4
Lead, total	ug/g	287	120	1,50	6	13	6	8	3	122	6	149	190	3	5	6	4	5	5	7	5
Molybdenum, total	ug/g	153	6.9	0.5, 1	<1	<1	<0.5	<1	<1	153	3	85	87	<1	<1	<1	<1	<1	<1	10	<1
Nickel, total	ug/g	632	130	1,50	11	17	10	12	38	37	<5	71	49	9	9	10	6	9	9	10	8
Silver, total	ug/g	1.2	25	0.2, 0.5	<0.2	<0.2	<0.5	<0.2	<0.2	1.2	<0.3	1.1	0.9	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Thallium, total	ug/g	2.8	1	0.5, 1, 20	<1	<1	<0.5	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
Uranium, total	ug/g	0.87	23	0.5	-	-	<0.5	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Vanadium, total	ug/g	2220	86	0.4, 1, 2	20	26	7.7	20	28	26	<10	21	22	18	7	8	6	8	8	12	8
Zinc, total	ug/g	935	340	0.005, 2, 5	22	37	7	20	55	562	<20	935	883	10	6	8	5	9	13	16	12

DL: May vary between sample locations and events **Detection Limit**

DL exceeds criteria

Soil, Ground Water and Sediment Standards for Uses Concentration exceeds MECP2011-S-T7-RPI-FMT
Under Part XV.1 of the Environmental Protection Act
(MECP, 2011) Table 7 SCS (Soil)
Residential/Parkland/Institutional Use with

Analytica	: - Osprey Chemistr	y Results:		Sample ID	BH150-SS3	BH155-SS3	BH201 SS3	BH202 SS2	2 SS2-Dup (BH20	BH202 SS4	BH203 SS3	BH204 SS1	BH205 SS1	BH207 SS1	BH208 SS1	BH208 SS2	BH209 SS1	BH209 SS2	BH210 SS2	BH211 SS1	BH211 SS3
HFIVE	s, ivietais i	11 3011		Sample Date	2011-Jul-28	2001-Aug-02	2022-Dec-23	2022-Dec-22	2022-Dec-22	2022-Dec-22	2022-Dec-22	2022-Dec-22	2022-Dec-22	2022-Dec-22	2022-Dec-19	2022-Dec-19	2022-Dec-19	2022-Dec-19	2022-Dec-19	2022-Dec-15	2022-Dec-15
Parameter	Units	Max Concentratio	MECP-2011- S-T7-RPI-	Sample Depth	1.2 - 1.8	1.2 - 1.7	1.5 - 2.1	0.8 - 1.4	0.8 - 1.4	2.3 - 2.9	1.5 - 2.1	0.0 - 0.6	0.0 - 0.6	0.0 - 0.6	0.0 - 0.6	0.8 - 1.4	0.0 - 0.6	0.8 - 1.4	0.8 - 1.4	0.0 - 0.6	1.5 - 2.1
Hydride-Forming Metals				Detection Limit																	
Antimony, total	ug/g	7.4	7.5	0.8	-	-	<0.8	<0.8	<0.8	<0.8	<0.8	<0.8	<0.8	7.4	<0.8	<0.8	1	<0.8	<0.8	<0.8	<0.8
Arsenic, total	ug/g	202	18	0.1, 1	1	<1	2	2	2	2	3	2	3	7	2	2	202	63	3	5	2
Selenium, total	ug/g	5.5	2.4	0.8	-	-	<0.8	<0.8	<0.8	<0.8	0.9	<0.8	<0.8	<0.8	<0.8	<0.8	5.5	2.1	<0.8	<0.8	<0.8
Metals																					
Barium, total	ug/g	1010	390	0.1, 1, 2	17	15	94.3	35.5	35.5	35.1	29.4	20.3	21.5	110	42.2	38.3	272	199	39.9	46.1	53.1
Beryllium, total	ug/g	1.5	5	0.4, 0.5, 1	<1	<1	<0.4	<0.4	<0.4	<0.4	<0.4	<0.4	<0.4	0.4	<0.4	<0.4	1.5	1.3	<0.4	<0.4	<0.4
Boron, total	ug/g	68	120	5	-	-	11	11	11	11	11	9	<5	18	<5	5	68	20	12	13	6
Cadmium, total	ug/g	3.5	1.2	0.1, 0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	0.6	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Chromium, total	ug/g	85	160	0.2, 1, 5	6	5	26	12	12	8	11	8	8	15	11	13	20	26	19	15	14
Cobalt, total	ug/g	17	22	0.5, 1, 5	3	2	7.7	4.1	4.2	3.1	3.8	3.2	3.1	8.4	3.4	3.2	7.7	7	3.5	5.4	11.4
Copper, total	ug/g	267	180	0.1, 1	4	3	13.9	7.8	8.1	8	5.2	8.1	7.3	23.8	13.5	19.9	34.3	28	24	8.1	10.3
Lead, total	ug/g	287	120	1,50	4	4	4	8	8	8	8	6	5	18	14	23	43	34	35	10	9
Molybdenum, total	ug/g	153	6.9	0.5, 1	<1	<1	4.8	<0.5	<0.5	2.7	<0.5	<0.5	<0.5	22.9	12.5	11.2	33.9	33.9	41.3	0.5	<0.5
Nickel, total	ug/g	632	130	1,50	7	5	16	11	10	7	10	9	5	13	11	9	23	19	14	13	23
Silver, total	ug/g	1.2	25	0.2, 0.5	<0.2	<0.2	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Thallium, total	ug/g	2.8	1	0.5, 1, 20	<1	<1	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	2.8	0.9	<0.5	<0.5	<0.5
Uranium, total	ug/g	0.87	23	0.5	-	-	0.51	<0.5	<0.5	<0.5	<0.5	<0.5	0.71	0.5	<0.5	0.51	0.87	0.67	<0.5	<0.5	0.53
Vanadium, total	ug/g	2220	86	0.4, 1, 2	6	5	38.3	13.7	13.8	8	11.2	7.5	16.5	28.6	17	20.1	62.9	30.3	16.1	16.2	21.4
Zinc, total	ug/g	935	340	0.005, 2, 5	5	<2	31	14	14	14	11	8	14	40	26	33	80	53	452	18	25

DL: May vary between sample locations and events **Detection Limit**

DL exceeds criteria

Soil, Ground Water and Sediment Standards for Uses Concentration exceeds MECPUnder Part XV.1 of the Environmental Protection Act
(MECP, 2011) Table 7 SCS (Soil)

2011-S-T7-RPI-FMT

Residential/Parkland/Institutional Use with

Analytical	- Osprey Chemistr , Metals i	y Results:		Sample ID	BH212 SS1	BH212 SS4	BH213 SS2	3 SS2-Dup (BH21	BH215 SS1	BH217 SS1	BH218 SS1	BH219 SS2	BH220 SS1) SS1-DUP (BH22	BH222 SS1	BH224 SS2	BH228 SS1	BH228 SS3	TP8-3	TP9-2	TP10-2
TIFIVIS	, ivictais i			Sample Date	2022-Dec-15	2022-Dec-15	2022-Dec-19	2022-Dec-19	2022-Dec-22	2022-Dec-22	2022-Dec-22	2022-Dec-15	2022-Dec-22	2022-Dec-22	2022-Dec-22	2022-Dec-15	2022-Dec-22	2022-Dec-22	2012-Nov-27	2012-Nov-27	2012-Nov-28
Parameter	Units	Max Concentratio	MECP-2011- S-T7-RPI-	Sample Depth	0.0 - 0.6	2.3 - 2.9	0.8 - 1.4	0.8 - 1.4	0.0 - 0.6	0.0 - 1.4	0.0 - 1.5	0.8 - 1.4	0.0 - 1.2	0.0 - 1.2	0.0 - 1.2	0.8 - 1.4	0.0 - 0.6	1.5 - 2.1	1.5 - 2.8	0.4 - 2.8	1.3 - 1.5
Hydride-Forming Metals				Detection Limit																	
Antimony, total	ug/g	7.4	7.5	0.8	<0.8	<0.8	<0.8	<0.8	<0.8	<0.8	<0.8	<0.8	<0.8	<0.8	<0.8	<0.8	<0.8	<0.8	-	-	-
Arsenic, total	ug/g	202	18	0.1, 1	2	3	4	4	2	2	2	3	3	2	2	3	3	3	2	1	2
Selenium, total	ug/g	5.5	2.4	0.8	<0.8	<0.8	<0.8	<0.8	<0.8	<0.8	<0.8	<0.8	<0.8	<0.8	<0.8	<0.8	<0.8	<0.8	-	-	-
Metals																					
Barium, total	ug/g	1010	390	0.1, 1, 2	71.9	31.7	102	109	136	32.5	43	138	35.1	23.6	34	50.7	88.3	54.5	58	20	10
Beryllium, total	ug/g	1.5	5	0.4, 0.5, 1	<0.4	<0.4	0.5	0.5	<0.4	<0.4	<0.4	0.8	<0.4	<0.4	<0.4	<0.4	0.6	<0.4	<1	<1	<1
Boron, total	ug/g	68	120	5	9	10	11	11	7	10	11	9	11	8	9	8	16	10	-	-	-
Cadmium, total	ug/g	3.5	1.2	0.1, 0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Chromium, total	ug/g	85	160	0.2, 1, 5	8	10	22	25	7	9	10	28	10	10	11	13	23	12	17	14	4
Cobalt, total	ug/g	17	22	0.5, 1, 5	3.5	4.1	7.1	7.4	2.1	3.2	3.6	9.5	3.1	2.8	3.9	5.7	5.7	3.7	4	3	2
Copper, total	ug/g	267	180	0.1, 1	6.7	7.4	13.5	13.7	3.7	5.4	7.4	15.3	7.6	6.3	6.4	9.5	14.4	9.4	19	4	3
Lead, total	ug/g	287	120	1,50	16	15	22	16	15	9	11	16	22	11	7	8	35	31	11	5	5
Molybdenum, total	ug/g	153	6.9	0.5, 1	<0.5	1	1.5	1.4	0.8	1.4	0.8	<0.5	<0.5	<0.5	<0.5	<0.5	14.5	5	6	<1	<1
Nickel, total	ug/g	632	130	1,50	11	9	12	12	4	7	8	19	8	7	9	11	13	12	13	9	4
Silver, total	ug/g	1.2	25	0.2, 0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.2	<0.2	<0.2
Thallium, total	ug/g	2.8	1	0.5, 1, 20	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<1	<1	<1
Uranium, total	ug/g	0.87	23	0.5	<0.5	0.55	<0.5	<0.5	<0.5	<0.5	<0.5	0.57	0.69	0.6	<0.5	<0.5	0.51	<0.5	-	-	-
Vanadium, total	ug/g	2220	86	0.4, 1, 2	4.8	11	26	28.6	7.6	12.1	12	34.7	10.7	9.6	14.1	20.7	26.3	15	13	7	5
Zinc, total	ug/g	935	340	0.005, 2, 5	12	19	46	40	9	14	17	45	27	17	13	20	46	24	38	6	4

DL: May vary between sample locations and events **Detection Limit**

DL exceeds criteria

Soil, Ground Water and Sediment Standards for Uses Concentration exceeds MECP2011-S-T7-RPI-FMT
Under Part XV.1 of the Environmental Protection Act
(MECP, 2011) Table 7 SCS (Soil)
Residential/Parkland/Institutional Use with

Analytical	- Osprey Chemistr Metals i	y Results:		Sample ID	TP10-3	TP11-2	TP24-1	TP25-2	TP26-1	TP27-1	TP28-1	TP29-1	TP225a	TP227a	TP229b	TP230b	TP231b	231b-dup (TP23:	TP233a	TP236a
111 1413	ivictais i			Sample Date	2012-Nov-28	2012-Nov-28	2012-Nov-29	2012-Nov-29	2012-Nov-29	2012-Nov-29	2012-Nov-29	2012-Nov-29	2022-Dec-13	2022-Dec-14	2022-Dec-14	2022-Dec-14	2022-Dec-13	2022-Dec-13	2022-Dec-14	2022-Dec-13
Parameter	Units	Max Concentratio	MECP-2011- S-T7-RPI-	Sample Depth	1.5 - 2.5	1.4 - 1.9	0.0 - 3.3	2.3 - 3.5	0.0 - 2.7	0.0 - 2.4	0.0 - 1.9	0.0 - 1.6	0.1 - 1.0	0.0 - 0.9	1.0 - 2.0	1.1 - 2.2	1.2 - 2.2	1.2 - 2.2	0.0 - 1.1	0.1 - 1.1
Hydride-Forming Metals				Detection Limit																
Antimony, total	ug/g	7.4	7.5	0.8	-	-	-	-	-	-	-	-	<0.8	<0.8	<0.8	<0.8	<0.8	<0.8	<0.8	<0.8
Arsenic, total	ug/g	202	18	0.1, 1	2	2	19	3	3	4	5	3	3	3	7	2	5	5	3	9
Selenium, total	ug/g	5.5	2.4	0.8	-	-	-	-	-	-	-	-	<0.8	<0.8	1.1	<0.8	1.6	1	<0.8	1.7
Metals																				
Barium, total	ug/g	1010	390	0.1, 1, 2	22	10	581	83	102	111	121	40	237	42.2	102	20.2	219	179	84.4	138
Beryllium, total	ug/g	1.5	5	0.4, 0.5, 1	<1	<1	<1	<1	<1	<1	<1	<1	0.8	<0.4	0.6	<0.4	0.5	0.5	0.5	0.5
Boron, total	ug/g	68	120	5	-	-	-	-	ı	ı	i	-	9	11	12	8	13	11	14	12
Cadmium, total	ug/g	3.5	1.2	0.1, 0.5	<0.5	<0.5	0.7	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	0.5
Chromium, total	ug/g	85	160	0.2, 1, 5	9	5	42	19	27	26	29	13	35	10	21	6	30	29	18	19
Cobalt, total	ug/g	17	22	0.5, 1, 5	3	2	8	6	8	8	8	5	13.6	3.9	6.3	2.7	5.4	5.8	6.6	6.1
Copper, total	ug/g	267	180	0.1, 1	4	3	64	16	13	12	13	7	24.4	5.7	19.4	3.3	21.8	20.9	12.1	26.4
Lead, total	ug/g	287	120	1, 50	7	4	69	16	18	20	18	8	16	6	19	5	77	75	15	39
Molybdenum, total	ug/g	153	6.9	0.5, 1	<1	<1	26	<1	<1	1	<1	<1	0.5	<0.5	44.8	<0.5	2.8	2.4	1	5
Nickel, total	ug/g	632	130	1, 50	7	5	41	16	20	18	19	10	25	3	12	<1	8	9	10	12
Silver, total	ug/g	1.2	25	0.2, 0.5	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Thallium, total	ug/g	2.8	1	0.5, 1, 20	<1	<1	<1	<1	<1	<1	<1	<1	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Uranium, total	ug/g	0.87	23	0.5	-	-	-	-	-	-	-	-	0.71	<0.5	0.63	<0.5	0.54	0.54	<0.5	0.8
Vanadium, total	ug/g	2220	86	0.4, 1, 2	7	6	100	26	29	27	30	19	52.2	12.6	29	6.3	22.7	22.8	24.7	24.4
Zinc, total	ug/g	935	340	0.005, 2, 5	9	5	154	34	42	44	36	18	75	13	60	9	63	61	41	70

DL: May vary between sample locations and events **Detection Limit**

DL exceeds criteria

Soil, Ground Water and Sediment Standards for Uses Concentration exceeds MECP2011-S-T7-RPI-FMT
Under Part XV.1 of the Environmental Protection Act
(MECP, 2011) Table 7 SCS (Soil)
Residential/Parkland/Institutional Use with

Table 3 Analytical ORPs		y Results:		Sample ID				BH/MW 24-SS2 2011-Jun-24		BH/MW 25-SS1 2011-Jun-24		BH/MW 50-SS7	BH/MW 78-SS2 2011-Jul-08	BH/MW 79-SS1 2011-Jul-08	BH/MW 80-SS1 2011-Jul-11	BH/MW 80-SS2 2011-Jul-11	BH/MW 81-SS1 2011-Jul-11	31-SS1.1 (BH/M\ 2011-Jul-11	BH/MW 84-SS4 2011-Jul-13	BH/MW 121-SS4 2011-Jul-22	BH/MW 130-SS3 2011-Jul-25
Parameter	Units	Max Concentratio	MECP-2011- S-T7-RPI-	Sample Depth		0.0 - 0.6	0.0 - 0.6	0.6 - 1.2	0.6 - 1.2	0.0 - 0.6	0.0 - 0.6	3.7 - 4.3	0.6 - 0.9	0.3 - 1.1	0.6 - 1.2	1.2 - 1.8	0.0 - 0.9	0.0 - 0.9	1.8 - 2.2	1.9 - 2.5	1.2 - 1.8
Other Regulated Parameters				Detection Limit																	
Boron, total (Hot Water Solubl	ug/g	2.05	1.5	0.1	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	-
Chromium (hexavalent)	ug/g	<0.2	10	0.2	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Cyanide	ug/g	<0.04	0.051	0.04	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Electrical Conductivity	mS/cm	1.39	0.7	0.005	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	-
Mercury, total	ug/g	5.8	1.8	0.1	-	<0.1	0.5	0.9	0.7	0.3	<0.1	-	-	-	<0.1	<0.1	-	-	-	<0.1	<0.1
Methyl mercury	ng/g	3.3	-	0.4	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Sodium adsorption ratio	N/A	0.578	-		-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	-
рН	pH units	12.2	-		-	-	-	-	1	-	-	-	-	-	-	-	-	-	-	-	-
Polychlorinated Biphenyls																					
Polychlorinated biphenyls	ug/g	9.95	0.35	0.02, 0.1	<0.02	<0.02	-	<0.02	<0.02	4.18	0.38	<0.02	<0.02	<0.02	0.1	-	<0.02	0.04	<0.02	<0.02	<0.02

Detection Limit DL: May vary between sample locations and events

2011-S-T7-RPI-FMT

Soil, Ground Water and Sediment Standards for Uses Concentration exceeds MECPUnder Part XV.1 of the Environmental Protection Act
(MECP, 2011) Table 7 SCS (Soil)

Residential/Parkland/Institutional Use with Fine/Medium-Textured soils

Table 3 - Analytical (ORPs		y Results:		Sample ID Sample Date	30-SS3.1 (BH/M\ 2011-Jul-25	BH/MW 146-SS4 2011-Jul-28	BH/MW 148-SS3 2011-Jul-28	BH/MW 149-SS2 2011-Jul-28	49-SS2.1 (BH/M\ 2011-Jul-28	BH/MW 151-SS3 2011-Jul-29	BH/MW 152-SS4 2011-Jul-29	BH3-SS1 2011-Jun-20	BH5-SS2 2011-Jun-20	BH13-SS4 2011-Jun-22	BH16-SS2 2011-Jun-22	BH17-SS3 2011-Jun-22	BH18-SS4 2011-Jun-22	BH31-SS4 2011-Jun-27	BH49-SS2 2011-Jul-05	BH51-SS6 2011-Jul-05	BH52-SS3 2011-Jul-05
Parameter	Units	Max Concentratio	MECP-2011- S-T7-RPI-	Sample Depth	1.2 - 1.8	1.9 - 2.5	1.2 - 1.8	0.9 - 1.5	0.9 - 1.5	1.2 - 1.5	1.8 - 2.2	0.0 - 0.1	0.6 - 0.9	1.9 - 2.4	0.6 - 1.2	1.2 - 1.9	1.9 - 2.5	1.8 - 2.3	0.6 - 1.2	3.2 - 3.8	1.2 - 1.5
Other Regulated Parameters				Detection Limit																	
Boron, total (Hot Water Soluble	ug/g	2.05	1.5	0.1	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Chromium (hexavalent)	ug/g	<0.2	10	0.2		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Cyanide	ug/g	< 0.04	0.051	0.04	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Electrical Conductivity	mS/cm	1.39	0.7	0.005	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Mercury, total	ug/g	5.8	1.8	0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	-	-	-
Methyl mercury	ng/g	3.3	-	0.4	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Sodium adsorption ratio	N/A	0.578	•		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
рН	pH units	12.2	•		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Polychlorinated Biphenyls																					
Polychlorinated biphenyls	ug/g	9.95	0.35	0.02, 0.1	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	-	-	-	0.04	<0.02	-	-	<0.02	<0.02	<0.02

Detection Limit DL: May vary between sample locations and events

DL exceeds criteria

Concentration exceeds MECP2011-S-T7-RPI-FMT

Soil, Ground water and Sediment Standards for Uses
Under Part XV.1 of the Environmental Protection Act
(MECP, 2011) Table 7 SCS (Soil)
Residential (Part) Soil, Ground Water and Sediment Standards for Uses

Table 3 Analytical (ORPs		y Results:		Sample ID Sample Date	BH53-SS2 2011-Jul-05	BH59-SS2 2011-Jul-07	BH71-SS1 2011-Jul-08	BH72-SS1 2011-Jul-08	BH73-SS1 2011-Jul-08	BH74-SS1 2011-Jul-08	BH75-SS1 2011-Jul-08	BH76-SS2 2011-Jul-08	BH77-SS4 2011-Jul-08	BH83-SS1 2011-Jul-08	BH85-SS3 2011-Jul-13	BH86-SS5 2011-Jul-13	BH87-SS3 2011-Jul-13	87-SS3.1 (BH87-S 2011-Jul-13	BH88-SS2 2011-Jul-13	BH88-SS3 2011-Jul-13	BH89-SS1 2011-Jul-13
Parameter	Units	Max Concentratio	MECP-2011- S-T7-RPI-	Sample Depth	0.6 - 1.3	0.9 - 1.3	0.0 - 0.4	0.0 - 0.3	0.0 - 0.3	0.0 - 0.2	0.0 - 0.3	0.6 - 0.9	2.0 - 2.6	0.0 - 0.6	1.2 - 1.9	2.5 - 3.0	1.2 - 1.9	1.2 - 1.9	0.6 - 0.8	1.1 - 1.6	0.4 - 1.0
Other Regulated Parameters				Detection Limit																	
Boron, total (Hot Water Soluble	ug/g	2.05	1.5	0.1	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Chromium (hexavalent)	ug/g	<0.2	10	0.2	-	-	-	-	-	-	-	1	-	-	-	-	-	-	-	-	-
Cyanide	ug/g	<0.04	0.051	0.04	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Electrical Conductivity	mS/cm	1.39	0.7	0.005	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Mercury, total	ug/g	5.8	1.8	0.1	-	-	-	-	<0.1	<0.1	<0.1	-	<0.1	-	<0.1	<0.1	<0.1	<0.1	<0.1	-	<0.1
Methyl mercury	ng/g	3.3	-	0.4	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Sodium adsorption ratio	N/A	0.578	-		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
pH	pH units	12.2	-		-	-	-	-	-	-	-	=	-	-	-	-	-	-	-	-	-
Polychlorinated Biphenyls																					
Polychlorinated biphenyls	ug/g	9.95	0.35	0.02, 0.1	<0.02	<0.02	6.45	0.26	0.33	0.04	0.84	<0.02	<0.02	1.11	<0.02	<0.02	<0.02	<0.02	-	<0.02	-

Detection Limit DL: May vary between sample locations and events

DL exceeds criteria

Soil, Ground Water and Sediment Standards for Uses
Under Part XV.1 of the Environmental Protection Act
(MECP, 2011) Table 7 SCS (Soil)

2011-S-T7-RPI-FMT

Analytical	Osprey Chemistr , PCBs in	y Results:		Sample ID	BH89-SS2 2011-Jul-13	BH90-SS1 2011-Jul-13	BH91-SS1 2011-Jul-14	BH91-SS2 2011-Jul-14	BH91-SS3 2011-Jul-14	BH92-SS1 2011-Jul-14	BH92-SS2 2011-Jul-14	BH93-SS1 2011-Jul-14	BH93-SS2 2011-Jul-14	BH94-SS1 2011-Jul-14	BH94-SS2 2011-Jul-14	BH94-SS3 2011-Jul-14	BH95-SS1 2011-Jul-15	BH96-SS1 2011-Jul-15	BH96-SS2 2011-Jul-15	BH97-SS1 2011-Jul-15	BH97-SS2 2011-Jul-15
Parameter	Units	Max Concentratio	MECP-2011- S-T7-RPI-	Sample Depth	1.0 - 1.5	0.0 - 0.6	0.0 - 0.6	0.6 - 1.2	1.2 - 1.9	0.0 - 0.6	0.6 - 1.1	0.0 - 0.6	0.6 - 1.1	0.0 - 0.6	0.6 - 1.3	1.3 - 1.9	0.0 - 0.6	0.0 - 0.6	0.6 - 0.9	0.0 - 0.6	0.6 - 1.2
Other Regulated Parameters				Detection Limit																	
Boron, total (Hot Water Solubl	ug/g	2.05	1.5	0.1	-	-	-	-	-	-	-	1	-	-	-	-	-	-	-	-	-
Chromium (hexavalent)	ug/g	<0.2	10	0.2	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Cyanide	ug/g	<0.04	0.051	0.04	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Electrical Conductivity	mS/cm	1.39	0.7	0.005	-	-	-	-	-	-	-	1	-	-	-	-	-	-	-	-	-
Mercury, total	ug/g	5.8	1.8	0.1	0.1	0.1	<0.1	0.1	<0.1	0.5	0.2	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	0.2	<0.1	0.1	<0.1
Methyl mercury	ng/g	3.3	-	0.4	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Sodium adsorption ratio	N/A	0.578	•		-	-	-	-	-	-	-	1	-	-	-	-	-	-	-	-	-
pH	pH units	12.2	•		-	-	-	-	-	-	-	•	-	-	-	-	-	-	-	-	-
Polychlorinated Biphenyls																					
Polychlorinated biphenyls	ug/g	9.95	0.35	0.02, 0.1	2.06	-	-	-	-	-	-	•	<0.02	-	-	-	-	<0.02	-	<0.02	-

Detection Limit DL: May vary between sample locations and events

DL exceeds criteria

Soil, Ground Water and Sediment Standards for Uses
Under Part XV.1 of the Environmental Protection Act
(MECP, 2011) Table 7 SCS (Soil)

2011-S-T7-RPI-FMT

Analytical	Osprey : Chemistry , PCBs in	y Results:		Sample ID	BH98-SS1 2011-Jul-15	BH98-SS2 2011-Jul-15	BH100-SS1 2011-Jul-15	BH101-SS3	BH102-SS2 2011-Jul-18	BH103-SS2 2011-Jul-18	BH104-SS2 2011-Jul-18	04-SS2.1 (BH104 2011-Jul-18	BH105-SS2 2011-Jul-18	BH106-SS2 2011-Jul-18	BH107-SS1 2011-Jul-18	BH108-SS2 2011-Jul-18	BH109-SS1 2011-Jul-18	BH111-SS1 2011-Jul-19	BH112-SS1 2011-Jul-19	BH113-SS1 2011-Jul-20	BH113-SS2 2011-Jul-20
Parameter	Units	Max Concentratio	MECP-2011- S-T7-RPI-			0.6 - 0.8	0.0 - 0.6	1.5 - 2.2	0.9 - 1.5	0.9 - 1.1	0.8 - 1.4	0.8 - 1.4	0.8 - 1.4	0.9 - 1.4	0.0 - 0.6	0.6 - 1.2	0.0 - 0.6	0.0 - 0.6	0.0 - 0.6	0.0 - 0.6	0.6 - 0.8
Other Regulated Parameters				Detection Limit																	
Boron, total (Hot Water Solubl	ug/g	2.05	1.5	0.1	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Chromium (hexavalent)	ug/g	<0.2	10	0.2	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Cyanide	ug/g	<0.04	0.051	0.04	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Electrical Conductivity	mS/cm	1.39	0.7	0.005	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Mercury, total	ug/g	5.8	1.8	0.1	0.6	0.3	0.2	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	0.2	<0.1	<0.1	2.1	0.3
Methyl mercury	ng/g	3.3	-	0.4	-	-	-	-	-	-	-	-	1	-	-	-	-	-	-	-	-
Sodium adsorption ratio	N/A	0.578	-		-	-	-	-	-	-	-	-	1	-	-	-	-	-	-	-	-
pH	pH units	12.2	-		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Polychlorinated Biphenyls																					
Polychlorinated biphenyls	ug/g	9.95	0.35	0.02, 0.1	<0.02	-	-	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	0.19	2.08	<0.02	0.2	-	-

Detection Limit DL: May vary between sample locations and events

DL exceeds criteria

Soil, Ground Water and Sediment Standards for Uses
Under Part XV.1 of the Environmental Protection Act
(MECP, 2011) Table 7 SCS (Soil)

2011-S-T7-RPI-FMT

Table 3 - Analytical (ORPs		y Results:		Sample ID Sample Date	BH114-SS2 2011-Jul-20	BH116-SS1 2011-Jul-20	16-SS1.1 (BH116 2011-Jul-20	BH117-SS1 2011-Jul-20	BH118-SS2 2011-Jul-21	BH119-SS4 2011-Jul-21	BH120-SS2 2011-Jul-22	BH120-SS3 2011-Jul-22	BH120-SS4 2011-Jul-22	BH122-SS2 2011-Jul-22	22-SS2.1 (BH122 2011-Jul-22	BH123-SS2 2011-Jul-22	BH124-SS3 2011-Jul-22	BH125-SS5 2011-Jul-22	BH126-SS2 2011-Jul-25	BH126-SS3 2011-Jul-25	BH126-SS4 2011-Jul-25
Parameter	Units	Max Concentratio	MECP-2011- S-T7-RPI-	Sample Depth	0.6 - 1.1	0.0 - 0.8	0.0 - 0.8	0.0 - 0.6	0.6 - 1.1	1.8 - 2.5	0.6 - 1.3	1.3 - 1.9	1.9 - 2.5	1.3 - 1.9	1.3 - 1.9	0.6 - 1.3	1.2 - 1.9	2.5 - 3.0	0.6 - 1.2	1.2 - 1.9	1.9 - 2.5
Other Regulated Parameters				Detection Limit																	
Boron, total (Hot Water Soluble	ug/g	2.05	1.5	0.1	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Chromium (hexavalent)	ug/g	<0.2	10	0.2	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Cyanide	ug/g	< 0.04	0.051	0.04	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Electrical Conductivity	mS/cm	1.39	0.7	0.005	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Mercury, total	ug/g	5.8	1.8	0.1	<0.1	0.3	0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	0.2	0.4	<0.1
Methyl mercury	ng/g	3.3	-	0.4	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Sodium adsorption ratio	N/A	0.578	-		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
pH	pH units	12.2	-		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Polychlorinated Biphenyls																					
Polychlorinated biphenyls	ug/g	9.95	0.35	0.02, 0.1	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	_	<0.02	-	0.06	<0.02	<0.02	<0.02	<0.02	0.3	0.5	<0.02

Detection Limit DL: May vary between sample locations and events

DL exceeds criteria

Concentration exceeds MECP2011-S-T7-RPI-FMT

Soil, Ground water and Sediment Standards for Uses
Under Part XV.1 of the Environmental Protection Act
(MECP, 2011) Table 7 SCS (Soil)
Residential (Part) Soil, Ground Water and Sediment Standards for Uses

Table 3 - Analytical (ORPs		y Results:		Sample ID Sample Date	BH127-SS3 2011-Jul-25	BH128-SS1 2011-Jul-25	BH128R SS2 2022-Dec-22	BH129-SS3 2011-Jul-25	BH131-SS2 2011-Jul-26	BH133-SS2 2011-Jul-26	BH133-SS4 2011-Jul-26	BH134-SS1 2011-Jul-26	BH134-SS2 2011-Jul-26	BH140-SS2 2011-Jul-27	BH140-SS5 2011-Jul-27	BH141-SS2 2011-Jul-27	41-SS2.1 (BH141 2011-Jul-27	BH142-SS3 2011-Jul-27	BH143-SS3 2011-Jul-27	BH144-SS3 2011-Jul-27	BH145-SS3 2011-Jul-28
Parameter	Units	Max Concentratio	MECP-2011- S-T7-RPI-	Sample Depth	1.3 - 1.9	0.0 - 0.6	1.5 - 3.0	1.2 - 1.9	0.6 - 1.2	0.6 - 1.2	1.9 - 2.1	0.0 - 0.6	0.6 - 1.2	0.6 - 1.2	2.5 - 2.7	0.6 - 1.2	0.6 - 1.2	1.2 - 1.9	1.2 - 1.8	1.2 - 1.8	1.2 - 1.9
Other Regulated Parameters				Detection Limit																	
Boron, total (Hot Water Soluble	ug/g	2.05	1.5	0.1	-	-	0.23	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Chromium (hexavalent)	ug/g	<0.2	10	0.2	-	-	<0.2	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Cyanide	ug/g	<0.04	0.051	0.04	-	-	<0.04	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Electrical Conductivity	mS/cm	1.39	0.7	0.005	-	-	0.263	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Mercury, total	ug/g	5.8	1.8	0.1	<0.1	<0.1	<0.1	<0.1	<0.1	0.8	<0.1	0.6	1.1	<0.1	-	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Methyl mercury	ng/g	3.3	-	0.4	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Sodium adsorption ratio	N/A	0.578	-		-	-	0.206	-	-	-	-	-	-	-	-	-	-	-	-	-	-
pH	pH units	12.2	-		-	-	7.93	-	•	-	-	-	-	-	-	-	-	-	-	-	-
Polychlorinated Biphenyls																					
Polychlorinated biphenyls	ug/g	9.95	0.35	0.02, 0.1	<0.02	0.09	<0.1	0.04	<0.02	9.95	<0.01	2.23	1.5	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	0.17

Detection Limit DL: May vary between sample locations and events

DL exceeds criteria

Concentration exceeds MECP2011-S-T7-RPI-FMT

Soil, Ground water and Sediment Standards for Uses
Under Part XV.1 of the Environmental Protection Act
(MECP, 2011) Table 7 SCS (Soil)
Residential (Part) Soil, Ground Water and Sediment Standards for Uses

Analytical	- Osprey : Chemistry	y Results:		Sample ID	BH147-SS3	BH150-SS3 2011-Jul-28	BH155-SS3 2001-Aug-02	BH201 SS3		2 SS2-Dup (BH20 2022-Dec-22		BH203 SS3 2022-Dec-22	BH204 SS1 2022-Dec-22	BH205 SS1	BH207 SS1 2022-Dec-22	BH208 SS1	BH208 SS2 2022-Dec-19	BH209 SS1	BH209 SS2 2022-Dec-19	BH210 SS2 2022-Dec-19	BH211 SS1
Parameter	Units	Max Concentratio	MECP-2011- S-T7-RPI-			1.2 - 1.8	1.2 - 1.7	1.5 - 2.1	0.8 - 1.4	0.8 - 1.4	2.3 - 2.9	1.5 - 2.1	0.0 - 0.6	0.0 - 0.6	0.0 - 0.6	0.0 - 0.6	0.8 - 1.4	0.0 - 0.6	0.8 - 1.4	0.8 - 1.4	0.0 - 0.6
Other Regulated Parameters				Detection Limit																	
Boron, total (Hot Water Solubl	ug/g	2.05	1.5	0.1	-	-	-	<0.1	0.12	0.12	0.11	0.15	<0.1	0.27	0.54	0.28	0.6	0.52	0.93	2.05	0.14
Chromium (hexavalent)	ug/g	<0.2	10	0.2	-	-	-	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Cyanide	ug/g	<0.04	0.051	0.04	-	-	-	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04
Electrical Conductivity	mS/cm	1.39	0.7	0.005	-	-	-	0.181	0.199	0.2	0.126	0.182	0.156	0.258	0.689	0.135	0.258	0.506	0.339	0.233	0.637
Mercury, total	ug/g	5.8	1.8	0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	0.2	0.23	0.72	0.93	5.8	1.12	<0.1
Methyl mercury	ng/g	3.3	-	0.4	-	-	-	-	-	-	-	-	-	-	-	<0.4	<0.4	0.8	3.3	<0.4	-
Sodium adsorption ratio	N/A	0.578	-		-	-	-	0.097	0.05	0.064	0.088	0.079	0.017	0.102	0.114	0.114	0.173	0.046	0.101	0.152	0.062
pH	pH units	12.2	-		-	-	-	7.7	7.59	7.57	8.54	7.82	7.25	7.45	7.69	7.76	7.59	7.56	7.63	7.74	7.67
Polychlorinated Biphenyls																					
Polychlorinated biphenyls	ug/g	9.95	0.35	0.02, 0.1	<0.02	<0.02	<0.02	-	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	1.57	0.28	0.53	-	<0.1	0.22	<0.1

Detection Limit DL: May vary between sample locations and events

DL exceeds criteria

Soil, Ground Water and Sediment Standards for Uses
Under Part XV.1 of the Environmental Protection Act
(MECP, 2011) Table 7 SCS (Soil)

2011-S-T7-RPI-FMT Residenti

Table 3 - Analytical (ORPs		Results:		Sample ID Sample Date	BH211 SS3 2022-Dec-15	BH212 SS1 2022-Dec-15	BH212 SS4 2022-Dec-15	BH213 SS2 2022-Dec-19	3 SS2-Dup (BH21 2022-Dec-19	BH215 SS1 2022-Dec-22	BH216 SS1 2022-Dec-22	BH217 SS1 2022-Dec-22	BH218 SS1 2022-Dec-22	BH219 SS2 2022-Dec-15	BH220 SS1 2022-Dec-22	SS1-DUP (BH22 2022-Dec-22	BH221 SS1 2022-Dec-22	BH222 SS1 2022-Dec-22	BH223 SS1 2022-Dec-22	SS1-DUP (BH22 2022-Dec-22	
Parameter	Units	Max Concentratio	MECP-2011- S-T7-RPI-		1.5 - 2.1	0.0 - 0.6	2.3 - 2.9	0.8 - 1.4	0.8 - 1.4	0.0 - 0.6	0.0 - 0.6	0.0 - 1.4	0.0 - 1.5	0.8 - 1.4	0.0 - 1.2	0.0 - 1.2	0.0 - 1.5	0.0 - 1.2	0.0 - 0.6	0.0 - 0.6	0.8 - 1.4
Other Regulated Parameters				Detection Limit																	
Boron, total (Hot Water Soluble	ug/g	2.05	1.5	0.1	0.18	0.33	0.63	0.41	0.41	0.15	-	0.14	0.33	0.19	0.35	0.25	-	0.17	-	-	<0.1
Chromium (hexavalent)	ug/g	<0.2	10	0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	-	<0.2	<0.2	<0.2	<0.2	<0.2	-	<0.2	-	-	<0.2
Cyanide	ug/g	<0.04	0.051	0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	-	<0.04	<0.04	<0.04	<0.04	<0.04	-	<0.04	,	-	<0.04
Electrical Conductivity	mS/cm	1.39	0.7	0.005	0.374	0.208	0.367	0.236	0.222	0.189	-	0.719	0.256	0.259	0.292	0.258	-	0.506	,	-	0.22
Mercury, total	ug/g	5.8	1.8	0.1	<0.1	<0.1	<0.1	<0.1	0.13	<0.1	-	<0.1	<0.1	0.11	<0.1	<0.1	-	<0.1	•	-	<0.1
Methyl mercury	ng/g	3.3	-	0.4	-	-	-	-	-	-	-	-	-	-	-	-	-	-	•	-	-
Sodium adsorption ratio	N/A	0.578	-		0.327	0.114	0.17	0.11	0.1	0.168	-	0.274	0.576	0.061	0.406	0.4	-	0.53	•	-	0.121
рН	pH units	12.2	-		7.62	7.48	7.43	7.75	7.78	7.7	1	8.24	7.81	7.6	7.72	8.06	12.2	11.8	1	-	7.6
Polychlorinated Biphenyls																					
Polychlorinated biphenyls	ug/g	9.95	0.35	0.02, 0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	-	-	<0.1	-	-	<0.1	<0.1	<0.1	<0.1

Detection Limit DL: May vary between sample locations and events

DL exceeds criteria

Concentration exceeds MECP2011-S-T7-RPI-FMT

Soil, Ground water and Sediment Standards for Uses
Under Part XV.1 of the Environmental Protection Act
(MECP, 2011) Table 7 SCS (Soil)
Residential (Part) Soil, Ground Water and Sediment Standards for Uses

Table 3 - Analytical (ORPs,		y Results:		Sample ID Sample Date	BH228 SS1 2022-Dec-22	BH228 SS3 2022-Dec-22	TP8-3 2012-Nov-27	TP9-2 2012-Nov-27		AQCF12-1 (TP10- 2012-Nov-28	TP10-3 2012-Nov-28	TP11-2 2012-Nov-28	TP12-1 2012-Nov-28	TP13-1 2012-Nov-28	TP14-1 2012-Nov-28	TP14-2 2012-Nov-28	TP15-1 2012-Nov-28	TP16-2 2012-Nov-28	TP16-3 2012-Nov-28	TP17-1 2012-Nov-28	TP18-1 2012-Nov-28
Parameter	Units	Max Concentratio	MECP-2011- S-T7-RPI-	Sample Depth	0.0 - 0.6	1.5 - 2.1	1.5 - 2.8	0.4 - 2.8	1.3 - 1.5	1.3 - 1.5	1.5 - 2.5	1.4 - 1.9	0.0 - 0.5	0.0 - 1.0	0.0 - 1.1	1.1 - 2.3	0.0 - 2.5	0.5 - 1.1	1.1 - 2.1	0.0 - 1.1	0.0 - 0.7
Other Regulated Parameters				Detection Limit																	
Boron, total (Hot Water Soluble	ug/g	2.05	1.5	0.1	0.42	0.49	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Chromium (hexavalent)	ug/g	<0.2	10	0.2	<0.2	<0.2	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Cyanide	ug/g	<0.04	0.051	0.04	<0.04	<0.04	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Electrical Conductivity	mS/cm	1.39	0.7	0.005	1.31	0.222	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Mercury, total	ug/g	5.8	1.8	0.1	<0.1	<0.1	<0.1	<0.1	<0.1	-	<0.1	<0.1	-	-	-	-	-	-	-	-	-
Methyl mercury	ng/g	3.3	-	0.4	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Sodium adsorption ratio	N/A	0.578	•		0.578	0.204	-	-		-	-	-	-	-	-	-	-	-	-	-	-
pH	pH units	12.2	•		7.42	7.53	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Polychlorinated Biphenyls																					
Polychlorinated biphenyls	ug/g	9.95	0.35	0.02, 0.1	<0.1	-	-	-	<0.02	<0.02	_	-	<0.02	<0.5	3.71	0.62	0.46	0.46	<0.1	0.13	0.45

Detection Limit DL: May vary between sample locations and events

DL exceeds criteria

Soil, Ground Water and Sediment Standards for Uses
Under Part XV.1 of the Environmental Protection Act
(MECP, 2011) Table 7 SCS (Soil)

2011-S-T7-RPI-FMT

Table 3 - Analytical (ORPs		y Results:		Sample ID Sample Date	TP18-2 2012-Nov-28	TP19-1 2012-Nov-28	TP19-2 2012-Nov-28	TP21-2 2012-Nov-28	TP24-1 2012-Nov-29	TP25-1 2012-Nov-29	TP25-2 2012-Nov-29	TP26-1 2012-Nov-29	TP27-1 2012-Nov-29	TP28-1 2012-Nov-29	TP29-1 2012-Nov-29	TP225a 2022-Dec-13	TP227a 2022-Dec-14	TP229b 2022-Dec-14	TP230b 2022-Dec-14		231b-dup (TP23:
Parameter	Units	Max Concentratio	MECP-2011- S-T7-RPI-	Sample Depth	0.7 - 1.2	0.0 - 0.5	0.5 - 0.9	0.8 - 1.1	0.0 - 3.3	0.0 - 2.3	2.3 - 3.5	0.0 - 2.7	0.0 - 2.4	0.0 - 1.9	0.0 - 1.6	0.1 - 1.0	0.0 - 0.9	1.0 - 2.0	1.1 - 2.2	1.2 - 2.2	1.2 - 2.2
Other Regulated Parameters				Detection Limit																	
Boron, total (Hot Water Soluble	ug/g	2.05	1.5	0.1	-	-	-	-	-	-	-	-	-	-	-	0.13	<0.1	0.26	<0.1	0.31	0.32
Chromium (hexavalent)	ug/g	<0.2	10	0.2	-	-	-	-	-	-	-	-	-	-	-	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Cyanide	ug/g	< 0.04	0.051	0.04	-	-	-	-	-	-	-	-	-	-	-	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04
Electrical Conductivity	mS/cm	1.39	0.7	0.005	-	-	-	-	-	-	-	-	-	-	-	0.271	0.22	0.992	0.109	0.561	0.556
Mercury, total	ug/g	5.8	1.8	0.1	-	-	-	-	0.7	-	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	0.47	<0.1	0.21	0.15
Methyl mercury	ng/g	3.3	-	0.4	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Sodium adsorption ratio	N/A	0.578	-		-	-	-	-	-	-	-	-	-	-	-	0.194	0.102	0.077	0.051	0.052	0.054
pH	pH units	12.2	-		-	-	-	-	-	-	-	-	-	-	-	7.7	7.7	7.56	7.71	7.26	7.57
Polychlorinated Biphenyls																					
Polychlorinated biphenyls	ug/g	9.95	0.35	0.02, 0.1	<0.02	1.45	0.04	<0.02	6.58	0.39	<0.1	0.06	0.27	0.05	<0.02	<0.1	<0.1	<0.1	<0.1	1.12	1.1

Detection Limit DL: May vary between sample locations and events

DL exceeds criteria

Concentration exceeds MECP2011-S-T7-RPI-FMT

Soil, Ground water and Sediment Standards for Uses
Under Part XV.1 of the Environmental Protection Act
(MECP, 2011) Table 7 SCS (Soil)
Residential (Part) Soil, Ground Water and Sediment Standards for Uses

Analytical (Osprey Chemistr	y Results:		Sample ID	TP233a	TP236a
OKFS	, FCD3 III	3011		Sample Date	2022-Dec-14	2022-Dec-13
Parameter	Units	Max Concentratio	MECP-2011- S-T7-RPI-	Sample Depth	0.0 - 1.1	0.1 - 1.1
Other Regulated Parameters				Detection Limit		
Boron, total (Hot Water Soluble	ug/g	2.05	1.5	0.1	0.38	0.36
Chromium (hexavalent)	ug/g	<0.2	10	0.2	<0.2	<0.2
Cyanide	ug/g	<0.04	0.051	0.04	<0.04	<0.04
Electrical Conductivity	mS/cm	1.39	0.7	0.005	0.267	1.39
Mercury, total	ug/g	5.8	1.8	0.1	<0.1	0.19
Methyl mercury	ng/g	3.3	-	0.4	-	-
Sodium adsorption ratio	N/A	0.578	-		0.039	0.019
pH	pH units	12.2	-		7.51	6.54
Polychlorinated Biphenyls						
Polychlorinated biphenyls	ug/g	9.95	0.35	0.02, 0.1	<0.1	0.38

Detection Limit DL: May vary between sample locations and events

Soil, Ground Water and Sediment Standards for Uses Concentration exceeds MECPUnder Part XV.1 of the Environmental Protection Act
(MECP, 2011) Table 7 SCS (Soil)

2011-S-T7-RPI-FMT

Residential/Parkland/Institutional Use with

Table 4 - Ospre Analytical Chemis BTEX, PHCs	try Resu			Sample ID	BH/MW 22-SS2 2011-Jun-23					BH/MW 25-SS1 2011-Jun-24			BH/MW 78-SS2 2011-Jul-08						BH/MW 121-SS4 2011-Jul-22	
Parameter	Units	Max Concentratio	MECP-2011- S-T7-RPI-			0.0 - 0.6	2011-Jun-24 0.0 - 0.6	0.6 - 1.2	0.6 - 1.2	0.0 - 0.6	2011-Jun-24 0.0 - 0.6	2011-Jul-05 3.7 - 4.3	0.6 - 0.9	2011-Jul-11 1.1 - 1.4	2011-Jul-11 0.6 - 1.2	2011-Jul-11 0.0 - 0.9	2011-Jul-11 0.0 - 0.9	2011-Jul-13 1.8 - 2.2	1.9 - 2.5	2011-Jul-25 1.2 - 1.8
Benzene, Toluene, Ethylbenzene, & Xylenes				Detection Limit																
Benzene	ug/g	1	0.17	0.02, 0.05	<0.05	-	<0.05	-	<0.05	-	-	<0.02	<0.02	<0.02	0.02	<0.02	<0.02	<0.02	<0.02	<0.02
Ethylbenzene	ug/g	6.7	15	0.05	<0.05	-	<0.05	-	<0.05	-	-	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
Toluene	ug/g	2725.23	6	0.05, 0.2	<0.05	-	<0.2	-	<0.2	-	-	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Xylene, m+p-	ug/g	116.2	-	0.05	<0.05	-	<0.05	-	<0.05	-	-	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
Xylene, o-	ug/g	36.6	-	0.05	<0.05	-	<0.05	-	< 0.05	-	-	< 0.05	<0.05	< 0.05	<0.05	<0.05	< 0.05	<0.05	<0.05	<0.05
Xylenes, total	ug/g	152.8	25	0.05	<0.05	-	<0.05	-	<0.05	-	-	<0.05	,	-	-	<0.05	<0.05	-	<0.05	<0.05
Petroleum Hydrocarbons																				
Petroleum Hydrocarbons F1 (C6-C10)	ug/g	8304	65	5, 10	<10	-	-	<10	<10	-	-	<10	<10	<10	<10	<10	<10	<10	<10	<10
Petroleum Hydrocarbons F2 (C10-C16)	ug/g	1160	150	10	<10	<10	-	<10	<10	60	<10	<10	<10	<10	10	<10	<10	<10	<10	<10
Petroleum Hydrocarbons F3 (C16-C34)	ug/g	6280	1300	20, 50	<20	130	-	30	30	650	90	<20	20	<20	160	<20	<20	<20	<20	<20
Petroleum Hydrocarbons F4 (C34-C50)	ug/g	1250	5600	20, 50	<20	960	-	<20	<20	250	60	<20	40	<20	50	<20	<20	<20	<20	<20
Petroleum Hydrocarbons F4G-SG (GHH-Silica	ug/g	12900	5600	50, 250	-	2600	-	-	-	3200	-	-	-	-	-	-	-	-	-	-

Detection Limit DL: May vary between sample locations and events

DL exceeds criteria

Soil, Ground Water and Sediment Standards for Uses Under Part XV.1 of the Environmental Protection Act

Concentration exceeds MECP-2011-S-T7-RPI-FMT

(MECP, 2011) Table 7 SCS (Soil) Residential/Parkland/Institutional Use with

Table 4 - Ospre Analytical Chemis BTEX, PHCs i	try Resu				30-SS3.1 (BH/MV								BH5-SS2	BH13-SS4	BH16-SS2	BH16-SS3	BH17-SS3	BH18-SS4	BH31-SS4	BH49-SS2
Parameter	Units	Max Concentratio	MECP-2011- S-T7-RPI-	Sample Date Sample Depth	2011-Jul-25 1.2 - 1.8	2011-Jul-28 1.9 - 2.5	2011-Jul-28 1.2 - 1.8	2011-Jul-28 0.9 - 1.5	2011-Jul-28 0.9 - 1.5	2011-Jul-29 1.2 - 1.5	2011-Jul-29 1.8 - 2.2	2011-Jun-20 0.0 - 0.1	2011-Jun-20 0.6 - 0.9	2011-Jun-22 1.9 - 2.4	2011-Jun-22 0.6 - 1.2	2011-Jun-22 1.2 - 1.6	2011-Jun-22 1.2 - 1.9	2011-Jun-22 1.9 - 2.5	2011-Jun-27 1.8 - 2.3	2011-Jul-05 0.6 - 1.2
Benzene, Toluene, Ethylbenzene, & Xylenes				Detection Limit																
Benzene	ug/g	1	0.17	0.02, 0.05	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.05	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02
Ethylbenzene	ug/g	6.7	15	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.02	<0.05	<0.05	<0.05	<0.05	<0.05
Toluene	ug/g	2725.23	6	0.05, 0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.05	2.7	<0.2	<0.2	<0.2	<0.2	<0.2
Xylene, m+p-	ug/g	116.2	-	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	0.2	<0.05	<0.05	<0.05	<0.05	<0.05
Xylene, o-	ug/g	36.6	-	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	0.1	<0.05	<0.05	<0.05	<0.05	<0.05
Xylenes, total	ug/g	152.8	25	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	-	-	<0.05	0.3	-	<0.05	<0.05	<0.05	<0.05
Petroleum Hydrocarbons																				
Petroleum Hydrocarbons F1 (C6-C10)	ug/g	8304	65	5, 10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	-	<10	<10	<10	<10
Petroleum Hydrocarbons F2 (C10-C16)	ug/g	1160	150	10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	-	<10	<10	<10	<10
Petroleum Hydrocarbons F3 (C16-C34)	ug/g	6280	1300	20, 50	<20	<20	<20	<20	<20	<20	<20	60	50	<20	50	-	<20	60	30	190
Petroleum Hydrocarbons F4 (C34-C50)	ug/g	1250	5600	20, 50	<20	<20	<20	<20	<20	<20	<20	60	<20	<20	30	-	<20	20	<20	1250
Petroleum Hydrocarbons F4G-SG (GHH-Silica	ug/g	12900	5600	50, 250	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	9400

Detection Limit DL: May vary between sample locations and events

DL exceeds criteria

Soil, Ground Water and Sediment Standards for Uses Under Part XV.1 of the Environmental Protection Act

Concentration exceeds MECP-2011-S-T7-RPI-FMT

(MECP, 2011) Table 7 SCS (Soil)

Residential/Parkland/Institutional Use with

Table 4 - Ospre Analytical Chemis BTEX, PHCs i	try Resu			Sample ID Sample Date	BH51-SS6 2011-Jul-05	BH52-SS2 2011-Jul-05	BH52-SS3 2011-Jul-05	BH53-SS1 2011-Jul-05	BH53-SS2 2011-Jul-05	BH59-SS2 2011-Jul-07	BH71-SS1 2011-Jul-08	BH72-SS1 2011-Jul-08	BH73-SS1 2011-Jul-08	BH74-SS1 2011-Jul-08	BH75-SS1 2011-Jul-08	BH76-SS2 2011-Jul-08	BH77-SS4 2011-Jul-08	BH83-SS1 2011-Jul-08	BH85-SS3 2011-Jul-13	BH86-SS5
Parameter	Units	Max Concentratio	MECP-2011- S-T7-RPI-		3.2 - 3.8	0.6 - 1.2	1.2 - 1.5	0.0 - 0.6	0.6 - 1.3	0.9 - 1.3	0.0 - 0.4	0.0 - 0.3	0.0 - 0.3	0.0 - 0.2	0.0 - 0.3	0.6 - 0.9	2.0 - 2.6	0.0 - 0.6	1.2 - 1.9	2.5 - 3.0
Benzene, Toluene, Ethylbenzene, & Xylenes				Detection Limit																
Benzene	ug/g	1	0.17	0.02, 0.05	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02
Ethylbenzene	ug/g	6.7	15	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
Toluene	ug/g	2725.23	6	0.05, 0.2	<0.2	30.4	8.8	3.3	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Xylene, m+p-	ug/g	116.2	-	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
Xylene, o-	ug/g	36.6	-	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	< 0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
Xylenes, total	ug/g	152.8	25	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	-	<0.05	<0.05	-	-	<0.05	-	-	-	-
Petroleum Hydrocarbons																				
Petroleum Hydrocarbons F1 (C6-C10)	ug/g	8304	65	5, 10	<10	40	13.5	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10
Petroleum Hydrocarbons F2 (C10-C16)	ug/g	1160	150	10	<10	100	80	<100	1120	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10
Petroleum Hydrocarbons F3 (C16-C34)	ug/g	6280	1300	20, 50	<20	140	90	600	440	<20	100	30	90	40	70	50	<20	50	<20	<20
Petroleum Hydrocarbons F4 (C34-C50)	ug/g	1250	5600	20, 50	<20	<20	60	1100	180	<20	40	<20	60	<20	20	<20	<20	<20	<20	<20
Petroleum Hydrocarbons F4G-SG (GHH-Silica	ug/g	12900	5600	50, 250	-	-	-	12900	1200	-	-	-	-	-	-	-	-	-	-	-

Detection Limit DL: May vary between sample locations and events

DL exceeds criteria

Concentration exceeds MECP-2011-S-T7-

Soil, Ground Water and Sediment Standards for Uses Under Part XV.1 of the Environmental Protection Act (MECP, 2011) Table 7 SCS (Soil)

RPI-FMT

Residential/Parkland/Institutional Use with

Table 4 - Ospre Analytical Chemis BTEX, PHCs	try Resu			Sample ID	BH87-SS3	37-SS3.1 (BH87-S	BH88-SS2	BH88-SS3	BH89-SS1	BH89-SS2	BH90-SS1	BH91-SS2	BH92-SS1	BH92-SS2	ВН93-SS1	BH93-SS2	BH94-SS1	BH94-SS2	ВН94-SS3	BH95-SS1
Parameter	Units	Max Concentratio	MECP-2011- S-T7-RPI-	Sample Date Sample Depth	2011-Jul-13 1.2 - 1.9	2011-Jul-13 1.2 - 1.9	2011-Jul-13 0.6 - 0.8	2011-Jul-13 1.1 - 1.6	2011-Jul-13 0.4 - 1.0	2011-Jul-13 1.0 - 1.5	2011-Jul-13 0.0 - 0.6	2011-Jul-14 0.6 - 1.2	2011-Jul-14 0.0 - 0.6	2011-Jul-14 0.6 - 1.1	2011-Jul-14 0.0 - 0.6	2011-Jul-14 0.6 - 1.1	2011-Jul-14 0.0 - 0.6	2011-Jul-14 0.6 - 1.3	2011-Jul-14 1.3 - 1.9	2011-Jul-15 0.0 - 0.6
Benzene, Toluene, Ethylbenzene, & Xylenes				Detection Limit																
Benzene	ug/g	1	0.17	0.02, 0.05	<0.02	<0.02	<0.02	<0.02	1	0.07	<0.02	<0.02	<0.02	-	-	<0.02	-	<0.02	-	<0.02
Ethylbenzene	ug/g	6.7	15	0.05	<0.05	<0.05	<0.05	<0.05	0.5	<0.05	<0.05	<0.05	<0.05	-	-	<0.05	-	<0.05	-	<0.05
Toluene	ug/g	2725.23	6	0.05, 0.2	<0.2	<0.2	0.3	0.3	2.8	0.5	<0.2	<0.2	<0.2	-	-	<0.2	-	<0.2	-	<0.2
Xylene, m+p-	ug/g	116.2	-	0.05	<0.05	<0.05	<0.05	<0.05	1.3	0.6	<0.05	<0.05	<0.05	-	-	<0.05	-	<0.05	-	<0.05
Xylene, o-	ug/g	36.6	-	0.05	<0.05	<0.05	<0.05	<0.05	0.8	0.4	< 0.05	< 0.05	<0.05	-	-	<0.05	-	<0.05	-	<0.05
Xylenes, total	ug/g	152.8	25	0.05	<0.05	<0.05	0.3	-	2.1	1	-	-	-	-	-	-	-	-	-	-
Petroleum Hydrocarbons																				
Petroleum Hydrocarbons F1 (C6-C10)	ug/g	8304	65	5, 10	<10	<10	<10	30	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10
Petroleum Hydrocarbons F2 (C10-C16)	ug/g	1160	150	10	<10	<10	11.74	25.26	13.6	<10	13.6	<10	40	30	<10	12.63	11.1	11.1	20	<10
Petroleum Hydrocarbons F3 (C16-C34)	ug/g	6280	1300	20, 50	30	<20	70	690	140	60	140	60	1620	150	30	210	100	100	190	180
Petroleum Hydrocarbons F4 (C34-C50)	ug/g	1250	5600	20, 50	70	<20	<20	330	100	60	100	60	330	130	<20	60	30	30	50	150
Petroleum Hydrocarbons F4G-SG (GHH-Silica	ug/g	12900	5600	50, 250	-	-	-	2000	700	-	700	-	3300	-	-	-	-	-	-	-

Detection Limit DL: May vary between sample locations and events

DL exceeds criteria

Soil, Ground Water and Sediment Standards for Uses Under Part XV.1 of the Environmental Protection Act

Concentration exceeds MECP-2011-S-T7-RPI-FMT

(MECP, 2011) Table 7 SCS (Soil) Residential/Parkland/Institutional Use with

Table 4 - Ospre Analytical Chemis BTEX, PHCs i	try Resu			Sample ID Sample Date	BH96-SS1 2011-Jul-15	BH97-SS1 2011-Jul-15	BH98-SS1 2011-Jul-15	BH100-SS1 2011-Jul-15	BH100-SS2 2011-Jul-15	BH101-SS3 2011-Jul-18	BH102-SS2 2011-Jul-18	BH103-SS2 2011-Jul-18	BH104-SS2 2011-Jul-18)4-SS2.1 (BH104 2011-Jul-18	BH105-SS2 2011-Jul-18	BH106-SS2 2011-Jul-18	BH107-SS1 2011-Jul-18	BH108-SS2 2011-Jul-18	BH109-SS1 2011-Jul-18	BH111-SS1
Parameter	Units	Max Concentratio	MECP-2011- S-T7-RPI-		0.0 - 0.6	0.0 - 0.6	0.0 - 0.6	0.0 - 0.6	0.6 - 1.2	1.5 - 2.2	0.9 - 1.5	0.9 - 1.1	0.8 - 1.4	0.8 - 1.4	0.8 - 1.4	0.9 - 1.4	0.0 - 0.6	0.6 - 1.2	0.0 - 0.6	0.0 - 0.6
Benzene, Toluene, Ethylbenzene, & Xylenes				Detection Limit																
Benzene	ug/g	1	0.17	0.02, 0.05	<0.02	<0.02	<0.02	0.15	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02
Ethylbenzene	ug/g	6.7	15	0.05	<0.05	<0.05	<0.05	0.5	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
Toluene	ug/g	2725.23	6	0.05, 0.2	<0.2	<0.2	<0.2	1.7	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	0.3	<0.2
Xylene, m+p-	ug/g	116.2	-	0.05	<0.05	<0.05	<0.05	2.2	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
Xylene, o-	ug/g	36.6	-	0.05	<0.05	<0.05	<0.05	1.5	<0.05	<0.05	<0.05	<0.05	< 0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
Xylenes, total	ug/g	152.8	25	0.05	-	-	-	3.7	<0.05	-	-	-	-	-	-	-	<0.05	<0.05	-	-
Petroleum Hydrocarbons																				
Petroleum Hydrocarbons F1 (C6-C10)	ug/g	8304	65	5, 10	<10	<10	<10	40	-	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10
Petroleum Hydrocarbons F2 (C10-C16)	ug/g	1160	150	10	<10	<10	<10	<10	1	<10	<10	<10	<10	<10	<10	<10	<10	<10	20	<10
Petroleum Hydrocarbons F3 (C16-C34)	ug/g	6280	1300	20, 50	100	<20	70	70	,	<20	<20	<20	<20	<20	<20	<20	<20	80	1290	90
Petroleum Hydrocarbons F4 (C34-C50)	ug/g	1250	5600	20, 50	80	<20	80	50	•	<20	<20	<20	<20	<20	<20	<20	<20	20	890	80
Petroleum Hydrocarbons F4G-SG (GHH-Silica	ug/g	12900	5600	50, 250	1100	-	-	-	-	-	-	-	-	-	-	-	-	-	5600	-

Detection Limit DL: May vary between sample locations and events

DL exceeds criteria

Soil, Ground Water and Sediment Standards for Uses

Concentration exceeds MECP-2011-S-T7-RPI-FMT

Under Part XV.1 of the Environmental Protection Act (MECP, 2011) Table 7 SCS (Soil) Residential/Parkland/Institutional Use with

Resi

Table 4 - Ospre Analytical Chemis BTEX, PHCs i	try Resu			Sample ID	BH112-SS1	BH113-SS1	BH114-SS2		16-SS1.1 (BH116		BH118-SS2	BH119-SS4	BH120-SS3		22-SS2.1 (BH122		BH124-SS3	BH125-SS5	BH126-SS2	BH126-SS3
,	Units	Max Concentratio	MECP-2011- S-T7-RPI-	Sample Date Sample Depth	2011-Jul-19 0.0 - 0.6	2011-Jul-20 0.0 - 0.6	2011-Jul-20 0.6 - 1.1	2011-Jul-20 0.0 - 0.8	2011-Jul-20 0.0 - 0.8	2011-Jul-20 0.0 - 0.6	2011-Jul-21 0.6 - 1.1	2011-Jul-21 1.8 - 2.5	2011-Jul-22 1.3 - 1.9	2011-Jul-22 1.3 - 1.9	2011-Jul-22 1.3 - 1.9	2011-Jul-22 0.6 - 1.3	2011-Jul-22 1.2 - 1.9	2011-Jul-22 2.5 - 3.0	2011-Jul-25 0.6 - 1.2	2011-Jul-25 1.2 - 1.9
Benzene, Toluene, Ethylbenzene, & Xylenes				Detection Limit																
Benzene	ug/g	1	0.17	0.02, 0.05	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	-	<0.02
Ethylbenzene	ug/g	6.7	15	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	-	<0.05
Toluene	ug/g	2725.23	6	0.05, 0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	-	<0.2
Xylene, m+p-	ug/g	116.2	-	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	-	<0.05
Xylene, o-	ug/g	36.6	-	0.05	< 0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	< 0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	-	<0.05
Xylenes, total	ug/g	152.8	25	0.05	-	-	-	-	-	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	-	<0.05
Petroleum Hydrocarbons																				
Petroleum Hydrocarbons F1 (C6-C10)	ug/g	8304	65	5, 10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10
Petroleum Hydrocarbons F2 (C10-C16)	ug/g	1160	150	10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<50
Petroleum Hydrocarbons F3 (C16-C34)	ug/g	6280	1300	20, 50	<20	200	<20	<20	<20	<20	40	<20	<20	<20	<20	<20	<20	<20	1360	500
Petroleum Hydrocarbons F4 (C34-C50)	ug/g	1250	5600	20, 50	<20	180	<20	20	<20	<20	30	<20	<20	<20	<20	<20	<20	<20	430	800
Petroleum Hydrocarbons F4G-SG (GHH-Silica	ug/g	12900	5600	50, 250	-	800	-	-	-	-	-	-	-	-	-	-	-	-	1700	3100

Detection Limit DL: May vary between sample locations and events

DL exceeds criteria

Soil, Ground Water and Sediment Standards for Uses Under Part XV.1 of the Environmental Protection Act

Concentration exceeds MECP-2011-S-T7-RPI-FMT

(MECP, 2011) Table 7 SCS (Soil)
Residential/Parkland/Institutional Use with

Table 4 - Ospre Analytical Chemis BTEX, PHCs i	try Resu			Sample ID Sample Date	BH126-SS4 2011-Jul-25	BH127-SS3 2011-Jul-25	BH128-SS1 2011-Jul-25	BH128R SS2 2022-Dec-22	BH129-SS3 2011-Jul-25	BH131-SS2 2011-Jul-26	BH133-SS2 2011-Jul-26	BH133-SS4 2011-Jul-26	BH134-SS1 2011-Jul-26	BH134-SS2 2011-Jul-26	BH140-SS2 2011-Jul-27	BH140-SS5 2011-Jul-27	BH141-SS2 2011-Jul-27	11-SS2.1 (BH141 2011-Jul-27	BH142-SS3 2011-Jul-27	BH143-SS3 2011-Jul-27
Parameter	Units	Max Concentratio	MECP-2011- S-T7-RPI-	•	1.9 - 2.5	1.3 - 1.9	0.0 - 0.6	1.5 - 3.0	1.2 - 1.9	0.6 - 1.2	0.6 - 1.2	1.9 - 2.1	0.0 - 0.6	0.6 - 1.2	0.6 - 1.2	2.5 - 2.7	0.6 - 1.2	0.6 - 1.2	1.2 - 1.9	1.2 - 1.8
Benzene, Toluene, Ethylbenzene, & Xylenes				Detection Limit																
Benzene	ug/g	1	0.17	0.02, 0.05	-	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02
Ethylbenzene	ug/g	6.7	15	0.05	-	<0.05	<0.05	<0.05	<0.05	<0.05	6.7	<0.05	3.6	2	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
Toluene	ug/g	2725.23	6	0.05, 0.2	-	<0.2	<0.2	<0.05	<0.2	<0.2	33	<0.2	11.1	13.07	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Xylene, m+p-	ug/g	116.2	-	0.05	-	<0.05	<0.05	<0.05	<0.05	<0.05	116.2	<0.05	0.8	1.7	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
Xylene, o-	ug/g	36.6	-	0.05	-	<0.05	<0.05	<0.05	<0.05	<0.05	36.6	<0.05	0.3	0.66	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
Xylenes, total	ug/g	152.8	25	0.05	-	<0.05	<0.05	<0.05	<0.05	<0.05	152.8	-	1.1	2.36	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
Petroleum Hydrocarbons																				
Petroleum Hydrocarbons F1 (C6-C10)	ug/g	8304	65	5, 10	<10	<10	<10	<5	<10	<10	430	<10	30	13	<10	<10	<10	<10	<10	<10
Petroleum Hydrocarbons F2 (C10-C16)	ug/g	1160	150	10	<10	<10	<10	<10	<10	<10	60	<10	50	20	<10	<10	<10	<10	<10	<10
Petroleum Hydrocarbons F3 (C16-C34)	ug/g	6280	1300	20, 50	<20	40	120	<50	90	<20	580	<20	370	150	<20	<20	<20	<20	<20	<20
Petroleum Hydrocarbons F4 (C34-C50)	ug/g	1250	5600	20, 50	<20	20	80	<50	40	<20	200	<20	170	50	<20	<20	<20	<20	<20	<20
Petroleum Hydrocarbons F4G-SG (GHH-Silica	ug/g	12900	5600	50, 250	-	-	-			-	-	-	-	-	-	-	-	-	-	-

Detection Limit DL: May vary betw

DL exceeds criteria

DL: May vary between sample locations and events

Concentration exceeds MECP-2011-S-T7-

Soil, Ground Water and Sediment Standards for Uses Under Part XV.1 of the Environmental Protection Act (MECP, 2011) Table 7 SCS (Soil)

(MECP, 2

RPI-FMT

Residential/Parkland/Institutional Use with

Table 4 - Ospre Analytical Chemis BTEX, PHCs i	try Resu			Sample ID Sample Date	BH144-SS2 2011-Jul-27	BH144-SS3 2011-Jul-27	BH145-SS3 2011-Jul-28	BH145-SS4 2011-Jul-28	BH147-SS3 2011-Jul-28	BH150-SS3	BH155-SS3	BH156-SS4 2012-Nov-26	BH201 SS3 2022-Dec-23	BH202 SS2 2022-Dec-22	2 SS2-Dup (BH20 2022-Dec-22	BH202 SS4 2022-Dec-22	BH203 SS3 2022-Dec-22	BH204 SS1 2022-Dec-22	BH205 SS1 2022-Dec-22	BH207 SS1
Parameter	Units	Max Concentratio	MECP-2011- S-T7-RPI-		0.6 - 1.2	1.2 - 1.8	1.2 - 1.9	1.9 - 2.2	1.4 - 1.9	1.2 - 1.8	1.2 - 1.7	1.8 - 2.4	1.5 - 2.1	0.8 - 1.4	0.8 - 1.4	2.3 - 2.9	1.5 - 2.1	0.0 - 0.6	0.0 - 0.6	0.0 - 0.6
Benzene, Toluene, Ethylbenzene, & Xylenes				Detection Limit																
Benzene	ug/g	1	0.17	0.02, 0.05	<0.02	0.06	<0.02	<0.02	<0.02	<0.02	<0.02	<0.05	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02
Ethylbenzene	ug/g	6.7	15	0.05	<0.05	5.3	0.5	<0.05	<0.05	<0.05	< 0.05	-	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
Toluene	ug/g	2725.23	6	0.05, 0.2	2.5	2725.23	291	151.08	<0.2	<0.2	0.6	<0.05	<0.05	0.8	0.7	1.39	<0.05	<0.05	<0.05	<0.05
Xylene, m+p-	ug/g	116.2	-	0.05	<0.05	4.5	1	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
Xylene, o-	ug/g	36.6	-	0.05	<0.05	0.3	0.3	<0.05	<0.05	<0.05	< 0.05	< 0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
Xylenes, total	ug/g	152.8	25	0.05	<0.05	4.8	1.3	< 0.05	<0.05	<0.05	-	<0.02	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
Petroleum Hydrocarbons																				
Petroleum Hydrocarbons F1 (C6-C10)	ug/g	8304	65	5, 10	<10	4540	580	120	<10	<10	<10	-	<5	<5	<5	<5	<5	<5	<5	<5
Petroleum Hydrocarbons F2 (C10-C16)	ug/g	1160	150	10	<10	140	160	<10	20	<10	20	-	<10	<10	<10	19	<10	<10	<10	17
Petroleum Hydrocarbons F3 (C16-C34)	ug/g	6280	1300	20, 50	20	140	90	<20	20	<20	<20	-	<50	<50	<50	<50	<50	<50	<50	114
Petroleum Hydrocarbons F4 (C34-C50)	ug/g	1250	5600	20, 50	<20	90	40	<20	<20	<20	<20	-	<50	<50	<50	<50	<50	<50	<50	<50
Petroleum Hydrocarbons F4G-SG (GHH-Silica	ug/g	12900	5600	50, 250	-	-	-	-	-	-	-	-								

Detection Limit DL: May vary between sample locations and events

DL exceeds criteria

Soil, Ground Water and Sediment Standards for Uses Under Part XV.1 of the Environmental Protection Act

Concentration exceeds MECP-2011-S-T7-RPI-FMT

(MECP,

(MECP, 2011) Table 7 SCS (Soil) Residential/Parkland/Institutional Use with

Table 4 - Ospre Analytical Chemis BTEX, PHCs	try Resu			Sample ID	BH208 SS2	BH209 SS1	BH209 SS2	BH210 SS2 2022-Dec-19	BH211 SS1	BH211 SS3	BH212 SS1	BH212 SS4 2022-Dec-15		SS2-Dup (BH21 2022-Dec-19		BH214 SS3 2022-Dec-22	BH215 SS1	BH217 SS1 2022-Dec-22	BH218 SS1	BH219 SS2 2022-Dec-15
Parameter	Units	Max Concentratio	MECP-2011- S-T7-RPI-	Sample Date Sample Depth	2022-Dec-19 0.8 - 1.4	0.0 - 0.6	2022-Dec-19 0.8 - 1.4	0.8 - 1.4	0.0 - 0.6	2022-Dec-15 1.5 - 2.1	2022-Dec-15 0.0 - 0.6	2.3 - 2.9	0.8 - 1.4	0.8 - 1.4	0.8 - 1.4	1.5 - 2.1	2022-Dec-22 0.0 - 0.6	0.0 - 1.4	2022-Dec-22 0.0 - 1.5	0.8 - 1.4
Benzene, Toluene, Ethylbenzene, & Xylenes				Detection Limit																
Benzene	ug/g	1	0.17	0.02, 0.05	<0.02	<0.02	0.51	<0.02	0.54	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02
Ethylbenzene	ug/g	6.7	15	0.05	<0.05	<0.05	0.36	<0.05	0.6	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
Toluene	ug/g	2725.23	6	0.05, 0.2	<0.05	0.21	0.28	<0.05	2.1	<0.05	0.38	<0.05	<0.05	<0.05	0.15	<0.05	<0.05	<0.05	0.23	<0.05
Xylene, m+p-	ug/g	116.2	-	0.05	<0.05	0.23	0.73	<0.05	3.05	<0.05	0.48	<0.05	<0.05	<0.05	2.03	<0.05	<0.05	<0.05	<0.05	<0.05
Xylene, o-	ug/g	36.6	-	0.05	<0.05	<0.05	<0.05	< 0.05	1.93	<0.05	0.27	< 0.05	<0.05	<0.05	1.27	<0.05	< 0.05	<0.05	<0.05	<0.05
Xylenes, total	ug/g	152.8	25	0.05	<0.05	0.23	0.73	< 0.05	4.98	<0.05	0.75	<0.05	<0.05	<0.05	3.3	<0.05	<0.05	<0.05	<0.05	<0.05
Petroleum Hydrocarbons																				
Petroleum Hydrocarbons F1 (C6-C10)	ug/g	8304	65	5, 10	<5	9	<5	<5	17	<5	8	<5	<5	<5	<5	<5	<5	<5	<5	<5
Petroleum Hydrocarbons F2 (C10-C16)	ug/g	1160	150	10	<10	36	713	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10
Petroleum Hydrocarbons F3 (C16-C34)	ug/g	6280	1300	20, 50	298	488	6280	<50	<50	<50	<50	<50	<50	<50	146	73	<50	<50	<50	<50
Petroleum Hydrocarbons F4 (C34-C50)	ug/g	1250	5600	20, 50	100	55	262	<50	<50	<50	<50	<50	<50	<50	<50	<50	<50	<50	<50	<50
Petroleum Hydrocarbons F4G-SG (GHH-Silica	ug/g	12900	5600	50, 250																1

Detection Limit DL: May vary between sample locations and events

DL exceeds criteria

Soil, Ground Water and Sediment Standards for Uses

Concentration exceeds MECP-2011-S-T7-

RPI-FMT

Under Part XV.1 of the Environmental Protection Act (MECP, 2011) Table 7 SCS (Soil) Residential/Parkland/Institutional Use with

Table 4 - Ospre Analytical Chemis BTEX, PHCs i	try Resu			Sample ID) SS1-DUP (BH22		BH222 SS1		SS1-DUP (BH22		BH228 SS1	TP8-1	TP8-3	TP9-2		AQCF12-1 (TP10-		TP11-2	TP22-1
Parameter	Units	Max Concentratio	MECP-2011- S-T7-RPI-	Sample Date Sample Depth	2022-Dec-22 0.0 - 1.2	2022-Dec-22 0.0 - 1.2	2022-Dec-22 0.0 - 1.5	2022-Dec-22 0.0 - 1.2	2022-Dec-22 0.0 - 0.6	2022-Dec-22 0.0 - 0.6	2022-Dec-15 0.8 - 1.4	2022-Dec-22 0.0 - 0.6	2012-Nov-27 0.0 - 0.6	2012-Nov-27 1.5 - 2.8	2012-Nov-27 0.4 - 2.8	2012-Nov-28 1.3 - 1.5	2012-Nov-28 1.3 - 1.5	2012-Nov-28 1.5 - 2.5	2012-Nov-28 1.4 - 1.9	2012-Nov-28 0.0 - 1.0
Benzene, Toluene, Ethylbenzene, & Xylenes				Detection Limit																
Benzene	ug/g	1	0.17	0.02, 0.05	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	-	-	-	-	<0.02	-	-	-
Ethylbenzene	ug/g	6.7	15	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	-	-	-	-	<0.05	1	-	-
Toluene	ug/g	2725.23	6	0.05, 0.2	0.23	<0.05	0.2	0.18	1.19	0.93	<0.05	<0.05	-	-	-	-	<0.2	-	-	-
Xylene, m+p-	ug/g	116.2	-	0.05	<0.05	<0.05	<0.05	<0.05	0.42	0.53	<0.05	<0.05	-	-	-	-	<0.05	-	-	-
Xylene, o-	ug/g	36.6	-	0.05	<0.05	<0.05	<0.05	< 0.05	0.4	0.57	<0.05	< 0.05	-	-	-	-	<0.05	-	-	-
Xylenes, total	ug/g	152.8	25	0.05	<0.05	<0.05	<0.05	<0.05	0.82	1.1	<0.05	<0.05	-	-	-	-	-	-	-	-
Petroleum Hydrocarbons																				
Petroleum Hydrocarbons F1 (C6-C10)	ug/g	8304	65	5, 10	<5	<5	<5	<5	20	15	<5	<5	<10	8304	<10	<10	<10	<10	<10	<10
Petroleum Hydrocarbons F2 (C10-C16)	ug/g	1160	150	10	10	12	<10	<10	147	147	<10	<10	<10	1160	<10	<10	<10	<10	<10	40
Petroleum Hydrocarbons F3 (C16-C34)	ug/g	6280	1300	20, 50	140	167	<50	<50	3500	3500	<50	<50	<20	570	<20	<20	<20	<20	<20	230
Petroleum Hydrocarbons F4 (C34-C50)	ug/g	1250	5600	20, 50	<50	<50	<50	<50	544	563	<50	<50	<20	480	<20	<20	<20	<20	<20	230
Petroleum Hydrocarbons F4G-SG (GHH-Silica	ug/g	12900	5600	50, 250									-	-	-	-	-	-	-	-

Detection Limit

DL: May vary between sample locations and events

DL exceeds criteria

Soil, Ground Water and Sediment Standards for Uses Under Part XV.1 of the Environmental Protection Act

Concentration exceeds MECP-2011-S-T7(MECP, 2011) Table 7 SCS (Soil)

RPI-FMT

Residential/Parkland/Institutional Use with

Table 4 - Ospre Analytical Chemis BTEX, PHCs i	try Resu			Sample ID	TP23-1	TP24-1	TP25-1	TP25-2	TP26-1	TP27-1	TP28-1	TP29-1	TP30-1	TP30-2	TP225a	TP227a	TP229b	TP230b		231b-dup (TP23:
Parameter	Units	Max Concentratio	MECP-2011- S-T7-RPI-	Sample Date Sample Depth	2012-Nov-28 0.0 - 1.8	0.0 - 3.3	0.0 - 2.3	2012-Nov-29 2.3 - 3.5	0.0 - 2.7	0.0 - 2.4	0.0 - 1.9	0.0 - 1.6	2012-Nov-29 0.8 - 1.3	1.3 - 2.0	2022-Dec-13 0.1 - 1.0	2022-Dec-14 0.0 - 0.9	2022-Dec-14 1.0 - 2.0	2022-Dec-14 1.1 - 2.2	2022-Dec-13 1.2 - 2.2	2022-Dec-13 1.2 - 2.2
Benzene, Toluene, Ethylbenzene, & Xylenes				Detection Limit																
Benzene	ug/g	1	0.17	0.02, 0.05	-	-	-	-	-	-	-	-	-	-	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02
Ethylbenzene	ug/g	6.7	15	0.05	-	-	-	-	-	-	-	-	-	-	<0.05	< 0.05	<0.05	<0.05	< 0.05	<0.05
Toluene	ug/g	2725.23	6	0.05, 0.2	-	-	-	-	-	-	-	-	-	-	<0.05	<0.05	0.29	<0.05	0.32	0.32
Xylene, m+p-	ug/g	116.2	-	0.05	-	-	-	-	-	-	-	-	-	-	<0.05	< 0.05	<0.05	<0.05	< 0.05	<0.05
Xylene, o-	ug/g	36.6	-	0.05	-	-	-	-	-	-	-	-	-	-	<0.05	<0.05	<0.05	<0.05	< 0.05	<0.05
Xylenes, total	ug/g	152.8	25	0.05	-	-	-	-	-	-	-	-	-	-	<0.05	<0.05	<0.05	<0.05	< 0.05	<0.05
Petroleum Hydrocarbons																				
Petroleum Hydrocarbons F1 (C6-C10)	ug/g	8304	65	5, 10	10	57	35	<10	<10	<10	<10	<10	-	12	<5	<5	<5	<5	<5	<5
Petroleum Hydrocarbons F2 (C10-C16)	ug/g	1160	150	10	10	50	<10	<10	<10	<10	<10	<10	30	<50	<10	<10	<10	<10	<10	<10
Petroleum Hydrocarbons F3 (C16-C34)	ug/g	6280	1300	20, 50	210	980	440	40	40	90	50	<20	1060	380	112	<50	127	<50	697	1090
Petroleum Hydrocarbons F4 (C34-C50)	ug/g	1250	5600	20, 50	80	280	230	40	40	50	40	<20	590	240	130	<50	67	<50	209	282
Petroleum Hydrocarbons F4G-SG (GHH-Silica	ug/g	12900	5600	50, 250	-	-	-	-	-	-	-	-	2300	-						

Detection Limit DL: May vary between sample locations and events

DL exceeds criteria

Soil, Ground Water and Sediment Standards for Uses Under Part XV.1 of the Environmental Protection Act

Concentration exceeds MECP-2011-S-T7RPI-FMT

(MECP, 2011) Table 7 SCS (Soil)
Residential/Parkland/Institutional Use with

Table 4 - Ospre Analytical Chemis BTEX, PHCs i	try Resu			Sample ID Sample Date	TP233a 2022-Dec-14	TP236a 2022-Dec-13
Parameter	Units	Max Concentratio	MECP-2011- S-T7-RPI-	Sample Depth	0.0 - 1.1	0.1 - 1.1
Benzene, Toluene, Ethylbenzene, & Xylenes				Detection Limit		
Benzene	ug/g	1	0.17	0.02, 0.05	<0.02	<0.02
Ethylbenzene	ug/g	6.7	15	0.05	<0.05	< 0.05
Toluene	ug/g	2725.23	6	0.05, 0.2	<0.05	<0.05
Xylene, m+p-	ug/g	116.2	-	0.05	<0.05	< 0.05
Xylene, o-	ug/g	36.6	-	0.05	<0.05	< 0.05
Xylenes, total	ug/g	152.8	25	0.05	<0.05	< 0.05
Petroleum Hydrocarbons						
Petroleum Hydrocarbons F1 (C6-C10)	ug/g	8304	65	5, 10	<5	<5
Petroleum Hydrocarbons F2 (C10-C16)	ug/g	1160	150	10	<10	<10
Petroleum Hydrocarbons F3 (C16-C34)	ug/g	6280	1300	20, 50	<50	114
Petroleum Hydrocarbons F4 (C34-C50)	ug/g	1250	5600	20, 50	<50	<50
Petroleum Hydrocarbons F4G-SG (GHH-Silica	ug/g	12900	5600	50, 250		

Detection Limit DL: May vary between sample locations and events

DL exceeds criteria

Soil, Ground Water and Sediment Standards for Uses

Concentration exceeds MECP-2011-S-T7-RPI-FMT

Under Part XV.1 of the Environmental Protection Act (MECP, 2011) Table 7 SCS (Soil) Residential/Parkland/Institutional Use with

Table 5 - Analytical (Chemistr	y Results:		Sample ID	BH/MW 22-SS2	BH/MW 24-SS1	.24-SS2.1 (BH/M\	BH/MW 78-SS2	BH/MW 79-SS2	BH/MW 80-SS1	BH/MW 81-SS1	31-SS1.1 (BH/M ¹	\ BH/MW 84-SS4	BH/MW 146-SS4	BH/MW 148-SS3	BH/MW 149-SS2	49-SS2.1 (ВН/М ⁾	BH/MW 151-SS	BH/MW 152-SS4	BH3-SS1	BH5-SS2
THIVIS	, VOCs ir	1 5011		Sample Date	2011-Jun-23	2011-Jun-24	2011-Jun-24	2011-Jul-08	2011-Jul-11	2011-Jul-11	2011-Jul-11	2011-Jul-11	2011-Jul-13	2011-Jul-28	2011-Jul-28	2011-Jul-28	2011-Jul-28	2011-Jul-29	2011-Jul-29	2011-Jun-20	2011-Jun-20
Parameter	Units	Max Concentratio	MECP-2011- S-T7-RPI-	Sample Depth	0.6 - 0.9	0.0 - 0.6	0.6 - 1.2	0.6 - 0.9	1.1 - 1.4	0.6 - 1.2	0.0 - 0.9	0.0 - 0.9	1.8 - 2.2	1.9 - 2.5	1.2 - 1.8	0.9 - 1.5	0.9 - 1.5	1.2 - 1.5	1.8 - 2.2	0.0 - 0.1	0.6 - 0.9
Trihalomethanes				Detection Limit																	
Bromodichloromethane	ug/g	<0.05	13	0.05	<0.05	<0.05	<0.05	-	-	-	-	-	-	<0.05	<0.05	<0.05	< 0.05	< 0.05	<0.05	-	-
Bromoform	ug/g	<0.05	0.26	0.05	<0.05	<0.05	<0.05	-	-	-	-	-	-	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	-	-
Chloroform	ug/g	<0.05	0.18	0.04, 0.05	<0.05	<0.05	<0.05	-	-	-	-	-	-	<0.05	<0.05	<0.05	<0.05	< 0.05	<0.05	-	-
Dibromochloromethane	ug/g	<0.05	9.4	0.05	<0.05	<0.05	<0.05	-	-	-	-	-	-	<0.05	<0.05	<0.05	< 0.05	< 0.05	<0.05	-	-
Volatile Organic Compounds																					
Acetone	ug/g	<0.5	28	0.5	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Bromomethane	ug/g	<0.05	0.05	0.05	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Carbon tetrachloride	ug/g	4859.5	0.12	0.05	<0.05	<0.05	<0.05	ı	-	-	-	-	-	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	1	-
Chlorobenzene	ug/g	<0.05	2.7	0.05	-	-	-	-		-	-	-	4	-	-	-	-	-	-	-	-
Dichlorobenzene, 1,2-	ug/g	<1	4.3	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	< 0.05	<0.05	< 0.05	<0.05	<0.05	<0.05	<0.05	< 0.05	<0.05	<1	<1
Dichlorobenzene, 1,3-	ug/g	<1	6	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	< 0.05	< 0.05	< 0.05	<0.05	<0.05	<0.05	< 0.05	< 0.05	<0.05	<1	<1
Dichlorobenzene, 1,4-	ug/g	<1	0.097	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<1	<1
Dichlorodifluoromethane	ug/g	<0.5	25	0.05	<0.05	<0.05	<0.05	-	-	-	-	- /	-	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	-	-
Dichloroethane, 1,1-	ug/g	<0.05	11	0.02, 0.05	<0.05	<0.05	<0.05	-	-	-	-	-	-	<0.05	<0.05	<0.05	<0.05	< 0.05	<0.05	-	-
Dichloroethane, 1,2-	ug/g	< 0.05	0.05	0.03, 0.05	<0.05	<0.05	<0.05	-	-	-	-	-	-	<0.05	<0.05	<0.05	<0.05	< 0.05	<0.05	-	-
Dichloroethene, 1,1-	ug/g	<0.5	0.05	0.05	<0.05	<0.05	<0.05	-	-	-	-	-	-	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	-	-
Dichloroethene, cis-1,2-	ug/g	< 0.05	30	0.02, 0.05	<0.05	<0.05	<0.05	-	-	-	-	-	-	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	-	-
Dichloroethene, trans-1,2-	ug/g	1.93	0.75	0.05	<0.05	<0.05	<0.05	-	-	-	-		-	<0.05	<0.05	<0.05	<0.05	< 0.05	<0.05	-	-
Dichloropropane, 1,2-	ug/g	<0.05	0.085	0.03, 0.05	<0.05	<0.05	<0.05	-	-	-	-	-	-	<0.05	<0.05	<0.05	<0.05	< 0.05	<0.05	-	-
Dichloropropene, 1,3-	ug/g	<0.1	0.083	0.05	<0.1	<0.1	<0.1	-	-	-	-	-	-	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	-	-
Dichloropropene, cis-1,3-	ug/g	<0.05	-	0.05	<0.05	< 0.05	<0.05	-	-	-	-	-	-	<0.05	<0.05	<0.05	< 0.05	< 0.05	<0.05	-	-
Dichloropropene, trans-1,3-	ug/g	<0.05	-	0.05	<0.05	< 0.05	<0.05	-		-	-	-	-	<0.05	<0.05	<0.05	< 0.05	< 0.05	<0.05	-	-
Ethylene dibromide	ug/g	< 0.05	0.05	0.04, 0.05	<0.05	< 0.05	<0.05	-	-	-	-	-	-	< 0.05	< 0.05	<0.05	< 0.05	< 0.05	< 0.05	-	-
Hexane, n-	ug/g	0.6	34	0.05				-		-		-	-	-	-	-		-	-	-	-
Methyl Ethyl Ketone (MEK)	ug/g	<0.5	44	0.5	-	-	-	-	-	-		-	-	-	-	-	-	-	-	-	-
Methyl Isobutyl Ketone (MIBK)	ug/g	<0.5	4.3	0.5	-	-	-	1	-	-	-	-	-	-	-	-	-	-	-	1	-
Methylene chloride	ug/g	<0.05	0.96	0.05	<0.05	< 0.05	<0.05	-	-	-	-	-	-	<0.05	<0.05	<0.05	< 0.05	< 0.05	< 0.05	-	-
Methyl tert-butyl ether (MTBE)	ug/g	<0.05	1.4	0.05			-	-	-	-	-	-	-	-	-	-		-	-	-	-
Styrene	ug/g	<0.05	2.2	0.05	<0.05	<0.05	<0.05	-	-	-	-	-	-	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	•	-
Tetrachloroethane, 1,1,1,2-	ug/g	<0.05	0.05	0.04, 0.05	<0.05	<0.05	<0.05	-	-	-	1	-	-	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	-	-
Tetrachloroethane, 1,1,2,2-	ug/g	<0.05	0.05	0.05	<0.05	<0.05	<0.05	-	-	-	-	-	-	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	-	-
Tetrachloroethene	ug/g	<1	2.3	0.05	<0.05	<0.05	<0.05	ı	-	-	-	-	-	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	-	-
Trichloroethane, 1,1,1-	ug/g	<0.05	3.4	0.05	<0.05	<0.05	<0.05	ı	-	-		-	-	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	-	-
Trichloroethane, 1,1,2-	ug/g	<0.05	0.05	0.04, 0.05	<0.05	<0.05	<0.05	-	-	-	-	-	-	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	-	-
Trichloroethene	ug/g	<0.05	0.52	0.03, 0.05	<0.05	<0.05	<0.05	-	-	-	-	-	-	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	-	-
Trichlorofluoromethane	ug/g	<0.5	5.8	0.05	<0.05	<0.05	<0.05	-	-	-	-	-	-	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	1	-
Vinyl Chloride	ug/g	<1	0.022	0.002, 0.02	<0.02	<0.02	<0.02	-	-	-	-	-	-	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	-	-

Detection Limit DL: May vary between sample locations and events

DL exceeds criteria

Soil, Ground Water and Sediment Standards for Uses Concentration exceeds MECP2011-S-TZ-RPI-FMT
Under Part XV.1 of the Environmental Protection Act
(MECP, 2011) Table 7 SCS (Soil)

2011-S-T7-RPI-FMT

Table 5 - Analytical (Chemistr	y Results:		Sample ID	BH13-SS4	BH16-SS2	BH16-SS3	BH17-SS3	BH18-SS4	BH31-SS4	BH52-SS3	BH53-SS2	BH59-SS2	BH71-SS1	BH72-SS1	BH73-SS1	BH74-SS1	BH75-SS1	BH76-SS2	BH77-SS4	BH83-SS1
THIVIS	, VOCs in	1 5011		Sample Date	2011-Jun-22	2011-Jun-22	2011-Jun-22	2011-Jun-22	2011-Jun-22	2011-Jun-27	2011-Jul-05	2011-Jul-05	2011-Jul-07	2011-Jul-08							
Parameter	Units	Max Concentratio	MECP-2011- S-T7-RPI-	Sample Depth	1.9 - 2.4	0.6 - 1.2	1.2 - 1.6	1.2 - 1.9	1.9 - 2.5	1.8 - 2.3	1.2 - 1.5	0.6 - 1.3	0.9 - 1.3	0.0 - 0.4	0.0 - 0.3	0.0 - 0.3	0.0 - 0.2	0.0 - 0.3	0.6 - 0.9	2.0 - 2.6	0.0 - 0.6
Trihalomethanes				Detection Limit																	
Bromodichloromethane	ug/g	< 0.05	13	0.05	<0.05	<0.05	-	<0.05	<0.05	<0.05	<0.05	<0.05	-	-	<0.05	-	-	-	<0.05	-	-
Bromoform	ug/g	<0.05	0.26	0.05	<0.05	<0.05	-	< 0.05	<0.05	< 0.05	<0.05	<0.05	-	-	<0.05	-	-	-	<0.05	-	-
Chloroform	ug/g	<0.05	0.18	0.04, 0.05	<0.05	<0.05	-	<0.05	<0.05	<0.05	<0.05	<0.05	-	-	<0.05	-	-	-	<0.05	-	-
Dibromochloromethane	ug/g	<0.05	9.4	0.05	<0.05	<0.05	-	<0.05	<0.05	<0.05	<0.05	<0.05	-	-	<0.05	-	-	-	<0.05	-	-
Volatile Organic Compounds																					
Acetone	ug/g	<0.5	28	0.5	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Bromomethane	ug/g	<0.05	0.05	0.05	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Carbon tetrachloride	ug/g	4859.5	0.12	0.05	<0.05	<0.05	-	<0.05	<0.05	<0.05	<0.05	<0.05	-	-	<0.05	-	-	-	<0.05	-	-
Chlorobenzene	ug/g	<0.05	2.7	0.05	-	-	-	-	-	-	-	-	4	-	-	-	-	-	-	-	-
Dichlorobenzene, 1,2-	ug/g	<1	4.3	0.05	<0.05	<0.05	<0.1	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
Dichlorobenzene, 1,3-	ug/g	<1	6	0.05	<0.05	<0.05	<0.1	<0.05	<0.05	<0.05	<0.05	<0.05	< 0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
Dichlorobenzene, 1,4-	ug/g	<1	0.097	0.05	<0.05	<0.05	<0.1	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
Dichlorodifluoromethane	ug/g	<0.5	25	0.05	<0.05	<0.05	-	<0.05	<0.05	<0.05	<0.05	<0.05	-	-	<0.05	-	-	-	<0.05	-	-
Dichloroethane, 1,1-	ug/g	<0.05	11	0.02, 0.05	<0.05	<0.05	-	<0.05	<0.05	<0.05	<0.05	< 0.05	-	-	<0.05	-	-	-	<0.05	-	-
Dichloroethane, 1,2-	ug/g	<0.05	0.05	0.03, 0.05	<0.05	<0.05	-	<0.05	<0.05	<0.05	<0.05	< 0.05	-	-	<0.05	-	-	-	<0.05	-	-
Dichloroethene, 1,1-	ug/g	<0.5	0.05	0.05	<0.05	<0.05	-	<0.05	<0.05	<0.05	<0.05	< 0.05	-	-	<0.05	-	-	-	<0.05	-	-
Dichloroethene, cis-1,2-	ug/g	<0.05	30	0.02, 0.05	<0.05	<0.05	-	<0.05	<0.05	<0.05	<0.05	<0.05	-	-	<0.05	-	-	-	<0.05	-	-
Dichloroethene, trans-1,2-	ug/g	1.93	0.75	0.05	<0.05	<0.05	-	<0.05	<0.05	<0.05	<0.05	<0.05	-	-	<0.05	-	-	-	<0.05	-	-
Dichloropropane, 1,2-	ug/g	<0.05	0.085	0.03, 0.05	<0.05	<0.05	-	< 0.05	<0.05	<0.05	<0.05	<0.05	-	-	<0.05	-	-	-	< 0.05	-	-
Dichloropropene, 1,3-	ug/g	<0.1	0.083	0.05	-	<0.1	-	<0.1	-	-	<0.1	<0.1	-	-	<0.1	-	-	-	<0.1	-	-
Dichloropropene, cis-1,3-	ug/g	<0.05	-	0.05	<0.05	<0.05	-	<0.05	<0.05	<0.05	<0.05	<0.05	-	-	<0.05	-	-	-	<0.05	-	-
Dichloropropene, trans-1,3-	ug/g	<0.05	-	0.05	<0.05	<0.05	-	<0.05	<0.05	<0.05	<0.05	<0.05	-	-	<0.05	-	-	-	<0.05	-	-
Ethylene dibromide	ug/g	<0.05	0.05	0.04, 0.05	<0.05	<0.05	-	< 0.05	<0.05	< 0.05	<0.05	< 0.05	-	-	<0.05	-	-	-	< 0.05	-	-
Hexane, n-	ug/g	0.6	34	0.05	-	-	-	-	-	- \	,	-	-	-	-	-	-	-	-	-	-
Methyl Ethyl Ketone (MEK)	ug/g	<0.5	44	0.5	-	-	-	-	-	-		-	-	-	-	-	-	-	-	-	-
Methyl Isobutyl Ketone (MIBK)	ug/g	<0.5	4.3	0.5	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Methylene chloride	ug/g	<0.05	0.96	0.05	<0.05	<0.05	-	< 0.05	<0.05	<0.05	<0.05	<0.05	-	-	<0.05	-	-	-	<0.05	-	-
Methyl tert-butyl ether (MTBE)	ug/g	<0.05	1.4	0.05	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Styrene	ug/g	<0.05	2.2	0.05	<0.05	<0.05	-	<0.05	<0.05	<0.05	<0.05	<0.05	-	-	<0.05	-	-	-	<0.05	-	-
Tetrachloroethane, 1,1,1,2-	ug/g	<0.05	0.05	0.04, 0.05	<0.05	<0.05	-	<0.05	<0.05	<0.05	<0.05	<0.05	-	-	<0.05	-	-	-	<0.05	-	-
Tetrachloroethane, 1,1,2,2-	ug/g	<0.05	0.05	0.05	<0.05	<0.05	-	<0.05	<0.05	< 0.05	<0.05	<0.05	-	-	<0.05	-	-	-	<0.05	-	-
Tetrachloroethene	ug/g	<1	2.3	0.05	<0.05	<0.05	-	<0.05	<0.05	< 0.05	<0.05	<0.05	-	-	<0.05	-	-	-	<0.05	-	-
Trichloroethane, 1,1,1-	ug/g	<0.05	3.4	0.05	<0.05	<0.05	-	< 0.05	<0.05	<0.05	<0.05	<0.05	-	-	<0.05	-	-	-	<0.05	-	-
Trichloroethane, 1,1,2-	ug/g	<0.05	0.05	0.04, 0.05	<0.05	< 0.05	-	<0.05	<0.05	<0.05	<0.05	<0.05	-	-	<0.05	-	-	-	<0.05	-	-
Trichloroethene	ug/g	<0.05	0.52	0.03, 0.05	<0.05	<0.05	-	< 0.05	<0.05	<0.05	<0.05	<0.05	-	-	<0.05	-	-	-	<0.05	-	-
Trichlorofluoromethane	ug/g	<0.5	5.8	0.05	<0.05	<0.05	-	<0.05	<0.05	<0.05	<0.05	<0.05	-	-	<0.05	-	-	-	<0.05	-	-
Vinyl Chloride	ug/g	<1	0.022	0.002, 0.02	<0.02	<0.02	-	<0.02	<0.02	<0.02	<0.02	<0.02	-	-	<0.02	-	-	-	<0.02	-	-

Detection Limit DL: May vary between sample locations and events

DL exceeds criteria

2011-S-T7-RPI-FMT

Soil, Ground Water and Sediment Standards for Uses Concentration exceeds MECP2011-S-TZ-RPI-FMT
(MECP, 2011) Table 7 SCS (Soil) Residential/Parkland/Institutional Use with

Table 5 Analytical	Chemist	ry Results:		Sample ID	BH85-SS3	BH86-SS5	BH87-SS3	37-SS3.1 (BH87-S	BH88-SS2	BH88-SS3	BH89-SS1	BH89-SS2	BH90-SS1	BH91-SS2	BH92-SS1	BH93-SS2	BH94-SS2	BH100-SS2	BH128R SS2	BH140-SS5	BH144-SS3
IHIVIS	s, VOCs i	1 5011		Sample Date	2011-Jul-13	2011-Jul-13	2011-Jul-13	2011-Jul-13	2011-Jul-13	2011-Jul-13	2011-Jul-13	2011-Jul-13	2011-Jul-13	2011-Jul-14	2011-Jul-14	2011-Jul-14	2011-Jul-14	2011-Jul-15	2022-Dec-22	2011-Jul-27	2011-Jul-27
Parameter	Units	Max Concentratio	MECP-2011- S-T7-RPI-	Sample Depth	1.2 - 1.9	2.5 - 3.0	1.2 - 1.9	1.2 - 1.9	0.6 - 0.8	1.1 - 1.6	0.4 - 1.0	1.0 - 1.5	0.0 - 0.6	0.6 - 1.2	0.0 - 0.6	0.6 - 1.1	0.6 - 1.3	0.6 - 1.2	1.5 - 3.0	2.5 - 2.7	1.2 - 1.8
Trihalomethanes				Detection Limit																	
Bromodichloromethane	ug/g	<0.05	13	0.05	-	-	-	-	<0.05	-	<0.05	-	-	-	-	-	-	<0.05	<0.05	<0.05	<0.05
Bromoform	ug/g	< 0.05	0.26	0.05	-	-	-	-	<0.05	-	< 0.05	-	-	-	-	-	-	<0.05	< 0.05	<0.05	<0.05
Chloroform	ug/g	<0.05	0.18	0.04, 0.05	-	-	-	-	<0.05	-	<0.05	-	-	-	-	-	-	<0.05	<0.04	<0.05	<0.05
Dibromochloromethane	ug/g	<0.05	9.4	0.05	-	-	-	-	<0.05	-	<0.05	-	-	-	-	-	-	<0.05	<0.05	<0.05	<0.05
Volatile Organic Compounds																					
Acetone	ug/g	<0.5	28	0.5	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<0.5	-	-
Bromomethane	ug/g	<0.05	0.05	0.05	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<0.05	-	-
Carbon tetrachloride	ug/g	4859.5	0.12	0.05	-	-	-	-	<0.05	-	<0.05	-	-	-	-	-	-	<0.05	<0.05	<0.05	<0.05
Chlorobenzene	ug/g	<0.05	2.7	0.05	-	-	-	-	-	-	-	-	/-	-	-	-	-	-	<0.05	-	-
Dichlorobenzene, 1,2-	ug/g	<1	4.3	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	< 0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
Dichlorobenzene, 1,3-	ug/g	<1	6	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	< 0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
Dichlorobenzene, 1,4-	ug/g	<1	0.097	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
Dichlorodifluoromethane	ug/g	<0.5	25	0.05	-	-	-	-	<0.05	-	<0.05	-	-	-	-	-	-	<0.05	<0.05	<0.05	<0.05
Dichloroethane, 1,1-	ug/g	<0.05	11	0.02, 0.05	-	-	-	-	<0.05	-	<0.05	-	-	-	-	-	-	<0.05	<0.02	<0.05	<0.05
Dichloroethane, 1,2-	ug/g	<0.05	0.05	0.03, 0.05		-		-	<0.05	-	<0.05	-	-	-	-		-	<0.05	<0.03	<0.05	<0.05
Dichloroethene, 1,1-	ug/g	<0.5	0.05	0.05	-	-	-	-	<0.05	-	<0.05	-	-	-	-	-	-	<0.05	< 0.05	<0.05	<0.05
Dichloroethene, cis-1,2-	ug/g	< 0.05	30	0.02, 0.05	-	-	-	-	<0.05	-	<0.05	-	-	-	-	-	-	<0.05	<0.02	<0.05	<0.05
Dichloroethene, trans-1,2-	ug/g	1.93	0.75	0.05	-	-	-	-	<0.05	-	<0.05	-	-	-	-	-	1	<0.05	<0.05	<0.05	<0.05
Dichloropropane, 1,2-	ug/g	< 0.05	0.085	0.03, 0.05	-	-	-	-	<0.05	-	< 0.05	-	-	-	-	-	-	<0.05	< 0.03	<0.05	<0.05
Dichloropropene, 1,3-	ug/g	<0.1	0.083	0.05	-	-	-	-	<0.1	-	<0.1	-	-	-	-	-	1	<0.1	<0.05	<0.1	<0.1
Dichloropropene, cis-1,3-	ug/g	<0.05	-	0.05	-	-	-	-	<0.05	-	<0.05	-	-	-	-	-	1	<0.05	-	<0.05	<0.05
Dichloropropene, trans-1,3-	ug/g	<0.05	-	0.05	-	-	-	-	<0.05	-	<0.05	-	-	-	-	-	1	<0.05	-	<0.05	<0.05
Ethylene dibromide	ug/g	<0.05	0.05	0.04, 0.05	-	-	-	-	<0.05	-	<0.05	-	-	-	-	-	1	<0.05	<0.04	<0.05	<0.05
Hexane, n-	ug/g	0.6	34	0.05	-	-	-	-	-	-	í	-	-	-	-	-	1	-	<0.05	-	-
Methyl Ethyl Ketone (MEK)	ug/g	<0.5	44	0.5	-	-	-	-	-	-		-	-	-	-	-	1	-	<0.5	-	-
Methyl Isobutyl Ketone (MIBK)	ug/g	<0.5	4.3	0.5	-	-	-	-	-	-	-	-	-	-	-	-	1	-	<0.5	-	-
Methylene chloride	ug/g	<0.05	0.96	0.05	-	-	-	-	<0.05	-	<0.05	-	-	-	-	-	1	<0.05	<0.05	<0.05	<0.05
Methyl tert-butyl ether (MTBE	ug/g	<0.05	1.4	0.05	-	-	-	-	-	-	-		-	-	-	-	1	-	<0.05	-	-
Styrene	ug/g	<0.05	2.2	0.05	-	-	-	-	<0.05	-	<0.05	-	-	-	-	-	-	<0.05	<0.05	<0.05	<0.05
Tetrachloroethane, 1,1,1,2-	ug/g	<0.05	0.05	0.04, 0.05	-	-	-	-	<0.05	-	<0.05	-	-	-	-	-	-	<0.05	<0.04	<0.05	<0.05
Tetrachloroethane, 1,1,2,2-	ug/g	<0.05	0.05	0.05	-	-	-	-	<0.05	-	< 0.05	-	-	-	-	-	-	<0.05	<0.05	<0.05	<0.05
Tetrachloroethene	ug/g	<1	2.3	0.05	-	-	-	-	<0.05	-	< 0.05	-	-	-	-	-	-	<0.05	<0.05	<0.05	<0.05
Trichloroethane, 1,1,1-	ug/g	<0.05	3.4	0.05	-	-	-	-	<0.05	-	<0.05	-	-	-	-	-	-	<0.05	<0.05	<0.05	<0.05
Trichloroethane, 1,1,2-	ug/g	<0.05	0.05	0.04, 0.05	-	-	-	-	<0.05	-	<0.05	-	-	-	-	-	-	<0.05	<0.04	<0.05	<0.05
Trichloroethene	ug/g	<0.05	0.52	0.03, 0.05	-	-	-	-	<0.05	-	<0.05	-	-	-	-	-	-	<0.05	<0.03	<0.05	<0.05
Trichlorofluoromethane	ug/g	<0.5	5.8	0.05	-	-	-	-	<0.05	-	<0.05	-	-	-	-	-	-	<0.05	<0.05	<0.05	<0.05
Vinyl Chloride	ug/g	<1	0.022	0.002, 0.02	-	-	-	-	<0.02	-	<0.02	-	-	-	-	-	-	<0.02	<0.02	<0.02	<0.02

Detection Limit DL: May vary between sample locations and events

DL exceeds criteria

Soil, Ground Water and Sediment Standards for Uses Concentration exceeds MECP2011-S-TZ-RPI-FMT
Under Part XV.1 of the Environmental Protection Act
(MECP, 2011) Table 7 SCS (Soil)

2011-S-T7-RPI-FMT

Residential/Parkland/Institutional Use with

Table 5 Analytical	Chemisti	y Results:		Sample ID	BH145-SS3	BH147-SS3	BH150-SS3	BH156-SS4	BH201 SS3	BH202 SS2	2 SS2-Dup (BH20	BH202 SS4	BH203 SS3	BH204 SS1	BH205 SS1	BH207 SS1	BH208 SS2	BH209 SS1	BH209 SS2	BH210 SS2	BH211 SS1
THIVIS	, VOCs ir	1 3011		Sample Date	2011-Jul-28	2011-Jul-28	2011-Jul-28	2012-Nov-26	2022-Dec-23	2022-Dec-22	2022-Dec-22	2022-Dec-22	2022-Dec-22	2022-Dec-22	2022-Dec-22	2022-Dec-22	2022-Dec-19	2022-Dec-19	2022-Dec-19	2022-Dec-19	2022-Dec-15
Parameter	Units	Max Concentratio	MECP-2011- S-T7-RPI-	Sample Depth	1.2 - 1.9	1.4 - 1.9	1.2 - 1.8	1.8 - 2.4	1.5 - 2.1	0.8 - 1.4	0.8 - 1.4	2.3 - 2.9	1.5 - 2.1	0.0 - 0.6	0.0 - 0.6	0.0 - 0.6	0.8 - 1.4	0.0 - 0.6	0.8 - 1.4	0.8 - 1.4	0.0 - 0.6
Trihalomethanes				Detection Limit																	
Bromodichloromethane	ug/g	<0.05	13	0.05	<0.05	<0.05	<0.05	<0.02	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
Bromoform	ug/g	< 0.05	0.26	0.05	<0.05	<0.05	<0.05	< 0.05	<0.05	< 0.05	< 0.05	<0.05	<0.05	<0.05	<0.05	<0.05	< 0.05	<0.05	<0.05	<0.05	<0.05
Chloroform	ug/g	<0.05	0.18	0.04, 0.05	<0.05	<0.05	<0.05	<0.05	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04
Dibromochloromethane	ug/g	<0.05	9.4	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	< 0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
Volatile Organic Compounds																					
Acetone	ug/g	<0.5	28	0.5	-	-	-	-	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Bromomethane	ug/g	<0.05	0.05	0.05	-	-	-	-	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
Carbon tetrachloride	ug/g	4859.5	0.12	0.05	<0.05	<0.05	<0.05	<0.2	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
Chlorobenzene	ug/g	<0.05	2.7	0.05	-	-	-	-	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
Dichlorobenzene, 1,2-	ug/g	<1	4.3	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
Dichlorobenzene, 1,3-	ug/g	<1	6	0.05	<0.05	<0.05	<0.05	<0.5	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
Dichlorobenzene, 1,4-	ug/g	<1	0.097	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
Dichlorodifluoromethane	ug/g	<0.5	25	0.05	<0.05	<0.05	<0.05	<0.5	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
Dichloroethane, 1,1-	ug/g	<0.05	11	0.02, 0.05	<0.05	<0.05	<0.05	<0.05	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02
Dichloroethane, 1,2-	ug/g	<0.05	0.05	0.03, 0.05	<0.05	<0.05	<0.05	<0.05	<0.03	<0.03	<0.03	< 0.03	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03
Dichloroethene, 1,1-	ug/g	<0.5	0.05	0.05	<0.05	<0.05	<0.05	<0.5	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
Dichloroethene, cis-1,2-	ug/g	<0.05	30	0.02, 0.05	<0.05	<0.05	<0.05	<0.05	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02
Dichloroethene, trans-1,2-	ug/g	1.93	0.75	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	< 0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
Dichloropropane, 1,2-	ug/g	<0.05	0.085	0.03, 0.05	<0.05	<0.05	<0.05	<0.05	<0.03	<0.03	< 0.03	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	< 0.03
Dichloropropene, 1,3-	ug/g	<0.1	0.083	0.05	<0.1	<0.1	<0.1	<0.1	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
Dichloropropene, cis-1,3-	ug/g	<0.05	-	0.05	<0.05	<0.05	<0.05	<0.05	-	-	-	-	-	-	-	-	-	-	-	-	-
Dichloropropene, trans-1,3-	ug/g	<0.05	-	0.05	<0.05	<0.05	<0.05	< 0.05	-		-	-	-	-	-	-	-	-	-	-	-
Ethylene dibromide	ug/g	<0.05	0.05	0.04, 0.05	<0.05	<0.05	<0.05	-	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04
Hexane, n-	ug/g	0.6	34	0.05	-	-	-	-	<0.05	<0.05	< 0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	0.6
Methyl Ethyl Ketone (MEK)	ug/g	<0.5	44	0.5	-	-	-	-	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Methyl Isobutyl Ketone (MIBK)	ug/g	<0.5	4.3	0.5	-	-	-	-	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Methylene chloride	ug/g	<0.05	0.96	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
Methyl tert-butyl ether (MTBE	ug/g	<0.05	1.4	0.05	-	-	-	-	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
Styrene	ug/g	<0.05	2.2	0.05	<0.05	<0.05	<0.05	<0.05	< 0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
Tetrachloroethane, 1,1,1,2-	ug/g	<0.05	0.05	0.04, 0.05	<0.05	<0.05	<0.05	< 0.05	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04
Tetrachloroethane, 1,1,2,2-	ug/g	<0.05	0.05	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	< 0.05	< 0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
Tetrachloroethene	ug/g	<1	2.3	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
Trichloroethane, 1,1,1-	ug/g	<0.05	3.4	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
Trichloroethane, 1,1,2-	ug/g	<0.05	0.05	0.04, 0.05	<0.05	<0.05	<0.05	<0.05	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04
Trichloroethene	ug/g	<0.05	0.52	0.03, 0.05	<0.05	<0.05	<0.05	< 0.05	<0.03	<0.03	<0.03	<0.03	< 0.03	< 0.03	<0.03	<0.03	< 0.03	<0.03	<0.03	<0.03	< 0.03
Trichlorofluoromethane	ug/g	<0.5	5.8	0.05	<0.05	<0.05	<0.05	<0.5	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
Vinyl Chloride	ug/g	<1	0.022	0.002, 0.02	<0.02	<0.02	<0.02	<0.05	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02

Detection Limit DL: May vary between sample locations and events

DL exceeds criteria

Soil, Ground Water and Sediment Standards for Uses

2011-S-T7-RPI-FMT

Concentration exceeds MECP2011-S-TZ-RPI-FMT
Under Part XV.1 of the Environmental Protection Act
(MECP, 2011) Table 7 SCS (Soil) Residential/Parkland/Institutional Use with Fine/Medium-Textured soils

Table 5 - Analytical (Chemisti	y Results:		Sample ID	BH211 SS3	BH212 SS1	BH212 SS4	BH213 SS2	3 SS2-Dup (BH21	BH214 SS2	BH214 SS3	BH215 SS1	BH217 SS1	BH218 SS1	BH219 SS2	BH220 SS1) SS1-DUP (BH22	BH221 SS1	BH222 SS1	BH223 SS1	SS1-DUP (BH22
IHMIS	, VOCs ir	1 5011		Sample Date	2022-Dec-15	2022-Dec-15	2022-Dec-15	2022-Dec-19	2022-Dec-19	2022-Dec-22	2022-Dec-22	2022-Dec-22	2022-Dec-22	2022-Dec-22	2022-Dec-15	2022-Dec-22	2022-Dec-22	2022-Dec-22	2022-Dec-22	2022-Dec-22	2022-Dec-22
Parameter	Units	Max Concentratio	MECP-2011- S-T7-RPI-	Sample Depth	1.5 - 2.1	0.0 - 0.6	2.3 - 2.9	0.8 - 1.4	0.8 - 1.4	0.8 - 1.4	1.5 - 2.1	0.0 - 0.6	0.0 - 1.4	0.0 - 1.5	0.8 - 1.4	0.0 - 1.2	0.0 - 1.2	0.0 - 1.5	0.0 - 1.2	0.0 - 0.6	0.0 - 0.6
Trihalomethanes				Detection Limit																	
Bromodichloromethane	ug/g	<0.05	13	0.05	<0.05	<0.05	<0.05	< 0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
Bromoform	ug/g	<0.05	0.26	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
Chloroform	ug/g	<0.05	0.18	0.04, 0.05	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04
Dibromochloromethane	ug/g	<0.05	9.4	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
Volatile Organic Compounds																					
Acetone	ug/g	<0.5	28	0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Bromomethane	ug/g	<0.05	0.05	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	< 0.05
Carbon tetrachloride	ug/g	4859.5	0.12	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
Chlorobenzene	ug/g	<0.05	2.7	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
Dichlorobenzene, 1,2-	ug/g	<1	4.3	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
Dichlorobenzene, 1,3-	ug/g	<1	6	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	< 0.05
Dichlorobenzene, 1,4-	ug/g	<1	0.097	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	< 0.05
Dichlorodifluoromethane	ug/g	<0.5	25	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	< 0.05
Dichloroethane, 1,1-	ug/g	<0.05	11	0.02, 0.05	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02
Dichloroethane, 1,2-	ug/g	<0.05	0.05	0.03, 0.05	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	< 0.03	<0.03	<0.03	<0.03	< 0.03
Dichloroethene, 1,1-	ug/g	<0.5	0.05	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
Dichloroethene, cis-1,2-	ug/g	<0.05	30	0.02, 0.05	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02
Dichloroethene, trans-1,2-	ug/g	1.93	0.75	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	< 0.05
Dichloropropane, 1,2-	ug/g	<0.05	0.085	0.03, 0.05	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	< 0.03	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	< 0.03
Dichloropropene, 1,3-	ug/g	<0.1	0.083	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
Dichloropropene, cis-1,3-	ug/g	<0.05	-	0.05	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Dichloropropene, trans-1,3-	ug/g	<0.05	-	0.05	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Ethylene dibromide	ug/g	<0.05	0.05	0.04, 0.05	<0.04	<0.04	<0.04	<0.04	<0.04	< 0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04
Hexane, n-	ug/g	0.6	34	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	< 0.05
Methyl Ethyl Ketone (MEK)	ug/g	<0.5	44	0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Methyl Isobutyl Ketone (MIBK)	ug/g	<0.5	4.3	0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Methylene chloride	ug/g	<0.05	0.96	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
Methyl tert-butyl ether (MTBE)	ug/g	<0.05	1.4	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	< 0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
Styrene	ug/g	<0.05	2.2	0.05	<0.05	<0.05	<0.05	<0.05	< 0.05	<0.05	<0.05	< 0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
Tetrachloroethane, 1,1,1,2-	ug/g	<0.05	0.05	0.04, 0.05	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	< 0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04
Tetrachloroethane, 1,1,2,2-	ug/g	<0.05	0.05	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	< 0.05	< 0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	< 0.05
Tetrachloroethene	ug/g	<1	2.3	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
Trichloroethane, 1,1,1-	ug/g	<0.05	3.4	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
Trichloroethane, 1,1,2-	ug/g	<0.05	0.05	0.04, 0.05	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	< 0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04
Trichloroethene	ug/g	<0.05	0.52	0.03, 0.05	<0.03	< 0.03	< 0.03	<0.03	<0.03	<0.03	<0.03	< 0.03	< 0.03	<0.03	<0.03	<0.03	< 0.03	<0.03	<0.03	<0.03	< 0.03
Trichlorofluoromethane	ug/g	<0.5	5.8	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
Vinyl Chloride	ug/g	<1	0.022	0.002, 0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02

Detection Limit DL: May vary between sample locations and events

DL exceeds criteria

2011-S-T7-RPI-FMT

Soil, Ground Water and Sediment Standards for Uses Concentration exceeds MECP2011-S-TZ-RPI-FMT
Under Part XV.1 of the Environmental Protection Act
(MECP, 2011) Table 7 SCS (Soil) Residential/Parkland/Institutional Use with

Analytical		y Results:		Sample ID	BH228 SS1	TP8-1	TP8-3	TP9-2	TP10-2	AQCF12-1 (TP10-	TP10-3	TP11-2	TP225a	TP227a	TP229b	TP230b	TP231b	231b-dup (TP23:	TP233a	TP236a
IHIVIS	, VOCs in	1 5011		Sample Date	2022-Dec-22	2012-Nov-27	2012-Nov-27	2012-Nov-27	2012-Nov-28	2012-Nov-28	2012-Nov-28	2012-Nov-28	2022-Dec-13	2022-Dec-14	2022-Dec-14	2022-Dec-14	2022-Dec-13	2022-Dec-13	2022-Dec-14	2022-Dec-13
Parameter	Units	Max Concentratio	MECP-2011- S-T7-RPI-	Sample Depth	0.0 - 0.6	0.0 - 0.6	1.5 - 2.8	0.4 - 2.8	1.3 - 1.5	1.3 - 1.5	1.5 - 2.5	1.4 - 1.9	0.1 - 1.0	0.0 - 0.9	1.0 - 2.0	1.1 - 2.2	1.2 - 2.2	1.2 - 2.2	0.0 - 1.1	0.1 - 1.1
Trihalomethanes				Detection Limit																
Bromodichloromethane	ug/g	<0.05	13	0.05	<0.05	<0.02	0.02	<0.02	<0.02	-	<0.02	<0.02	<0.05	<0.05	<0.05	<0.05	< 0.05	<0.05	<0.05	<0.05
Bromoform	ug/g	<0.05	0.26	0.05	<0.05	-	-	-	-	-	-	-	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
Chloroform	ug/g	<0.05	0.18	0.04, 0.05	<0.04	-	-	-	-	-	-	-	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04
Dibromochloromethane	ug/g	<0.05	9.4	0.05	<0.05	-	-	-	-	-	-	-	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
Volatile Organic Compounds																				
Acetone	ug/g	<0.5	28	0.5	<0.5	-	-	-	-	-	-	-	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Bromomethane	ug/g	<0.05	0.05	0.05	<0.05	-	-	-	-	-	-	-	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
Carbon tetrachloride	ug/g	4859.5	0.12	0.05	<0.05	<0.2	4859.5	<0.2	<0.2	-	<0.2	<0.2	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
Chlorobenzene	ug/g	<0.05	2.7	0.05	<0.05	-	-	-	-	-	-	-	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
Dichlorobenzene, 1,2-	ug/g	<1	4.3	0.05	<0.05	-	-	-	-	<1	-	-	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
Dichlorobenzene, 1,3-	ug/g	<1	6	0.05	<0.05	-	-	-	<1	<1	-	-	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
Dichlorobenzene, 1,4-	ug/g	<1	0.097	0.05	<0.05	-	-	-	-	<1	-	-	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
Dichlorodifluoromethane	ug/g	<0.5	25	0.05	<0.05	-	-	-	-	-	-	-	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
Dichloroethane, 1,1-	ug/g	< 0.05	11	0.02, 0.05	<0.02	-	-	-	-	-	-	-	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02
Dichloroethane, 1,2-	ug/g	<0.05	0.05	0.03, 0.05	<0.03	-	-	-	-	-	-	-	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03
Dichloroethene, 1,1-	ug/g	<0.5	0.05	0.05	<0.05	-	-	-	-	-	-	-	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
Dichloroethene, cis-1,2-	ug/g	<0.05	30	0.02, 0.05	<0.02	-	-	-	-	-	-	-	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02
Dichloroethene, trans-1,2-	ug/g	1.93	0.75	0.05	<0.05	<0.05	1.93	<0.05	<0.05	-	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
Dichloropropane, 1,2-	ug/g	<0.05	0.085	0.03, 0.05	<0.03	-	-	-	-	-	-	-	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03
Dichloropropene, 1,3-	ug/g	<0.1	0.083	0.05	<0.05	-	-	-	-	-	-		<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
Dichloropropene, cis-1,3-	ug/g	<0.05	-	0.05	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Dichloropropene, trans-1,3-	ug/g	<0.05	-	0.05	-	-	-	-	-		-	-	-	-	-	-	-	-	-	-
Ethylene dibromide	ug/g	<0.05	0.05	0.04, 0.05	<0.04	-	-	-	-		-	-	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04
Hexane, n-	ug/g	0.6	34	0.05	<0.05	-	-	-	-	- \	-	-	<0.05	<0.05	<0.05	<0.05	< 0.05	<0.05	<0.05	<0.05
Methyl Ethyl Ketone (MEK)	ug/g	<0.5	44	0.5	<0.5	-	-	-	-			-	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Methyl Isobutyl Ketone (MIBK)	ug/g	<0.5	4.3	0.5	<0.5	-	-	-	-	-	-	-	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Methylene chloride	ug/g	<0.05	0.96	0.05	<0.05	-	-	-	-	- 1	-	-	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
Methyl tert-butyl ether (MTBE	ug/g	<0.05	1.4	0.05	<0.05	-	-	-	-	-	-	-	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
Styrene	ug/g	<0.05	2.2	0.05	<0.05	-	-	-	-	-	-	-	<0.05	<0.05	<0.05	<0.05	< 0.05	<0.05	<0.05	<0.05
Tetrachloroethane, 1,1,1,2-	ug/g	<0.05	0.05	0.04, 0.05	<0.04	-	-	-	-	-	-	-	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04
Tetrachloroethane, 1,1,2,2-	ug/g	<0.05	0.05	0.05	<0.05	-	-	-	-		-	-	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
Tetrachloroethene	ug/g	<1	2.3	0.05	<0.05	-	-	-	<1	-	-	-	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
Trichloroethane, 1,1,1-	ug/g	<0.05	3.4	0.05	<0.05	-	-	-	-	-	Y	-	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
Trichloroethane, 1,1,2-	ug/g	<0.05	0.05	0.04, 0.05	<0.04	-	-	-	-	-	-	-	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04
Trichloroethene	ug/g	<0.05	0.52	0.03, 0.05	<0.03	-	-	-	-	-	-	-	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03
Trichlorofluoromethane	ug/g	<0.5	5.8	0.05	<0.05	-	-	-		-	-	-	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
Vinyl Chloride	ug/g	<1	0.022	0.002, 0.02	<0.02	-	-	-	<1	-	-	-	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02

Detection Limit DL: May vary between sample locations and events

Fine/Medium-Textured soils

DL exceeds criteria

2011-S-T7-RPI-FMT

Soil, Ground Water and Sediment Standards for Uses Concentration exceeds MECP2011-S-TZ-RPI-FMT
Under Part XV.1 of the Environmental Protection Act
(MECP, 2011) Table 7 SCS (Soil) Residential/Parkland/Institutional Use with

Table 6 - Osp Analytical Chem ABNs, PAHs in 0	nistry Res	ults:		Sample ID	MW22-11 2011-Aug-18	Trip Blank 2-12 (MW22)	MW22-22 2022-Jul-12	MW23-22 2022-Jul-14	MW23 (DUP2-22) (MW23)	MW24-11 2011-Aug-18	Trip Blank 1-12 (MW24)	MW24-12 2012-May-01	MW24.1-12 (MW24)	MW24-22 2022-Jul-12	MW25-12 2012-May-01	MW25-22 2022-Jul-12	MW26-22 2022-Jul-14	MW50-22 2022-Jul-13
Parameter	Units	Max Concentratio	MECP-2011- GW-T7-FMT	Sample Depth	1.7 - 4.7	1.7 - 4.7	1.7 - 4.7	1.2 - 3.4	1.2 - 3.4	1.5 - 4.5	1.5 - 4.5	1.5 - 4.5	1.5 - 4.5	1.5 - 4.5	4.7 - 7.7	4.7 - 7.7	1.5 - 4.5	2.4 - 5.4
Acids, Bases, Neutrals				Detection Limit														
Biphenyl, 1,1-	μg/L	4.55	1700	0.5	-	-	<0.5	<0.5	<0.5	-	-	-	-	<0.5	-	<0.5	<0.5	<0.5
Bis(2-chloro-1-methylethyl)ether	μg/L	4.01	20000	0.5	-	-	<0.5	<0.5	<0.5	-	-	-	-	<0.5	-	<0.5	<0.5	<0.5
Bis(2-chloroethyl)ether	μg/L	<0.5	240000	0.5	-	-	<0.5	<0.5	<0.5	-	-	-	-	<0.5	-	<0.5	<0.5	<0.5
Bis(2-ethylhexyl)phthalate	μg/L	3.08	30	0.5	-	-	<0.5	<0.5	<0.5	-	-	-	-	<0.5	-	<0.5	<0.5	<0.5
Chloroaniline, p-	μg/L	<1	320	1	-	-	<1	<1	<1	ı	=	-	-	<1	-	<1	<1	<1
Dichlorobenzidine, 3,3-	μg/L	<0.5	500	0.5	-	-	<0.5	<0.5	<0.5	-	=	-	-	<0.5	-	<0.5	<0.5	<0.5
Diethyl phthalate	μg/L	<0.5	30	0.5	-	-	<0.5	<0.5	<0.5	-	=	-	-	<0.5	-	<0.5	<0.5	<0.5
Dimethylphenol, 2,4-	μg/L	5.07	31000	0.5	-	-	<0.5	<0.5	<0.5	-	-	-	-	<0.5	-	<0.5	<0.5	<0.5
Dimethyl phthalate	μg/L	<0.5	30	0.5	-	-	<0.5	<0.5	<0.5	ı	-	-	-	<0.5	-	<0.5	<0.5	<0.5
Dinitrophenol, 2,4-	μg/L	<10	9000	10	-	-	<10	<10	<10	-	-	-	-	<10	-	<10	<10	<10
Dinitrotoluene, 2,4+2,6-	μg/L	<0.5	2300	0.5	-	-	<0.5	<0.5	<0.5	-	-	-	-	<0.5	-	<0.5	<0.5	<0.5
Phenol	μg/L	<1	9600	1	-	-	<1	<1	<1	-	-	-	-	<1	-	<1	<1	<1
Trichlorobenzene, 1,2,4-	μg/L	1.2	3	0.5	-	-	<0.5	<0.5	<0.5	-	-	-	-	<0.5	-	<0.5	<0.5	<0.5
Polycyclic Aromatic Hydrocarbons																		
Acenaphthene	μg/L	0.87	17	0.2	<0.2	<0.02	<0.2	<0.2	<0.2	<0.2	<0.02	0.47	0.38	<0.2	<0.02	<0.2	<0.2	<0.2
Acenaphthylene	μg/L	<0.2	1	0.2	<0.2	<0.02	<0.2	<0.2	<0.2	<0.2	<0.02	<0.02	<0.02	<0.2	<0.02	<0.2	<0.2	<0.2
Anthracene	μg/L	2.43	1	0.1	<0.1	<0.01	<0.1	<0.1	<0.1	<0.1	<0.01	0.07	0.06	<0.1	<0.01	<0.1	<0.1	<0.1
Benzo[a]anthracene	μg/L	5.64	1.8	0.2	<0.2	<0.01	<0.2	<0.2	<0.2	<0.2	<0.01	0.04	0.04	<0.2	<0.01	<0.2	<0.2	<0.2
Benzo[a]pyrene	μg/L	6.65	0.81	0.01	<0.01	<0.01	<0.01	<0.01	<0.01	0.06	<0.01	0.03	0.03	<0.01	<0.01	<0.01	<0.01	<0.01
Benzo[b]fluoranthene	μg/L	9.68	0.75	0.1	<0.1	<0.02	<0.1	<0.1	<0.1	<0.1	<0.02	0.03	0.02	<0.1	<0.02	<0.1	<0.1	<0.1
Benzo[g,h,i]perylene	μg/L	4.34	0.2	0.2	<0.2	<0.02	<0.2	<0.2	<0.2	<0.2	<0.02	<0.02	<0.02	<0.2	<0.02	<0.2	<0.2	<0.2
Benzo[k]fluoranthene	μg/L	5.36	0.4	0.1	<0.1	<0.02	<0.1	<0.1	<0.1	<0.1	<0.02	0.02	<0.02	<0.1	<0.02	<0.1	<0.1	<0.1
Chrysene	μg/L	5.85	0.7	0.1	<0.1	<0.02	<0.1	<0.1	<0.1	<0.1	<0.02	0.05	0.05	<0.1	<0.02	<0.1	<0.1	<0.1
Dibenzo[a,h]anthracene	μg/L	0.57	0.4	0.2	<0.2	<0.02	<0.2	<0.2	<0.2	<0.2	<0.02	<0.02	<0.02	<0.2	<0.02	<0.2	<0.2	<0.2
Fluoranthene	μg/L	20.6	44	0.2	<0.2	<0.02	<0.2	<0.2	<0.2	<0.2	<0.02	0.05	0.05	<0.2	<0.02	<0.2	<0.2	<0.2
Fluorene	μg/L	0.84	290	0.2	<0.2	<0.02	<0.2	<0.2	<0.2	<0.2	<0.02	0.05	0.04	<0.2	<0.02	<0.2	<0.2	<0.2
Indeno[1,2,3-cd]pyrene	μg/L	2.89	0.2	0.2	<0.2	<0.02	<0.2	<0.2	<0.2	<0.2	<0.02	<0.02	<0.02	<0.2	<0.02	<0.2	<0.2	<0.2
Methylnaphthalene, 1+2-	μg/L	1.9	1500	0.02, 0.2	<0.4	-	<0.2	<0.2	<0.2	1.9	<0.04	0.44	0.34	<0.2	<0.04	<0.2	<0.2	<0.2
Methylnaphthalene, 1-	μg/L	0.9	1500	0.02	<0.2	<0.02	-		-	0.9	<0.02	0.21	0.17	-	<0.02	-	-	-
Methylnaphthalene, 2-	μg/L	1	1500	0.02	<0.2	<0.02		-	-	1	<0.02	0.23	0.17	-	<0.02	-	-	-
Naphthalene	μg/L	117	7	0.2	<0.2	<0.02	<0.2	<0.2	<0.2	0.5	<0.02	0.16	0.13	<0.2	<0.02	<0.2	<0.2	<0.2
Phenanthrene	μg/L	11.2	380	0.1	<0.1	<0.02	<0.1	<0.1	<0.1	0.4	<0.02	0.14	0.11	<0.1	<0.02	<0.1	<0.1	<0.1
Pyrene	μg/L	16.5	5.7	0.2	<0.2	<0.02	<0.2	<0.2	<0.2	<0.2	<0.02	0.06	0.06	<0.2	<0.02	<0.2	<0.2	<0.2

Detection Limit DL: May vary between sample locations and events

DL exceeds criteria

T7-FMT

Table 6 - Os _l Analytical Cher ABNs, PAHs in	nistry Res	sults:		Sample ID	MW78-22	MW79-12	MW79-22	MW80-22	MW81-22	MW82-11	MW82-12	MW82-22	MW84-22	MW121	MW128R	MW130-22	MW146-12	MW146-22	MW148-11	MW148-12	MW148-22
ABNS, PARS III	Groundw	rater		Sample Date	2022-Jul-12	2012-May-01	2022-Jul-14	2022-Jul-12	2022-Jul-14	2011-Aug-17	2012-May-01	2022-Jul-12	2022-Jul-13	2023-Jan-19	2023-Jan-19	2022-Jul-13	2012-May-01	2022-Jul-12	2011-Aug-18	2012-May-01	2022-Jul-13
Parameter	Units	Max Concentration	MECP-2011- GW-T7-FMT	Sample Depth	2.7 - 5.6	1.9 - 4.9	1.9 - 4.9	2.4 - 3.8	1.7 - 4.7	0.9 - 2.4	0.9 - 2.4	0.9 - 2.4	3.7 - 6.6	1.5 - 3.6	1.6 - 3.7	2.1 - 5.1	1.2 - 3.0	1.2 - 3.0	1.2 - 3.0	1.2 - 3.0	1.2 - 3.0
Acids, Bases, Neutrals				Detection Limit																	
Biphenyl, 1,1-	μg/L	4.55	1700	0.5	<0.5	-	<0.5	<0.5	<0.5	-	-	<0.5	<0.5	<0.5	<0.5	<0.5	-	<0.5	-	-	<0.5
Bis(2-chloro-1-methylethyl)ether	μg/L	4.01	20000	0.5	<0.5	-	<0.5	<0.5	<0.5	-	-	<0.5	<0.5	<0.5	<0.5	<0.5	-	<0.5	-	-	<0.5
Bis(2-chloroethyl)ether	μg/L	<0.5	240000	0.5	<0.5	-	<0.5	<0.5	<0.5	-	-	<0.5	<0.5	<0.5	<0.5	<0.5	-	<0.5	-	-	<0.5
Bis(2-ethylhexyl)phthalate	μg/L	3.08	30	0.5	<0.5	-	<0.5	<0.5	<0.5	-	-	<0.5	<0.5	<0.5	<0.5	<0.5	-	<0.5	-	-	<0.5
Chloroaniline, p-	μg/L	<1	320	1	<1	-	<1	<1	<1	-	-	<1	<1	<1	<1	<1	-	<1	-	-	<1
Dichlorobenzidine, 3,3-	μg/L	<0.5	500	0.5	<0.5	-	<0.5	<0.5	<0.5	-	-	<0.5	<0.5	<0.5	<0.5	<0.5	-	<0.5	-	-	<0.5
Diethyl phthalate	μg/L	<0.5	30	0.5	<0.5	-	<0.5	<0.5	<0.5	-	-	<0.5	<0.5	<0.5	<0.5	<0.5	-	<0.5	-	-	<0.5
Dimethylphenol, 2,4-	μg/L	5.07	31000	0.5	<0.5	-	<0.5	<0.5	<0.5	-	-	<0.5	<0.5	<0.5	<0.5	<0.5	-	<0.5	-	-	<0.5
Dimethyl phthalate	μg/L	<0.5	30	0.5	<0.5	-	<0.5	<0.5	<0.5	-	-	<0.5	<0.5	<0.5	<0.5	<0.5	-	<0.5	-	-	<0.5
Dinitrophenol, 2,4-	μg/L	<10	9000	10	<10	-	<10	<10	<10	-	-	<10	<10	<10	<10	<10	-	<10	-	-	<10
Dinitrotoluene, 2,4+2,6-	μg/L	<0.5	2300	0.5	<0.5	-	<0.5	<0.5	<0.5	-	-	<0.5	<0.5	<0.5	<0.5	<0.5	-	<0.5	-	-	<0.5
Phenol	μg/L	<1	9600	1	<1	-	<1	<1	<1	-	-	<1	<1	<1	<1	<1	-	<1	-	-	<1
Trichlorobenzene, 1,2,4-	μg/L	1.2	3	0.5	<0.5	-	<0.5	<0.5	<0.5	-	-	<0.5	<0.5	<0.5	<0.5	<0.5	-	<0.5	-	-	1.2
Polycyclic Aromatic Hydrocarbons																					
Acenaphthene	μg/L	0.87	17	0.2	<0.2	<0.02	<0.2	<0.2	<0.2	<0.2	<0.02	<0.2	<0.2	<0.2	<0.2	<0.2	<0.02	<0.2	<0.2	<0.02	<0.2
Acenaphthylene	μg/L	<0.2	1	0.2	<0.2	<0.02	<0.2	<0.2	<0.2	<0.2	< 0.02	<0.2	<0.2	<0.2	<0.2	<0.2	<0.02	<0.2	<0.2	<0.02	<0.2
Anthracene	μg/L	2.43	1	0.1	<0.1	<0.01	<0.1	<0.1	<0.1	<0.1	< 0.01	<0.1	<0.1	<0.1	<0.1	<0.1	<0.01	<0.1	<0.1	<0.01	<0.1
Benzo[a]anthracene	μg/L	5.64	1.8	0.2	<0.2	0.02	<0.2	<0.2	<0.2	<0.2	< 0.01	<0.2	<0.2	<0.2	<0.2	<0.2	<0.01	<0.2	<0.2	<0.01	<0.2
Benzo[a]pyrene	μg/L	6.65	0.81	0.01	< 0.01	0.01	< 0.01	< 0.01	<0.01	<0.01	<0.01	<0.01	< 0.01	< 0.01	<0.01	<0.01	< 0.01	<0.01	< 0.01	<0.01	<0.01
Benzo[b]fluoranthene	μg/L	9.68	0.75	0.1	<0.1	<0.02	<0.1	<0.1	<0.1	<0.1	<0.02	<0.1	<0.1	<0.1	<0.1	<0.1	<0.02	<0.1	<0.1	<0.02	<0.1
Benzo[g,h,i]perylene	μg/L	4.34	0.2	0.2	<0.2	<0.02	<0.2	<0.2	<0.2	<0.2	<0.02	<0.2	<0.2	<0.2	<0.2	<0.2	<0.02	<0.2	<0.2	<0.02	<0.2
Benzo[k]fluoranthene	μg/L	5.36	0.4	0.1	<0.1	<0.02	<0.1	<0.1	<0.1	<0.1	<0.02	<0.1	<0.1	<0.1	<0.1	<0.1	<0.02	<0.1	<0.1	<0.02	<0.1
Chrysene	μg/L	5.85	0.7	0.1	<0.1	<0.02	<0.1	<0.1	<0.1	<0.1	<0.02	<0.1	<0.1	<0.1	<0.1	<0.1	<0.02	<0.1	<0.1	<0.02	<0.1
Dibenzo[a,h]anthracene	μg/L	0.57	0.4	0.2	<0.2	<0.02	<0.2	<0.2	<0.2	<0.2	<0.02	<0.2	<0.2	<0.2	<0.2	<0.2	<0.02	<0.2	<0.2	<0.02	<0.2
Fluoranthene	μg/L	20.6	44	0.2	<0.2	0.03	<0.2	<0.2	<0.2	<0.2	<0.02	<0.2	<0.2	<0.2	<0.2	<0.2	<0.02	<0.2	<0.2	<0.02	<0.2
Fluorene	μg/L	0.84	290	0.2	<0.2	<0.02	<0.2	<0.2	<0.2	<0.2	<0.02	<0.2	<0.2	<0.2	<0.2	<0.2	<0.02	<0.2	<0.2	<0.02	<0.2
Indeno[1,2,3-cd]pyrene	μg/L	2.89	0.2	0.2	<0.2	<0.02	<0.2	<0.2	<0.2	<0.2	<0.02	<0.2	<0.2	<0.2	<0.2	<0.2	<0.02	<0.2	<0.2	<0.02	<0.2
Methylnaphthalene, 1+2-	μg/L	1.9	1500	0.02, 0.2	<0.2	<0.04	<0.2	<0.2	<0.2	<0.4	<0.04	<0.2	<0.2	<0.2	<0.2	<0.2	<0.04	<0.2	0.5	0.19	0.99
Methylnaphthalene, 1-	μg/L	0.9	1500	0.02	-	<0.02	-	-		<0.2	<0.02	-	-	-	-	-	<0.02	-	0.3	0.14	-
Methylnaphthalene, 2-	μg/L	1	1500	0.02	-	<0.02	-	-	-	<0.2	<0.02	-	-	-	-	-	<0.02	-	<0.2	0.05	-
Naphthalene	μg/L	117	7	0.2	<0.2	<0.02	<0.2	<0.2	<0.2	<0.2	<0.02	<0.2	<0.2	<0.2	<0.2	<0.2	<0.02	<0.2	91.7	51.2	117
Phenanthrene	μg/L	11.2	380	0.1	<0.1	<0.02	<0.1	<0.1	<0.1	<0.1	<0.02	<0.1	<0.1	<0.1	<0.1	<0.1	<0.02	<0.1	<0.1	<0.02	0.31
Pyrene	μg/L	16.5	5.7	0.2	<0.2	0.03	<0.2	<0.2	<0.2	<0.2	<0.02	<0.2	<0.2	<0.2	<0.2	<0.2	<0.02	<0.2	<0.2	<0.02	<0.2

Detection Limit DL: May vary between sample locations and events

DL exceeds criteria

T7-FMT

Table 6 - Os _l Analytical Cher ABNs, PAHs in	mistry Re	sults:		Sample ID	MW149-22	MW151-22	MW151 (DUP1-22) (MW151)	MW152-22	MW156-22	MW201	GW-Dup1 (MW201)	MW202	MW203	MW204	MW205	Field Blank (MW205)	MW206	MW207	MW208
7.2.00, 17.1.10 111	-			Sample Date	2022-Jul-13	2022-Jul-13	2022-Jul-13	2022-Jul-12	2022-Jul-13	2023-Jan-19	2023-Jan-19	2023-Jan-19	2023-Jan-19	2023-Jan-19	2023-Jan-23	2023-Jan-23	2023-Jan-23	2023-Jan-23	2023-Jan-23
Parameter	Units	Max Concentratio	MECP-2011- GW-T7-FMT	Sample Depth	1.1 - 2.2	1.6 - 4.5	1.6 - 4.5	2.1 - 5.1	2.0 - 5.0	5.4 - 8.4	5.4 - 8.4	2.3 - 5.2	3.3 - 6.0	1.7 - 4.7	4.6 - 7.6	4.6 - 7.6	5.2 - 8.2	8.3 - 11.3	4.9 - 7.9
Acids, Bases, Neutrals				Detection Limit															
Biphenyl, 1,1-	μg/L	4.55	1700	0.5	<0.5	<0.5	<0.5	<0.5	<0.5	-	-	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Bis(2-chloro-1-methylethyl)ether	μg/L	4.01	20000	0.5	<0.5	<0.5	<0.5	<0.5	<0.5	-	-	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Bis(2-chloroethyl)ether	μg/L	<0.5	240000	0.5	<0.5	<0.5	<0.5	<0.5	<0.5	-	-	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Bis(2-ethylhexyl)phthalate	μg/L	3.08	30	0.5	<0.5	<0.5	<0.5	<0.5	<0.5	-	-	<0.5	<0.5	<0.5	<0.5	<0.5	1.1	<0.5	3.08
Chloroaniline, p-	μg/L	<1	320	1	<1	<1	<1	<1	<1	-	-	<1	<1	<1	<1	<1	<1	<1	<1
Dichlorobenzidine, 3,3-	μg/L	<0.5	500	0.5	<0.5	<0.5	<0.5	<0.5	<0.5	-	-	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Diethyl phthalate	μg/L	<0.5	30	0.5	<0.5	<0.5	<0.5	<0.5	<0.5	-	-	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Dimethylphenol, 2,4-	μg/L	5.07	31000	0.5	<0.5	<0.5	<0.5	<0.5	<0.5	-	-	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	5.07
Dimethyl phthalate	μg/L	<0.5	30	0.5	<0.5	<0.5	<0.5	<0.5	<0.5	-	-	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Dinitrophenol, 2,4-	μg/L	<10	9000	10	<10	<10	<10	<10	<10	-	-	<10	<10	<10	<10	<10	<10	<10	<10
Dinitrotoluene, 2,4+2,6-	μg/L	<0.5	2300	0.5	<0.5	<0.5	<0.5	<0.5	<0.5	-	-	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Phenol	μg/L	<1	9600	1	<1	<1	<1	<1	<1	-	-	<1	<1	<1	<1	<1	<1	<1	<1
Trichlorobenzene, 1,2,4-	μg/L	1.2	3	0.5	<0.5	<0.5	<0.5	<0.5	<0.5	-	-	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Polycyclic Aromatic Hydrocarbons																			
Acenaphthene	μg/L	0.87	17	0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Acenaphthylene	μg/L	<0.2	1	0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Anthracene	μg/L	2.43	1	0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo[a]anthracene	μg/L	5.64	1.8	0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Benzo[a]pyrene	μg/L	6.65	0.81	0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Benzo[b]fluoranthene	μg/L	9.68	0.75	0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo[g,h,i]perylene	μg/L	4.34	0.2	0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Benzo[k]fluoranthene	μg/L	5.36	0.4	0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Chrysene	μg/L	5.85	0.7	0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Dibenzo[a,h]anthracene	μg/L	0.57	0.4	0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Fluoranthene	μg/L	20.6	44	0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Fluorene	μg/L	0.84	290	0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Indeno[1,2,3-cd]pyrene	μg/L	2.89	0.2	0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Methylnaphthalene, 1+2-	μg/L	1.9	1500	0.02, 0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Methylnaphthalene, 1-	μg/L	0.9	1500	0.02	-	-	-		-	-	-	-	-	-	-	-	-	-	-
Methylnaphthalene, 2-	μg/L	1	1500	0.02	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Naphthalene	μg/L	117	7	0.2	2.97	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	29.3	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Phenanthrene	μg/L	11.2	380	0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Pyrene	μg/L	16.5	5.7	0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2

Detection Limit DL: May vary between sample locations and events

DL exceeds criteria

T7-FMT

Table 6 - Osp Analytical Chen ABNs, PAHs in (nistry Res	ults:		Sample ID	MW209	MW210	MW211	MW212	MW213	GW-Dup3 (MW213)	Trip Blank (MW214)	MW214		W-Dup2 (MW21	MW217	MW218	MW219	MW220	MW221	MW222
71210) 17110 111				Sample Date	2023-Jan-23	2023-Jan-23	2023-Jan-23	2023-Jan-23	2023-Jan-23	2023-Jan-23	2023-Jan-24	2023-Jan-24	2023-Jan-23	2023-Jan-23	2023-Jan-24	2023-Jan-24	2023-Jan-25	2023-Jan-25	2023-Jan-24	2023-Jan-24
Parameter	Units	Max Concentratio	MECP-2011- GW-T7-FMT	Sample Depth	0.6 - 3.6	0.3 - 3.3	0.6 - 3.6	1.2 - 2.7	0.7 - 3.7	0.7 - 3.7	1.2 - 3.6	1.2 - 3.6	1.6 - 4.5	1.6 - 4.5	1.7 - 4.7	1.0 - 2.4	1.0 - 3.9	1.0 - 2.5	1.0 - 2.5	1.1 - 2.6
Acids, Bases, Neutrals				Detection Limit																
Biphenyl, 1,1-	μg/L	4.55	1700	0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	4.55	-
Bis(2-chloro-1-methylethyl)ether	μg/L	4.01	20000	0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	4.01	-
Bis(2-chloroethyl)ether	μg/L	<0.5	240000	0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	-
Bis(2-ethylhexyl)phthalate	μg/L	3.08	30	0.5	1.09	0.78	0.86	<0.5	0.86	1.14	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	-
Chloroaniline, p-	μg/L	<1	320	1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	-
Dichlorobenzidine, 3,3-	μg/L	<0.5	500	0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	
Diethyl phthalate	μg/L	<0.5	30	0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	-
Dimethylphenol, 2,4-	μg/L	5.07	31000	0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	-
Dimethyl phthalate	μg/L	<0.5	30	0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	-
Dinitrophenol, 2,4-	μg/L	<10	9000	10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	-
Dinitrotoluene, 2,4+2,6-	μg/L	<0.5	2300	0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	-
Phenol	μg/L	<1	9600	1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	-
Trichlorobenzene, 1,2,4-	μg/L	1.2	3	0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	-
Polycyclic Aromatic Hydrocarbons																				
Acenaphthene	μg/L	0.87	17	0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	0.87	<0.2	<0.2
Acenaphthylene	μg/L	<0.2	1	0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Anthracene	μg/L	2.43	1	0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	2.43	<0.1	<0.1
Benzo[a]anthracene	μg/L	5.64	1.8	0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	5.64	<0.2	<0.2
Benzo[a]pyrene	μg/L	6.65	0.81	0.01	<0.01	<0.01	<0.01	<0.01	< 0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	< 0.01	<0.01	6.65	<0.01	< 0.01
Benzo[b]fluoranthene	μg/L	9.68	0.75	0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	9.68	<0.1	<0.1
Benzo[g,h,i]perylene	μg/L	4.34	0.2	0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	0.63	<0.2	<0.2	<0.2	<0.2	4.34	<0.2	<0.2
Benzo[k]fluoranthene	μg/L	5.36	0.4	0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	5.36	<0.1	<0.1
Chrysene	μg/L	5.85	0.7	0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	5.85	<0.1	<0.1
Dibenzo[a,h]anthracene	μg/L	0.57	0.4	0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	0.57	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Fluoranthene	μg/L	20.6	44	0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	20.6	<0.2	<0.2
Fluorene	μg/L	0.84	290	0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	0.84	<0.2	<0.2
Indeno[1,2,3-cd]pyrene	μg/L	2.89	0.2	0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	0.5	<0.2	<0.2	<0.2	<0.2	2.89	<0.2	<0.2
Methylnaphthalene, 1+2-	μg/L	1.9	1500	0.02, 0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Methylnaphthalene, 1-	μg/L	0.9	1500	0.02	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Methylnaphthalene, 2-	μg/L	1	1500	0.02	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Naphthalene	μg/L	117	7	0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Phenanthrene	μg/L	11.2	380	0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	11.2	<0.1	<0.1
Pyrene	μg/L	16.5	5.7	0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	16.5	<0.2	<0.2

Detection Limit DL: May vary between sample locations and events

DL exceeds criteria

T7-FMT

Table 6 - O Analytical Che ABNs, PAHs ii	emistry Res	ults:		Sample ID	MW223 2023-Jan-24	MW224 2023-Jan-25	MW228 2023-Jan-23
Parameter	Units	Max Concentratio	MECP-2011- GW-T7-FMT	Sample Depth	1.5 - 3.0	1.3 - 4.3	1.2 - 4.2
Acids, Bases, Neutrals				Detection Limit			
Biphenyl, 1,1-	μg/L	4.55	1700	0.5	<0.5	-	<0.5
Bis(2-chloro-1-methylethyl)ether	μg/L	4.01	20000	0.5	<0.5	-	<0.5
Bis(2-chloroethyl)ether	μg/L	<0.5	240000	0.5	<0.5	-	<0.5
Bis(2-ethylhexyl)phthalate	μg/L	3.08	30	0.5	<0.5	-	<0.5
Chloroaniline, p-	μg/L	<1	320	1	<1	-	<1
Dichlorobenzidine, 3,3-	μg/L	<0.5	500	0.5	<0.5	-	<0.5
Diethyl phthalate	μg/L	<0.5	30	0.5	<0.5	-	<0.5
Dimethylphenol, 2,4-	μg/L	5.07	31000	0.5	<0.5	-	<0.5
Dimethyl phthalate	μg/L	<0.5	30	0.5	<0.5	-	<0.5
Dinitrophenol, 2,4-	μg/L	<10	9000	10	<10	-	<10
Dinitrotoluene, 2,4+2,6-	μg/L	<0.5	2300	0.5	<0.5	-	<0.5
Phenol	μg/L	<1	9600	1	<1	-	<1
Trichlorobenzene, 1,2,4-	μg/L	1.2	3	0.5	<0.5	-	<0.5
Polycyclic Aromatic Hydrocarbons							
Acenaphthene	μg/L	0.87	17	0.2	<0.2	<0.2	<0.2
Acenaphthylene	μg/L	<0.2	1	0.2	<0.2	<0.2	<0.2
Anthracene	μg/L	2.43	1	0.1	<0.1	<0.1	<0.1
Benzo[a]anthracene	μg/L	5.64	1.8	0.2	0.46	<0.2	<0.2
Benzo[a]pyrene	μg/L	6.65	0.81	0.01	< 0.01	< 0.01	<0.01
Benzo[b]fluoranthene	μg/L	9.68	0.75	0.1	<0.1	<0.1	<0.1
Benzo[g,h,i]perylene	μg/L	4.34	0.2	0.2	<0.2	<0.2	<0.2
Benzo[k]fluoranthene	μg/L	5.36	0.4	0.1	<0.1	<0.1	<0.1
Chrysene	μg/L	5.85	0.7	0.1	0.53	<0.1	<0.1
Dibenzo[a,h]anthracene	μg/L	0.57	0.4	0.2	<0.2	<0.2	<0.2
Fluoranthene	μg/L	20.6	44	0.2	1.49	<0.2	<0.2
Fluorene	μg/L	0.84	290	0.2	<0.2	<0.2	<0.2
Indeno[1,2,3-cd]pyrene	μg/L	2.89	0.2	0.2	<0.2	<0.2	<0.2
Methylnaphthalene, 1+2-	μg/L	1.9	1500	0.02, 0.2	<0.2	<0.2	<0.2
Methylnaphthalene, 1-	μg/L	0.9	1500	0.02	-	-	-
Methylnaphthalene, 2-	μg/L	1	1500	0.02	-	-	-
Naphthalene	μg/L	117	7	0.2	<0.2	<0.2	<0.2
Phenanthrene	μg/L	11.2	380	0.1	0.81	<0.1	<0.1
Pyrene	μg/L	16.5	5.7	0.2	1.28	<0.2	<0.2

Detection Limit DL: May vary between sample locations and events

DL exceeds criteria

T7-FMT

Table 7 - Analytical C	hemistr	y Results:		Sample ID	MW22-11	Trip Blank 2-12 (MW22)	MW22-12	MW22-22	MW23-11	MW23-22	MW23 (DUP2-22) (MW23)	MW24-11	Trip Blank 1-12 (MW24)	MW24-12	MW24.1-12 (MW24)	MW24-22	MW25-11	MW25-12	MW25-22
CPs, THMs, VC	OCs in Gi	roundwater		Sample Date	2011-Aug-18	2012-Apr-30	2012-May-01	2022-Jul-12	2011-Aug-18	2022-Jul-14	2022-Jul-14	2011-Aug-18	2012-Apr-30	2012-May-01	2012-May-01	2022-Jul-12	2011-Aug-17	2012-May-01	2022-Jul-12
Parameter	Units	Max Concentratio	MECP-2011- GW-T7-FMT	Sample Depth	1.7 - 4.7	1.7 - 4.7	1.7 - 4.7	1.7 - 4.7	1.2 - 3.4	1.2 - 3.4	1.2 - 3.4	1.5 - 4.5	1.5 - 4.5	1.5 - 4.5	1.5 - 4.5	1.5 - 4.5	4.7 - 7.7	4.7 - 7.7	4.7 - 7.7
Chlorophenols		Concentratio	011 17 11111	Detection Limit															
Chlorophenol, 2-	μg/L	<0.5	2600	0.5	-	-	-	<0.5	-	<0.5	<0.5	-	-	-	-	<0.5	-	-	<0.5
Dichlorophenol, 2,4-	μg/L	<0.3	3700	0.3	-	-	-	<0.3	-	<0.3	<0.3	-	-	-	-	<0.3	-	-	<0.3
Pentachlorophenol	μg/L	<0.5	50	0.5	-	-	-	<0.5	-	<0.5	<0.5	-	-	-	-	<0.5	-	-	<0.5
Trichlorophenol, 2,4,5-	μg/L	<0.2	1300	0.2	-	-	-	<0.2	-	<0.2	<0.2	-	-	-	-	<0.2	-	-	<0.2
Trichlorophenol, 2,4,6-	μg/L	0.99	180	0.2	-	-	-	<0.2	-	<0.2	<0.2	-	-	-	-	<0.2	-	-	<0.2
Trihalomethanes																			
Bromodichloromethane	μg/L	<300	67000	0.2, 2	<0.1	<0.3	<0.6	<0.2	<0.1	<0.2	<0.2	<0.1	<0.3	<0.3	<0.3	<0.2	<0.1	<0.3	<0.2
Bromoform	μg/L	<400	5	0.1, 1	<0.2	<0.4	<0.8	<0.1	<0.2	<0.1	<0.1	<0.2	<0.4	<0.4	<0.4	<0.1	<0.2	<0.4	<0.1
Chloroform	μg/L	<500	2	0.2, 2	<0.1	<0.5	<1	<0.2	<0.1	<0.2	<0.2	<0.1	<0.5	<0.5	<0.5	<0.2	<0.1	<0.5	<0.2
Dibromochloromethane	μg/L	<300	65000	0.1, 1	<0.2	<0.3	<0.6	<0.1	<0.2	<0.1	<0.1	<0.2	<0.3	<0.3	<0.3	<0.1	<0.2	<0.3	<0.1
Volatile Organic Compounds																			
Acetone	μg/L	<50	100000	1, 10	<10	-	-	<1	<10	<1	<1	<11	-	-	-	<1	19	-	<1
Bromomethane	μg/L	<500	0.89	0.2, 2	<0.5	<0.5	<1	<0.2	<0.5	<0.2	<0.2	<0.5	<0.5	<0.5	<0.5	<0.2	<0.5	<0.5	<0.2
Carbon tetrachloride	μg/L	<200	0.2	0.2, 2	<0.1	<0.2	<0.4	<0.2	<0.1	<0.2	<0.2	<0.1	<0.2	<0.2	<0.2	<0.2	<0.1	<0.2	<0.2
Chlorobenzene	μg/L	7.36	140	0.1, 1	<0.1	-	-	<0.1	<0.1	<0.1	<0.1	0.4	-	-	-	0.99	<0.1	-	<0.1
Dichlorobenzene, 1,2-	μg/L	<400	150	0.1, 1	<0.2	<0.4	<0.8	<0.1	<0.2	<0.1	<0.1	<0.2	<0.4	<0.4	<0.4	<0.1	<0.2	<0.4	<0.1
Dichlorobenzene, 1,3-	μg/L	<400	7600	0.1, 1	<0.2	<0.4	<0.8	<0.1	<0.2	<0.1	<0.1	<0.2	<0.4	<0.4	<0.4	<0.1	<0.2	<0.4	<0.1
Dichlorobenzene, 1,4-	μg/L	<400	0.5	0.1, 1	<0.2	<0.4	<0.8	<0.1	<0.2	<0.1	<0.1	<0.2	<0.4	<0.4	<0.4	<0.1	<0.2	<0.4	<0.1
Dichlorodifluoromethane	μg/L	<500	3500	0.4, 4	<0.5	<0.5	<1	<0.4	<0.5	<0.4	<0.4	<0.5	<0.5	<0.5	<0.5	<0.4	<0.5	<0.5	<0.4
Dichloroethane, 1,1-	μg/L	<400	11	0.3, 3	<0.1	<0.4	<0.8	<0.3	<0.1	<0.3	<0.3	<0.1	<0.4	0.4	0.5	<0.3	<0.1	<0.4	<0.3
Dichloroethane, 1,2-	μg/L	<200	0.5	0.2, 2	<0.2	<0.2	<0.4	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Dichloroethene, 1,1-	μg/L	<500	0.5	0.3, 3	<0.1	<0.5	<1	<0.3	<0.1	<0.3	<0.3	0.6	<0.5	<0.5	<0.5	<0.3	<0.1	<0.5	<0.3
Dichloroethene, cis-1,2-	μg/L	<400	1.6	0.2, 2	0.1	<0.4	<0.8	<0.2	<0.1	<0.2	<0.2	<0.1	<0.4	<0.4	<0.4	<0.2	<0.1	<0.4	<0.2
Dichloroethene, trans-1,2-	μg/L	<400	1.6	0.2, 2	<0.1	<0.4	<0.8	<0.2	<0.1	<0.2	<0.2	<0.1	<0.4	<0.4	<0.4	<0.2	<0.1	<0.4	<0.2
Dichloropropane, 1,2-	μg/L	<500	0.58	0.2, 2	<0.1	<0.5	<1	<0.2	<0.1	<0.2	<0.2	<0.1	<0.5	<0.5	<0.5	<0.2	<0.1	<0.5	<0.2
Dichloropropene, 1,3-	μg/L	<400	0.5	0.2, 0.3	<0.4	i	<0.8	<0.3	<0.4	<0.3	<0.3	<0.4	<0.4	<0.4	<0.4	<0.3	<0.4	<0.4	<0.3
Dichloropropene, cis-1,3-	μg/L	<200	-	0.2	<0.2	<0.2	<0.4	-	<0.2	-		<0.2	<0.2	<0.2	<0.2	-	<0.2	<0.2	-
Dichloropropene, trans-1,3-	μg/L	<200	-	0.2	<0.2	<0.2	<0.4	-	<0.2	-		<0.2	<0.2	<0.2	<0.2	-	<0.2	<0.2	-
Ethylene dibromide	μg/L	<200	0.2	0.1, 0.2, 1	<0.2	<0.2	<0.4	<0.1	<0.2	<0.1	<0.1	<0.2	<0.2	<0.2	<0.2	<0.1	<0.2	<0.2	<0.1
Hexane, n-	μg/L	<5	5	0.2, 2	<0.5	-	-	<0.2	<0.5	<0.2	<0.2	<0.5	-	-	-	<0.2	<0.5	-	<0.2
Methyl Ethyl Ketone (MEK)	μg/L	11	21000	1, 10	11	-	-	<1	<5	<1	<1	<5	-	-	-	<1	<5	1	<1
Methyl Isobutyl Ketone (MIBK)	μg/L	<10	5200	1, 10	<5	-	-	<1	<5	<1	<1	<5	-	-	-	<1	<5	-	<1
Methylene chloride	μg/L	<4000	26	0.3, 3	-	<4	<8	<0.3		<0.3	<0.3	-	<4	<4	<4	<0.3	-	<4	<0.3
Methyl tert-butyl ether (MTBE)	μg/L	<10	15	0.2, 2	<0.2	-	-	<0.2	<0.2	<0.2	<0.2	<0.2	-	-	-	<0.2	<0.2	-	<0.2
Styrene	μg/L	<500	43	0.1, 1	<0.2	<0.5	<1	<0.1	<0.2	<0.1	<0.1	<0.2	<0.5	<0.5	<0.5	<0.1	<0.2	<0.5	<0.1
Tetrachloroethane, 1,1,1,2-	μg/L	<500	1.1	0.1, 1	<0.1	<0.5	<1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.5	<0.5	<0.5	<0.1	<0.1	<0.5	<0.1
Tetrachloroethane, 1,1,2,2-	μg/L	<500	0.5	0.1, 1	<0.2	<0.5	<1	<0.1	<0.2	<0.1	<0.1	<0.2	<0.5	<0.5	<0.5	<0.1	<0.2	<0.5	<0.1
Tetrachloroethene	μg/L	<300	0.5	0.2, 2	<0.1	<0.3	<0.6	<0.2	<0.1	<0.2	<0.2	<0.1	<0.3	<0.3	<0.3	<0.2	<0.1	<0.3	<0.2
Trichloroethane, 1,1,1-	μg/L	<400	23	0.1, 0.3, 3	<0.1	<0.4	<0.8	<0.3	<0.1	<0.3	<0.3	<0.1	<0.4	<0.4	<0.4	<0.3	<0.1	<0.4	<0.3
Trichloroethane, 1,1,2-	μg/L	<400	0.5	0.2, 2	<0.2	<0.4	<0.8	<0.2	<0.2	<0.2	<0.2	<0.2	<0.4	<0.4	<0.4	<0.2	<0.2	<0.4	<0.2
Trichloroethene	μg/L	<300	0.5	0.2, 2	<0.1	<0.3	<0.6	<0.2	<0.1	<0.2	<0.2	<0.1	<0.3	<0.3	<0.3	<0.2	<0.1	<0.3	<0.2
Trichlorofluoromethane	μg/L	<500	2000	0.4, 4	<0.2	<0.5	<1	<0.4	<0.2	<0.4	<0.4	<0.2	<0.5	<0.5	<0.5	<0.4	<0.2	<0.5	<0.4
Vinyl Chloride	μg/L	<200	0.5	0.17, 0.2, 1.7	<0.2	<0.2	<0.4	<0.17	<0.2	<0.17	<0.17	<0.2	<0.2	<0.2	<0.2	<0.17	<0.2	<0.2	<0.17

Detection Limit

DL: May vary between sample locations and events

DL exceeds criteria

2011-GW-T7-FMT

Table 7 - Analytical C	Chemistr	ry Results:		Sample ID	MW26-11	MW26.1-11 (MW26)	MW26-22	MW50-11	MW50-22	MW78-11	MW78-12	MW78-22	MW79-11	MW79-22	MW80-11	MW80-22	MW81-11	MW81-22	MW82-11	MW82-22	MW84-11
CPs, THMs, V	OCs in G	roundwater		Sample Date	2011-Aug-17	2011-Aug-17	2022-Jul-14	2011-Aug-17	2022-Jul-13	2011-Aug-17	2012-May-01	2022-Jul-12	2011-Aug-17	2022-Jul-14	2011-Aug-17	2022-Jul-12	2011-Aug-17	2022-Jul-14	2011-Aug-17	2022-Jul-12	2011-Aug-17
Parameter	Units	Max Concentratio	MECP-2011- GW-T7-FMT	Sample Depth	1.5 - 4.5	1.5 - 4.5	1.5 - 4.5	2.4 - 5.4	2.4 - 5.4	2.7 - 5.6	2.7 - 5.6	2.7 - 5.6	1.9 - 4.9	1.9 - 4.9	2.4 - 3.8	2.4 - 3.8	1.7 - 4.7	1.7 - 4.7	0.9 - 2.4	0.9 - 2.4	3.7 - 6.6
Chlorophenols		Concentratio	GW-17-FIVIT	Detection Limit																	
Chlorophenol, 2-	μg/L	<0.5	2600	0.5	-	-	<0.5	-	<0.5	-	-	<0.5	-	<0.5	-	<0.5	-	<0.5	-	<0.5	-
Dichlorophenol, 2,4-	μg/L	<0.3	3700	0.3	-	-	<0.3	-	<0.3	-	-	<0.3	-	<0.3	-	<0.3	-	<0.3	-	<0.3	-
Pentachlorophenol	μg/L	<0.5	50	0.5	-	-	<0.5	-	<0.5	-	-	<0.5	-	<0.5	-	<0.5	-	<0.5	-	<0.5	-
Trichlorophenol, 2,4,5-	μg/L	<0.2	1300	0.2	-	-	<0.2	-	<0.2	-	-	<0.2	-	<0.2	-	<0.2	-	<0.2	-	<0.2	-
Trichlorophenol, 2,4,6-	μg/L	0.99	180	0.2	-	-	<0.2	-	<0.2	-	-	<0.2	-	<0.2	-	<0.2	-	<0.2	-	<0.2	-
Trihalomethanes																					
Bromodichloromethane	μg/L	<300	67000	0.2, 2	<0.1	<0.1	<0.2	<0.1	<0.2	<0.1	<0.3	<0.2	<0.1	<0.2	<0.1	<0.2	<0.1	<0.2	<0.1	<0.2	<0.1
Bromoform	μg/L	<400	5	0.1, 1	<0.2	<0.2	<0.1	<0.2	<0.1	<0.2	<0.4	<0.1	<0.2	<0.1	<0.2	<0.1	<0.2	<0.1	<0.2	<0.1	<0.2
Chloroform	μg/L	<500	2	0.2, 2	<0.1	<0.1	<0.2	<0.1	<0.2	<0.1	<0.5	<0.2	<0.1	<0.2	<0.1	<0.2	<0.1	<0.2	<0.1	<0.2	<0.1
Dibromochloromethane	μg/L	<300	65000	0.1, 1	<0.2	<0.2	<0.1	<0.2	<0.1	<0.2	<0.3	<0.1	<0.2	<0.1	<0.2	<0.1	<0.2	<0.1	<0.2	<0.1	<0.2
Volatile Organic Compounds																					
Acetone	μg/L	<50	100000	1, 10	<10	<10	<1	<10	<1	<10	-	<1	<10	<1	<10	<1	<10	<1	<10	<1	<10
Bromomethane	μg/L	<500	0.89	0.2, 2	<0.5	<0.5	<0.2	<0.5	<0.2	<0.5	3.8	<0.2	<0.5	<0.2	<0.5	<0.2	<0.5	<0.2	<0.5	<0.2	<0.5
Carbon tetrachloride	μg/L	<200	0.2	0.2, 2	<0.1	<0.1	<0.2	<0.1	<0.2	<0.1	<0.2	<0.2	<0.1	<0.2	<0.1	<0.2	<0.1	<0.2	<0.1	<0.2	<0.1
Chlorobenzene	μg/L	7.36	140	0.1, 1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	-	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Dichlorobenzene, 1,2-	μg/L	<400	150	0.1, 1	<0.2	<0.2	<0.1	<0.2	<0.1	<0.2	<0.4	<0.1	<0.2	<0.1	<0.2	<0.1	<0.2	<0.1	<0.2	<0.1	<0.2
Dichlorobenzene, 1,3-	μg/L	<400	7600	0.1, 1	<0.2	<0.2	<0.1	<0.2	<0.1	<0.2	<0.4	<0.1	<0.2	<0.1	<0.2	<0.1	<0.2	<0.1	<0.2	<0.1	<0.2
Dichlorobenzene, 1,4-	μg/L	<400	0.5	0.1, 1	<0.2	<0.2	<0.1	<0.2	<0.1	<0.2	<0.4	<0.1	<0.2	<0.1	<0.2	<0.1	<0.2	<0.1	<0.2	<0.1	<0.2
Dichlorodifluoromethane	μg/L	<500	3500	0.4, 4	<0.5	<0.5	<0.4	<0.5	<0.4	<0.5	<0.5	< 0.4	<0.5	<0.4	<0.5	<0.4	<0.5	<0.4	<0.5	<0.4	<0.5
Dichloroethane, 1,1-	μg/L	<400	11	0.3, 3	<0.1	<0.1	<0.3	<0.1	<0.3	<0.1	<0.4	<0.3	<0.1	<0.3	<0.1	<0.3	<0.1	<0.3	<0.1	<0.3	<0.1
Dichloroethane, 1,2-	μg/L	<200	0.5	0.2, 2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Dichloroethene, 1,1-	μg/L	<500	0.5	0.3, 3	<0.1	<0.1	<0.3	<0.1	<0.3	<0.1	<0.5	<0.3	<0.1	<0.3	<0.1	<0.3	<0.1	<0.3	<0.1	<0.3	<0.1
Dichloroethene, cis-1,2-	μg/L	<400	1.6	0.2, 2	<0.1	<0.1	<0.2	<0.1	<0.2	<0.1	<0.4	<0.2	<0.1	<0.2	<0.1	<0.2	<0.1	<0.2	<0.1	<0.2	<0.1
Dichloroethene, trans-1,2-	μg/L	<400	1.6	0.2, 2	<0.1	<0.1	<0.2	<0.1	<0.2	<0.1	<0.4	<0.2	<0.1	<0.2	<0.1	<0.2	<0.1	<0.2	<0.1	<0.2	<0.1
Dichloropropane, 1,2-	μg/L	<500	0.58	0.2, 2	<0.1	<0.1	<0.2	<0.1	<0.2	<0.1	<0.5	<0.2	<0.1	<0.2	<0.1	<0.2	<0.1	<0.2	<0.1	<0.2	<0.1
Dichloropropene, 1,3-	μg/L	<400	0.5	0.2, 0.3	<0.4	<0.4	<0.3	<0.4	<0.3	< 0.4	<0.4	<0.3	<0.4	<0.3	<0.4	<0.3	<0.4	<0.3	<0.4	<0.3	<0.4
Dichloropropene, cis-1,3-	μg/L	<200	-	0.2	<0.2	<0.2	1	<0.2	-	<0.2	<0.2	-	<0.2	-	<0.2	-	<0.2	-	<0.2	-	<0.2
Dichloropropene, trans-1,3-	μg/L	<200	-	0.2	<0.2	<0.2	ı	<0.2	-	<0.2	<0.2	-	<0.2	-	<0.2	-	<0.2	-	<0.2	-	<0.2
Ethylene dibromide	μg/L	<200	0.2	0.1, 0.2, 1	<0.2	<0.2	<0.1	<0.2	<0.1	<0.2	<0.2	<0.1	<0.2	<0.1	<0.2	<0.1	<0.2	<0.1	<0.2	<0.1	<0.2
Hexane, n-	μg/L	<5	5	0.2, 2	<0.5	<0.5	<0.2	<0.5	<0.2	<0.5	-	<0.2	<0.5	<0.2	<0.5	<0.2	<0.5	<0.2	<0.5	<0.2	<0.5
Methyl Ethyl Ketone (MEK)	μg/L	11	21000	1, 10	<5	<5	<1	<5	<1	<5	-	<1	<5	<1	<5	<1	<5	<1	<5	<1	<5
Methyl Isobutyl Ketone (MIBK)	μg/L	<10	5200	1, 10	<5	<5	<1	<5	<1	<5	-	<1	<5	<1	<5	<1	<5	<1	<5	<1	<5
Methylene chloride	μg/L	<4000	26	0.3, 3	-	-	<0.3	-	<0.3	·	<4	<0.3	-	<0.3	-	<0.3	-	<0.3	0.6	<0.3	
Methyl tert-butyl ether (MTBE)	μg/L	<10	15	0.2, 2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	-	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Styrene	μg/L	<500	43	0.1, 1	<0.2	<0.2	<0.1	<0.2	<0.1	<0.2	<0.5	<0.1	<0.2	<0.1	<0.2	<0.1	<0.2	<0.1	<0.2	<0.1	<0.2
Tetrachloroethane, 1,1,1,2-	μg/L	<500	1.1	0.1, 1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.5	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.2	<0.1	<0.1
Tetrachloroethane, 1,1,2,2-	μg/L	<500	0.5	0.1, 1	<0.2	<0.2	<0.1	<0.2	<0.1	<0.2	<0.5	<0.1	<0.2	<0.1	<0.2	<0.1	<0.2	<0.1	<0.1	<0.1	<0.2
Tetrachloroethene	μg/L	<300	0.5	0.2, 2	<0.1	<0.1	<0.2	<0.1	<0.2	<0.1	<0.3	<0.2	<0.1	<0.2	<0.1	<0.2	<0.1	<0.2	<0.1	<0.2	<0.1
Trichloroethane, 1,1,1-	μg/L	<400	23	0.1, 0.3, 3	<0.1	<0.1	<0.3	<0.1	<0.3	<0.1	<0.4	<0.3	<0.1	<0.3	<0.1	<0.3	<0.1	<0.3	<0.2	<0.3	<0.1
Trichloroethane, 1,1,2-	μg/L	<400	0.5	0.2, 2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.4	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	-	<0.2	<0.2
Trichloroethene	μg/L	<300	0.5	0.2, 2	<0.1	<0.1	<0.2	<0.1	<0.2	<0.1	<0.3	<0.2	<0.1	<0.2	<0.1	<0.2	<0.1	<0.2	<0.1	<0.2	<0.1
Trichlorofluoromethane	μg/L	<500	2000	0.4, 4	<0.2	<0.2	<0.4	<0.2	<0.4	<0.2	<0.5	<0.4	<0.2	<0.4	<0.2	<0.4	<0.2	<0.4	<0.2	<0.4	<0.2
Vinyl Chloride	μg/L	<200	0.5	0.17, 0.2, 1.7	<0.2	<0.2	<0.17	<0.2	<0.17	<0.2	<0.2	<0.17	<0.2	<0.17	<0.2	<0.17	<0.2	<0.17	<0.2	<0.17	<0.2

Detection Limit DL: May vary between sample locations and events

DL exceeds criteria

Concentration exceeds MECP2011-GW-T7-FMT
Soil, Ground Water and Sediment Standards for Uses
Under Part XV.1 of the Environmental Protection Act
(MECP, 2011) Table 7 SCS (Ground Water) All Types of
Property Uses with Fine/Medium-Textured soils

Table 7 - Analytical C	hemistry	Results:		Sample ID	MW84-22	MW121-11	MW121	MW128R	MW130-11	MW130-22	MW146-11	MW146-22	MW148-11	MW148-12	MW148-22	MW149-11	MW149-12	MW149-22	MW151-11	MW151.1-11 (MW151)	MW151-22
CPs, THMs, VC	OCs in Gr	oundwater		Sample Date	2022-Jul-13	2011-Aug-17	2023-Jan-19	2023-Jan-19	2011-Aug-17	2022-Jul-13	2011-Aug-18	2022-Jul-12	2011-Aug-18	2012-May-01	2022-Jul-13	2011-Aug-18	2012-May-01	2022-Jul-13	2011-Aug-18	2011-Aug-18	2022-Jul-13
Parameter	Units	Max Concentratio	MECP-2011- GW-T7-FMT	Sample Depth	3.7 - 6.6	1.5 - 3.6	1.5 - 3.6	1.6 - 3.7	2.1 - 5.1	2.1 - 5.1	1.2 - 3.0	1.2 - 3.0	1.2 - 3.0	1.2 - 3.0	1.2 - 3.0	1.1 - 2.2	1.1 - 2.2	1.1 - 2.2	1.6 - 4.5	1.6 - 4.5	1.6 - 4.5
Chlorophenols				Detection Limit																	
Chlorophenol, 2-	μg/L	<0.5	2600	0.5	<0.5	-	<0.5	<0.5	-	<0.5	-	<0.5	-	-	<0.5	-	-	<0.5	-	-	<0.5
Dichlorophenol, 2,4-	μg/L	<0.3	3700	0.3	<0.3	-	<0.3	<0.3	-	<0.3	-	<0.3	-	-	<0.3	-	-	<0.3	-	-	<0.3
Pentachlorophenol	μg/L	<0.5	50	0.5	<0.5	-	<0.5	<0.5	-	<0.5	-	<0.5	-	-	<0.5	-	-	<0.5	-	-	<0.5
Trichlorophenol, 2,4,5-	μg/L	<0.2	1300	0.2	<0.2	-	<0.2	<0.2	-	<0.2	-	<0.2	-	-	<0.2	-	-	<0.2	-	-	<0.2
Trichlorophenol, 2,4,6-	μg/L	0.99	180	0.2	<0.2	-	<0.2	<0.2	-	<0.2	-	<0.2	-	-	0.99	-	-	<0.2	-	-	<0.2
Trihalomethanes																					
Bromodichloromethane	μg/L	<300	67000	0.2, 2	<0.2	<0.1	<0.2	<0.2	<0.1	<0.2	<0.1	<0.2	<0.1	<300	<2	<0.1	<0.3	<0.2	<0.1	<0.1	<0.2
Bromoform	μg/L	<400	5	0.1, 1	<0.1	<0.2	<0.1	<0.1	<0.2	<0.1	<0.2	<0.1	<0.2	<400	<1	<0.2	<0.4	<0.1	<0.2	<0.2	<0.1
Chloroform	μg/L	<500	2	0.2, 2	<0.2	<0.1	<0.2	<0.2	<0.1	<0.2	<0.1	<0.2	<0.1	<500	<2	<0.1	<0.5	<0.2	<0.1	<0.1	<0.2
Dibromochloromethane	μg/L	<300	65000	0.1, 1	<0.1	<0.2	<0.1	<0.1	<0.2	<0.1	<0.2	<0.1	<0.2	<300	<1	<0.2	<0.3	<0.1	<0.2	<0.2	<0.1
Volatile Organic Compounds																					
Acetone	μg/L	<50	100000	1, 10	<1	<10	<1	<1	<10	<1	<10	<1	<10	-	<10	21	-	<1	<10	<10	<1
Bromomethane	μg/L	<500	0.89	0.2, 2	<0.2	<0.5	<0.2	<0.2	<0.5	<0.2	<0.5	<0.2	<0.5	<500	<2	<0.5	<0.5	<0.2	<0.5	<0.5	<0.2
Carbon tetrachloride	μg/L	<200	0.2	0.2, 2	<0.2	<0.1	<0.2	<0.2	<0.1	<0.2	<0.1	<0.2	<0.1	<200	<2	<0.1	<0.2	<0.2	<0.1	<0.1	<0.2
Chlorobenzene	μg/L	7.36	140	0.1, 1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	-	<1	<0.1	-	<0.1	<0.1	<0.1	<0.1
Dichlorobenzene, 1,2-	μg/L	<400	150	0.1, 1	<0.1	<0.2	<0.1	<0.1	<0.2	<0.1	<0.2	<0.1	<0.2	<400	<1	<0.2	<0.4	<0.1	<0.2	<0.2	<0.1
Dichlorobenzene, 1,3-	μg/L	<400	7600	0.1, 1	<0.1	<0.2	<0.1	<0.1	<0.2	<0.1	<0.2	<0.1	<0.2	<400	<1	<0.2	<0.4	<0.1	<0.2	<0.2	<0.1
Dichlorobenzene, 1,4-	μg/L	<400	0.5	0.1, 1	<0.1	<0.2	<0.1	<0.1	<0.2	<0.1	<0.2	<0.1	<0.2	<400	<1	<0.2	<0.4	<0.1	<0.2	<0.2	<0.1
Dichlorodifluoromethane	μg/L	<500	3500	0.4, 4	<0.4	<0.5	<0.4	<0.4	<0.5	<0.4	<0.5	<0.4	<0.5	<500	<4	<0.5	<0.5	<0.4	<0.5	<0.5	<0.4
Dichloroethane, 1,1-	μg/L	<400	11	0.3, 3	<0.3	<0.1	<0.3	<0.3	<0.1	<0.3	<0.1	<0.3	<0.1	<400	<3	<0.1	<0.4	<0.3	<0.1	<0.1	<0.3
Dichloroethane, 1,2-	μg/L	<200	0.5	0.2, 2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<200	<2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Dichloroethene, 1,1-	μg/L	<500	0.5	0.3, 3	<0.3	<0.1	<0.3	<0.3	<0.1	<0.3	<0.1	<0.3	<0.1	<500	<3	<0.1	<0.5	<0.3	<0.1	<0.1	<0.3
Dichloroethene, cis-1,2-	μg/L	<400	1.6	0.2, 2	<0.2	<0.1	<0.2	<0.2	<0.1	<0.2	0.4	<0.2	<0.1	<400	<2	<0.1	<0.4	<0.2	<0.1	<0.1	<0.2
Dichloroethene, trans-1,2-	μg/L	<400	1.6	0.2, 2	<0.2	<0.1	<0.2	<0.2	<0.1	<0.2	<0.1	<0.2	<0.1	<400	<2	<0.1	<0.4	<0.2	<0.1	<0.1	<0.2
Dichloropropane, 1,2-	μg/L	<500	0.58	0.2, 2	<0.2	<0.1	<0.2	<0.2	<0.1	<0.2	<0.1	<0.2	<0.1	<500	<2	<0.1	<0.5	<0.2	<0.1	<0.1	<0.2
Dichloropropene, 1,3-	μg/L	<400	0.5	0.2, 0.3	<0.3	<0.4	<0.3	<0.3	<0.4	<0.3	<0.4	<0.3	<0.4	<400	<0.3	<0.4	<0.4	<0.3	<0.4	<0.4	<0.3
Dichloropropene, cis-1,3-	μg/L	<200	-	0.2	-	<0.2	-	-	<0.2	-	<0.2		<0.2	<200	-	<0.2	<0.2	-	<0.2	<0.2	-
Dichloropropene, trans-1,3-	μg/L	<200	-	0.2	-	<0.2	-	-	<0.2	-	<0.2		<0.2	<200	-	<0.2	<0.2	-	<0.2	<0.2	-
Ethylene dibromide	μg/L	<200	0.2	0.1, 0.2, 1	<0.1	<0.2	<0.1	<0.1	<0.2	<0.1	<0.2	<0.1	<0.2	<200	<1	<0.2	<0.2	<0.1	<0.2	<0.2	<0.1
Hexane, n-	μg/L	<5	5	0.2, 2	<0.2	<0.5	<0.2	<0.2	<0.5	<0.2	<0.5	<0.2	<0.5	-	<2	<0.5	-	<0.2	<0.5	<0.5	<0.2
Methyl Ethyl Ketone (MEK)	μg/L	11	21000	1, 10	<1	<5	<1	<1	<5	<1	<5	<1	<5	-	<10	<5	-	<1	<5	<5	<1
Methyl Isobutyl Ketone (MIBK)	μg/L	<10	5200	1, 10	<1	<5	<1	<1	<5	<1	<5	<1	<5	-	<10	<5	-	<1	<5	<5	<1
Methylene chloride	μg/L	<4000	26	0.3, 3	<0.3	-	<0.3	<0.3	-	<0.3	Y	<0.3	-	<4000	<3	-	<4	<0.3	-	-	<0.3
Methyl tert-butyl ether (MTBE)	μg/L	<10	15	0.2, 2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	-	<2	<0.2	-	<0.2	<0.2	<0.2	<0.2
Styrene	μg/L	<500	43	0.1, 1	<0.1	<0.2	<0.1	<0.1	<0.2	<0.1	<0.2	<0.1	<0.2	<500	<1	<0.2	<0.5	<0.1	<0.2	<0.2	<0.1
Tetrachloroethane, 1,1,1,2-	μg/L	<500	1.1	0.1, 1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<500	<1	<0.1	<0.5	<0.1	<0.1	<0.1	<0.1
Tetrachloroethane, 1,1,2,2-	μg/L	<500	0.5	0.1, 1	<0.1	<0.2	<0.1	<0.1	<0.2	<0.1	<0.2	<0.1	<0.2	<500	<1	<0.2	<0.5	<0.1	<0.2	<0.2	<0.1
Tetrachloroethene	μg/L	<300	0.5	0.2, 2	<0.2	<0.1	<0.2	<0.2	<0.1	<0.2	<0.1	<0.2	<0.1	<300	<2	<0.1	<0.3	<0.2	<0.1	<0.1	<0.2
Trichloroethane, 1,1,1-	μg/L	<400	23	0.1, 0.3, 3	<0.3	<0.1	<0.3	<0.3	<0.1	<0.3	<0.1	<0.3	<0.1	<400	<3	<0.1	<0.4	<0.3	<0.1	<0.1	<0.3
Trichloroethane, 1,1,2-	μg/L	<400	0.5	0.2, 2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<400	<2	<0.2	<0.4	<0.2	<0.2	<0.2	<0.2
Trichloroethene	μg/L	<300	0.5	0.2, 2	<0.2	<0.1	<0.2	<0.2	<0.1	<0.2	0.2	<0.2	<0.1	<300	<2	<0.1	<0.3	<0.2	<0.1	<0.1	<0.2
Trichlorofluoromethane	μg/L	<500	2000	0.4, 4	<0.4	<0.2	<0.4	<0.4	<0.2	<0.4	<0.2	<0.4	<0.2	<500	<4	<0.2	<0.5	<0.4	<0.2	<0.2	<0.4
Vinyl Chloride	μg/L	<200	0.5	0.17, 0.2, 1.7	<0.17	<0.2	<0.17	<0.17	<0.2	<0.17	<0.2	<0.17	<0.2	<200	<1.7	<0.2	<0.2	<0.17	<0.2	<0.2	<0.17

Detection Limit

DL: May vary between sample locations and events

DL exceeds criteria

2011-GW-T7-FMT

Table 7 - Analytical C	hemistry	y Results:		Sample ID	MW151 (DUP1-22) (MW151)	MW152-11	MW152-12	MW152-22	MW156-12	MW156-22	MW201	GW-Dup1 (MW201)	MW202	MW203	MW204	MW205	Field Blank (MW205)	MW206	MW207	MW208
CPs, THMs, VO	OCs in Gr	oundwater		Sample Date	2022-Jul-13	2011-Aug-17	2012-May-01	2022-Jul-12	2012-Dec-10	2022-Jul-13	2023-Jan-19	2023-Jan-19	2023-Jan-19	2023-Jan-19	2023-Jan-19	2023-Jan-23	2023-Jan-23	2023-Jan-23	2023-Jan-23	2023-Jan-23
Parameter	Units	Max Concentratio	MECP-2011- GW-T7-FMT	Sample Depth	1.6 - 4.5	2.1 - 5.1	2.1 - 5.1	2.1 - 5.1	2.0 - 5.0	2.0 - 5.0	5.4 - 8.4	5.4 - 8.4	2.3 - 5.2	3.3 - 6.0	1.7 - 4.7	4.6 - 7.6	4.6 - 7.6	5.2 - 8.2	8.3 - 11.3	4.9 - 7.9
Chlorophenols		-		Detection Limit																
Chlorophenol, 2-	μg/L	<0.5	2600	0.5	<0.5	-	-	<0.5	-	<0.5	-	-	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Dichlorophenol, 2,4-	μg/L	<0.3	3700	0.3	<0.3	-	-	<0.3	-	<0.3	-	-	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3
Pentachlorophenol	μg/L	<0.5	50	0.5	<0.5	-	-	<0.5	-	<0.5	-	-	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Trichlorophenol, 2,4,5-	μg/L	<0.2	1300	0.2	<0.2	-		<0.2	-	<0.2	-	-	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Trichlorophenol, 2,4,6-	μg/L	0.99	180	0.2	<0.2	-	-	<0.2	-	<0.2	-	-	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Trihalomethanes																				
Bromodichloromethane	μg/L	<300	67000	0.2, 2	<0.2	<0.1	<0.3	<0.2	<0.3	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<2
Bromoform	μg/L	<400	5	0.1, 1	<0.1	<0.2	<0.4	<0.1	<0.4	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<1
Chloroform	μg/L	<500	2	0.2, 2	<0.2	<0.1	<0.5	<0.2	<0.5	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<2
Dibromochloromethane	μg/L	<300	65000	0.1, 1	<0.1	<0.2	<0.3	<0.1	<0.3	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<1
Volatile Organic Compounds																				
Acetone	μg/L	<50	100000	1, 10	<1	<10	-	<1	<50	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<10
Bromomethane	μg/L	<500	0.89	0.2, 2	<0.2	<0.5	<0.5	<0.2	<0.5	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<2
Carbon tetrachloride	μg/L	<200	0.2	0.2, 2	<0.2	<0.1	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<2
Chlorobenzene	μg/L	7.36	140	0.1, 1	<0.1	<0.1	-	<0.1	-	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<1
Dichlorobenzene, 1,2-	μg/L	<400	150	0.1, 1	<0.1	<0.2	<0.4	<0.1	<0.4	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<1
Dichlorobenzene, 1,3-	μg/L	<400	7600	0.1, 1	<0.1	<0.2	<0.4	<0.1	<0.4	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<1
Dichlorobenzene, 1,4-	μg/L	<400	0.5	0.1, 1	<0.1	<0.2	<0.4	<0.1	<0.4	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<1
Dichlorodifluoromethane	μg/L	<500	3500	0.4, 4	<0.4	<0.5	<0.5	<0.4	<0.5	<0.4	<0.4	<0.4	<0.4	<0.4	<0.4	<0.4	<0.4	<0.4	<0.4	<4
Dichloroethane, 1,1-	μg/L	<400	11	0.3, 3	<0.3	<0.1	<0.4	<0.3	<0.4	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<3
Dichloroethane, 1,2-	μg/L	<200	0.5	0.2, 2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<2
Dichloroethene, 1,1-	μg/L	<500	0.5	0.3, 3	<0.3	<0.1	<0.5	<0.3	<0.5	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<3
Dichloroethene, cis-1,2-	μg/L	<400	1.6	0.2, 2	<0.2	<0.1	<0.4	<0.2	<0.4	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<2
Dichloroethene, trans-1,2-	μg/L	<400	1.6	0.2, 2	<0.2	<0.1	<0.4	<0.2	<0.4	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<2
Dichloropropane, 1,2-	μg/L	<500	0.58	0.2, 2	<0.2	<0.1	<0.5	<0.2	<0.5	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<2
Dichloropropene, 1,3-	μg/L	<400	0.5	0.2, 0.3	<0.3	<0.4	<0.4	<0.3	<0.2	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3
Dichloropropene, cis-1,3-	μg/L	<200	-	0.2	-	<0.2	<0.2	-	<0.2	-	-	-	-	-	-	-	-	-	-	-
Dichloropropene, trans-1,3-	μg/L	<200	-	0.2	-	<0.2	<0.2	-	<0.2	_	-	-	-	-	-	-	-	-	-	-
Ethylene dibromide	μg/L	<200	0.2	0.1, 0.2, 1	<0.1	<0.2	<0.2	<0.1	<0.2	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<1
Hexane, n-	μg/L	<5	5	0.2, 2	<0.2	<0.5	-	<0.2	<5	<0.2	<0.2	3.07	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<2
Methyl Ethyl Ketone (MEK)	μg/L	11	21000	1, 10	<1	<5	-	<1	<10	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<10
Methyl Isobutyl Ketone (MIBK)	μg/L	<10	5200	1, 10	<1	<5	-	<1	<10	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<10
Methylene chloride	μg/L	<4000	26	0.3, 3	<0.3	-	<4	<0.3	-	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<3
Methyl tert-butyl ether (MTBE)	μg/L	<10	15	0.2, 2	<0.2	<0.2	-	<0.2	<10	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<2
Styrene	μg/L	<500	43	0.1, 1	<0.1	<0.2	<0.5	<0.1	<0.5	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<1
Tetrachloroethane, 1,1,1,2-	μg/L	<500	1.1	0.1, 1	<0.1	<0.1	<0.5	<0.1	<0.5	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<1
Tetrachloroethane, 1,1,2,2-	μg/L	<500	0.5	0.1, 1	<0.1	<0.2	<0.5	<0.1	<0.5	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<1
Tetrachloroethene	μg/L	<300	0.5	0.2, 2	<0.2	3.5	1.1	<0.2	<0.3	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<2
Trichloroethane, 1,1,1-	μg/L	<400	23	0.1, 0.3, 3	<0.3	<0.1	<0.4	<0.3	<0.4	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<3
Trichloroethane, 1,1,2-	μg/L	<400	0.5	0.2, 2	<0.2	<0.2	<0.4	<0.2	<0.4	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<2
Trichloroethene	μg/L	<300	0.5	0.2, 2	<0.2	0.2	<0.3	<0.2	<0.3	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<2
Trichlorofluoromethane	μg/L	<500	2000	0.4, 4	<0.4	<0.2	<0.5	<0.4	<0.5	<0.4	<0.4	<0.4	<0.4	<0.4	<0.4	<0.4	<0.4	<0.4	<0.4	<4
Vinyl Chloride	μg/L	<200	0.5	0.17, 0.2, 1.7	<0.17	<0.2	<0.2	<0.17	<0.2	<0.17	<0.17	<0.17	<0.17	<0.17	<0.17	<0.17	<0.17	<0.17	<0.17	<1.7

Detection Limit DL: May vary between sample locations and events

DL exceeds criteria

Concentration exceeds MECP2011-GW-T7-FMT
Soil, Ground Water and Sediment Standards for Uses
Under Part XV.1 of the Environmental Protection Act
(MECP, 2011) Table 7 SCS (Ground Water) All Types of
Property Uses with Fine/Medium-Textured soils

Table 7 - Analytical C CPs, THMs, V(Chemistr	y Results:		Sample ID	MW209	MW210	MW211	MW212	MW213	GW-Dup3 (MW213)	Trip Blank (MW214)	MW214	MW215	GW-Dup2 (MW215)	MW217	MW218	MW219	MW220	MW221	MW222
CPS, I HIVIS, VC	ocs in G			Sample Date	2023-Jan-23	2023-Jan-23	2023-Jan-23	2023-Jan-23	2023-Jan-23	2023-Jan-23	2023-Jan-24	2023-Jan-24	2023-Jan-23	2023-Jan-23	2023-Jan-24	2023-Jan-24	2023-Jan-25	2023-Jan-25	2023-Jan-24	2023-Jan-24
Parameter	Units	Max Concentratio	MECP-2011- GW-T7-FMT	Sample Depth	0.6 - 3.6	0.3 - 3.3	0.6 - 3.6	1.2 - 2.7	0.7 - 3.7	0.7 - 3.7	1.2 - 3.6	1.2 - 3.6	1.6 - 4.5	1.6 - 4.5	1.7 - 4.7	1.0 - 2.4	1.0 - 3.9	1.0 - 2.5	1.0 - 2.5	1.1 - 2.6
Chlorophenols				Detection Limit																
Chlorophenol, 2-	μg/L	<0.5	2600	0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	-
Dichlorophenol, 2,4-	μg/L	<0.3	3700	0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	-
Pentachlorophenol	μg/L	<0.5	50	0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	-
Trichlorophenol, 2,4,5-	μg/L	<0.2	1300	0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	-
Trichlorophenol, 2,4,6-	μg/L	0.99	180	0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	-
Trihalomethanes																				
Bromodichloromethane	μg/L	<300	67000	0.2, 2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Bromoform	μg/L	<400	5	0.1, 1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Chloroform	μg/L	<500	2	0.2, 2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Dibromochloromethane	μg/L	<300	65000	0.1, 1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Volatile Organic Compounds																				
Acetone	μg/L	<50	100000	1, 10	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
Bromomethane	μg/L	<500	0.89	0.2, 2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Carbon tetrachloride	μg/L	<200	0.2	0.2, 2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Chlorobenzene	μg/L	7.36	140	0.1, 1	<0.1	3.55	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	7.36	<0.1
Dichlorobenzene, 1,2-	μg/L	<400	150	0.1, 1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	0.88	<0.1	<0.1	<0.1	96.3	<0.1
Dichlorobenzene, 1,3-	μg/L	<400	7600	0.1, 1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Dichlorobenzene, 1,4-	μg/L	<400	0.5	0.1, 1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	1.7	<0.1
Dichlorodifluoromethane	μg/L	<500	3500	0.4, 4	<0.4	<0.4	<0.4	<0.4	<0.4	<0.4	<0.4	<0.4	<0.4	<0.4	<0.4	<0.4	<0.4	<0.4	<0.4	<0.4
Dichloroethane, 1,1-	μg/L	<400	11	0.3, 3	<0.3	0.86	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3
Dichloroethane, 1,2-	μg/L	<200	0.5	0.2, 2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Dichloroethene, 1,1-	μg/L	<500	0.5	0.3, 3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3
Dichloroethene, cis-1,2-	μg/L	<400	1.6	0.2, 2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Dichloroethene, trans-1,2-	μg/L	<400	1.6	0.2, 2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Dichloropropane, 1,2-	μg/L	<500	0.58	0.2, 2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Dichloropropene, 1,3-	μg/L	<400	0.5	0.2, 0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3
Dichloropropene, cis-1,3-	μg/L	<200	-	0.2	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Dichloropropene, trans-1,3-	μg/L	<200	-	0.2	-	-	-	-	-		-	-	-	-	-	-	-	-	-	-
Ethylene dibromide	μg/L	<200	0.2	0.1, 0.2, 1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Hexane, n-	μg/L	<5	5	0.2, 2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Methyl Ethyl Ketone (MEK)	μg/L	11	21000	1, 10	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
Methyl Isobutyl Ketone (MIBK)	μg/L	<10	5200	1, 10	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
Methylene chloride	μg/L	<4000	26	0.3, 3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3
Methyl tert-butyl ether (MTBE)	μg/L	<10	15	0.2, 2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Styrene	μg/L	<500	43	0.1, 1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Tetrachloroethane, 1,1,1,2-	μg/L	<500	1.1	0.1, 1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Tetrachloroethane, 1,1,2,2-	μg/L	<500	0.5	0.1, 1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Tetrachloroethene	μg/L	<300	0.5	0.2, 2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Trichloroethane, 1,1,1-	μg/L	<400	23	0.1, 0.3, 3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3
Trichloroethane, 1,1,2-	μg/L	<400	0.5	0.2, 2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Trichloroethene	μg/L	<300	0.5	0.2, 2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Trichlorofluoromethane	μg/L	<500	2000	0.4, 4	<0.4	<0.4	<0.4	<0.4	<0.4	<0.4	<0.4	<0.4	<0.4	<0.4	<0.4	<0.4	<0.4	<0.4	<0.4	<0.4
Vinyl Chloride	μg/L	<200	0.5	0.17, 0.2, 1.7	<0.17	<0.17	<0.17	<0.17	<0.17	<0.17	<0.17	<0.17	<0.17	<0.17	<0.17	<0.17	<0.17	<0.17	<0.17	<0.17

Detection Limit

DL: May vary between sample locations and events

DL exceeds criteria

2011-GW-T7-FMT

Table 7 -				Sample ID	MW223	MW228	OW2-11
Analytical (Sumple 15	10110223	11111220	0112 11
CPs, THMs, V	OCs in G	roundwater		Sample Date	2023-Jan-24	2023-Jan-23	2011-Aug-18
Parameter	Units	Max	MECP-2011- GW-T7-FMT	Sample Depth	1.5 - 3.0	1.2 - 4.2	-
Chlorophenols		Concentratio	GW-17-FIVIT	Detection Limit			
Chlorophenol, 2-	μg/L	<0.5	2600	0.5	<0.5	<0.5	_
Dichlorophenol, 2,4-	μg/L	<0.3	3700	0.3	<0.3	<0.3	_
Pentachlorophenol	μg/L	<0.5	50	0.5	<0.5	<0.5	_
Trichlorophenol, 2,4,5-	μg/L	<0.2	1300	0.2	<0.2	<0.2	_
Trichlorophenol, 2,4,6-	μg/L	0.99	180	0.2	<0.2	<0.2	_
Trihalomethanes	μ6/ -	0.55	100	0.2	\0.2	\0.2	
Bromodichloromethane	μg/L	<300	67000	0.2. 2	<0.2	<0.2	<0.1
Bromoform	μg/L	<400	5	0.1, 1	<0.1	<0.1	<0.2
Chloroform	μg/L	<500	2	0.2, 2	<0.2	<0.2	<0.1
Dibromochloromethane	μg/L	<300	65000	0.1, 1	<0.1	<0.1	<0.2
Volatile Organic Compounds	P6/ -	1300	03000	0.1, 1	10.1	10.1	10.2
Acetone	μg/L	<50	100000	1, 10	<1	<1	<10
Bromomethane	μg/L	<500	0.89	0.2, 2	<0.2	<0.2	<0.5
Carbon tetrachloride	μg/L	<200	0.2	0.2. 2	<0.2	<0.2	<0.1
Chlorobenzene	μg/L	7.36	140	0.1, 1	<0.1	<0.1	<0.1
Dichlorobenzene, 1,2-	μg/L	<400	150	0.1, 1	<0.1	<0.1	<0.2
Dichlorobenzene, 1,3-	μg/L	<400	7600	0.1, 1	<0.1	<0.1	<0.2
Dichlorobenzene, 1,4-	μg/L	<400	0.5	0.1, 1	<0.1	<0.1	<0.2
Dichlorodifluoromethane	μg/L	<500	3500	0.4, 4	<0.4	<0.4	<0.5
Dichloroethane, 1,1-	μg/L	<400	11	0.3, 3	<0.3	<0.3	<0.1
Dichloroethane, 1,2-	μg/L	<200	0.5	0.2. 2	<0.2	<0.2	<0.2
Dichloroethene. 1.1-	μg/L	<500	0.5	0.3. 3	<0.3	<0.3	<0.1
Dichloroethene, cis-1,2-	μg/L	<400	1.6	0.2. 2	<0.2	<0.2	<0.1
Dichloroethene, trans-1,2-	μg/L	<400	1.6	0.2, 2	<0.2	<0.2	<0.1
Dichloropropane, 1,2-	μg/L	<500	0.58	0.2, 2	<0.2	<0.2	<0.1
Dichloropropene, 1,3-	μg/L	<400	0.5	0.2, 0.3	<0.3	<0.3	<0.4
Dichloropropene, cis-1,3-	μg/L	<200	-	0.2	-	-	<0.2
Dichloropropene, trans-1,3-	μg/L	<200	-	0.2	-	-	<0.2
Ethylene dibromide	μg/L	<200	0.2	0.1, 0.2, 1	<0.1	<0.1	<0.2
Hexane, n-	μg/L	<5	5	0.2, 2	<0.2	<0.2	<0.5
Methyl Ethyl Ketone (MEK)	μg/L	11	21000	1, 10	<1	<1	<5
Methyl Isobutyl Ketone (MIBK)	μg/L	<10	5200	1, 10	<1	<1	<5
Methylene chloride	μg/L	<4000	26	0.3, 3	<0.3	<0.3	-
Methyl tert-butyl ether (MTBE)	μg/L	<10	15	0.2, 2	<0.2	<0.2	<0.2
Styrene	μg/L	<500	43	0.1, 1	<0.1	<0.1	<0.2
Tetrachloroethane, 1,1,1,2-	μg/L	<500	1.1	0.1, 1	<0.1	<0.1	<0.1
Tetrachloroethane, 1,1,2,2-	μg/L	<500	0.5	0.1, 1	<0.1	<0.1	<0.2
Tetrachloroethene	μg/L	<300	0.5	0.2, 2	<0.2	<0.2	0.3
Trichloroethane, 1,1,1-	μg/L	<400	23	0.1, 0.3, 3	<0.3	<0.3	<0.1
Trichloroethane, 1,1,2-	μg/L	<400	0.5	0.2, 2	<0.2	<0.2	<0.2
Trichloroethene	μg/L	<300	0.5	0.2, 2	<0.2	<0.2	<0.1
Trichlorofluoromethane	μg/L	<500	2000	0.4, 4	<0.4	<0.4	<0.2
Vinyl Chloride	μg/L	<200	0.5	0.17, 0.2, 1.7	<0.17	<0.17	<0.2
-							

Detection Limit

DL: May vary between sample locations and events

DL exceeds criteria

2011-GW-T7-FMT

Analytical		y Results:		Sample ID	MW4	MW22-11	Trip Blank 2-12 (MW22)	MW22-12	MW22-22	MW23-11	MW23-12	MW23-22	MW23 (DUP2-22) (MW23)	MW24-11	Trip Blank 1-12 (MW24)	MW24-12	MW24.1-12 (MW24)	MW24-22	MW25-11
ivietais	in Ground	awater		Sample Date	2011-Aug-18	2011-Aug-18	2012-Apr-30	2012-May-01	2022-Jul-12	2011-Aug-18	2012-May-01	2022-Jul-14	2022-Jul-14	2011-Aug-18	2012-Apr-30	2012-May-01	2012-May-01	2022-Jul-12	2011-Aug-17
Parameter	Units	Max Concentratio	MECP-2011- GW-T7-FMT	Sample Depth	-	1.7 - 4.7	1.7 - 4.7	1.7 - 4.7	1.7 - 4.7	1.2 - 3.4	1.2 - 3.4	1.2 - 3.4	1.2 - 3.4	1.5 - 4.5	1.5 - 4.5	1.5 - 4.5	1.5 - 4.5	1.5 - 4.5	4.7 - 7.7
Metals		-		Detection Limit															
Aluminum, dissolved	μg/L	20	-	10	-	<10	<10	<10	-	<10	<10	-	-	<10	<10	<10	10	-	<10
Antimony, dissolved	μg/L	2.1	16000	1	-	<0.5	-	-	<1	<0.5	-	<1	<1	-	-	-	-	<1	-
Arsenic, dissolved	μg/L	<100	1500	1	-	<10	<1	<10	1.5	<1	<1	<1	<1	<10	<1	<10	<10	1.1	<10
Barium, dissolved	μg/L	656	23000	2	-	80	<10	70	92.6	60	50	70.3	65.1	100	<10	90	90	627	140
Barium, total	μg/L	70	23000	10	70	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Beryllium, dissolved	μg/L	<0.5	53	0.5	-	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Beryllium, total	μg/L	<0.5	53	0.5	<0.5	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Boron, dissolved	μg/L	2950	36000	10	-	470	<10	240	319	430	210	177	166	230	<10	150	150	2950	1500
Boron, total	μg/L	200	36000	10	200	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Cadmium, dissolved	μg/L	0.21	2.1	0.2	-	<0.1	<0.1	<0.1	<0.2	0.1	<0.1	<0.2	<0.2	<0.1	<0.1	<0.1	<0.1	<0.2	<0.1
Cadmium, total	μg/L	<0.1	2.1	0.1	<0.1	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Calcium, dissolved	μg/L	271000	-		-	139000	<1000	128000	-	124000	108000	-	-	177000	<1000	8000	174000	-	40000
Chromium, dissolved	μg/L	9	640	2	-	3	<1	1	5.3	2	<1	2.8	<2	2	<1	<1	<1	<2	9
Chromium, total	μg/L	<5	640	1	<5	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Cobalt, dissolved	μg/L	3.06	52	0.5	-	0.6	<0.2	0.4	<0.5	1	0.6	1.24	<0.5	0.4	<0.2	0.4	0.4	<0.5	<0.2
Cobalt, total	μg/L	0.6	52	0.2	0.6	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Copper, dissolved	μg/L	4.4	69	1	-	<1	<1	<1	<1	<1	<1	1.1	3.6	<1	<1	<1	<1	<1	<1
Copper, total	μg/L	1	69	1	1	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Iron, dissolved	μg/L	13500	-	30	-	3810	<30	3630	-	5030	4760	-	-	2900	<30	3250	3210	-	<30
Lead, dissolved	μg/L	1.08	20	0.5	-	<1	<1	<1	<0.5	<1	<1	<0.5	<0.5	<1	<1	<1	<1	<0.5	<1
Lead, total	μg/L	<1	20	1	<1	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Magnesium, dissolved	μg/L	56000	-		-	26000	<1000	29000	-	9000	9000	-	-	17000	<1000	34000	19000	-	20000
Manganese, dissolved	μg/L	600	-	10	-	480	<10	370	-	410	330	-	-	600	<10	440	430	-	<10
Molybdenum, dissolved	μg/L	710	7300	0.5	-	64	<5	66	50.5	710	465	2.76	2.65	22	<5	14	13	1.33	5
Molybdenum, total	μg/L	<5	7300	5	<5	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Nickel, dissolved	μg/L	15.4	390	1	-	<5	<5	<5	2.4	<5	<5	1	<1	<5	<5	<5	<5	<1	<5
Nickel, total	μg/L	<5	390	5	<5	-	-	-	-	-		-	=	-	-	-	-	-	-
Potassium, dissolved	μg/L	87000	-		-	10000	<1000	9000	-	5000	5000	-	-	6000	<1000	87000	6000	-	17000
Selenium, dissolved	μg/L	7.5	50	1	-	<5	-	-	<1	<1	-	<1	<1	<1	-	-	-	4.5	<5
Silver, dissolved	μg/L	<0.2	1.2	0.2	-	<0.1	<0.1	<0.1	<0.2	<0.1	<0.1	<0.2	<0.2	<0.1	<0.1	<0.1	<0.1	<0.2	<0.1
Silver, total	μg/L	<0.1	1.2	0.1	<0.1	-	-	-		-	-	-	-	-	-	-	-	-	-
Sodium, dissolved	μg/L	3360000	1800000	50, 100, 500	-	142000	<2000	184000	84900	34000	30000	41100	38800	50000	<2000	202000	56000	3360000	592000
Strontium, dissolved	μg/L	5330	-	1	-	757	<1	1190	-	417	358	-	-	931	<1	797	796	-	3080
Thallium, dissolved	μg/L	<0.3	400	0.3	-	<0.1	<0.1	<0.1	<0.3	<0.1	<0.1	<0.3	<0.3	<0.1	<0.1	<0.1	<0.1	<0.3	<0.1
Thallium, total	μg/L	<0.1	400	0.1	<0.1	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Titanium, dissolved	μg/L	<10	-	1	-	<10	<10	<10	-	<10	<10	-	-	<10	<10	<10	<10	-	<10
Uranium, dissolved	μg/L	6.26	330	0.5	-	<1	<1	<1	<0.5	<1	<1	<0.5	<0.5	<1	<1	<1	<1	<0.5	<1
Uranium, total	μg/L	<1	330	1	<1	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Vanadium, dissolved	μg/L	14	200	0.4	-	5	<1	4	0.43	5	4	<0.4	<0.4	14	<1	<5	<5	0.69	7
Vanadium, total	μg/L	7	200	1	7	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Zinc, dissolved	μg/L	89.1	890	5	-	<10	<10	<10	<5	<10	<10	<5	<5	<10	<10	<10	<10	<5	<10
Zinc, total	μg/L	<10	890	10	<10	-	-		-	-	-	-	-	-	-	-	-	-	-

Detection Limit DL: May vary between sample locations and events

DL exceeds criteria

2011-GW-T7-FMT

Analytical (Results:		Sample ID	MW25-12	MW25-22	MW26-11	MW26.1-11 (MW26)	MW26-12	MW26-22	MW50-11	MW50-12	MW50-22	MW78-11	MW78-12	MW78-22	MW79-11	MW79-12	MW79-22	MW80-11	MW80-12
Metals i	n Ground	water		Sample Date	2012-May-01	2022-Jul-12	2011-Aug-17	2011-Aug-17	2012-May-01	2022-Jul-14	2011-Aug-17	2012-May-01	2022-Jul-13	2011-Aug-17	2012-May-01	2022-Jul-12	2011-Aug-17	2012-May-01	2022-Jul-14	2011-Aug-17	2012-May-01
Parameter	Units	Max Concentratio	MECP-2011- GW-T7-FMT	Sample Depth	4.7 - 7.7	4.7 - 7.7	1.5 - 4.5	1.5 - 4.5	1.5 - 4.5	1.5 - 4.5	2.4 - 5.4	2.4 - 5.4	2.4 - 5.4	2.7 - 5.6	2.7 - 5.6	2.7 - 5.6	1.9 - 4.9	1.9 - 4.9	1.9 - 4.9	2.4 - 3.8	2.4 - 3.8
Metals				Detection Limit																	
Aluminum, dissolved	μg/L	20	-	10	<10	-	<10	<10	<10	-	<10	<10	-	20	<10	-	<10	<10	-	<10	<10
Antimony, dissolved	μg/L	2.1	16000	1	-	<1	-	-	-	<1	-	-	<1	-	-	<1	-	-	<1	-	-
Arsenic, dissolved	μg/L	<100	1500	1	<100	1.1	<1	<1	<1	<1	<1	<1	<1	<10	<10	<1	<10	<10	<1	<10	<1
Barium, dissolved	μg/L	656	23000	2	110	307	200	200	180	169	40	30	53.1	260	170	108	170	110	164	100	80
Barium, total	μg/L	70	23000	10	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Beryllium, dissolved	μg/L	<0.5	53	0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Beryllium, total	μg/L	<0.5	53	0.5	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Boron, dissolved	μg/L	2950	36000	10	1500	1860	60	70	40	166	70	40	31.6	430	410	113	680	430	242	880	520
Boron, total	μg/L	200	36000	10	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Cadmium, dissolved	μg/L	0.21	2.1	0.2	<0.1	<0.2	<0.1	<0.1	<0.1	<0.2	<0.1	<0.1	<0.2	<0.1	<0.1	<0.2	<0.1	<0.1	<0.2	<0.1	<0.1
Cadmium, total	μg/L	<0.1	2.1	0.1	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Calcium, dissolved	μg/L	271000	-		67000	-	163000	169000	170000	-	106000	106000	-	221000	140000	-	131000	138000	-	137000	172000
Chromium, dissolved	μg/L	9	640	2	9	2	5	5	8	<2	2	2	2.5	5	9	<2	2	<1	<2	3	2
Chromium, total	μg/L	<5	640	1	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Cobalt, dissolved	μg/L	3.06	52	0.5	<0.2	<0.5	<0.2	<0.2	<0.2	<0.5	<0.2	<0.2	<0.5	1	0.4	<0.5	0.6	0.5	1.86	0.5	0.3
Cobalt, total	μg/L	0.6	52	0.2	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Copper, dissolved	μg/L	4.4	69	1	<1	1.2	<1	<1	<1	<1	2	1	1.8	1	<1	<1	<1	<1	2.5	2	3
Copper, total	μg/L	1	69	1	-	-	-	-	-	-	-		-	-	-	-	-	-		-	-
Iron, dissolved	μg/L	13500	-	30	130	-	720	740	1480	-	<30	<30	-	<30	2660	-	6680	5320	-	250	<30
Lead, dissolved	μg/L	1.08	20	0.5	<1	<0.5	<1	<1	<1	<0.5	<1	<1	<0.5	<1	<1	<0.5	<1	<1	<0.5	<1	<1
Lead, total	μg/L	<1	20	1	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-
Magnesium, dissolved	μg/L	56000	-		44000	-	31000	32000	33000	-	14000	10000	-	32000	41000	-	10000	12000	-	16000	23000
Manganese, dissolved	μg/L	600	-	10	<10	-	80	90	120	-	<10	<10	-	50	30	-	570	420	-	360	240
Molybdenum, dissolved	μg/L	710	7300	0.5	<5	6.45	<5	<5	<5	<0.5	<5	<5	<0.5	12	<5	<0.5	<5	<5	0.97	29	21
Molybdenum, total	μg/L	<5	7300	5	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Nickel, dissolved	μg/L	15.4	390	1	<5	1.1	<5	<5	<5	3.2	<5	<5	1.5	<5	<5	<1	<5	<5	1.1	<5	<5
Nickel, total	μg/L	<5	390	5	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Potassium, dissolved	μg/L	87000	-		20000	-	3000	3000	2000	-	19000	18000	-	12000	12000	-	18000	12000	-	13000	12000
Selenium, dissolved	μg/L	7.5	50	1	-	2.2	<1	<1		3	<1	-	<1	<5	-	<1	<1	-	<1	<1	-
Silver, dissolved	μg/L	<0.2	1.2	0.2	<0.1	<0.2	<0.1	<0.1	<0.1	<0.2	<0.1	<0.1	<0.2	<0.1	<0.1	<0.2	<0.1	<0.1	<0.2	<0.1	<0.1
Silver, total	μg/L	<0.1	1.2	0.1	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Sodium, dissolved	μg/L	3360000	1800000	50, 100, 500	780000	1420000	107000	110000	112000	133000	116000	107000	63200	95000	166000	51900	37000	35000	51400	56000	57000
Strontium, dissolved	μg/L	5330	-	1	5330	-	797	799	689		206	205	-	3730	5010	-	433	351	-	654	571
Thallium, dissolved	μg/L	<0.3	400	0.3	<0.1	<0.3	<0.1	<0.1	<0.1	<0.3	<0.1	<0.1	<0.3	0.1	<0.1	<0.3	<0.1	<0.1	<0.3	<0.1	<0.1
Thallium, total	μg/L	<0.1	400	0.1	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Titanium, dissolved	μg/L	<10	-	1	<10	-	<10	<10	<10	-	<10	<10	-	<10	<10	-	<10	<10	-	<10	<10
Uranium, dissolved	μg/L	6.26	330	0.5	<1	<0.5	<1	<1	<1	<0.5	<1	<1	1.76	2	<1	<0.5	<1	<1	<0.5	<1	<1
Uranium, total	μg/L	<1	330	1	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Vanadium, dissolved	μg/L	14	200	0.4	2	1.13	6	5	6	<0.4	4	3	<0.4	<5	<5	0.43	4	2	<0.4	4	4
Vanadium, total	μg/L	7	200	1	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Zinc, dissolved	μg/L	89.1	890	5	<10	<5	<10	<10	<10	17.8	<10	<10	<5	10	<10	<5	<10	<10	<5	<10	10
Zinc, total	μg/L	<10	890	10	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-

Detection Limit DL: May vary between sample locations and events

DL exceeds criteria

2011-GW-T7-FMT

Analytical		y Results:		Sample ID	MW80-22	MW81-11	MW81-12	MW81-22	MW82-11	MW82-12	MW82-22	MW84-11	MW84-12	MW84-22	MW121-11	MW121-12	MW121	MW128R	MW130-11	MW130-12	MW130-22
ivietais	in Groun	awater		Sample Date	2022-Jul-12	2011-Aug-17	2012-May-01	2022-Jul-14	2011-Aug-17	2012-May-01	2022-Jul-12	2011-Aug-17	2012-May-01	2022-Jul-13	2011-Aug-17	2012-May-01	2023-Jan-19	2023-Jan-19	2011-Aug-17	2012-May-01	2022-Jul-13
Parameter	Units	Max Concentratio	MECP-2011- GW-T7-FMT	Sample Depth	2.4 - 3.8	1.7 - 4.7	1.7 - 4.7	1.7 - 4.7	0.9 - 2.4	0.9 - 2.4	0.9 - 2.4	3.7 - 6.6	3.7 - 6.6	3.7 - 6.6	1.5 - 3.6	1.5 - 3.6	1.5 - 3.6	1.6 - 3.7	2.1 - 5.1	2.1 - 5.1	2.1 - 5.1
Metals		Concentratio	010 17 11111	Detection Limit																	
Aluminum, dissolved	μg/L	20	-	10	-	<10	<10	-	<10	<10	-	<10	<10	-	<10	<10	-	-	<10	<10	-
Antimony, dissolved	μg/L	2.1	16000	1	2.1	-	-	<1	-	-	<1	_	-	<1	-	-	<1	<1	-	-	<1
Arsenic, dissolved	μg/L	<100	1500	1	<1	<1	<1	<1	<10	<10	3.5	<1	<10	<1	<1	<1	<1	<1	<1	<1	<1
Barium, dissolved	μg/L	656	23000	2	72.8	210	160	187	230	210	208	360	90	380	140	110	80.2	52.3	320	80	66.2
Barium, total	μg/L	70	23000	10	-	-	-	-	-	-	-	_	-	-	-	-	_	-	-	-	-
Beryllium, dissolved	μg/L	<0.5	53	0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Beryllium, total	μg/L	<0.5	53	0.5	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Boron, dissolved	μg/L	2950	36000	10	772	60	30	32.7	100	60	81.2	130	300	90	80	20	30.2	40.8	190	40	<10
Boron, total	μg/L	200	36000	10	-	-	-	-	-	-	-	-	/=	-	-	-	-	-	-	-	-
Cadmium, dissolved	μg/L	0.21	2.1	0.2	<0.2	<0.1	<0.1	<0.2	<0.1	<0.1	<0.2	<0.1	<0.1	<0.2	<0.1	<0.1	<0.2	<0.2	<0.1	<0.1	<0.2
Cadmium, total	μg/L	<0.1	2.1	0.1	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Calcium, dissolved	μg/L	271000	-		-	194000	189000	-	213000	210000	-	192000	90000	-	232000	271000	-	-	151000	265000	-
Chromium, dissolved	μg/L	9	640	2	<2	6	7	<2	5	5	<2	<5	4	<2	5	3	<2	<2	3	2	<2
Chromium, total	μg/L	<5	640	1	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Cobalt, dissolved	μg/L	3.06	52	0.5	1.08	0.8	0.6	0.6	0.9	1	<0.5	1	0.3	<0.5	1.2	0.7	<0.5	<0.5	0.8	0.6	<0.5
Cobalt, total	μg/L	0.6	52	0.2	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Copper, dissolved	μg/L	4.4	69	1	2.7	1	<1	<1	2	<1	<1	2	<1	1.2	2	<1	<1	<1	1	<1	1.4
Copper, total	μg/L	1	69	1	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Iron, dissolved	μg/L	13500	-	30	-	<30	<30	-	5250	12700	-	<30	190	-	90	<30	-	-	<30	<30	-
Lead, dissolved	μg/L	1.08	20	0.5	<0.5	<1	<1	<0.5	<1	<1	<0.5	<1	<1	<0.5	<1	<1	<0.5	<0.5	<1	<1	<0.5
Lead, total	μg/L	<1	20	1	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Magnesium, dissolved	μg/L	56000	-		-	40000	39000	-	22000	24000	-	48000	56000	-	22000	26000	-		39000	23000	-
Manganese, dissolved	μg/L	600	-	10	-	20	<10	-	360	410	-	20	<10	-	70	50	-	-	80	<10	-
Molybdenum, dissolved	μg/L	710	7300	0.5	20	<5	<5	<0.5	<5	<5	1.23	<5	<5	0.52	<5	<5	<0.5	0.91	<5	<5	<0.5
Molybdenum, total	μg/L	<5	7300	5	-	-	-	-	-	-		-	-	-	-	-	-	-	-	-	-
Nickel, dissolved	μg/L	15.4	390	1	2.4	5	<5	4.4	<5	<5	<1	6	<5	1.2	<5	<5	2	1.3	<5	<5	<1
Nickel, total	μg/L	<5	390	5	-	-	-	-	-	-		-	-	-	-	-	-	-	-	-	-
Potassium, dissolved	μg/L	87000	-		-	3000	2000	-	3000	3000	-	6000	4000	-	5000	1000	-	-	7000	2000	-
Selenium, dissolved	μg/L	7.5	50	1	<1	<5	-	<1	<1	-	<1	<1	-	1.8	<5	-	<1	<1	<1	-	<1
Silver, dissolved	μg/L	<0.2	1.2	0.2	<0.2	<0.1	<0.1	<0.2	<0.1	<0.1	<0.2	<0.1	<0.1	<0.2	<0.1	<0.1	<0.2	<0.2	<0.1	<0.1	<0.2
Silver, total	μg/L	<0.1	1.2	0.1	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Sodium, dissolved	μg/L	3360000	1800000	50, 100, 500	41900	119000	127000	170000	74000	94000	150000	498000	96000	890000	34000	26000	47700	12200	48000	19000	15600
Strontium, dissolved	μg/L	5330	-	1	-	922	620	-	1070	982		2510	1520	-	751	644	-	-	2640	1200	
Thallium, dissolved	μg/L	<0.3	400	0.3	<0.3	<0.1	<0.1	<0.3	<0.1	<0.1	<0.3	0.2	<0.1	<0.3	<0.1	<0.1	<0.3	<0.3	0.1	<0.1	<0.3
Thallium, total	μg/L	<0.1	400	0.1	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Titanium, dissolved	μg/L	<10	-	1	-	<10	<10	-	<10	<10	-	<10	<10	-	<10	<10	-	-	<10	<10	-
Uranium, dissolved	μg/L	6.26	330	0.5	<0.5	3	2	2.3	<1	<1	<0.5	2	1	1.93	2	<1	0.94	1.28	<1	<1	<0.5
Uranium, total	μg/L	<1	330	1	-	-	-		-		-	-	-	-	-	-	-	-	-	-	-
Vanadium, dissolved	μg/L	14	200	0.4	<0.4	5	5	<0.4	6	5	<0.4	4	5	0.9	8	<5	<0.4	<0.4	5	6	<0.4
Vanadium, total	μg/L	7	200	1	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	
Zinc, dissolved	μg/L	89.1	890	5	6.7	<10	<10	<5	<10	<10	<5	<10	<10	<5	<10	<10	<5	<5	<10	<10	<5
Zinc, total	μg/L	<10	890	10	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-

Detection Limit DL: May vary between sample locations and events

DL exceeds criteria

2011-GW-T7-FMT

Analytical		y Results:		Sample ID	MW146-11	MW146-12	MW146-22	MW148-11	MW148-12	MW148-22	MW149-11	MW149-12	MW149-22	MW151-11	MW151.1-11 (MW151)	MW151-12	MW151-22	MW151 (DUP1-22) (MW151)	MW152-11	MW152-12
Metals	in Ground	lwater		Sample Date	2011-Aug-18	2012-May-01	2022-Jul-12	2011-Aug-18	2012-May-01	2022-Jul-13	2011-Aug-18	2012-May-01	2022-Jul-13	2011-Aug-18	2011-Aug-18	2012-May-01	2022-Jul-13	2022-Jul-13	2011-Aug-17	2012-May-01
Parameter	Units	Max Concentratio	MECP-2011- GW-T7-FMT	Sample Depth	1.2 - 3.0	1.2 - 3.0	1.2 - 3.0	1.2 - 3.0	1.2 - 3.0	1.2 - 3.0	1.1 - 2.2	1.1 - 2.2	1.1 - 2.2	1.6 - 4.5	1.6 - 4.5	1.6 - 4.5	1.6 - 4.5	1.6 - 4.5	2.1 - 5.1	2.1 - 5.1
Metals		Concentratio	010 17 11011	Detection Limit																
Aluminum, dissolved	μg/L	20	-	10	<10	<10	-	<10	<10	-	<10	<10	-	<10	<10	<10	-	-	<10	<10
Antimony, dissolved	μg/L	2.1	16000	1	_	_	<1	_	_	<1	_	_	<1	_	_	_	<1	<1	_	
Arsenic, dissolved	μg/L	<100	1500	1	<10	<10	2.2	<10	<10	1.1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
Barium, dissolved	μg/L	656	23000	2	70	70	107	160	80	54.9	80	40	53.3	360	550	360	85.6	85.8	120	80
Barium, total	μg/L	70	23000	10	-	-	-	-	-	-	-	-	-	-	_	-	-	-	-	-
Beryllium, dissolved	μg/L	<0.5	53	0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Beryllium, total	μg/L	<0.5	53	0.5	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Boron, dissolved	μg/L	2950	36000	10	60	30	79.5	110	10	<10	280	20	19.4	70	100	70	40.8	42	60	40
Boron, total	μg/L	200	36000	10	-	-	-	-	-	-	-	-	<u> </u>	-	-	-	-	-	-	- 1
Cadmium, dissolved	μg/L	0.21	2.1	0.2	<0.1	<0.1	<0.2	<0.1	<0.1	<0.2	<0.1	<0.1	<0.2	<0.1	<0.1	<0.1	<0.2	<0.2	<0.1	<0.1
Cadmium, total	μg/L	<0.1	2.1	0.1	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	- 1
Calcium, dissolved	μg/L	271000	-		125000	150000	-	145000	164000	-	114000	113000	-	136000	137000	179000	-	-	127000	153000
Chromium, dissolved	μg/L	9	640	2	3	3	<2	2	<1	<2	2	<1	<2	4	4	4	2	4.1	6	7
Chromium, total	μg/L	<5	640	1		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Cobalt, dissolved	μg/L	3.06	52	0.5	0.3	0.4	<0.5	0.3	0.3	<0.5	0.7	0.6	0.89	<0.2	0.2	<0.2	<0.5	<0.5	0.2	0.3
Cobalt, total	μg/L	0.6	52	0.2	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Copper, dissolved	μg/L	4.4	69	1	<1	<1	2.7	<1	<1	<1	1	<1	1	<1	<1	<1	1	1.9	1	1
Copper, total	μg/L	1	69	1	-	-	-	-	-	-	-	-		-	-	-	-	-	-	-
Iron, dissolved	μg/L	13500	-	30	2350	2340	-	7740	13500	-	130	2320	-	150	130	150	-	-	<30	<30
Lead, dissolved	μg/L	1.08	20	0.5	<1	<1	<0.5	<1	<1	0.9	<1	<1	<0.5	<1	<1	<1	<0.5	<0.5	<1	<1
Lead, total	μg/L	<1	20	1	-	-	-	-	-	-	-	-	1	-	-	-	-	-	-	-
Magnesium, dissolved	μg/L	56000	-		12000	18000	-	9000	7000	-	13000	11000	ı	29000	29000	38000	-	-	23000	21000
Manganese, dissolved	μg/L	600	-	10	330	220	-	280	320	-	190	230	-	30	30	30	-	-	30	70
Molybdenum, dissolved	μg/L	710	7300	0.5	<5	<5	1.23	<5	<5	<0.5	<5	<5	0.69	<5	<5	<5	1.13	1.19	<5	<5
Molybdenum, total	μg/L	<5	7300	5	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Nickel, dissolved	μg/L	15.4	390	1	<5	<5	1.3	<5	<5	<1	<5	<5	1.7	<5	<5	<5	2.5	3.1	<5	<5
Nickel, total	μg/L	<5	390	5	-	-	-	-	-	-		-	-	-	-	-	-	-	-	-
Potassium, dissolved	μg/L	87000	-		2000	2000	-	2000	1000	-	5000	<1000	-	4000	4000	4000	-	-	2000	2000
Selenium, dissolved	μg/L	7.5	50	1	<1	-	<1	<1	-	<1	<1	-	1.2	-	<1	-	<1	<1	<5	-
Silver, dissolved	μg/L	<0.2	1.2	0.2	<0.1	<0.1	<0.2	<0.1	<0.1	<0.2	<0.1	<0.1	<0.2	<0.1	<0.1	<0.1	<0.2	<0.2	<0.1	<0.1
Silver, total	μg/L	<0.1	1.2	0.1	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	
Sodium, dissolved	μg/L	3360000	1800000	50, 100, 500	67000	85000	210000	16000	7000	3240	34000	22000	30900	92000	92000	106000	25900	25400	118000	169000
Strontium, dissolved	μg/L	5330	-	1	415	383	<u> </u>	626	322	-	709	312	-	1310	1360	1310	-	-	531	424
Thallium, dissolved	μg/L	<0.3	400	0.3	<0.1	<0.1	<0.3	<0.1	<0.1	<0.3	<0.1	<0.1	<0.3	<0.1	<0.1	<0.1	<0.3	<0.3	<0.1	<0.1
Thallium, total	μg/L	<0.1	400	0.1	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Titanium, dissolved	μg/L	<10	-	1	<10	<10	-	<10	<10	-	<10	<10	-	<10	<10	<10	-	-	<10	<10
Uranium, dissolved	μg/L	6.26	330	0.5	<1	<1	<0.5	<1	<1	<0.5	<1	<1	<0.5	<1	<1	<1	6.24	6.26	1	<1
Uranium, total	μg/L	<1	330	1	-	-	-	-		-	-	-	-	-	-	-	-	-	-	-
Vanadium, dissolved	μg/L	14	200	0.4	4	4	<0.4	5	5	<0.4	3	3	<0.4	3	5	3	<0.4	<0.4	4	2
Vanadium, total	μg/L	7	200	1	-	-	-	·	-	-	-	-	-	-	-	-	-	-	-	-
Zinc, dissolved	μg/L	89.1	890	5	<10	<10	<5	<10	<10	<5	<10	<10	<5	<10	<10	<10	<5	<5	<10	<10
Zinc, total	μg/L	<10	890	10	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-

Detection Limit DL: May vary between sample locations and events

DL exceeds criteria

2011-GW-T7-FMT

Analytical	- Osprey S Chemistry in Ground	Results:		Sample ID	MW152-22	MW156-22	MW201	GW-Dup1 (MW201)	MW202	MW203	MW204	MW205	Field Blank (MW205)	MW206	MW207	MW208	MW209	MW210	MW211	MW212
ivietais	iii Ground			Sample Date	2022-Jul-12	2022-Jul-13	2023-Jan-19	2023-Jan-19	2023-Jan-19	2023-Jan-19	2023-Jan-19	2023-Jan-23	2023-Jan-23	2023-Jan-23	2023-Jan-23	2023-Jan-23	2023-Jan-23	2023-Jan-23	2023-Jan-23	2023-Jan-23
Parameter	Units	Max Concentratio	MECP-2011- GW-T7-FMT	Sample Depth	2.1 - 5.1	2.0 - 5.0	5.4 - 8.4	5.4 - 8.4	2.3 - 5.2	3.3 - 6.0	1.7 - 4.7	4.6 - 7.6	4.6 - 7.6	5.2 - 8.2	8.3 - 11.3	4.9 - 7.9	0.6 - 3.6	0.3 - 3.3	0.6 - 3.6	1.2 - 2.7
Metals		Concentratio	GW 17 11W1	Detection Limit																
Aluminum, dissolved	μg/L	20	-	10	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Antimony, dissolved	μg/L	2.1	16000	1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	2	<1
Arsenic, dissolved	μg/L	<100	1500	1	<1	<1	<1	<1	1.4	1.3	<1	2.2	<1	1.9	6.4	<1	<1	<1	<1	<1
Barium, dissolved	μg/L	656	23000	2	107	115	461	476	182	404	73.9	62.8	<2	656	124	175	77.2	82	61.6	67.5
Barium, total	μg/L	70	23000	10	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Beryllium, dissolved	μg/L	<0.5	53	0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Beryllium, total	μg/L	<0.5	53	0.5	-	-	-	-	1	-	-	-	-	-	-	-	-	-	-	-
Boron, dissolved	μg/L	2950	36000	10	60.6	22.2	268	250	39.8	53.8	13.4	535	<10	2060	641	808	186	412	158	367
Boron, total	μg/L	200	36000	10	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Cadmium, dissolved	μg/L	0.21	2.1	0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	0.21	<0.2	<0.2	<0.2	<0.2
Cadmium, total	μg/L	<0.1	2.1	0.1	-	-	-	-	ı	-	-	-	-	ı	-	-	-	-	-	-
Calcium, dissolved	μg/L	271000	-		-	-	-	-	-	-	-		-	-	-	-	-	-	-	-
Chromium, dissolved	μg/L	9	640	2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2
Chromium, total	μg/L	<5	640	1	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Cobalt, dissolved	μg/L	3.06	52	0.5	<0.5	<0.5	0.69	1.11	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	1.98	1.22
Cobalt, total	μg/L	0.6	52	0.2	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Copper, dissolved	μg/L	4.4	69	1	1.9	4.4	<1	<1	<1	<1	<1	<1	<1	<1	<1	1.3	<1	1.4	1	<1
Copper, total	μg/L	1	69	1	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Iron, dissolved	μg/L	13500	-	30	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Lead, dissolved	μg/L	1.08	20	0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	0.92	<0.5	<0.5	1.08	<0.5	<0.5	<0.5	<0.5	<0.5
Lead, total	μg/L	<1	20	1	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Magnesium, dissolved	μg/L	56000	-		-	-	-	-	-		-	-	-	-	-	-	-	-	-	-
Manganese, dissolved	μg/L	600	-	10	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Molybdenum, dissolved	μg/L	710	7300	0.5	0.72	0.89	5.48	5.83	3	5.88	<0.5	7.14	<0.5	16.7	106	296	106	306	22.2	12.7
Molybdenum, total	μg/L	<5	7300	5	-	-	-	-	-	-	•	-	-	-	-	-	-	-	-	-
Nickel, dissolved	μg/L	15.4	390	1	2.1	1.8	5.4	4.3	3.2	1.1	<1	<1	<1	2.8	1.6	1.2	1.4	<1	7.7	2
Nickel, total	μg/L	<5	390	5	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Potassium, dissolved	μg/L	87000	-	4	- 1.6	-	-	-	-	-	-	-	-	-	-	- 7.5	-	-	-	-
Selenium, dissolved	μg/L	7.5	50	1	1.6	<1	<1	<1	<1	<1	<1	1 .0.2	<1	<1	3.3	7.5	<1	<1	<1	1.4
Silver, dissolved	μg/L	<0.2	1.2	0.2 0.1	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Silver, total	μg/L	<0.1 3360000	1.2 1800000	0.1 50, 100, 500	328000	- 20200	192000	198000	6670	63300	16200	-	- <50	2220000	-	- 1110000	- 26500	-	42500	20300
Sodium, dissolved	μg/L		1800000	50, 100, 500		80300				63200	16300	216000			669000	1110000		33400		
Strontium, dissolved	μg/L	5330 <0.3	400	0.3	<0.3		<0.3		-0.2		<0.3	<0.3		<0.3	<0.3	<0.3	<0.3	<0.3		
Thallium, dissolved Thallium, total	μg/L	<0.3	400	0.3	<0.3	<0.3		<0.3	<0.3	<0.3	<0.3		<0.3	<0.3		<0.3			<0.3	<0.3
Titanium, total	μg/L	<0.1	400	0.1	-	-	-		-	-	-	-	-	-	-	-	-	-	-	-
	μg/L		330	0.5	0.74	0.84		2		1.09	<0.5	1.7		0.87	4.47	2.24	<0.5	0.54	0.76	
Uranium, dissolved Uranium, total	μg/L μg/L	6.26 <1	330	0.5	0.74	0.84	2.01		0.5	1.09	<0.5	1.7	<0.5 -	0.87	4.47	2.24	<0.5		0.76	1.04
· · · · · · · · · · · · · · · · · · ·		14	200	0.4	<0.4	<0.4	<0.4	<0.4	<0.4	<0.4	<0.4	<0.4	<0.4	0.93	<0.4	<0.4	1.61	<0.4	<0.4	<0.4
Vanadium, dissolved	μg/L	7	200	0.4	<0.4	<u.4< td=""><td><0.4</td><td><u.4< td=""><td><0.4</td><td><u.4< td=""><td><0.4</td><td><0.4</td><td><0.4</td><td>0.93</td><td><0.4</td><td><0.4</td><td>1.01</td><td><0.4</td><td><0.4</td><td><0.4</td></u.4<></td></u.4<></td></u.4<>	<0.4	<u.4< td=""><td><0.4</td><td><u.4< td=""><td><0.4</td><td><0.4</td><td><0.4</td><td>0.93</td><td><0.4</td><td><0.4</td><td>1.01</td><td><0.4</td><td><0.4</td><td><0.4</td></u.4<></td></u.4<>	<0.4	<u.4< td=""><td><0.4</td><td><0.4</td><td><0.4</td><td>0.93</td><td><0.4</td><td><0.4</td><td>1.01</td><td><0.4</td><td><0.4</td><td><0.4</td></u.4<>	<0.4	<0.4	<0.4	0.93	<0.4	<0.4	1.01	<0.4	<0.4	<0.4
Vanadium, total Zinc, dissolved	μg/L	89.1	200 890	1 5	- <5	- <5	- <5	- <5	- <5	- <5	- <5	- <5	- <5	5.2	- <5	16.3	8.4	89.1	- <5	- <5
	μg/L			3	<5	<5	<5	<2	<5	\ 5	< 5	<5	<5	5.2	<5	10.3	6.4	99.1	<5	<u> </u>
Zinc, total	μg/L	<10	890	10	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	1 -

Detection Limit DL: May vary between sample locations and events

DL exceeds criteria

2011-GW-T7-FMT

Analytical		y Results:		Sample ID	MW213	GW-Dup3 (MW213)	Trip Blank (MW214)	MW215	GW-Dup2 (MW215)	MW217	MW218	MW219	MW220	MW222	MW224	MW228	OW2-11
Metals	in Ground	awater		Sample Date	2023-Jan-23	2023-Jan-23	2023-Jan-24	2023-Jan-23	2023-Jan-23	2023-Jan-24	2023-Jan-24	2023-Jan-25	2023-Jan-25	2023-Jan-24	2023-Jan-25	2023-Jan-23	2011-Aug-18
Parameter	Units	Max Concentratio	MECP-2011- GW-T7-FMT	Sample Depth	0.7 - 3.7	0.7 - 3.7	1.2 - 3.6	1.6 - 4.5	1.6 - 4.5	1.7 - 4.7	1.0 - 2.4	1.0 - 3.9	1.0 - 2.5	1.1 - 2.6	1.3 - 4.3	1.2 - 4.2	-
Metals				Detection Limit													
Aluminum, dissolved	μg/L	20	-	10	-	-	-	-	-	-	-	-	-	-	-	-	<10
Antimony, dissolved	μg/L	2.1	16000	1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	-
Arsenic, dissolved	μg/L	<100	1500	1	<1	2.6	<1	<1	1.2	<1	3.6	<1	1	1.9	<1	1.2	<1
Barium, dissolved	μg/L	656	23000	2	99	98.1	<2	78.1	78.9	126	149	63.9	85	62.2	156	98	70
Barium, total	μg/L	70	23000	10	-	-	-	-	-	-	-	-	-	-	-	-	-
Beryllium, dissolved	μg/L	<0.5	53	0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Beryllium, total	μg/L	<0.5	53	0.5	-	-	-	-	-	•	-	-	-	-	-	-	-
Boron, dissolved	μg/L	2950	36000	10	335	369	<10	826	834	253	310	87.5	266	218	93.5	49.1	20
Boron, total	μg/L	200	36000	10	-	-	-	-	-	•	-		-	-	-	-	-
Cadmium, dissolved	μg/L	0.21	2.1	0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.1
Cadmium, total	μg/L	<0.1	2.1	0.1	-	-	-	-	-	,	-	-	-	-	-	-	-
Calcium, dissolved	μg/L	271000	-		-	-	-	-	-	ı	-	-	-	-	-	-	102000
Chromium, dissolved	μg/L	9	640	2	<2	<2	<2	<2	<2	<2	<2	<2	<2	5.3	<2	<2	2
Chromium, total	μg/L	<5	640	1	-	-	-	-	-	,	-	-	-	-	-	-	-
Cobalt, dissolved	μg/L	3.06	52	0.5	<0.5	<0.5	<0.5	<0.5	<0.5	0.65	2.21	1.46	1.23	0.73	<0.5	3.06	<0.2
Cobalt, total	μg/L	0.6	52	0.2	-	-	-	-	-	-	-	-	-	-	-	-	-
Copper, dissolved	μg/L	4.4	69	1	<1	<1	<1	<1	<1	1.4	<1	2.8	1.9	1.8	<1	3.1	<1
Copper, total	μg/L	1	69	1	-	-	-	-	-	-	-	-	-	-	-	-	-
Iron, dissolved	μg/L	13500	-	30	-	-	-	-	-		-	-	-	-	-	-	<30
Lead, dissolved	μg/L	1.08	20	0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	0.6	<0.5	<0.5	<1
Lead, total	μg/L	<1	20	1	-	-	-	-	-	,	-	-	-	-	-	-	-
Magnesium, dissolved	μg/L	56000	-		-	-	-	-	-	ı	-	-	-	-	-	-	15000
Manganese, dissolved	μg/L	600	-	10	-	-	-	-	-	·	-	-	-	-	-	-	<10
Molybdenum, dissolved	μg/L	710	7300	0.5	9.39	10.1	<0.5	12.8	12.4	7.08	3.78	0.57	14.7	46.5	3.48	7	<5
Molybdenum, total	μg/L	<5	7300	5	-	-	-	-	-	1	-	-	-	-	-	-	-
Nickel, dissolved	μg/L	15.4	390	1	2	1.3	<1	1.6	1.3	1.6	3.3	15.4	5.9	2.9	1.8	2.6	<5
Nickel, total	μg/L	<5	390	5	-	-	-	-	-		-	-	-	-	-	-	-
Potassium, dissolved	μg/L	87000	-		-	-	-	-	-	-		-	-	-	-	-	<1000
Selenium, dissolved	μg/L	7.5	50	1	<1	1.6	<1	1.2	<1	<1	<1	<1	<1	<1	<1	<1	<1
Silver, dissolved	μg/L	<0.2	1.2	0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.1
Silver, total	μg/L	<0.1	1.2	0.1	-	-	-	-	-	-	-		-	-	-	-	-
Sodium, dissolved	μg/L	3360000	1800000	50, 100, 500	31300	28400	<50	21700	21200	72700	104000	22600	60900	123000	19500	69300	13000
Strontium, dissolved	μg/L	5330	-	1	-	-	-	-		Y	-	-	-	-	-	-	290
Thallium, dissolved	μg/L	<0.3	400	0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.1
Thallium, total	μg/L	<0.1	400	0.1	-	-	-	-	-	-	-	-	-	-	-	-	-
Titanium, dissolved	μg/L	<10	-	1	-	-		-		-	-	-	-	-	-	-	<10
Uranium, dissolved	μg/L	6.26	330	0.5	0.92	0.89	<0.5	<0.5	<0.5	0.73	1	<0.5	4.89	1.13	1.74	4	<1
Uranium, total	μg/L	<1	330	1	-	-	-	-	-	-	-	-	-	-	-	-	-
Vanadium, dissolved	μg/L	14	200	0.4	<0.4	<0.4	<0.4	<0.4	<0.4	<0.4	<0.4	<0.4	0.52	0.82	0.87	0.8	5
Vanadium, total	μg/L	7	200	1	-	-		-	-	-	-	-	-	-	-	-	-
Zinc, dissolved	μg/L	89.1	890	5	<5	<5	<5	<5	<5	<5	<5	10.2	6.2	<5	<5	8.1	<10
Zinc, total	μg/L	<10	890	10	-	-	-	-	-	-	-	-	-	-	-	-	-

Detection Limit DL: May vary between sample locations and events

DL exceeds criteria

2011-GW-T7-FMT

Table 9 - Os Analytical Cher BTEX, PHCs in	mistry Re	esults:		Sample ID	MW4		Trip Blank 2-12 (MW22)		MW22-22	MW23-11	MW23-12	MW23-22	MW23 (DUP2-22) (MW23)		Trip Blank 1-12 (MW24)	MW24-12	MW24.1-12 (MW24)	
Parameter	Units	Max Concentratio	MECP-2011- GW-T7-FMT	Sample Date Sample Depth	2011-Aug-18 -	2011-Aug-18 1.7 - 4.7	2012-Apr-30 1.7 - 4.7	2012-May-01 1.7 - 4.7	2022-Jul-12 1.7 - 4.7	1.2 - 3.4	2012-May-01 1.2 - 3.4	2022-Jul-14 1.2 - 3.4	2022-Jul-14 1.2 - 3.4	2011-Aug-18 1.5 - 4.5	2012-Apr-30 1.5 - 4.5	2012-May-01 1.5 - 4.5	2012-May-01 1.5 - 4.5	2022-Jul-12 1.5 - 4.5
Benzene, Toluene, Ethylbenzene, & Xy	ylenes			Detection Limit														
Benzene	μg/L	2250	0.5	0.2, 2	-	2.7	<0.5	12	24.8	<0.1	<0.5	<0.2	<0.2	<0.1	<0.5	<0.5	<0.5	4.34
Ethylbenzene	μg/L	<500	57	0.1, 1	-	0.2	<0.5	<1	0.31	<0.1	<0.5	<0.1	<0.1	<0.2	<0.5	<0.5	<0.5	0.39
Toluene	μg/L	84800	320	0.2, 2	-	3	<0.5	<1	1.31	<0.2	<0.5	<0.2	<0.2	<0.2	<0.5	<0.5	<0.5	0.52
Xylene, m+p-	μg/L	534	-	0.2, 2	-	0.2	<0.5	3	3.08	<0.1	<0.5	<0.2	<0.2	<0.1	<0.5	<0.5	<0.5	3.7
Xylene, o-	μg/L	<500	-	0.1, 1	-	0.8	<0.5	<1	0.24	<0.1	<0.5	<0.1	<0.1	<0.1	<0.5	<0.5	<0.5	1.2
Xylenes, total	μg/L	<1000	72	0.2	-	0.9	<1	3	3.32	<0.1	-	<0.2	<0.2	<0.1	<1	<1	<1	4.9
Petroleum Hydrocarbons																		
Petroleum Hydrocarbons F1 (C6-C10)	μg/L	77400	420	25, 100	<100	<100	<100	200	86	<100	<100	<25	<25	<100	<100	<100	<100	33
Petroleum Hydrocarbons F2 (C10-C16)	μg/L	2200	150	100	<100	<100	<100	<100	<100	<100	<100	<100	<100	<100	<100	<100	<100	<100
Petroleum Hydrocarbons F3 (C16-C34)	μg/L	1700	500	100, 200	<200	<200	<200	<200	<100	<200	<200	<100	<100	<200	<200	<200	<200	<100
Petroleum Hydrocarbons F4 (C34-C50)	μg/L	1100	500	100, 200	<200	<200	<200	<200	<100	<200	<200	<100	<100	<200	<200	<200	<200	<100

Detection Limit DL: May vary between sample locations and events

DL exceeds criteria

GW-T7-FMT

Table 9 - Os Analytical Cher BTEX, PHCs in	nistry Re	esults:		Sample ID	MW25-11	MW25-12	MW25-22	MW26-11	MW26.1-11 (MW26)		MW26-22	MW50-11	MW50-12	MW50-22	MW78-11	MW78-12	MW78-22	MW79-11	MW79-12	MW79-22
DTEX, THES III	Ground	<u> </u>	L MECD 2044	Sample Date	2011-Aug-17	2012-May-01	2022-Jul-12	2011-Aug-17	2011-Aug-17	2012-May-01	2022-Jul-14	2011-Aug-17	2012-May-01	2022-Jul-13	2011-Aug-17	2012-May-01	2022-Jul-12	2011-Aug-17	2012-May-01	2022-Jul-14
Parameter	Units	Max Concentratio	MECP-2011- GW-T7-FMT	I Sample Depth	4.7 - 7.7	4.7 - 7.7	4.7 - 7.7	1.5 - 4.5	1.5 - 4.5	1.5 - 4.5	1.5 - 4.5	2.4 - 5.4	2.4 - 5.4	2.4 - 5.4	2.7 - 5.6	2.7 - 5.6	2.7 - 5.6	1.9 - 4.9	1.9 - 4.9	1.9 - 4.9
Benzene, Toluene, Ethylbenzene, & Xy	lenes			Detection Limit																
Benzene	μg/L	2250	0.5	0.2, 2	2.8	2.6	71.3	<0.1	<0.1	<0.5	<0.2	<0.1	<0.5	<0.2	<0.1	<0.5	<0.2	<0.1	<0.5	<0.2
Ethylbenzene	μg/L	<500	57	0.1, 1	<0.1	<0.5	1.65	<0.1	<0.1	<0.5	<0.1	<0.1	<0.5	<0.1	<0.1	<0.5	<0.1	<0.1	<0.5	<0.1
Toluene	μg/L	84800	320	0.2, 2	<0.2	<0.5	4.51	<0.2	<0.2	<0.5	<0.2	<0.2	<0.5	<0.2	<0.2	<0.5	<0.2	<0.2	<0.5	<0.2
Xylene, m+p-	μg/L	534	-	0.2, 2	<0.1	<0.5	10.8	<0.1	<0.1	<0.5	<0.2	<0.1	<0.5	<0.2	<0.1	<0.5	<0.2	<0.1	<0.5	<0.2
Xylene, o-	μg/L	<500	-	0.1, 1	<0.1	<0.5	2.02	<0.1	<0.1	<0.5	<0.1	<0.1	<0.5	<0.1	<0.1	<0.5	<0.1	<0.1	<0.5	<0.1
Xylenes, total	μg/L	<1000	72	0.2	<0.1	<1	12.8	<0.1	<0.1	-	<0.2	<0.1	-	<0.2	<0.1	<1	<0.2	<0.1	-	<0.2
Petroleum Hydrocarbons																				
Petroleum Hydrocarbons F1 (C6-C10)	μg/L	77400	420	25, 100	<100	<100	218	<100	<100	<100	<25	<100	<100	<25	<100	<100	<25	<100	<100	<25
Petroleum Hydrocarbons F2 (C10-C16)	μg/L	2200	150	100	<100	<100	<100	<100	<100	<100	<100	<100	<100	<100	<100	<100	<100	<100	<100	<100
Petroleum Hydrocarbons F3 (C16-C34)	μg/L	1700	500	100, 200	<200	400	<100	<200	<200	<200	<100	<200	<200	<100	<200	900	<100	<200	<200	<100
Petroleum Hydrocarbons F4 (C34-C50)	μg/L	1100	500	100, 200	<200	<200	<100	<200	<200	<200	<100	300	<200	<100	<200	200	<100	<200	<200	<100

Detection Limit DL: May vary between sample locations and events

DL exceeds criteria

GW-T7-FMT

Table 9 - Os Analytical Cher BTEX, PHCs in	mistry Re	sults:		Sample ID	MW80-11	MW80-12	MW80-22	MW81-11	MW81-12	MW81-22	MW82-11	MW82-12	MW82-22	MW84-11	MW84-12	MW84-22	MW121-11	MW121-12	MW121	MW128R	MW130-11
Parameter	Units	Max Concentratio	MECP-2011- GW-T7-FMT	Sample Denth	2011-Aug-17 2.4 - 3.8	2012-May-01 2.4 - 3.8	2022-Jul-12 2.4 - 3.8	2011-Aug-17 1.7 - 4.7	2012-May-01 1.7 - 4.7	2022-Jul-14 1.7 - 4.7	0.9 - 2.4	2012-May-01 0.9 - 2.4	2022-Jul-12 0.9 - 2.4	2011-Aug-17 3.7 - 6.6	2012-May-01 3.7 - 6.6	2022-Jul-13 3.7 - 6.6	2011-Aug-17 1.5 - 3.6	2012-May-01 1.5 - 3.6	2023-Jan-19 1.5 - 3.6	2023-Jan-19 1.6 - 3.7	2011-Aug-17 2.1 - 5.1
Benzene, Toluene, Ethylbenzene, & X	ylenes			Detection Limit																	
Benzene	μg/L	2250	0.5	0.2, 2	<0.1	<0.5	<0.2	<0.1	<0.5	<0.2	<0.1	<0.5	<0.2	<0.1	<0.5	<0.2	<0.1	<0.5	<0.2	<0.2	<0.1
Ethylbenzene	μg/L	<500	57	0.1, 1	<0.1	<0.5	<0.1	<0.1	<0.5	<0.1	<0.1	<0.5	<0.1	<0.1	<0.5	<0.1	<0.1	<0.5	<0.1	<0.1	<0.1
Toluene	μg/L	84800	320	0.2, 2	<0.2	<0.5	<0.2	<0.2	<0.5	<0.2	<0.2	<0.5	<0.2	<0.2	<0.5	<0.2	<0.2	<0.5	<0.2	<0.2	<0.2
Xylene, m+p-	μg/L	534	-	0.2, 2	<0.1	<0.5	<0.2	<0.1	<0.5	<0.2	<0.1	<0.5	<0.2	<0.1	<0.5	<0.2	<0.1	<0.5	<0.2	<0.2	<0.1
Xylene, o-	μg/L	<500	-	0.1, 1	<0.1	<0.5	<0.1	<0.1	<0.5	<0.1	-	<0.5	<0.1	<0.1	<0.5	<0.1	<0.1	<0.5	<0.1	<0.1	<0.1
Xylenes, total	μg/L	<1000	72	0.2	<0.1	-	<0.2	<0.1	-	<0.2	<0.1	<1	<0.2	<0.1	-	<0.2	<0.1	-	<0.2	<0.2	<0.1
Petroleum Hydrocarbons																					
Petroleum Hydrocarbons F1 (C6-C10)	μg/L	77400	420	25, 100	<100	<100	<25	200	<100	<25	<100	<100	<25	<100	<100	<25	<100	<100	<25	<25	<100
Petroleum Hydrocarbons F2 (C10-C16)	μg/L	2200	150	100	<100	<100	<100	<100	<100	<100	<100	<100	<100	<100	<100	<100	<100	<100	<100	<100	<100
Petroleum Hydrocarbons F3 (C16-C34)	μg/L	1700	500	100, 200	<200	<200	<100	<200	<200	<100	<200	<200	<100	<200	<200	<100	<200	<200	<100	<100	400
Petroleum Hydrocarbons F4 (C34-C50)	μg/L	1100	500	100, 200	<200	<200	<100	<200	<200	<100	<200	<200	<100	<200	<200	<100	<200	<200	<100	<100	<200

Detection Limit

DL: May vary between sample locations and events

DL exceeds criteria

GW-T7-FMT

Table 9 - Os _l Analytical Cher BTEX, PHCs in	mistry Re	esults:		Sample ID Sample Date	MW130-12 2012-May-01	MW130-22 2022-Jul-13	MW146-11 2011-Aug-18	MW146-12 2012-May-01	MW146-22 2022-Jul-12	MW148-11 2011-Aug-18	MW148-12 2012-May-01	MW148-22 2022-Jul-13	MW149-11 2011-Aug-18	MW149-12 2012-May-01	MW149-22 2022-Jul-13	MW151-11 2011-Aug-18	MW151.1-11 (MW151)	MW151-12 2012-May-01	MW151-22 2022-Jul-13
Parameter	Units	Max Concentratio	MECP-2011- GW-T7-FMT		2.1 - 5.1	2.1 - 5.1	1.2 - 3.0	1.2 - 3.0	1.2 - 3.0	1.2 - 3.0	1.2 - 3.0	1.2 - 3.0	1.1 - 2.2	1.1 - 2.2	1.1 - 2.2	1.6 - 4.5	1.6 - 4.5	1.6 - 4.5	1.6 - 4.5
Benzene, Toluene, Ethylbenzene, & Xy	ylenes			Detection Limit															
Benzene	μg/L	2250	0.5	0.2, 2	<0.5	<0.2	<0.1	<0.5	<0.2	<0.1	<500	<2	0.2	<0.5	<0.2	<0.1	<0.1	<0.5	<0.2
Ethylbenzene	μg/L	<500	57	0.1, 1	<0.5	<0.1	0.1	<0.5	<0.1	39	<500	7.1	0.1	<0.5	<0.1	<0.1	<0.1	<0.5	<0.1
Toluene	μg/L	84800	320	0.2, 2	<0.5	<0.2	<0.2	<0.5	<0.2	<0.2	84800	8830	<0.2	<0.5	<0.2	<0.2	<0.2	<0.5	<0.2
Xylene, m+p-	μg/L	534	-	0.2, 2	<0.5	<0.2	<0.1	<0.5	<0.2	98	<500	16.4	0.2	<0.5	<0.2	<0.1	<0.1	<0.5	<0.2
Xylene, o-	μg/L	<500	-	0.1, 1	<0.5	<0.1	0.1	<0.5	<0.1	15	<500	2.31	0.2	<0.5	<0.1	<0.1	<0.1	<0.5	<0.1
Xylenes, total	μg/L	<1000	72	0.2	-	<0.2	0.1	-	<0.2	110	<1000	18.7	0.5	<1	<0.2	<0.1	<0.1	-	<0.2
Petroleum Hydrocarbons																			
Petroleum Hydrocarbons F1 (C6-C10)	μg/L	77400	420	25, 100	<100	<25	100	<100	<25	<100	77400	11700	<100	<100	<25	<100	<100	<100	<25
Petroleum Hydrocarbons F2 (C10-C16)	μg/L	2200	150	100	<100	<100	2200	<100	100	<100	200	1700	<100	<100	110	<100	<100	<100	<100
Petroleum Hydrocarbons F3 (C16-C34)	μg/L	1700	500	100, 200	<200	<100	1700	<200	<100	<200	<200	240	<200	<200	<100	900	<200	<200	<100
Petroleum Hydrocarbons F4 (C34-C50)	μg/L	1100	500	100, 200	<200	<100	1100	<200	<100	<200	<200	<100	<200	<200	<100	200	<200	<200	<100

Detection Limit

DL: May vary between sample locations and events

DL exceeds criteria

GW-T7-FMT

Table 9 - Os Analytical Chei BTEX, PHCs in	mistry Re	sults:		Sample ID	MW151 (DUP1-22) (MW151)		MW152-12	MW152-22	MW156-12	MW156-22		W-Dup1 (MW20		MW203	MW204		Field Blank (MW205)	MW206	MW207
, , , , , , , , , , , , , , , , , , ,		•	1 4500 2044	Sample Date	2022-Jul-13	2011-Aug-17	2012-May-01	2022-Jul-12	2012-Dec-10	2022-Jul-13	2023-Jan-19	2023-Jan-19	2023-Jan-19	2023-Jan-19	2023-Jan-19	2023-Jan-23	2023-Jan-23	2023-Jan-23	2023-Jan-23
Parameter	Units	Max Concentratio	MECP-2011- GW-T7-FMT	I Sample Denth	1.6 - 4.5	2.1 - 5.1	2.1 - 5.1	2.1 - 5.1	2.0 - 5.0	2.0 - 5.0	5.4 - 8.4	5.4 - 8.4	2.3 - 5.2	3.3 - 6.0	1.7 - 4.7	4.6 - 7.6	4.6 - 7.6	5.2 - 8.2	8.3 - 11.3
Benzene, Toluene, Ethylbenzene, & X	ylenes			Detection Limit															
Benzene	μg/L	2250	0.5	0.2, 2	<0.2	<0.1	<0.5	<0.2	<0.5	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	141	<0.2	<0.2	30.6
Ethylbenzene	μg/L	<500	57	0.1, 1	<0.1	<0.1	<0.5	<0.1	<0.5	<0.1	<0.1	<0.1	0.8	<0.1	0.21	1.83	<0.1	<0.1	<0.1
Toluene	μg/L	84800	320	0.2, 2	<0.2	<0.2	4.33	<0.2	<0.5	<0.2	0.29	0.37	317	1.07	146	124	<0.2	<0.2	2.17
Xylene, m+p-	μg/L	534	-	0.2, 2	<0.2	<0.1	<0.5	<0.2	<0.5	<0.2	1.01	1.19	8.72	<0.2	0.5	29.8	<0.2	<0.2	10.6
Xylene, o-	μg/L	<500	-	0.1, 1	<0.1	<0.1	<0.5	<0.1	<0.5	<0.1	0.5	0.56	3.18	<0.1	<0.1	8.52	<0.1	<0.1	8.68
Xylenes, total	μg/L	<1000	72	0.2	<0.2	<0.1	<1	<0.2	<1	<0.2	1.51	1.75	11.9	<0.2	0.5	38.3	<0.2	<0.2	19.3
Petroleum Hydrocarbons																			
Petroleum Hydrocarbons F1 (C6-C10)	μg/L	77400	420	25, 100	<25	<100	<100	<25	-	<25	<25	<25	292	<25	124	329	<25	<25	72
Petroleum Hydrocarbons F2 (C10-C16)	μg/L	2200	150	100	<100	<100	<100	<100	-	<100	<100	<100	880	<100	<100	<100	<100	<100	<100
Petroleum Hydrocarbons F3 (C16-C34)	μg/L	1700	500	100, 200	<100	<200	<200	<100	-	<100	<100	<100	121	<100	<100	<100	<100	<100	<100
Petroleum Hydrocarbons F4 (C34-C50)	μg/L	1100	500	100, 200	<100	<200	<200	<100	-	<100	<100	<100	<100	<100	<100	<100	<100	<100	<100

Detection Limit DL: May vary between sample locations and events

DL exceeds criteria

GW-T7-FMT

Table 9 - Os Analytical Cher BTEX, PHCs in	mistry Re	sults:		Sample ID Sample Date	MW208 2023-Jan-23	MW209 2023-Jan-23	MW210 2023-Jan-23	MW211 2023-Jan-23	MW212 2023-Jan-23	MW213 2023-Jan-23	GW-Dup3 (MW213) 2023-Jan-23	Trip Blank (MW214)	MW214 2023-Jan-24	MW215 2023-Jan-23	GW-Dup2 (MW215)	MW217 2023-Jan-24	MW218 2023-Jan-24	MW219 2023-Jan-25	MW220 2023-Jan-25	MW221 2023-Jan-24
Parameter	Units	Max Concentratio	MECP-2011- GW-T7-FMT	Sample Denth	4.9 - 7.9	0.6 - 3.6	0.3 - 3.3	0.6 - 3.6	1.2 - 2.7	0.7 - 3.7	0.7 - 3.7	1.2 - 3.6	1.2 - 3.6	1.6 - 4.5	1.6 - 4.5	1.7 - 4.7	1.0 - 2.4	1.0 - 3.9	1.0 - 2.5	1.0 - 2.5
Benzene, Toluene, Ethylbenzene, & Xy	ylenes			Detection Limit																
Benzene	μg/L	2250	0.5	0.2, 2	2250	<0.2	20.6	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Ethylbenzene	μg/L	<500	57	0.1, 1	42.2	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	0.62	<0.1	<0.1	<0.1
Toluene	μg/L	84800	320	0.2, 2	2170	<0.2	15	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	0.33	6.88	<0.2	<0.2	15.4
Xylene, m+p-	μg/L	534	-	0.2, 2	534	<0.2	2.04	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	4.01	<0.2	<0.2	<0.2
Xylene, o-	μg/L	<500	-	0.1, 1	166	<0.1	0.6	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	1.51	<0.1	<0.1	<0.1
Xylenes, total	μg/L	<1000	72	0.2	700	<0.2	2.64	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	5.52	<0.2	<0.2	<0.2
Petroleum Hydrocarbons																				
Petroleum Hydrocarbons F1 (C6-C10)	μg/L	77400	420	25, 100	5170	<25	45	<25	<25	<25	<25	<25	<25	<25	<25	126	33	<25	<25	<25
Petroleum Hydrocarbons F2 (C10-C16)	μg/L	2200	150	100	<100	<100	<100	<100	<100	<100	<100	<100	<100	<100	<100	<100	267	315	<100	283
Petroleum Hydrocarbons F3 (C16-C34)	μg/L	1700	500	100, 200	<100	<100	<100	<100	<100	<100	<100	<100	<100	<100	<100	<100	<100	<100	<100	<100
Petroleum Hydrocarbons F4 (C34-C50)	μg/L	1100	500	100, 200	<100	<100	<100	<100	<100	<100	<100	<100	<100	<100	<100	<100	<100	<100	<100	<100

Detection Limit DL: May vary between sample locations and events

DL exceeds criteria

GW-T7-FMT

Table 9 - Os Analytical Chei BTEX, PHCs in	mistry R	esults:		Sample ID	MW222 2023-Jan-24	MW223 2023-Jan-24	MW224 2023-Jan-25	MW228 2023-Jan-23	OW2-11 2011-Aug-18
Parameter	Units	Max Concentratio	MECP-2011- GW-T7-FMT	Sample Depth	1.1 - 2.6	1.5 - 3.0	1.3 - 4.3	1.2 - 4.2	-
Benzene, Toluene, Ethylbenzene, & X	ylenes			Detection Limit					
Benzene	μg/L	2250	0.5	0.2, 2	<0.2	<0.2	<0.2	<0.2	<0.1
Ethylbenzene	μg/L	<500	57	0.1, 1	<0.1	<0.1	<0.1	<0.1	<0.1
Toluene	μg/L	84800	320	0.2, 2	<0.2	<0.2	<0.2	<0.2	<0.2
Xylene, m+p-	μg/L	534	-	0.2, 2	<0.2	<0.2	<0.2	<0.2	<0.1
Xylene, o-	μg/L	<500	-	0.1, 1	<0.1	<0.1	<0.1	<0.1	<0.1
Xylenes, total	μg/L	<1000	72	0.2	<0.2	<0.2	<0.2	<0.2	<0.1
Petroleum Hydrocarbons									
Petroleum Hydrocarbons F1 (C6-C10)	μg/L	77400	420	25, 100	<25	<25	<25	<25	<100
Petroleum Hydrocarbons F2 (C10-C16)	μg/L	2200	150	100	<100	<100	<100	<100	<100
Petroleum Hydrocarbons F3 (C16-C34)	μg/L	1700	500	100, 200	<100	<100	<100	<100	<200
Petroleum Hydrocarbons F4 (C34-C50)	μg/L	1100	500	100, 200	<100	<100	<100	<100	<200

Detection Limit DL: May vary between sample locations and events

DL exceeds criteria

GW-T7-FMT

Table 10 Analytical ORPs, PCE	Chemistry	y Results:		Sample ID Sample Date	MW4 2011-Aug-18		Trip Blank 2-12 (MW22)	MW22-12 2012-May-01	MW22-22 2022-Jul-12	MW23-11 2011-Aug-18	MW23-12	MW23-22 2022-Jul-14	MW23 (DUP2-22) (MW23)	MW24-11 2011-Aug-18	Trip Blank 1-12 (MW24)	MW24-12 2012-May-01	MW24.1-12 (MW24)	MW24-22 2022-Jul-12	MW25-11 2011-Aug-17
Parameter	Units	Max Concentratio	MECP-2011- GW-T7-FMT	Sample Depth	-	1.7 - 4.7	1.7 - 4.7	1.7 - 4.7	1.7 - 4.7	1.2 - 3.4	1.2 - 3.4	1.2 - 3.4	1.2 - 3.4	1.5 - 4.5	1.5 - 4.5	1.5 - 4.5	1.5 - 4.5	1.5 - 4.5	4.7 - 7.7
Other Regulated Parameters				Detection Limit															
Chloride	μg/L	5760000	1800000	, 122, 244, 488, 1	10000	285000	<1000	347000	275000	24000	24000	34700	35200	48000	<1000	50000	56000	659000	622000
Chromium (hexavalent)	μg/L	5.31	110	2	-	-	-	-	<2	-	-	<2	<2	-	-	-	-	<2	-
Cyanide	μg/L	<2	52	2	-	-	-	-	<2	-	-	<2	<2	,	-		-	<2	-
Electrical Conductivity	μS/cm	3860000	-	2	-	1720	<5	1860	1710	844	754	961	962	1210	<5	1180	1210	2640	2790
Electrical Conductivity	μg/L	860000	-	5000	860000	-	-	-	•	-	-	•	-	,	-	-	-	-	-
Mercury, total	μg/L	0.2	0.1	0.02, 0.1	<0.1	<0.1	<0.1	<0.1	<0.02	<0.1	<0.1	<0.02	<0.02	<0.1	<0.1	<0.1	<0.1	<0.02	<0.1
Sodium, total	μg/L	24000	1800000	2000	24000	-	-	-	1	-	-	1	-	1	-	1	-	-	-
рН	pH units	8.17	-		-	7.94	5.73	7.86	7.55	7.97	7.91	7.78	7.75	7.95	5.63	7.92	7.94	7.54	8.02
рН	μg/L	7820	-		7820	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Polychlorinated Biphenyls																			
Polychlorinated biphenyls	μg/L	6.8	0.2	0.1	-	-	<0.1	<0.1	<0.1	-	<0.1	<0.1	<0.1	-	<0.1	<0.1	<0.1	<0.1	0.1

Detection Limit DL: May vary between sample locations and events

DL exceeds criteria

2011-GW-T7-FMT

Table 10 Analytical ORPs, PCB	Chemistry	Results:		Sample ID Sample Date	MW25-12 2012-May-01	MW25-22 2022-Jul-12	MW26-11 2011-Aug-17	MW26.1-11 (MW26)	MW26-12 2012-May-01	MW26-22 2022-Jul-14	MW50-11 2011-Aug-17	MW50-12 2012-May-01	MW50-22 2022-Jul-13	MW78-11 2011-Aug-17	MW78-12 2012-May-01	MW78-22 2022-Jul-12	MW79-11 2011-Aug-17	MW79-12 2012-May-01	MW79-22 2022-Jul-14	MW80-11 2011-Aug-17	MW80-12 2012-May-01
Parameter	Units	Max Concentratio	MECP-2011- GW-T7-FMT	Sample Depth	4.7 - 7.7	4.7 - 7.7	1.5 - 4.5	1.5 - 4.5	1.5 - 4.5	1.5 - 4.5	2.4 - 5.4	2.4 - 5.4	2.4 - 5.4	2.7 - 5.6	2.7 - 5.6	2.7 - 5.6	1.9 - 4.9	1.9 - 4.9	1.9 - 4.9	2.4 - 3.8	2.4 - 3.8
Other Regulated Parameters				Detection Limit																	
Chloride	μg/L	5760000	1800000	, 122, 244, 488, 1	1240000	1210000	217000	215000	150000	205000	41000	24000	5220	118000	169000	30000	25000	20000	34500	80000	59000
Chromium (hexavalent)	μg/L	5.31	110	2	-	<2	-	-	-	<2	-	-	<2	-	-	<2	-	-	<2	-	-
Cyanide	μg/L	<2	52	2	-	<2	-	-	-	<2	-	-	<2	-	-	<2	-	-	<2	-	-
Electrical Conductivity	μS/cm	3860000	ı	2	4740	4160	1590	1610	1490	1510	1170	996	1120	1550	1720	1120	911	805	964	1120	1140
Electrical Conductivity	μg/L	860000	1	5000	-	1	-	-	-	i	-	1	-	-	-	-	-	-	-	-	-
Mercury, total	μg/L	0.2	0.1	0.02, 0.1	<0.1	<0.02	<0.1	<0.1	<0.1	<0.02	<0.1	<0.1	<0.02	<0.1	<0.1	<0.02	<0.1	<0.1	<0.02	<0.1	<0.1
Sodium, total	μg/L	24000	1800000	2000	-	1	-	-	-	i	-	1	-	-	-	ı	-	-	-	-	-
pH	pH units	8.17	ı		8.17	7.9	7.55	7.69	7.87	7.7	7.89	7.91	7.62	7.65	7.95	7.43	7.7	7.97	7.72	7.78	7.97
рН	μg/L	7820	-		-	-	-	-	-	i	-	-	-	-	-	-	-	-	-	-	-
Polychlorinated Biphenyls	_																				
Polychlorinated biphenyls	μg/L	6.8	0.2	0.1	6.8	<0.1	<0.05	<0.05	<0.1	<0.1	-	<0.1	<0.1	-	<0.1	<0.1	-	<0.1	<0.1	-	<0.1

Detection Limit DL: May vary between sample locations and events

DL exceeds criteria

2011-GW-T7-FMT

Table 10 Analytical (ORPs, PCB	Chemistry	Results:		Sample ID Sample Date	MW80-22 2022-Jul-12	MW81-11 2011-Aug-17	MW81-12 2012-May-01	MW81-22 2022-Jul-14	MW82-11 2011-Aug-17	MW82-12 2012-May-01	MW82-22 2022-Jul-12	MW84-11 2011-Aug-17	MW84-12 2012-May-01	MW84-22 2022-Jul-13	MW121-11 2011-Aug-17	MW121-12 2012-May-01	MW121 2023-Jan-19	MW128R 2023-Jan-19	MW130-11 2011-Aug-17	MW130-12 2012-May-01	MW130-22 2022-Jul-13
Parameter	Units	Max Concentratio	MECP-2011- GW-T7-FMT	Sample Depth	2.4 - 3.8	1.7 - 4.7	1.7 - 4.7	1.7 - 4.7	0.9 - 2.4	0.9 - 2.4	0.9 - 2.4	3.7 - 6.6	3.7 - 6.6	3.7 - 6.6	1.5 - 3.6	1.5 - 3.6	1.5 - 3.6	1.6 - 3.7	2.1 - 5.1	2.1 - 5.1	2.1 - 5.1
Other Regulated Parameters				Detection Limit																	
Chloride	μg/L	5760000	1800000	, 122, 244, 488, 1	48400	322000	189000	336000	187000	251000	362000	991000	91000	1680000	55000	37000	31700	16800	74000	19000	9680
Chromium (hexavalent)	μg/L	5.31	110	2	<2	-	-	<2	1	-	<2	-	-	<2	-	-	<2	<2	-	-	<2
Cyanide	μg/L	<2	52	2	<2	-	-	<2	1	-	<2	-	-	<2	-	-	<2	<2	-	-	<2
Electrical Conductivity	μS/cm	3860000	-	2	961	1870	1580	1810	1520	1750	1830	3860000	1080	5360	1360	1410	1440	1460	1170	1280	816
Electrical Conductivity	μg/L	860000	-	5000	-	-	-	-	ı	-	-	-	1	-	-	-	-	-	-	1	-
Mercury, total	μg/L	0.2	0.1	0.02, 0.1	<0.02	<0.1	<0.1	<0.02	<0.1	<0.1	<0.02	0.1	<0.1	<0.02	0.1	<0.1	<0.02	<0.02	<0.1	<0.1	<0.02
Sodium, total	μg/L	24000	1800000	2000	-	-	-	-	1	-	-	-	-	-	-	-	-	-	-	-	-
рН	pH units	8.17	-		7.53	7.65	7.89	7.65	7.54	7.82	7.32	7.79	8.04	7.59	7.67	7.73	7.4	7.56	7.87	7.77	7.68
рН	μg/L	7820	-		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Polychlorinated Biphenyls			•																		
Polychlorinated biphenyls	μg/L	6.8	0.2	0.1	<0.1	<0.05	<0.1	<0.1	<0.05	<0.1	<0.1	-	<0.1	<0.1	0.13	<0.1	<0.1	<0.1	<0.05	<0.1	<0.1

Detection Limit DL: May vary between sample locations and events

DL exceeds criteria

2011-GW-T7-FMT

Table 10 Analytical ORPs, PCB	Chemistry	Results:		Sample ID Sample Date	MW146-11 2011-Aug-18	MW146-12 2012-May-01	MW146-22 2022-Jul-12	MW148-11 2011-Aug-18	MW148-12 2012-May-01	MW148-22 2022-Jul-13	MW149-11 2011-Aug-18	MW149-12 2012-May-01	MW149-22 2022-Jul-13	MW151-11 2011-Aug-18	MW151.1-11 (MW151)	MW151-12 2012-May-01	MW151-22 2022-Jul-13	MW151 (DUP1-22) (MW151)	MW152-11 2011-Aug-17	MW152-12
Parameter	Units	Max Concentratio	MECP-2011- GW-T7-FMT	Sample Depth	1.2 - 3.0	1.2 - 3.0	1.2 - 3.0	1.2 - 3.0	1.2 - 3.0	1.2 - 3.0	1.1 - 2.2	1.1 - 2.2	1.1 - 2.2	1.6 - 4.5	1.6 - 4.5	1.6 - 4.5	1.6 - 4.5	1.6 - 4.5	2.1 - 5.1	2.1 - 5.1
Other Regulated Parameters				Detection Limit																
Chloride	μg/L	5760000	1800000	, 122, 244, 488, 1	124000	168000	400000	28000	3000	3090	54000	22000	53300	119000	117000	166000	100000	102000	232000	290000
Chromium (hexavalent)	μg/L	5.31	110	2	-	-	<2	-	-	<2	-	-	<2	-	-	-	<2	<2	-	-
Cyanide	μg/L	<2	52	2	-	-	<2	-	-	<2	-	-	<2	-	-	-	<2	<2	-	-
Electrical Conductivity	μS/cm	3860000	-	2	1100	1210	1870	788	727	673	766	668	841	1340	1340	1450	1360	1360	1470	1610
Electrical Conductivity	μg/L	860000	-	5000	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Mercury, total	μg/L	0.2	0.1	0.02, 0.1	<0.1	<0.1	<0.02	<0.1	<0.1	<0.02	0.2	<0.1	<0.02	<0.1	<0.1	<0.1	<0.02	<0.02	<0.1	<0.1
Sodium, total	μg/L	24000	1800000	2000	-	-	1	-	-	-	-	-	-	-	-	-	ı	-	-	-
рН	pH units	8.17	-		7.97	8	7.51	7.8	7.79	7.32	7.9	8.01	7.62	8	8.02	8.01	7.38	7.56	7.85	8.04
рН	μg/L	7820	-		-	-	1	-	-	-	-	-		-	-	-	-	-	-	-
Polychlorinated Biphenyls																				
Polychlorinated biphenyls	μg/L	6.8	0.2	0.1	<0.05	<0.1	<0.1	<0.05	<0.1	<0.1	<0.05	<0.1	<0.1	<0.05	<0.05	<0.1	<0.1	<0.1	<0.05	<0.1

Detection Limit DL: May vary between sample locations and events

DL exceeds criteria

2011-GW-T7-FMT

Table 10 Analytical ORPs, PCE	Chemistry	Results:		Sample ID Sample Date	MW152-22 2022-Jul-12	MW156-22 2022-Jul-13	MW201 2023-Jan-19	GW-Dup1 (MW201)	MW202 2023-Jan-19	MW203 2023-Jan-19	MW204 2023-Jan-19	MW205 2023-Jan-23	eld Blank (MW20 2023-Jan-23		MW207 2023-Jan-23	MW208 2023-Jan-23	MW209 2023-Jan-23	MW210 2023-Jan-23	MW211 2023-Jan-23	MW212 2023-Jan-23	MW213 2023-Jan-23
Parameter	Units	Max Concentratio	MECP-2011- GW-T7-FMT	Sample Depth	2.1 - 5.1	2.0 - 5.0	5.4 - 8.4	5.4 - 8.4	2.3 - 5.2	3.3 - 6.0	1.7 - 4.7	4.6 - 7.6	4.6 - 7.6	5.2 - 8.2	8.3 - 11.3	4.9 - 7.9	0.6 - 3.6	0.3 - 3.3	0.6 - 3.6	1.2 - 2.7	0.7 - 3.7
Other Regulated Parameters				Detection Limit																	
Chloride	μg/L	5760000	1800000	, 122, 244, 488, 1	581000	182000	533000	540000	4350	84100	27400	228000	<100	5760000	1060000	2170000	15500	11700	15800	8380	10800
Chromium (hexavalent)	μg/L	5.31	110	2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2
Cyanide	μg/L	<2	52	2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2
Electrical Conductivity	μS/cm	3860000	-	2	2230	1210	2520	2530	927	1030	596	1650	<2	15800	4500	7090	888	837	717	978	900
Electrical Conductivity	μg/L	860000	-	5000	ı	-	-	-	-	ı	-	-	-	-	-	-	-	-	-	-	-
Mercury, total	μg/L	0.2	0.1	0.02, 0.1	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02
Sodium, total	μg/L	24000	1800000	2000	ı	-	-	-	-	i	-	-	-	-	-	-	-	-	-	-	-
рН	pH units	8.17	-		7.61	7.5	7.42	7.47	7.26	7.57	7.69	7.68	6.36	7.24	7.59	7.74	7.4	7.6	7.63	7.35	7.43
рН	μg/L	7820	-		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Polychlorinated Biphenyls																					
Polychlorinated biphenyls	μg/L	6.8	0.2	0.1	<0.1	<0.1	-	-	<0.1	<0.1	<0.1	<0.1	<0.1	-	<0.1	0.19	<0.1	<0.1	<0.1	<0.1	<0.1

Detection Limit DL: May vary between sample locations and events

DL exceeds criteria

2011-GW-T7-FMT

Table 10 Analytical C ORPs, PCB:	Chemistr	y Results:		Sample ID	GW-Dup3 (MW213)		MW215	GW-Dup2 (MW215)	MW216	MW217	MW218	MW219	MW220	MW222	MW224	MW228	OW2-11
Parameter	Units	Max Concentratio	MECP-2011- GW-T7-FMT	Sample Date Sample Depth	2023-Jan-23 0.7 - 3.7	2023-Jan-24 1.2 - 3.6	2023-Jan-23 1.6 - 4.5	2023-Jan-23 1.6 - 4.5	2023-Jan-24 1.5 - 3.0	2023-Jan-24 1.7 - 4.7	2023-Jan-24 1.0 - 2.4	2023-Jan-25 1.0 - 3.9	2023-Jan-25 1.0 - 2.5	2023-Jan-24 1.1 - 2.6	2023-Jan-25 1.3 - 4.3	2023-Jan-23 1.2 - 4.2	2011-Aug-18 -
Other Regulated Parameters				Detection Limit													
Chloride	μg/L	5760000	1800000	, 122, 244, 488, 1	11300	<100	12600	12800	=	30000	47800	3910	27400	147000	21900	85500	16000
Chromium (hexavalent)	μg/L	5.31	110	2	<2	<2	<2	<2	-	<2	<2	<2	<2	5.31	<2	<2	-
Cyanide	μg/L	<2	52	2	<2	<2	<2	<2	-	<2	<2	<2	<2	<2	<2	<2	-
Electrical Conductivity	μS/cm	3860000	-	2	904	<2	873	876	-	831	1200	1050	1080	1200	735	2220	605
Electrical Conductivity	μg/L	860000	-	5000	=	÷	-	-	-	1	-	1	-	-	-	-	-
Mercury, total	μg/L	0.2	0.1	0.02, 0.1	<0.02	<0.02	<0.02	<0.02	-	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.1
Sodium, total	μg/L	24000	1800000	2000	-	-	-	-	-	ı	-	-	-	-	-	-	-
рН	pH units	8.17	-		7.55	5.58	7.34	7.24	-	7.76	7.67	7.28	7.75	7.66	7.82	7.45	7.87
рН	μg/L	7820	-		-	-	-	-	-	-	-	-	-	-	-	-	-
Polychlorinated Biphenyls																	
Polychlorinated biphenyls	μg/L	6.8	0.2	0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	-	-	-	-	<0.1	<0.1	<0.05

Detection Limit DL: May vary between sample locations and events

DL exceeds criteria

2011-GW-T7-FMT

Table 11 - Osprey Shores QA/QC Results Soil		Sample ID	BH/MW 130-SS3	BH/MW 130-SS3.1		BH/MW 149-SS2	BH/MW 149-SS2.1		BH/MW 24-SS2	BH/MW 24-SS2.1		BH/MW 81-SS1	BH/MW 81-SS1.1		BH104-SS2.1	
Parameter	Units	Sample Date Sample Depth	2011-Jul-25 1.2 - 1.8	2011-Jul-25 1.2 - 1.8	RPD	2011-Jul-28 0.9 - 1.5	2011-Jul-28 0.9 - 1.5	RPD	2011-Jun-24 0.6 - 1.2	2011-Jun-24 0.6 - 1.2	RPD	2011-Jul-11 0.9	2011-Jul-11 0.9	RPD	2011-Jul-18 0.9	RPD
Acids, Bases, Neutrals Biohenyl, 1.1-		Detection Limit	<0.05	<0.05	NC	<0.05	<0.05	NC	0.0 - 1.2	0.0-1.2		<0.05	<0.05	NC	0.9	
Bis(2-chloro-1-methylethyl)ether Bis(2-chloroethyl)ether	ug/g ug/g ug/g	0.1, 0.2	<0.05 <0.1 <0.1	<0.05 <0.1 <0.1	NC NC	<0.05 <0.1 <0.1	<0.05 <0.1 <0.1	NC NC	<0.2 <0.3	<0.2 <0.3	NC NC	<0.05 <0.1 <0.1	<0.1 <0.1	NC NC	-	-
Bis(2-ethylhexyl)phthalate Chloroaniline, p-	ug/g ug/g	0.2, 0.4	<0.1 <0.1	<0.1 <0.1	NC NC	<0.1 <0.1	<0.1 <0.1	NC NC	<0.4	<0.4	NC -	0.1	<0.1 <0.1	NC NC	-	-
Dichlorobenzidine, 3,3- Diethyl phthalate	ug/g ug/g	0.5, 0.6 0.1, 0.2	<0.1 <0.1	<0.1 <0.1	NC NC	<0.1 <0.1	<0.1 <0.1	NC NC	<0.6 <0.2	<0.6 <0.2	NC NC	<0.1 <0.1	<0.1 <0.1	NC NC	-	-
Dimethylphenol, 2,4- Dimethyl phthalate	ug/g ug/g	0.1, 0.2 0.1, 0.2	<0.1 <0.1	<0.1 <0.1	NC NC	<0.1 <0.1	<0.1 <0.1	NC NC	<0.2 <0.2	<0.2 <0.2	NC NC	<0.1 <0.1	<0.1 <0.1	NC NC	-	-
Dinitrophenol, 2,4- Dinitrotoluene, 2,4+2,6- Phenol	ug/g ug/g	0.2, 2 0.2, 0.5 0.1, 0.5	<0.1 <0.2 <0.1	<0.1 <0.2 <0.1	NC NC	<0.1 <0.2 <0.1	<0.1 <0.2 <0.1	NC NC	<0.2 <1.2 <0.1	<0.2 <1.2 <0.1	NC NC	<0.1 <0.2 <0.1	<0.1 <0.2 0.3	NC NC	<0.2	NC NC
Trichlorobenzene, 1,2,4- Benzene, Toluene, Ethylbenzene, & Xylenes	ug/g ug/g	0.04, 0.05	<0.1	<0.1	NC NC	<0.1	<0.1	NC NC	<0.1	<0.1	NC NC	<0.1	<0.1	NC NC	-	-
Benzene Ethylbenzene	ug/g ug/g	0.02, 0.05	<0.02 <0.05	<0.02 <0.05	NC NC	<0.02 <0.05	<0.02 <0.05	NC NC	-	<0.05 <0.05	NC NC	<0.02 <0.05	<0.02 <0.05	NC NC	-	-
Toluene Xylene, m+p-	ug/g ug/g	0.05 0.05	<0.2 <0.05	<0.2 <0.05	NC NC	<0.2 <0.05	<0.2 <0.05	NC NC	-	<0.2 <0.05	NC NC	<0.2 <0.05	<0.2 <0.05	NC NC	-	-
Xylene, o- Xylenes, total	ug/g ug/g	0.05 0.05	<0.05 <0.05	<0.05 <0.05	NC NC	<0.05 <0.05	<0.05 <0.05	NC NC	-	<0.05 <0.05	NC NC	<0.05 <0.05	<0.05 <0.05	NC NC	-	-
Chlorophenols Chlorophenol, 2- Dichlorophenol, 2.4-	ug/g ug/g	0.1, 0.2	<0.1 <0.1	<0.1 <0.1	NC NC	<0.1 <0.1	<0.1 <0.1	NC NC	<0.1 <0.1	<0.1 <0.1	NC NC	<0.1 <0.1	<0.1 <0.1	NC NC	-	
Pentachlorophenol Trichlorophenol, 2,4,5-	ug/g ug/g	0.1, 0.2	<0.1 <0.1	<0.1 <0.1	NC NC	<0.1 <0.1	<0.1 <0.1	NC NC	<0.1	<0.1	NC -	<0.1 <0.1	<0.1 <0.1	NC NC	-	-
Trichlorophenol, 2,4,6- Hydride-Forming Metals	ug/g	0.1, 0.2	<0.1	<0.1	NC	<0.1	<0.1	NC	<0.1	<0.1	NC	<0.1	<0.1	NC	-	
Antimony, total Arsenic, total	ug/g ug/g	0.8	<1	1	- 0%	1	1	- 0%	- 51	- 39	27%	-	-		-	-
Selenium, total Metals Barium, total	ug/g	0.8	41	41	0%	19	18	5%	227	242	6%	-	-	-	-	-
Beryllium, total Boron, total	ug/g ug/g ug/g	0.1, 2 0.4, 0.5 5	41 <1 -	41 <1 -	NC -	19 <1 -	18 <1 -	NC -	1 -	1 -	NC -		-			
Cadmium, total Chromium, total	ug/g ug/g	0.1, 0.5	<0.5 11	<0.5 14	NC 24%	<0.5 7	<0.5 6	NC 15%	0.5 28	<0.5 33	0% 16%		-			
Cobalt, total Copper, total	ug/g ug/g	0.5, 5	3 5	3 7	NC 33%	3	3	NC 29%	7 31	7 32	NC 3%		-			
Lead, total Molybdenum, total Nickel, total	ug/g ug/g	1, 50 0.5	4 <1 9	5 <1 12	NC NC	4 <1 7	4 <1 6	NC NC	18 73 55	16 42 48	NC 54% NC		-	-	-	
Nickel, total Silver, total Thallium, total	ug/g ug/g ug/g	1, 50 0.5 0.5, 20	9 <0.2 <1	12 <0.2 <1	NC NC	7 <0.2 <1	6 <0.2 <1	NC NC	55 <0.2 <1	48 <0.2 <1	NC NC	-	-	-	-	
Uranium, total Vanadium, total	ug/g ug/g	0.5 0.4, 1	- 14	- 16	13%	- 6	- 5	- 18%	851	799	- 6%	-	-		-	
Zinc, total Organochlorine Pesticides	ug/g	0.005, 5	10	12	18%	5	5	0%	49	45	9%				-	
Hexachlorobenzene Hexachlorobutadiene	ug/g ug/g	0.01 0.01	-	-	•	-	-		<0.2 <0.01	<0.2 <0.01	NC NC	-	-		-	-
Other Regulated Parameters	ug/g	0.01			•	-			<0.2	<0.2	NC	-	-		-	
Boron, total (Hot Water Soluble) Chromium (hexavalent) Cvanide	ug/g ug/g ug/g	0.1 0.2 0.04	-	-	-	-	-	-	-	-		-	-	-	-	-
Electrical Conductivity Mercury, total	mS/cm ug/g	0.005	<0.1	<0.1	- NC	<0.1	<0.1	- NC	- 0.9	0.7	25%	-	-		-	-
Sodium adsorption ratio pH	N/A oH unit:	S		-	-	-	-	- :	-	-	- :		-		-	-
Petroleum Hydrocarbons Petroleum Hydrocarbons F1 (C6-C10)	ug/g	5, 10	<10	<10	NC	<10	<10	NC	<10	<10	NC	<10	<10	NC	-	-
Petroleum Hydrocarbons F2 (C10-C16) Petroleum Hydrocarbons F3 (C16-C34) Petroleum Hydrocarbons F4 (C34-C50)	ug/g ug/g ug/g	10 20, 50 20, 50	<10 <20 <20	<10 <20 <20	NC NC	<10 <20 <20	<10 <20 <20	NC NC	<10 30 <20	<10 30 <20	NC NC	<10 <20 <20	<10 <20 <20	NC NC	-	-
Petroleum Hydrocarbons F4G-SG (GHH-Silica) Polychlorinated Biphenyls	ug/g	50	-	-		-		-	-	-	-	-	-	-	-	-
Polychlorinated biphenyls Polycyclic Aromatic Hydrocarbons	ug/g	0.02, 0.1	<0.02	<0.02	NC	<0.02	<0.02	NC	<0.02	<0.02	NC	<0.02	0.04	NC	-	-
Acenaphthene Acenaphthylene	ug/g ug/g	0.05 0.05	<0.05 <0.05	<0.05 <0.05	NC NC	<0.05 <0.05	<0.05 <0.05	NC NC	<0.07 <0.08	<0.07 <0.08	NC NC	<0.05 <0.05	<0.05 <0.05	NC NC	-	-
Anthracene Benzo[a]anthracene	ug/g ug/g	0.05 0.05 0.05	<0.05 <0.05 <0.05	<0.05 <0.05 <0.05	NC NC	<0.05 <0.05 <0.05	<0.05 <0.05 <0.05	NC NC	<0.1 <0.1 <0.1	<0.1 0.1 0.1	NC NC	<0.05 <0.05 <0.05	<0.05 <0.05 <0.05	NC NC	•	-
Benzo[a]pyrene Benzo[b]fluoranthene Benzo[g,h,i]perylene	ug/g ug/g ug/g	0.05	<0.05 <0.05	<0.05 <0.05 <0.05	NC NC	<0.05 <0.05	<0.05 <0.05	NC NC	<0.1 <0.1 <0.1	<0.1 <0.1 <0.1	NC NC	<0.05 <0.05 <0.05	<0.05 <0.05	NC NC	-	-
Benzo[k]fluoranthene Chrysene	ug/g ug/g	0.05	<0.05 <0.05	<0.05 <0.05	NC NC	<0.05 <0.05	<0.05 <0.05	NC NC	<0.1 <0.1	<0.1 0.2	NC NC	<0.05 <0.05	<0.05 <0.05	NC NC	-	
Dibenzo[a,h]anthracene Fluoranthene	ug/g ug/g	0.05 0.05	<0.1 <0.05	<0.1 <0.05	NC NC	<0.1 <0.05	<0.1 <0.05	NC NC	<0.1 <0.1	<0.1 0.2	NC NC	<0.1 <0.05	<0.1 <0.05	NC NC	-	-
Fluorene Indeno[1,2,3-cd]pyrene Methylogophthologo 1,2	ug/g ug/g	0.05	<0.05 <0.05	<0.05 <0.05	NC NC	<0.05 <0.05	<0.05 <0.05	NC NC	<0.1 <0.1	<0.1 <0.1	NC NC	<0.05 <0.05	<0.05 <0.05	NC NC		
Methylnaphthalene, 1+2- Methylnaphthalene, 1- Methylnaphthalene, 2-	ug/g ug/g ug/g	0.05 0.05 0.05	<0.1 <0.05 <0.05	<0.1 <0.05 <0.05	NC NC	<0.1 <0.05 <0.05	<0.1 <0.05 <0.05	NC NC	-			<0.1 <0.05 <0.05	<0.1 <0.05 <0.05	NC NC	<0.1	NC -
Naphthalene Phenanthrene	ug/g ug/g ug/g	0.05	<0.05 <0.05 <0.05	<0.05 <0.05 <0.05	NC NC	<0.05 <0.05	<0.05 <0.05	NC NC	0.18	0.2	NC NC	<0.05 <0.05	<0.05 <0.05 <0.05	NC NC	-	•
Pyrene Trihalomethanes	ug/g	0.05	<0.05	<0.05	NC	<0.05	<0.05	NC	<0.1	0.2	NC	<0.05	<0.05	NC		
Bromodichloromethane Bromoform	ug/g ug/g	0.05		-		<0.05 <0.05	<0.05 <0.05	NC NC		<0.05 <0.05	NC NC		-			
Chloroform Dibromochloromethane Volatile Organic Compounds	ug/g ug/g	0.04, 0.05	- :	-	-	<0.05 <0.05	<0.05 <0.05	NC NC	-	<0.05 <0.05	NC NC		-	-		
Acetone Bromomethane	ug/g ug/g	0.5	-	:			-:-		:	·			-			
Carbon tetrachloride Chlorobenzene	ug/g ug/g	0.05		-		<0.05	<0.05	NC		<0.05	NC -	-	-		-	-
Dichlorobenzene, 1,2- Dichlorobenzene, 1,3-	ug/g ug/g	0.05 0.05	-	-	-	<0.05 <0.05	<0.05 <0.05	NC NC	· ·	<0.05 <0.05	NC NC	<0.05 <0.05	<0.05 <0.05	NC NC		•
Dichlorobenzene, 1,4- Dichlorodifluoromethane	ug/g ug/g	0.05	-		<u>;</u>	<0.05 <0.05	<0.05 <0.05	NC NC		<0.05 <0.05	NC NC	<0.05	<0.05	NC -	•	•
Dichloroethane, 1,1- Dichloroethane, 1,2- Dichloroethene, 1,1-	ug/g ug/g	0.02, 0.05 0.03, 0.05 0.05			•	<0.05 <0.05 <0.05	<0.05 <0.05 <0.05	NC NC	-	<0.05 <0.05 <0.05	NC NC	-	-			
Dichloroethene, 1,1- Dichloroethene, cis-1,2- Dichloroethene, trans-1,2-	ug/g ug/g ug/g	0.05	-			<0.05 <0.05 <0.05	<0.05 <0.05 <0.05	NC NC	-	<0.05 <0.05 <0.05	NC NC		-			
Dichloropropane, 1,2- Dichloropropene, 1,3-	ug/g ug/g	0.03, 0.05	-	<u>:</u>		<0.05 <0.1	<0.05 <0.1	NC NC	-	<0.05 <0.1	NC NC	-	-	-	-	
Dichloropropene, cis-1,3- Dichloropropene, trans-1,3-	ug/g ug/g	0.05 0.05	-	-		<0.05 <0.05	<0.05 <0.05	NC NC		<0.05 <0.05	NC NC	-	-			
Ethylene dibromide Hexane, n-	ug/g ug/g	0.04, 0.05	-	-		<0.05	<0.05	NC -	·	<0.05	NC -		-			
Methyl Ethyl Ketone (MEK) Methyl Isobutyl Ketone (MIBK) Methylene chloride	ug/g ug/g	0.5 0.5 0.05		-	<u>:</u>	<0.05	- - <0.05	- NC	-	<0.05	- NC		-			
Methyl tert-butyl ether (MTBE) Styrene	ug/g ug/g ug/g	0.05 0.05	-	-		<0.05	<0.05 - <0.05	- NC	-	<0.05 - <0.05	- NC		-			
Tetrachloroethane, 1,1,1,2- Tetrachloroethane, 1,1,2,2-	ug/g ug/g	0.04, 0.05		-		<0.05 <0.05	<0.05 <0.05	NC NC		<0.05 <0.05	NC NC	-	-		-	
Tetrachloroethene Trichloroethane, 1,1,1-	ug/g ug/g	0.05	-	-		<0.05 <0.05	<0.05 <0.05	NC NC		<0.05 <0.05	NC NC		-		-	•
Trichloroethane, 1,1,2- Trichloroethene	ug/g ug/g	0.04, 0.05	-	-		<0.05 <0.05	<0.05 <0.05	NC NC	-	<0.05 <0.05	NC NC	-	-			
Trichlorofluoromethane Vinyl Chloride	ug/g ug/g	0.05 0.002, 0.02	-	-	-	<0.05 <0.02	<0.05 <0.02	NC NC	-	<0.05 <0.02	NC NC	-	-	-	-	-

-LEGENDDetection Limit May vary between sample locations and events

RPD Relative Percent Difference

NC No Calculation, the concentrations of at least one duplicate sample was non-detect or measured at a concentration less than 5 times the Detection Limit

Drange RPD exceeds 60% (Soil data quality objective*)

*Guidance Manual for Environmental Site Characterization in Support of Environmental and Human Health Risk Assessment, Volume 1 Guidance Manual, Canadian Council of Ministers of the Environment, 2016

Mary	Table 11 - Osprey Shores QA/QC Results Soil		Sample ID	BH104-SS2	BH104-SS2.1	RPD	BH116-SS1	BH116-SS1.1	RPD	BH122-SS2	BH122-SS2.1	RPD	BH141-SS2	BH141-SS2.1	RPD	BH202 SS2	BH202 SS2-Dup	RPD	BH213 SS2	BH213 SS2-Dup	RPD
Second Column	Parameter	Units																			
Scheelenger B. 20 100 100 100 100 100 100 100 100 100	Acids, Bases, Neutrals Biphenyl, 1,1-	ug/g		<0.05	<0.05	NC	<0.05	<0.05	NC	<0.05	<0.05	NC	<0.05	<0.05	NC	<0.05	<0.05	NC	<0.05	<0.05	NC
100 March 100 100 100 100 100 100 100 100 100 10		ug/g							NC									NC			
STATE OF THE PARTY	Bis(2-ethylhexyl)phthalate Chloroaniline, p-	ug/g																			
TATION OF THE PARTY OF THE PART	Dichlorobenzidine, 3,3- Diethyl phthalate		0.1, 0.2	<0.1	<0.1	NC	<0.1	<0.1	NC	<0.1	<0.1	NC	<0.1	<0.1	NC	<0.1	<0.1	NC	<0.1	<0.1	NC
STATES OF THE PROPERTY OF THE	Dimethylphenol, 2,4- Dimethyl phthalate	ug/g	0.1, 0.2	<0.1	<0.1	NC	<0.1	<0.1	NC	<0.1	<0.1	NC	<0.1	<0.1	NC	<0.1	<0.1	NC	<0.1	<0.1	NC
Transfer Company (1) 1950 (1) (2) (2) (2) (3) (4) (4) (5) (4) (5) (4) (5) (4) (5) (5) (5) (5) (5) (5) (5) (5) (5) (5	Dinitrotoluene, 2,4+2,6-	ug/g	0.2, 0.5	<0.2	-	-	<0.2	<0.2	NC	<0.2	<0.2	NC	<0.2	<0.2	NC	<0.5	<0.5	NC	<0.5	<0.5	NC
STATE OF THE PARTY	Trichlorobenzene, 1,2,4-		. ,																		
Service 15 100 17	Benzene																				
STATE OF THE PARTY	Toluene Xylene, m+p-	ug/g		<0.2			<0.2						<0.2					13%			
Company Comp	Xylenes, total	ug/g		<0.05	<0.05	NC -	<0.05	<0.05	NC -												
STATES AND ALL																					
Second S	Pentachlorophenol	ug/g	0.1, 0.2	<0.1	<0.1	NC	<0.1	<0.1	NC	<0.1	<0.1	NC	<0.1	<0.1	NC	<0.1	<0.1	NC	<0.1	<0.1	NC
TATION OF THE PARTY OF THE PART	Trichlorophenol, 2,4,6-																				
According 15 15 15 15 15 15 15 1	Antimony, total Arsenic, total			- 2	- 2	- 0%	- 4	- 3	- 29%	2	- 1	67%	- 2	- 1	67%		<0.8			<0.8	
Schender 18 185 19 1 7 8 5 7 9 1 9 1 9 1 9 1 9 1 9 1 9 1 9 1 9 1 9	Selenium, total Metals		0.8	-	-	-	-	-		-	-		-	-	-	<0.8	<0.8	NC	<0.8	<0.8	NC
Section Sect	Barium, total Beryllium, total	ug/g														<0.4	<0.4	NC	0.5	0.5	NC
ACTION COLOR 1	Boron, total Cadmium, total	ug/g	. ,													<0.5	<0.5	NC	<0.5	<0.5	NC
Service Control	Cobalt, total	ug/g	0.5, 5	5	5	NC	7	8	NC	4	4	NC	3		NC	4.1	4.2	2%	7.1	7.4	4%
TABLE STATE OF THE PARTY OF THE	Copper, total Lead, total Molybdenum. total	ug/g	1, 50	6	6	NC	18	12	NC	6	5	NC	5	_	NC	8	8	0%	22	16	32%
TATION OF THE PARTY OF THE PART	Nickel, total Silver, total	ug/g	1, 50	12	11	NC	20	21	NC	11	10	NC	9	10	NC	11	10	10%	12	12	0%
20 00 00 00 00 00 00 00 00 00 00 00 00 0	Thallium, total Uranium, total	ug/g		<1	<1	NC -	<1	<1	NC -	<1	<1	NC -	<1	<1	NC -						
Temperature and St. 1816	Vanadium, total Zinc, total													8 8							
TREATMENT OF THE PROPERTY OF T				-	-	-	-	-		-	-	•	-	-	-	-	-	-	-	-	-
The second content of	Hexachloroethane			-	-	-	-	-		-	-	- :	-	-	-	-	-	-	-	-	-
Septiment (1977) 1878	Boron, total (Hot Water Soluble)			-	-	-	-			-	-		-		-						
The service of the control of the co	Cyanide	ug/g	0.04													<0.04	<0.04	NC	<0.04	<0.04	NC
Processor Proc		ug/g		<0.1	<0.1	NC -	0.3	0.1	NC -	<0.1	<0.1	NC -	<0.1	<0.1	NC -	<0.1	<0.1	NC	<0.1	0.13	NC
Treatment programment of programment	pH Petroleum Hydrocarbons		ts	-	-	-	-	-		-	-		-		-	7.59	7.57	0%	7.75	7.78	0%
The contract of \$2.00 and	Petroleum Hydrocarbons F1 (C6-C10) Petroleum Hydrocarbons F2 (C10-C16)		10	<10	<10	NC	<10	<10	NC	<10	<10	NC	<10	<10	NC	<10	<10	NC	<10	<10	NC
Freedoment Services	Petroleum Hydrocarbons F4 (C34-C50)	ug/g	20,50															NC			NC
Note	Polychlorinated Biphenyls			<0.02	<0.02	NC .		-0.02	NC NC	0.06	<0.02	NC .	<0.02	<0.02	NC NC	<0.1	<0.1		c0.1	d0.1	
Amendment with the property of	Polycyclic Aromatic Hydrocarbons Acenaphthene	ug/g	0.02, 0.1	<0.05	<0.02	NC NC	<0.02	<0.05	NC NC	<0.05	<0.05	NC	<0.02	<0.05	NC NC	<0.05	<0.05	NC NC	<0.05	<0.05	NC NC
Semajorhorove (a) 60 60 60 60 10 10 10 10 10 10 10 10 10 10 10 10 10																					
Securic plane with 1	Benzo[a]anthracene Benzo[a]pyrene	ug/g													NC			NC			
Comment	Benzo[g,h,i]perylene	ug/g	0.05	<0.05	<0.05	NC	<0.05	<0.05	NC	<0.05	<0.05	NC	<0.05	<0.05	NC	<0.05	<0.05	NC	<0.05	<0.05	NC
March Marc	Chrysene	ug/g	0.05	<0.05	<0.05	NC	< 0.05	0.05	NC	<0.05	<0.05	NC	<0.05	<0.05	NC	<0.05	< 0.05	NC	0.1	0.08	NC
March Marc	Fluoranthene	ug/g	0.05	<0.05	<0.05	NC	0.06	0.08	NC	< 0.05	<0.05	NC	<0.05	<0.05	NC	<0.05	<0.05	NC	0.18	0.16	NC
Memphopholograph Variety Varie	Indeno[1,2,3-cd]pyrene Methylnaphthalene, 1+2-	ug/g	0.05	<0.05			<0.05	<0.05	NC	<0.05	<0.05	NC	<0.05	<0.05	NC	<0.05	<0.05	NC	<0.05	<0.05	NC
September Sept	Methylnaphthalene, 1- Methylnaphthalene, 2-	ug/g	0.05 0.05	<0.05 <0.05	<0.05	NC	<0.05 <0.05	<0.05 0.06	NC NC	<0.05 <0.05	<0.05 <0.05	NC NC	<0.05 <0.05	<0.05 <0.05	NC NC	-	-	-		-	-
Tribulane thanks		ug/g	0.05	<0.05	<0.05	NC	<0.05	0.08	NC	<0.05	<0.05	NC	<0.05	<0.05	NC	<0.05	<0.05	NC	0.11	0.08	NC
Provided Company Com	Pyrene Trihalomethanes			<0.05	<0.05	NC	0.05	0.07	NC	<0.05	<0.05	NC	<0.05	<0.05	NC						
Observation companies	Bromoform	ug/g	0.05		-									-		<0.05	<0.05	NC	<0.05	<0.05	NC
Aceseme	Dibromochloromethane		,																		
Carbon tetrachloride W/E	Acetone Bromomethane						:														
Diction contensione, 1,2 wight 0.05	Carbon tetrachloride Chlorobenzene	ug/g	0.05		-	-					<u> </u>	-	-			<0.05	<0.05	NC NC	<0.05	<0.05	NC NC
Dichloriderschane	Dichlorobenzene, 1,2- Dichlorobenzene, 1,3-		0.05		-		-	:					-	-		<0.05	<0.05	NC	<0.05	<0.05	NC
Dichiorentame, 1.2	Dichlorobenzene, 1,4- Dichlorodifluoromethane	ug/g	0.05		- : _						-	-			-	<0.05	< 0.05	NC	< 0.05	<0.05	NC
Dichlorosthene, cis-1,2	Dichloroethane, 1,2-	ug/g	0.03, 0.05								-			-		<0.03	<0.03	NC	<0.03	<0.03	NC
Dichloropropame, 1,2 ug/g 0.03, 0.05	Dichloroethene, 1,1- Dichloroethene, cis-1,2- Dichloroethene, trans-1,2-	ug/g	0.02, 0.05					-			-					<0.02	<0.02	NC	<0.02	<0.02	NC
Dichloropropene, cis-1,3 ug/g 0.05	Dichloropropane, 1,2- Dichloropropene, 1,3-	ug/g	0.03, 0.05		-			-		-	-					<0.03	<0.03	NC	<0.03	<0.03	NC
Ethylene dibromide \(\frac{ug}{g}\) \(\frac{0.04}{0.05}\) \(\frac{0.05}{0.05}\) \(\f	Dichloropropene, cis-1,3- Dichloropropene, trans-1,3-	ug/g	0.05		-				-		-	•	-		-	-		-		-	-
Methyl Isobutyl Ketone (MIBK) ug/g 0.5 NC <0.5 <0.5 NC <0.5 <0.5 NC <0.05 NC <0.05 <th< td=""><td>Ethylene dibromide Hexane, n-</td><td>ug/g ug/g</td><td>0.05</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td><0.05</td><td><0.05</td><td>NC</td><td>< 0.05</td><td><0.05</td><td>NC</td></th<>	Ethylene dibromide Hexane, n-	ug/g ug/g	0.05													<0.05	<0.05	NC	< 0.05	<0.05	NC
Methyl terr butyl ether (MTBE) \(\begin{array}{c c c c c c c c c c c c c c c c c c c	Methyl Ethyl Ketone (MEK) Methyl Isobutyl Ketone (MIBK)	ug/g	0.5		-								-			<0.5	<0.5	NC	<0.5	<0.5	NC
Tetrachloroethane, 1,1,1,2:	Methyl tert-butyl ether (MTBE)	ug/g	0.05		-	-		-				-		-		<0.05	<0.05	NC	<0.05	<0.05	NC
Tetrachioroethene	Tetrachloroethane, 1,1,1,2-	ug/g	0.04, 0.05	-							-	-				<0.04	<0.04	NC	<0.04	<0.04	NC
Trichloroethane, 1,1,2-	Tetrachloroethene	ug/g	0.05		-	-		-			-		-			<0.05	<0.05	NC	<0.05	<0.05	NC
Trichlorofluoromethane	Trichloroethane, 1,1,2- Trichloroethene	ug/g	0.04, 0.05		-		-	-	-		-	-	-	-	-	<0.04	<0.04 <0.03	NC NC	<0.04	<0.04 <0.03	NC NC
10 VIVE VIVE 110	Trichlorofluoromethane Vinyl Chloride			•	-	-		•		-	-		-		-						

-LEGENDDetection Limit May vary between sample locations and events

RPD Relative Percent Difference

NC No Calculation, the concentrations of at least one duplicate sample was non-detect or measured at a concentration less than 5 times the Detection Limit

Drange RPD exceeds 60% (Soil data quality objective*)

*Guidance Manual for Environmental Site Characterization in Support of Environmental and Human Health Risk Assessment, Volume 1 Guidance Manual, Canadian Council of Ministers of the Environment, 2016

Table 11 - Osprey Shores QA/QC Results Soil		Sample ID	BH220 SS1	BH220 SS1-DUP	RPD	BH223 SS1	BH223 SS1-DUP	RPD	BH87-SS3	BH87-SS3.1	RPD	TP10-2	QAQCF12-1	RPD	TP231b	TP231b-dup	RPD
Parameter	Units	Sample Date Sample Depth	2022-Dec-22 1.2	2022-Dec-22 1.2		2022-Dec-22 0.6	2022-Dec-22 0.6		2011-Jul-13 1.2 - 1.9	2011-Jul-13 1.2 - 1.9		2012-Nov-28 1.3 - 1.5	2012-Nov-28 1.3 - 1.5		2022-Dec-13 1.2 - 2.2	2022-Dec-13 1.2 - 2.2	
Acids, Bases, Neutrals Biphenyl, 1,1-	ug/g	Detection Limit 0.05	0.15	0.09	NC	0.62	0.55	12%	<0.05	<0.05	NC				<0.05	<0.05	NC
Bis(2-chloro-1-methylethyl)ether Bis(2-chloroethyl)ether Bis(2-ethylhexyl)ohthalate	ug/g ug/g	0.1, 0.2 0.1, 0.3 0.2, 0.4	<0.1 <0.1 <0.2	<0.1 <0.1 <0.2	NC NC	<0.1 <0.1 <0.2	<0.1 <0.1 <0.2	NC NC	<0.1 <0.1 <0.1	<0.1 <0.1 <0.1	NC NC	<0.2 <0.3 <0.4	<0.2 <0.3 <0.4	NC NC	<0.1 <0.1 <0.2	<0.1 <0.1 <0.2	NC NC
Chloroaniline, p- Dichlorobenzidine, 3.3-	ug/g ug/g ug/g	0.1, 0.5	<0.5 <0.5	<0.5 <0.5	NC NC	<0.5 <0.5	<0.5 <0.5	NC NC	<0.1	<0.1	- NC	<0.4	<0.4 - <0.6	- NC	<0.5 <0.5	<0.5 <0.5	NC NC
Diethyl phthalate Dimethylphenol, 2,4-	ug/g ug/g	0.1, 0.2	<0.1	<0.1 <0.2	NC NC	<0.1 <0.2	<0.1 <0.2	NC NC	<0.1	<0.1 <0.1	NC NC	<0.2	<0.2 <0.2	NC NC	<0.1 <0.2	<0.1 <0.2	NC NC
Dimethyl phthalate Dinitrophenol, 2,4-	ug/g ug/g	0.1, 0.2 0.2, 2	<0.1 <2	<0.1 <2	NC NC	<0.1 <2	<0.1 <2	NC NC	<0.1 <0.1	<0.1 <0.1	NC NC	<0.2 <0.2	<0.2 <0.2	NC NC	<0.1 <2	<0.1 <2	NC NC
Dinitrotoluene, 2,4+2,6- Phenol	ug/g ug/g	0.2, 0.5 0.1, 0.5	<0.5 <0.5	<0.5 <0.5	NC NC	<0.5 <0.5	<0.5 <0.5	NC NC	<0.2 <0.1	<0.2 <0.1	NC NC	<0.22 <0.1	<0.1	NC NC	<0.5 <0.5	<0.5 <0.5	NC NC
Trichlorobenzene, 1,2,4- Benzene, Toluene, Ethylbenzene, & Xylenes Benzene	ug/g ug/g	0.04, 0.05	<0.05	<0.05	NC NC	<0.05	<0.05	NC NC	<0.1	<0.1	NC NC	<0.04	<0.04	NC NC	<0.05	<0.05	NC NC
Ethylbenzene Toluene	ug/g ug/g	0.05	<0.05	<0.05 <0.05	NC NC	<0.05	<0.05 0.93	NC 25%	<0.05 <0.2	<0.05 <0.2	NC NC	-	<0.05 <0.2	NC NC	<0.05 0.32	<0.05 0.32	NC 0%
Xylene, m+p- Xylene, o-	ug/g ug/g	0.05 0.05	<0.05 <0.05	<0.05 <0.05	NC NC	0.42	0.53 0.57	23% 35%	<0.05 <0.05	<0.05 <0.05	NC NC		<0.05 <0.05	NC NC	<0.05 <0.05	<0.05 <0.05	NC NC
Xylenes, total Chlorophenols	ug/g	0.05	<0.05	<0.05	NC	0.82	1.1	29%	<0.05	<0.05	NC				<0.05	<0.05	NC
Chlorophenol, 2- Dichlorophenol, 2,4- Pentachlorophenol	ug/g ug/g ug/g	0.1, 0.2 0.1 0.1, 0.2	<0.1 <0.1 <0.1	<0.1 <0.1 <0.1	NC NC	<0.1 <0.1 <0.1	<0.1 <0.1 <0.1	NC NC	<0.1 <0.1 <0.1	<0.1 <0.1 <0.1	NC NC	<0.1 <0.1 <0.1	<0.1 <0.1 <0.1	NC NC	<0.1 <0.1 <0.1	<0.1 <0.1 <0.1	NC NC
Trichlorophenol, 2,4,5- Trichlorophenol, 2,4,6-	ug/g ug/g	0.1 0.1 0.1, 0.2	<0.1	<0.1 <0.1	NC NC	<0.1 <0.1	<0.1 <0.1	NC NC	<0.1 <0.1	<0.1 <0.1	NC NC	<0.1	<0.1	NC NC	<0.1 <0.1	<0.1 <0.1	NC NC
Hydride-Forming Metals Antimony, total	ug/g	0.8	<0.8	<0.8	NC		-	•					-		<0.8	<0.8	NC
Arsenic, total Selenium, total	ug/g ug/g	0.1, 1	3 <0.8	2 <0.8	NC NC	-	-	- :	-	-	0%	-	-	:	5 1.6	5 1	0% NC
Metals Barium, total Bervilium, total	ug/g	0.1, 2	35.1 <0.4	23.6	39% NC		-		124	142	14% NC	10 <1		-	219 0.5	179 0.5	20% NC
Boron, total Cadmium, total	ug/g ug/g ug/g	5	11 <0.5	8 <0.5	NC NC	-	•	-	<0.5	<0.5	- NC	<0.5	-		13	11 <0.5	NC NC
Chromium, total Cobalt, total	ug/g ug/g	0.2, 5 0.5, 5	10 3.1	10 2.8	NC 10%	-		-	25 8	28 8	11% NC	4	•	-	30 5.4	29 5.8	3% 7%
Copper, total Lead, total	ug/g ug/g	0.1, 1 1, 50	7.6 22	6.3	19% 67%			-	16 12	17 12	6% NC	3 5	•	-	21.8 77	20.9 75	4% 3%
Molybdenum, total Nickel, total Silver, total	ug/g ug/g ug/g	0.5 1, 50 0.5	<0.5 8 <0.5	<0.5 7 <0.5	NC 13% NC		-	-	<1 21 <0.2	<1 24 <0.2	NC NC	<1 4 <0.2	•	-	2.8 8 <0.5	2.4 9 <0.5	NC 12% NC
Thallium, total Uranium, total	ug/g ug/g	0.5, 20	<0.5	<0.5	NC NC		-	-	<1	<1	NC -	<1	-	-	<0.5 0.54	<0.5 0.54	NC NC
Vanadium, total Zinc, total	ug/g ug/g	0.4, 1 0.005, 5	10.7 27	9.6 17	11% NC		-		32 42	34 45	6% 7%	5	-		22.7 63	22.8 61	0% 3%
Organochlorine Pesticides Hexachlorobenzene	ug/g	0.01								-		<0.01	<0.01	NC			-
Hexachlorobutadiene Hexachloroethane Other Regulated Parameters	ug/g ug/g	0.01	-		-			-	- :	- :		<0.01 <0.01	<0.01 <0.01	NC NC	-	- :	-
Boron, total (Hot Water Soluble) Chromium (hexavalent)	ug/g ug/g	0.1	0.35	0.25	NC NC	:	-		:	:					0.31	0.32	NC NC
Cyanide Electrical Conductivity	ug/g mS/cm	0.04 0.005	<0.04 0.292	<0.04 0.258	NC 12%	-	-		-	-		-	-		<0.04 0.561	<0.04 0.556	NC 1%
Mercury, total Sodium adsorption ratio	ug/g N/A	0.1	<0.1 0.406	<0.1 0.4	NC 1%	- :	-		<0.1	<0.1	NC -	<0.1			0.21 0.052	0.15 0.054	NC 4%
Petroleum Hydrocarbons Petroleum Hydrocarbons F1 (C6-C10)	oH unit	5, 10	7.72	8.06 <5	4% NC	20	15	- NC	<10	<10	NC NC	<10	<10	NC	7.26	7.57	4% NC
Petroleum Hydrocarbons F2 (C10-C16) Petroleum Hydrocarbons F3 (C16-C34)	ug/g ug/g ug/g	10 20,50	10	12 167	NC NC	147 3500	147 3500	0% 0%	<10	<10 <10 <20	NC NC	<10 <10 <20	<10 <10 <20	NC NC	<10 697	<10 1090	NC NC 44%
Petroleum Hydrocarbons F4 (C34-C50) Petroleum Hydrocarbons F4G-SG (GHH-Silica)	ug/g ug/g	20, 50 50	<50	<50	NC NC	544	563	3% NC	70	<20	NC -	<20	<20	NC -	209	282	NC NC
Polychlorinated Biphenyls Polychlorinated biphenyls	ug/g	0.02, 0.1	<0.1	-		<0.1	<0.1	NC	<0.02	<0.02	NC	<0.02	<0.02	NC	1.12	1.1	2%
Polycyclic Aromatic Hydrocarbons Acenaphthene Acenaphthylene	ug/g ug/g	0.05	2.18 0.11	1.53	35% NC	9.51 0.48	9.97 0.53	5% 10%	<0.05 <0.05	<0.05 <0.05	NC NC	<0.05 <0.05	<0.05 <0.05	NC NC	<0.05 <0.05	<0.05 <0.05	NC NC
Anthracene Benzo[a]anthracene	ug/g ug/g	0.05	7.19 4.32	4.29 3.01	51%	22.3	21.3	5% 40%	<0.05 <0.05	<0.05 <0.05	NC NC	<0.05 <0.05	<0.05 <0.05	NC NC	<0.05 <0.05	<0.05 <0.05	NC NC
Benzo[a]pyrene Benzo[b]fluoranthene	ug/g ug/g	0.05 0.05	1.9 7.59	1.57 5.92	19% 25%	27.8 54.6	22.8 35.9	20% 41%	<0.05 <0.05	<0.05 <0.05	NC NC	<0.05 <0.05	<0.05 <0.05	NC NC	<0.05 <0.05	<0.05 <0.05	NC NC
Benzo[g,h,i]perylene Benzo[k]fluoranthene	ug/g ug/g	0.05	4.95 3.12	3.58 2.28	32% 31%	10.4 20.2	11.8 20.9	13% 3%	<0.05 <0.05	<0.05 <0.05	NC NC	<0.05 <0.05	<0.05 <0.05	NC NC	<0.05 <0.05	<0.05 <0.05	NC NC
Chrysene Dibenzo[a,h]anthracene Fluoranthene	ug/g ug/g ug/g	0.05 0.05 0.05	4.35 0.58 29.6	5.18 0.48 22.8	17% 19% 26%	38 1.72 105	27.9 2.41 90.7	31% 33% 15%	<0.05 <0.1 <0.05	<0.05 <0.1 <0.05	NC NC	<0.05 <0.05 <0.05	<0.05 <0.05 <0.05	NC NC	<0.05 <0.05 <0.05	<0.05 <0.05 <0.05	NC NC
Fluorene Indeno[1,2,3-cd]pyrene	ug/g ug/g	0.05 0.05	2.42	1.99	20%	13 10.9	9.53 11.8	31% 8%	<0.05 <0.05	<0.05 <0.05	NC NC	<0.05 <0.05	<0.05 <0.05	NC NC	<0.05 <0.05	<0.05 <0.05	NC NC
Methylnaphthalene, 1+2- Methylnaphthalene, 1-	ug/g ug/g	0.05 0.05	0.49	0.34	36%	4.07	3.11	27%	<0.1 <0.05	<0.1 <0.05	NC NC	<0.1 <0.05	<0.05	- NC	<0.05	<0.05	NC -
Methylnaphthalene, 2- Naphthalene Phenanthrene	ug/g ug/g	0.05 0.05 0.05	0.36 21.5	0.27 18	- 29% 18%	5.23 95.5	- 5.26 66.8	- 1% 35%	<0.05 <0.05 <0.05	<0.05 <0.05 <0.05	NC NC	<0.05 <0.05 <0.05	<0.05 <0.05 <0.05	NC NC	- <0.05 <0.05	- <0.05 <0.05	NC NC
Phenanthrene Pyrene Trihalomethanes	ug/g ug/g	0.05	21.5	18 21.7	18% 8%	95.5	73.3	35% 25%	<0.05 <0.05	<0.05 <0.05	NC NC	<0.05	<0.05 <0.05	NC NC	<0.05 <0.05	<0.05 <0.05	NC NC
Bromodichloromethane Bromoform	ug/g ug/g	0.05	<0.05 <0.05	<0.05 <0.05	NC NC	<0.05 <0.05	<0.05 <0.05	NC NC	- :	- :		<0.02	-		<0.05 <0.05	<0.05 <0.05	NC NC
Chloroform Dibromochloromethane	ug/g ug/g	0.04, 0.05 0.05	<0.04 <0.05	<0.04 <0.05	NC NC	<0.04 <0.05	<0.04 <0.05	NC NC							<0.04 <0.05	<0.04 <0.05	NC NC
Volatile Organic Compounds Acetone Bromomethane	ug/g	0.5	<0.5 <0.05	<0.5 <0.05	NC NC	<0.5 <0.05	<0.5 <0.05	NC NC							<0.5 <0.05	<0.5 <0.05	NC NC
Carbon tetrachloride Chlorobenzene	ug/g ug/g ug/g	0.05 0.05 0.05	<0.05 <0.05 <0.05	<0.05 <0.05 <0.05	NC NC	<0.05 <0.05 <0.05	<0.05 <0.05 <0.05	NC NC				<0.2	-	-	<0.05 <0.05 <0.05	<0.05 <0.05 <0.05	NC NC
Dichlorobenzene, 1,2- Dichlorobenzene, 1,3-	ug/g ug/g	0.05	<0.05 <0.05	<0.05 <0.05	NC NC	<0.05 <0.05	<0.05 <0.05	NC NC	<0.05 <0.05	<0.05 <0.05	NC NC	<1	<1	NC NC	<0.05 <0.05	<0.05 <0.05	NC NC
Dichlorobenzene, 1,4- Dichlorodifluoromethane	ug/g ug/g	0.05 0.05	<0.05 <0.05	<0.05 <0.05	NC NC	<0.05 <0.05	<0.05 <0.05	NC NC	<0.05	<0.05	NC -		<1	NC -	<0.05 <0.05	<0.05 <0.05	NC NC
Dichloroethane, 1,1- Dichloroethane, 1,2- Dichloroethane, 1,1-	ug/g ug/g	0.02, 0.05 0.03, 0.05 0.05	<0.02 <0.03 <0.05	<0.02 <0.03 <0.05	NC NC	<0.02 <0.03 <0.05	<0.02 <0.03 <0.05	NC NC		-	-			-	<0.02 <0.03 <0.05	<0.02 <0.03 <0.05	NC NC
Dichloroethene, 1,1- Dichloroethene, cis-1,2- Dichloroethene, trans-1,2-	ug/g ug/g ug/g	0.05 0.02, 0.05 0.05	<0.05 <0.02 <0.05	<0.05 <0.02 <0.05	NC NC	<0.05 <0.02 <0.05	<0.05 <0.02 <0.05	NC NC	-			<0.05	-	-	<0.05 <0.02 <0.05	<0.05 <0.02 <0.05	NC NC
Dichloropropane, 1,2- Dichloropropene, 1,3-	ug/g ug/g	0.03, 0.05	<0.03 <0.05	<0.03 <0.05	NC NC	<0.03 <0.05	<0.03 <0.05	NC NC				-	-		<0.03 <0.05	<0.03 <0.05	NC NC
Dichloropropene, cis-1,3- Dichloropropene, trans-1,3-	ug/g ug/g	0.05 0.05		-			-	-	-						-	-	-
Ethylene dibromide Hexane, n-	ug/g ug/g	0.04, 0.05	<0.04 <0.05	<0.04 <0.05	NC NC	<0.04 <0.05	<0.04 <0.05	NC NC		•		•	•		<0.04 <0.05	<0.04 <0.05	NC NC
Methyl Ethyl Ketone (MEK) Methyl Isobutyl Ketone (MIBK) Methylene chloride	ug/g ug/g	0.5 0.5 0.05	<0.5 <0.5 <0.05	<0.5 <0.5 <0.05	NC NC	<0.5 <0.5 <0.05	<0.5 <0.5 <0.05	NC NC				-		-	<0.5 <0.5 <0.05	<0.5 <0.5 <0.05	NC NC
Methyl tert-butyl ether (MTBE) Styrene	ug/g ug/g ug/g	0.05 0.05	<0.05 <0.05 <0.05	<0.05 <0.05 <0.05	NC NC	<0.05 <0.05 <0.05	<0.05 <0.05 <0.05	NC NC			-				<0.05 <0.05 <0.05	<0.05 <0.05 <0.05	NC NC
Tetrachloroethane, 1,1,1,2- Tetrachloroethane, 1,1,2,2-	ug/g ug/g	0.04, 0.05	<0.04 <0.05	<0.04 <0.05	NC NC	<0.04 <0.05	<0.04 <0.05	NC NC	-	-	-	-	-	-	<0.04 <0.05	<0.04 <0.05	NC NC
Tetrachloroethene Trichloroethane, 1,1,1-	ug/g ug/g	0.05 0.05	<0.05 <0.05	<0.05 <0.05	NC NC	<0.05 <0.05	<0.05 <0.05	NC NC	-	•		<1			<0.05 <0.05	<0.05 <0.05	NC NC
Trichloroethane, 1,1,2- Trichloroethene	ug/g ug/g	0.04, 0.05	<0.04 <0.03	<0.04 <0.03	NC NC	<0.04 <0.03	<0.04	NC NC	-	-			•		<0.04 <0.03	<0.04	NC NC
Trichlorofluoromethane Vinyl Chloride	ug/g ug/g	0.05 0.002, 0.02	<0.05 <0.02	<0.05 <0.02	NC NC	<0.05 <0.02	<0.05 <0.02	NC NC	-	-	-	<1	-	-	<0.05 <0.02	<0.05 <0.02	NC NC

-LEGENDDetection Limit May vary between sample locations and events

RPD Relative Percent Difference

NC No Calculation, the concentrations of at least one duplicate sample was non-detect or measured at a concentration less than 5 times the Detection Limit

Drange RPD exceeds 60% (Soil data quality objective*)

*Guidance Manual for Environmental Site Characterization in Support of Environmental and Human Health Risk Assessment, Volume 1 Guidance Manual, Canadian Council of Ministers of the Environment, 2016

Osprey Shores QA/QC Results		Sample ID	MW151-11	MW151.1-11		MW151-22	/W151 (DUP1-22		MW201	GW-Dup1		MW213	GW-Dup3	
Groundwater		Sample Date	2011-Aug-18	2011-Aug-18	RPD	2022-Jul-13	2022-Jul-13	RPD	2023-Jan-19	2023-Jan-19	RPD	2023-Jan-23	2023-Jan-23	RPD
Parameter Acids, Bases, Neutrals	Units	Sample Depth Detection Limit	1.6 - 4.5	1.6 - 4.5		1.6 - 4.5	1.6 - 4.5		5.4 - 8.4	5.4 - 8.4		0.7 - 3.7	0.7 - 3.7	
Biphenyl, 1,1- Bis(2-chloro-1-methylethyl)ether	μg/L μg/L	0.5 0.5		-	-	<0.5 <0.5	<0.5 <0.5	NC NC	-	-	-	<0.5 <0.5	<0.5 <0.5	NC NC
Bis(2-chloroethyl)ether Bis(2-ethylhexyl)phthalate	μg/L μg/L	0.5 0.5	-	-	-	<0.5 <0.5	<0.5 <0.5	NC NC	-	-	-	<0.5 0.86	<0.5 1.14	NC NC
Chloroaniline, p- Dichlorobenzidine, 3,3-	μg/L μg/L	0.5 0.5	-	-	-	<1 <0.5	<1 <0.5	NC NC	-	-	-	<1 <0.5	<1 <0.5	NC NC
Diethyl phthalate Dimethylphenol, 2,4- Dimethyl phthalate	μg/L μg/L μg/L	0.5 0.5	-	-	-	<0.5 <0.5 <0.5	<0.5 <0.5 <0.5	NC NC	-	-	-	<0.5 <0.5 <0.5	<0.5 <0.5 <0.5	NC NC
Dinitrophenol, 2,4- Dinitrotoluene, 2,4+2,6-	μg/L μg/L	10 0.5	-	-	-	<10 <0.5	<10 <0.5	NC NC	-	-	-	<10 <0.5	<10 <0.5	NC NC
Phenol Trichlorobenzene, 1,2,4-	μg/L μg/L	1 0.5	-	-	-	<1 <0.5	<1 <0.5	NC NC	-	-		<1 <0.5	<1 <0.5	NC NC
Benzene, Toluene, Ethylbenzene, & X Benzene	μg/L	0.2	<0.1	<0.1	NC	<0.2	<0.2	NC	<0.2	<0.2	NC	<0.2	<0.2	NC
Ethylbenzene Toluene Xylene, m+p-	μg/L μg/L μg/L	0.1 0.2 0.2	<0.1 <0.2 <0.1	<0.1 <0.2 <0.1	NC NC	<0.1 <0.2 <0.2	<0.1 <0.2 <0.2	NC NC	<0.1 0.29 1.01	<0.1 0.37 1.19	NC NC 16%	<0.1 <0.2 <0.2	<0.1 <0.2 <0.2	NC NC
Xylene, o- Xylenes, total	μg/L μg/L	0.1 0.2	<0.1	<0.1 <0.1 <0.1	NC NC	<0.1 <0.2	<0.1 <0.2	NC NC	0.5 1.51	0.56 1.75	11%	<0.1 <0.2	<0.1 <0.2	NC NC
Chlorophenols Chlorophenol, 2-	μg/L	0.5	-	-	-	<0.5	<0.5	NC	-	-	-	<0.5	<0.5	NC
Dichlorophenol, 2,4- Pentachlorophenol	μg/L μg/L	0.3 0.5	-	-	-	<0.3 <0.5	<0.3 <0.5	NC NC	-	-	-	<0.3 <0.5	<0.3 <0.5	NC NC
Trichlorophenol, 2,4,5- Trichlorophenol, 2,4,6-	μg/L μg/L	0.2	-	-	-	<0.2 <0.2	<0.2 <0.2	NC NC	-	-	-	<0.2 <0.2	<0.2 <0.2	NC NC
Metals Aluminum, dissolved Antimony, dissolved	μg/L μg/L	10 1	<10	<10	NC -	- <1	- <1	- NC	- <1	- <1	- NC	- <1	- <1	- NC
Arsenic, dissolved Barium, dissolved	μg/L μg/L	1 2	<1 360	<1 550	NC 42%	<1 85.6	<1 85.8	NC 0%	<1 461	<1 476	NC 3%	<1 99	2.6 98.1	NC 1%
Beryllium, dissolved Boron, dissolved	μg/L μg/L	0.5 10	<0.5 70	<0.5 100	NC 35%	<0.5 40.8	<0.5 42	NC NC	<0.5 268	<0.5 250	NC 7%	<0.5 335	<0.5 369	NC 10%
Cadmium, dissolved Calcium, dissolved	μg/L μg/L	0.2	<0.1 136000	<0.1 137000	NC 1%	<0.2	<0.2	NC -	<0.2	<0.2	NC -	<0.2	<0.2	NC -
Chromium, dissolved Cobalt, dissolved Copper, dissolved	μg/L μg/L μg/L	0.5 1	4 <0.2 <1	0.2 <1	NC NC	2 <0.5 1	4.1 <0.5 1.9	NC NC	<2 0.69 <1	<2 1.11 <1	NC NC	<2 <0.5 <1	<2 <0.5 <1	NC NC
Iron, dissolved Lead, dissolved	μg/L μg/L μg/L	30 0.5	150 <1	130	NC NC	- <0.5	- <0.5	- NC	<1 - <0.5	<1 - <0.5	- NC	<1 - <0.5	<0.5	- NC
Magnesium, dissolved Manganese, dissolved	μg/L μg/L	10	29000 30	29000 30	0% NC	-	-	-	-	-	-	-	-	-
Molybdenum, dissolved Nickel, dissolved	μg/L μg/L	0.5	<5 <5	<5 <5	NC NC	1.13 2.5	1.19 3.1	NC NC	5.48 5.4	5.83 4.3	6% NC	9.39 2	10.1 1.3	7% NC
Potassium, dissolved Selenium, dissolved Silver, dissolved	μg/L μg/L μg/L	1 0.2	4000 - <0.1	4000 <1 <0.1	0% NC NC	- <1 <0.2	- <1 <0.2	NC NC	- <1 <0.2	<1 <0.2	NC NC	- <1 <0.2	1.6 <0.2	NC NC
Sodium, dissolved Strontium, dissolved	μg/L μg/L	50, 500	92000	92000 1360	0% 4%	25900	25400	2%	192000	198000	3%	31300	28400	10%
Thallium, dissolved Titanium, dissolved	μg/L μg/L	0.3	<0.1 <10	<0.1 <10	NC NC	<0.3	<0.3	NC -	<0.3	<0.3	NC -	<0.3	<0.3	NC -
Uranium, dissolved Vanadium, dissolved	μg/L μg/L	0.5 0.4	<1 3	<1 5	NC 50%	6.24 <0.4	6.26 <0.4	0% NC	2.01 <0.4	2 <0.4	NC NC	0.92 <0.4	0.89 <0.4	NC NC
Zinc, dissolved Other Regulated Parameters	μg/L	5	<10	<10	NC NC	<5	<5	NC NC	<5	<5	NC NC	<5	<5	NC For
Chloride Chromium (hexavalent) Cyanide	μg/L μg/L μg/L	100 2 2	119000 - -	117000 - -	2% - -	100000 <2 <2	102000 <2 <2	2% NC NC	533000 <2 <2	540000 <2 <2	1% NC NC	10800 <2 <2	11300 <2 <2	5% NC NC
Electrical Conductivity Mercury, total	μS/cm μg/L	2 0.02	1340 <0.1	1340 <0.1	0% NC	1360 <0.02	1360 <0.02	0% NC	2520 <0.02	2530 <0.02	0% NC	900 <0.02	904 <0.02	0% NC
Petroleum Hydrocarbons Petroleum Hydrocarbons F1 (C6-C10)	pH unit		<100	8.02 <100	0%	7.38	7.56	2%	7.42	7.47	1%	7.43	7.55 <25	2% NC
Petroleum Hydrocarbons F1 (C6-C10) Petroleum Hydrocarbons F2 (C10-C16 Petroleum Hydrocarbons F3 (C16-C34	μg/L μg/L μg/L	25 100 100	<100 <100 900	<100 <100 <200	NC NC	<100 <100	<100 <100	NC NC	<100 <100	<100 <100	NC NC	<100 <100	<100 <100	NC NC
Petroleum Hydrocarbons F4 (C34-C50 Polychlorinated Biphenyls	μg/L	100	200	<200	NC	<100	<100	NC	<100	<100	NC	<100	<100	NC
Polycyclic Aromatic Hydrocarbons	μg/L	0.1	<0.05	<0.05	NC	<0.1	<0.1	NC	-	-	-	<0.1	<0.1	NC
Acenaphthene Acenaphthylene Anthracene	μg/L μg/L μg/L	0.2 0.2 0.1	-	-	-	<0.2 <0.2 <0.1	<0.2 <0.2 <0.1	NC NC	<0.2 <0.2 <0.1	<0.2 <0.2 <0.1	NC NC	<0.2 <0.2 <0.1	<0.2 <0.2 <0.1	NC NC
Benzo[a]anthracene Benzo[a]pyrene	μg/L μg/L	0.2	-	-	-	<0.1 <0.2 <0.01	<0.1 <0.2 <0.01	NC NC	<0.2 <0.01	<0.1 <0.2 <0.01	NC NC	<0.2 <0.01	<0.2 <0.01	NC NC
Benzo[b]fluoranthene Benzo[g,h,i]perylene	μg/L μg/L	0.1 0.2	-	-	- <u>i</u>	<0.1 <0.2	<0.1 <0.2	NC NC	<0.1 <0.2	<0.1 <0.2	NC NC	<0.1 <0.2	<0.1 <0.2	NC NC
Benzo[k]fluoranthene Chrysene	μg/L μg/L	0.1	-		•	<0.1 <0.1	<0.1 <0.1	NC NC	<0.1 <0.1	<0.1 <0.1	NC NC	<0.1 <0.1	<0.1 <0.1	NC NC
Dibenzo[a,h]anthracene Fluoranthene Fluorene	μg/L μg/L μg/L	0.2 0.2 0.2			-	<0.2 <0.2 <0.2	<0.2 <0.2 <0.2	NC NC	<0.2 <0.2 <0.2	<0.2 <0.2 <0.2	NC NC	<0.2 <0.2 <0.2	<0.2 <0.2 <0.2	NC NC
Indeno[1,2,3-cd]pyrene Methylnaphthalene, 1+2-	μg/L μg/L	0.2	-	-	-	<0.2 <0.2	<0.2 <0.2	NC NC	<0.2 <0.2	<0.2 <0.2	NC NC	<0.2 <0.2	<0.2 <0.2	NC NC
Methylnaphthalene, 1- Methylnaphthalene, 2-	μg/L μg/L	0.02 0.02	-	-		-	-	-	-	-		-	-	-
Naphthalene Phenanthrene	μg/L μg/L	0.2	-	-	•	<0.2 <0.1	<0.2 <0.1	NC NC	<0.2 <0.1	<0.2 <0.1	NC NC	<0.2 <0.1	<0.2 <0.1	NC NC
Pyrene Trihalomethanes Bromodichloromethane	μg/L μg/L	0.2	<0.1	<0.1	NC NC	<0.2	<0.2	NC NC	<0.2	<0.2	NC NC	<0.2	<0.2	NC NC
Bromoform Chloroform	μg/L μg/L	0.1	<0.2 <0.1	<0.2 <0.1	NC NC	<0.1 <0.2	<0.1	NC NC	<0.1 <0.2	<0.1 <0.2	NC NC	<0.1 <0.2	<0.1	NC NC
Dibromochloromethane Volatile Organic Compounds	μg/L	0.1	<0.2	<0.2	NC	<0.1	<0.1	NC	<0.1	<0.1	NC	<0.1	<0.1	NC
Acetone Bromomethane Carbon tetrachloride	μg/L μg/L	0.2	<10 <0.5	<10 <0.5	NC NC	<0.2	<1 <0.2	NC NC	<0.2	<0.2	NC NC	<0.2	<1 <0.2	NC NC
Carbon tetrachloride Chlorobenzene Dichlorobenzene, 1,2-	μg/L μg/L μg/L	0.2 0.1 0.1	<0.1 <0.1 <0.2	<0.1 <0.1 <0.2	NC NC	<0.2 <0.1 <0.1	<0.2 <0.1 <0.1	NC NC	<0.2 <0.1 <0.1	<0.2 <0.1 <0.1	NC NC	<0.2 <0.1 <0.1	<0.2 <0.1 <0.1	NC NC
Dichlorobenzene, 1,3- Dichlorobenzene, 1,4-	μg/L μg/L	0.1	<0.2 <0.2	<0.2 <0.2	NC NC	<0.1 <0.1	<0.1 <0.1	NC NC	<0.1	<0.1 <0.1	NC NC	<0.1 <0.1	<0.1 <0.1	NC NC
Dichlorodifluoromethane Dichloroethane, 1,1-	μg/L μg/L	0.4	<0.5 <0.1	<0.5 <0.1	NC NC	<0.4	<0.4	NC NC	<0.4	<0.4	NC NC	<0.4	<0.4	NC NC
Dichloroethane, 1,2- Dichloroethene, 1,1- Dichloroethene, cis-1,2-	μg/L μg/L μg/L	0.2 0.3 0.2	<0.2 <0.1 <0.1	<0.2 <0.1 <0.1	NC NC	<0.2 <0.3 <0.2	<0.2 <0.3 <0.2	NC NC	<0.2 <0.3 <0.2	<0.2 <0.3 <0.2	NC NC	<0.2 <0.3 <0.2	<0.2 <0.3 <0.2	NC NC
Dichloroethene, cis-1,2- Dichloroethene, trans-1,2- Dichloropropane, 1,2-	μg/L μg/L μg/L	0.2 0.2 0.2	<0.1 <0.1 <0.1	<0.1 <0.1 <0.1	NC NC	<0.2 <0.2 <0.2	<0.2 <0.2 <0.2	NC NC	<0.2 <0.2 <0.2	<0.2 <0.2 <0.2	NC NC	<0.2 <0.2 <0.2	<0.2 <0.2 <0.2	NC NC
Dichloropropene, 1,3- Dichloropropene, cis-1,3-	μg/L μg/L	0.2, 0.3	<0.4 <0.2	<0.4 <0.2	NC NC	<0.3	<0.3	NC -	<0.3	<0.3	NC -	<0.3	<0.3	NC -
Dichloropropene, trans-1,3- Ethylene dibromide	μg/L μg/L	0.2	<0.2 <0.2	<0.2 <0.2	NC NC	<0.1	<0.1	NC	<0.1	<0.1	- NC	<0.1	<0.1	NC
Hexane, n- Methyl Ethyl Ketone (MEK) Methyl Isobutyl Ketone (MIBK)	μg/L μg/L	0.2 1 1	<0.5 <5 <5	<0.5 <5 <5	NC NC	<0.2 <1 <1	<0.2 <1 <1	NC NC	<0.2 <1 <1	3.07 <1 <1	NC NC	<0.2 <1 <1	<0.2 <1 <1	NC NC
Methyl Isobutyl Ketone (MIBK) Methylene chloride Methyl tert-butyl ether (MTBE)	μg/L μg/L μg/L	0.3 0.2	<5 - <0.2	<5 - <0.2	- NC	<0.3 <0.2	<0.3 <0.2	NC NC	<0.3 <0.2	<0.3 <0.2	NC NC	<0.3 <0.2	<0.3 <0.2	NC NC
Styrene Tetrachloroethane, 1,1,1,2-	μg/L μg/L	0.1 0.1	<0.2 <0.1	<0.2 <0.1	NC NC	<0.1 <0.1	<0.1 <0.1	NC NC	<0.1 <0.1	<0.1 <0.1	NC NC	<0.1 <0.1	<0.1 <0.1	NC NC
Tetrachloroethane, 1,1,2,2- Tetrachloroethene	μg/L μg/L	0.1 0.2	<0.2 <0.1	<0.2 <0.1	NC NC	<0.1 <0.2	<0.1 <0.2	NC NC	<0.1 <0.2	<0.1 <0.2	NC NC	<0.1 <0.2	<0.1 <0.2	NC NC
Trichloroethane, 1,1,1- Trichloroethane, 1,1,2- Trichloroethane	μg/L μg/L	0.1, 0.3 0.2 0.2	<0.1 <0.2 <0.1	<0.1 <0.2 <0.1	NC NC	<0.3 <0.2 <0.2	<0.3 <0.2 <0.2	NC NC	<0.3 <0.2	<0.3 <0.2 <0.2	NC NC	<0.3 <0.2	<0.3 <0.2 <0.2	NC NC
Trichloroethene Trichlorofluoromethane Vinyl Chloride	μg/L μg/L μg/L	0.2 0.4 0.17, 0.2	<0.1 <0.2 <0.2	<0.1 <0.2 <0.2	NC NC	<0.2 <0.4 <0.17	<0.2 <0.4 <0.17	NC NC	<0.2 <0.4 <0.17	<0.2 <0.4 <0.17	NC NC	<0.2 <0.4 <0.17	<0.2 <0.4 <0.17	NC NC
-LEGEND-	, r6/ L	3.2., 0.2	-5.2	-5.2			-0.17		-5.17				-0.17	

⁻LEGENDDetection Limit May vary between sample locations and events
RPD Relative Percent Difference
NC No Calculation; the concentrations of at least one duplicate sample was non-detect or measured at a concentration less than 5 times the Detection Limit

Orange RPD exceeds 40% (Groundwater data quality objective*)

*Guidance Manual for Environmental Site Characterization in Support of Environmental and Human Health Risk Assessment, Volume 1 Guidance Manual, Canadian Council of Ministers of the Environment, 2016

Osprey Shores QA/QC Results		Sample ID	MW215	GW-Dup2		MW23-22	MW23 (DUP2-22		MW24-12	MW24.1-12		MW26-11	MW26.1-11	
Groundwater		Sample Date	2023-Jan-23	2023-Jan-23	RPD	2022-Jul-14	2022-Jul-14	RPD	2012-May-01	2012-May-01	RPD	2011-Aug-17	2011-Aug-17	RPD
Parameter Acids, Bases, Neutrals		Sample Depth Detection Limit	1.6 - 4.5	1.6 - 4.5		1.2 - 3.4	1.2 - 3.4		1.5 - 4.5	1.5 - 4.5		1.5 - 4.5	1.5 - 4.5	
Biphenyl, 1,1- Bis(2-chloro-1-methylethyl)ether Bis(2-chloroethyl)ether	μg/L μg/L μg/L	0.5 0.5 0.5	<0.5 <0.5 <0.5	<0.5 <0.5 <0.5	NC NC	<0.5 <0.5 <0.5	<0.5 <0.5 <0.5	NC NC	-	-	-	-	-	-
Bis(2-ethylhexyl)phthalate Chloroaniline, p-	μg/L μg/L	0.5	<0.5 <1	<0.5 <1	NC NC	<0.5 <1	<0.5 <1	NC NC	-	-	-	-	-	-
Dichlorobenzidine, 3,3- Diethyl phthalate	μg/L μg/L	0.5 0.5	<0.5 <0.5	<0.5 <0.5	NC NC	<0.5 <0.5	<0.5 <0.5	NC NC	-	-		-	-	-
Dimethylphenol, 2,4- Dimethyl phthalate	μg/L μg/L	0.5 0.5 10	<0.5 <0.5 <10	<0.5 <0.5 <10	NC NC	<0.5 <0.5 <10	<0.5 <0.5 <10	NC NC	-	-	-	-	-	-
Dinitrophenol, 2,4- Dinitrotoluene, 2,4+2,6- Phenol	μg/L μg/L μg/L	0.5	<0.5 <1	<0.5 <1	NC NC	<0.5	<0.5	NC NC	-	-	-	-	-	-
Trichlorobenzene, 1,2,4- Benzene, Toluene, Ethylbenzene, & X	μg/L	0.5	<0.5	<0.5	NC	<0.5	<0.5	NC	-	-		-	-	-
Benzene Ethylbenzene	μg/L μg/L	0.2	<0.2	<0.2 <0.1	NC NC	<0.2	<0.2 <0.1	NC NC	<0.5 <0.5	<0.5 <0.5	NC NC	<0.1 <0.1	<0.1	NC NC
Toluene Xylene, m+p- Xylene, o-	μg/L μg/L μg/L	0.2 0.2 0.1	<0.2 <0.2 <0.1	<0.2 <0.2 <0.1	NC NC	<0.2 <0.2 <0.1	<0.2 <0.2 <0.1	NC NC	<0.5 <0.5 <0.5	<0.5 <0.5 <0.5	NC NC	<0.2 <0.1 <0.1	<0.2 <0.1 <0.1	NC NC
Xylenes, total Chlorophenols	μg/L	0.2	<0.2	<0.2	NC	<0.2	<0.2	NC	<1	<1	NC	<0.1	<0.1	NC
Chlorophenol, 2- Dichlorophenol, 2,4-	μg/L μg/L	0.5 0.3	<0.5 <0.3	<0.5 <0.3	NC NC	<0.5 <0.3	<0.5 <0.3	NC NC	-	-		-	-	-
Pentachlorophenol Trichlorophenol, 2,4,5- Trichlorophenol, 2,4,6-	μg/L μg/L μg/L	0.5 0.2 0.2	<0.5 <0.2 <0.2	<0.5 <0.2 <0.2	NC NC	<0.5 <0.2 <0.2	<0.5 <0.2 <0.2	NC NC	-	-	-	-	-	-
Metals Aluminum, dissolved	μg/L μg/L	10	-	-	-	-	-	-	<10	10	NC	<10	<10	NC
Antimony, dissolved Arsenic, dissolved	μg/L μg/L	1 1	<1 <1	<1 1.2	NC NC	<1 <1	<1 <1	NC NC	- <10	- <10	- NC	- <1	- <1	- NC
Barium, dissolved Beryllium, dissolved	μg/L μg/L	0.5	78.1 <0.5	78.9 <0.5	1% NC	70.3 <0.5	65.1 <0.5	8% NC	90 <0.5	90 <0.5	0% NC	200 <0.5	200 <0.5	0% NC
Boron, dissolved Cadmium, dissolved Calcium, dissolved	μg/L μg/L μg/L	0.2	826 <0.2	834 <0.2	1% NC -	177 <0.2	166 <0.2	6% NC -	150 <0.1 8000	150 <0.1 174000	0% NC 182%	60 <0.1 163000	70 <0.1 169000	15% NC 4%
Chromium, dissolved Cobalt, dissolved	μg/L μg/L μg/L	2 0.5	<2 <0.5	<2 <0.5	NC NC	2.8	<2 <0.5	NC NC	<1 0.4	<1 0.4	NC NC	5 <0.2	5 <0.2	NC NC
Copper, dissolved Iron, dissolved	μg/L μg/L	1 30	<1 -	<1 -	NC -	1.1	3.6	NC -	<1 3250	<1 3210	NC 1%	<1 720	<1 740	NC 3%
Lead, dissolved Magnesium, dissolved	μg/L μg/L	0.5	<0.5	<0.5	NC -	<0.5	<0.5	NC -	<1 34000	<1 19000	NC 57%	<1 31000	<1 32000	NC 3%
Manganese, dissolved Molybdenum, dissolved Nickel, dissolved	μg/L μg/L μg/L	0.5 1	12.8 1.6	12.4 1.3	3% NC	2.76	2.65 <1	- 4% NC	440 14 <5	430 13 <5	2% 7% NC	80 <5 <5	90 <5 <5	NC NC
Potassium, dissolved Selenium, dissolved	μg/L μg/L	1	1.2	- <1	- NC	- <1	- <1	- NC	87000	6000	174%	3000 <1	3000 <1	0% NC
Silver, dissolved Sodium, dissolved	μg/L μg/L	0.2 50, 500	<0.2 21700	<0.2 21200	NC 2%	<0.2 41100	<0.2 38800	NC 6%	<0.1 202000	<0.1 56000	NC 113%	<0.1 107000	<0.1 110000	NC 3%
Strontium, dissolved Thallium, dissolved	μg/L μg/L	0.3	<0.3	<0.3	- NC	<0.3	<0.3	- NC	797	796 <0.1	0% NC	797 <0.1	799 <0.1	0% NC
Titanium, dissolved Uranium, dissolved Vanadium, dissolved	μg/L μg/L μg/L	0.5 0.4	<0.5 <0.4	- <0.5 <0.4	NC NC	<0.5 <0.4	- <0.5 <0.4	NC NC	<10 <1 <5	<10 <1 <5	NC NC	<10 <1 6	<10 <1 5	NC NC 18%
Zinc, dissolved Other Regulated Parameters	μg/L	5	<5	<5	NC	<5	<5	NC	<10	<10	NC	<10	<10	NC NC
Chloride Chromium (hexavalent)	μg/L μg/L	100	12600 <2	12800 <2	2% NC	34700 <2	35200 <2	1% NC	50000	56000	11%	217000	215000	1%
Cyanide Electrical Conductivity Mercury, total	μg/L μS/cm μg/L	2 2 0.02	<2 873 <0.02	<2 876 <0.02	NC 0% NC	<2 961 <0.02	<2 962 <0.02	NC 0% NC	1180 <0.1	- 1210 <0.1	3% NC	- 1590 <0.1	1610 <0.1	- 1% NC
pH Petroleum Hydrocarbons	ρΗ unit		7.34	7.24	1%	7.78	7.75	0%	7.92	7.94	0%	7.55	7.69	2%
Petroleum Hydrocarbons F1 (C6-C10) Petroleum Hydrocarbons F2 (C10-C16	μg/L μg/L	25 100	<25 <100	<25 <100	NC NC	<25 <100	<25 <100	NC NC	<100 <100	<100 <100	NC NC	<100 <100	<100 <100	NC NC
Petroleum Hydrocarbons F3 (C16-C34 Petroleum Hydrocarbons F4 (C34-C50 Polychlorinated Biphenyls	μg/L μg/L	100 100	<100 <100	<100 <100	NC NC	<100 <100	<100 <100	NC NC	<200 <200	<200 <200	NC NC	<200 <200	<200 <200	NC NC
Polychlorinated biphenyls Polycyclic Aromatic Hydrocarbons	μg/L	0.1	<0.1	<0.1	NC	<0.1	<0.1	NC	<0.1	<0.1	NC	<0.05	<0.05	NC
Acenaphthene Acenaphthylene	μg/L μg/L	0.2 0.2	<0.2 <0.2	<0.2 <0.2	NC NC	<0.2 <0.2	<0.2 <0.2	NC NC	0.47 <0.02	0.38 <0.02	NC NC	-	-	-
Anthracene Benzo[a]anthracene	μg/L μg/L	0.1	<0.1	<0.1 <0.2	NC NC	<0.1	<0.1	NC NC	0.07	0.06	NC NC	-	-	-
Benzo[a]pyrene Benzo[b]fluoranthene Benzo[g,h,i]perylene	μg/L μg/L μg/L	0.01 0.1 0.2	<0.01 <0.1 0.63	<0.01 <0.1 <0.2	NC NC	<0.01 <0.1 <0.2	<0.01 <0.1 <0.2	NC NC	0.03 0.03 <0.02	0.03 0.02 <0.02	NC NC	-	-	-
Benzo[k]fluoranthene Chrysene	μg/L μg/L	0.1 0.1	<0.1 <0.1	<0.1 <0.1	NC NC	<0.1 <0.1	<0.1 <0.1	NC NC	0.02	<0.02 <0.05	NC NC	-	-	-
Dibenzo[a,h]anthracene Fluoranthene	μg/L μg/L	0.2 0.2	0.57 <0.2	<0.2 <0.2	NC NC	<0.2 <0.2	<0.2 <0.2	NC NC	<0.02 0.05	<0.02 0.05	NC NC	-	-	-
Fluorene Indeno[1,2,3-cd]pyrene Methylnaphthalene, 1+2-	μg/L μg/L μg/L	0.2 0.2 0.02, 0.2	<0.2 0.5 <0.2	<0.2 <0.2 <0.2	NC NC	<0.2 <0.2 <0.2	<0.2 <0.2 <0.2	NC NC	0.05 <0.02 0.44	0.04 <0.02 0.34	NC NC 26%	-	-	-
Methylnaphthalene, 1- Methylnaphthalene, 2-	μg/L μg/L	0.02	-	-	-	-	-	-	0.21 0.23	0.17 0.17	21%	-	-	-
Naphthalene Phenanthrene	μg/L μg/L	0.2 0.1	<0.2 <0.1	<0.2 <0.1	NC NC	<0.2 <0.1	<0.2 <0.1	NC NC	0.16 0.14	0.13 0.11	NC NC	-	-	-
Pyrene Trihalomethanes	μg/L	0.2	<0.2	<0.2	NC	<0.2	<0.2	NC	0.06	0.06	NC			- NC
Bromodichloromethane Bromoform Chloroform	μg/L μg/L μg/L	0.2 0.1 0.2	<0.2 <0.1 <0.2	<0.2 <0.1 <0.2	NC NC	<0.2 <0.1 <0.2	<0.2 <0.1 <0.2	NC NC	<0.3 <0.4 <0.5	<0.3 <0.4 <0.5	NC NC	<0.1 <0.2 <0.1	<0.1 <0.2 <0.1	NC NC
Dibromochloromethane Volatile Organic Compounds	μg/L	0.1	<0.1	<0.1	NC	<0.1	<0.1	NC	<0.3	<0.3	NC	<0.2	<0.2	NC
Acetone Bromomethane	μg/L μg/L	0.2	<0.2	<0.2	NC NC	<0.2	<0.2	NC NC	<0.5	<0.5	- NC	<10 <0.5	<10 <0.5	NC NC
Carbon tetrachloride Chlorobenzene Dichlorobenzene, 1,2-	μg/L μg/L μg/L	0.2 0.1 0.1	<0.2 <0.1 <0.1	<0.2 <0.1 <0.1	NC NC	<0.2 <0.1 <0.1	<0.2 <0.1 <0.1	NC NC	<0.2 - <0.4	<0.2 - <0.4	NC - NC	<0.1 <0.1 <0.2	<0.1 <0.1 <0.2	NC NC
Dichlorobenzene, 1,3- Dichlorobenzene, 1,4-	μg/L μg/L μg/L	0.1 0.1	<0.1 <0.1	<0.1 <0.1	NC NC	<0.1 <0.1 <0.1	<0.1 <0.1	NC NC	<0.4 <0.4 <0.4	<0.4 <0.4 <0.4	NC NC	<0.2 <0.2 <0.2	<0.2 <0.2 <0.2	NC NC
Dichlorodifluoromethane Dichloroethane, 1,1-	μg/L μg/L	0.4 0.3	<0.4 <0.3	<0.4 <0.3	NC NC	<0.4 <0.3	<0.4 <0.3	NC NC	<0.5 0.4	<0.5 0.5	NC NC	<0.5 <0.1	<0.5 <0.1	NC NC
Dichloroethane, 1,2- Dichloroethene, 1,1- Dishloroethene, circ 1,2	μg/L μg/L	0.2	<0.2	<0.2 <0.3	NC NC	<0.2	<0.2 <0.3	NC NC	<0.2 <0.5	<0.2 <0.5	NC NC	<0.2	<0.2 <0.1	NC NC
Dichloroethene, cis-1,2- Dichloroethene, trans-1,2- Dichloropropane, 1,2-	μg/L μg/L μg/L	0.2 0.2 0.2	<0.2 <0.2 <0.2	<0.2 <0.2 <0.2	NC NC	<0.2 <0.2 <0.2	<0.2 <0.2 <0.2	NC NC	<0.4 <0.4 <0.5	<0.4 <0.4 <0.5	NC NC	<0.1 <0.1 <0.1	<0.1 <0.1 <0.1	NC NC
Dichloropropene, 1,3- Dichloropropene, cis-1,3-	μg/L μg/L μg/L	0.2, 0.3	<0.3	<0.3	NC NC	<0.3	<0.3	NC -	<0.4	<0.4 <0.2	NC NC	<0.4	<0.4 <0.2	NC NC
Dichloropropene, trans-1,3- Ethylene dibromide	μg/L μg/L	0.2 0.1, 0.2	<0.1	<0.1	- NC	<0.1	<0.1	- NC	<0.2 <0.2	<0.2 <0.2	NC NC	<0.2 <0.2	<0.2 <0.2	NC NC
Hexane, n- Methyl Ethyl Ketone (MEK)	μg/L μg/L	0.2	<0.2	<0.2	NC NC	<0.2	<0.2	NC NC	-	-	-	<0.5 <5	<0.5 <5	NC NC
Methyl Isobutyl Ketone (MIBK) Methylene chloride Methyl tert-butyl ether (MTBE)	μg/L μg/L μg/L	0.3 0.2	<1 <0.3 <0.2	<1 <0.3 <0.2	NC NC	<1 <0.3 <0.2	<1 <0.3 <0.2	NC NC	- <4 -	- <4 -	NC -	<5 - <0.2	<5 - <0.2	NC - NC
Styrene Tetrachloroethane, 1,1,1,2-	μg/L μg/L μg/L	0.1 0.1	<0.1 <0.1	<0.1 <0.1	NC NC	<0.1 <0.1	<0.1 <0.1	NC NC	<0.5 <0.5	<0.5 <0.5	NC NC	<0.2 <0.2 <0.1	<0.2 <0.1	NC NC
Tetrachloroethane, 1,1,2,2- Tetrachloroethene	μg/L μg/L	0.1 0.2	<0.1 <0.2	<0.1 <0.2	NC NC	<0.1 <0.2	<0.1 <0.2	NC NC	<0.5 <0.3	<0.5 <0.3	NC NC	<0.2 <0.1	<0.2 <0.1	NC NC
Trichloroethane, 1,1,1- Trichloroethane, 1,1,2-	μg/L μg/L	0.1, 0.3	<0.3	<0.3	NC NC	<0.3	<0.3 <0.2	NC NC	<0.4	<0.4	NC NC	<0.1	<0.1	NC NC
Trichloroethene Trichlorofluoromethane Vinyl Chloride	μg/L μg/L μg/L	0.2 0.4 0.17, 0.2	<0.2 <0.4 <0.17	<0.2 <0.4 <0.17	NC NC	<0.2 <0.4 <0.17	<0.2 <0.4 <0.17	NC NC	<0.3 <0.5 <0.2	<0.3 <0.5 <0.2	NC NC	<0.1 <0.2 <0.2	<0.1 <0.2 <0.2	NC NC
vinyi chloride	μg/L	0.17, 0.2	\U.1/	\U.1/	INC	\U.1/	\U.1/	NC	<u.z< td=""><td><0.2</td><td>NC</td><td><u.z< td=""><td><0.2</td><td>INC</td></u.z<></td></u.z<>	<0.2	NC	<u.z< td=""><td><0.2</td><td>INC</td></u.z<>	<0.2	INC

⁻LEGENDDetection Limit May vary between sample locations and events
RPD Relative Percent Difference
NC No Calculation; the concentrations of at least one duplicate sample was non-detect or measured at a concentration less than 5 times the Detection Limit

Orange RPD exceeds 40% (Groundwater data quality objective*)

*Guidance Manual for Environmental Site Characterization in Support of Environmental and Human Health Risk Assessment, Volume 1 Guidance Manual, Canadian Council of Ministers of the Environment, 2016

BluMetric Environmental Inc.

1682 Woodward Drive Ottawa, Ontario Canada K2C 3R8 Tel: 877.487.8436 ottawa@blumetric.ca 4 Cataraqui Street The Tower, The Woolen Mill Kingston, Ontario Canada K7K 1Z7 Tel: 877.487.8436 kingston@blumetric.ca 209 Frederick Street Unit 3B Kitchener, Ontario Canada N2H 2M7 Tel: 877.487.8436 kitchener@blumetric.ca 825 Milner Avenue Toronto, Ontario Canada M1B 3C3 Tel: 877.487.8436 toronto@blumetric.ca

410 Falconbridge Road Unit 6 Sudbury, Ontario Canada P3A 454 Tel: 877.487.8436 sudbury@blumetric.ca

1046 Gorham Street Thunder Bay, Ontario Canada P7B 5X5 Tel: 807.707.4736 thunderbay@blumetric.ca 260-15 Taschereau Street Gatineau, Quebec Canada J8Y 2V6 Tel: 877.487.8436 gatineau@blumetric.ca 200-1500 Du College Street Saint-Laurent, Quebec Canada H4L 5G6 Tel: 877.487.8436 montreal@blumetric.ca 4916 – 49th Street Yellowknife, NT Canada X1A 1P3 Tel: 867.873.3500 Fax: 867.873.3499 yellowknife@blumetric.ca 202b Strickland Street Whitehorse, Yukon Canada Y1A 2J8 Tel: 867.689.8465 whitehorse@blumetric.ca